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PERRON-FROBENIUS R-TREES FOR AUTOMORPHISMS OF FREE GROUPS

MARTIN LUSTIG

Abstract. Let ϕ ∈ Out(FN ) be an outer automorphism of a free group FN of finite rank N ≥
2, and let f : Γ → Γ be an absolute train track representative of ϕ. Then any non-negative
row eigenvector ~v ∗ with eigenvalue λ > 1 of the (non-negative) transition matrix M(f) defines a

projectively ϕ-invariant, expanding R-tree T~v
∗

with isometric FN -action, called a Perron-Frobenius
R-tree. Such a tree determines a point in the boundary ∂cvN of the non-projectivized Outer space
cvN for FN .

This fact is generalized here from the special case of absolute train track maps to β-train-track
maps, which exist for every ϕ ∈ Out(FN ).

As main result of this paper we show the converse: Every R-tree T ∈ ∂cvN , which is projectively
fixed and expanded by ϕ, is a Perron-Frobenius tree: For any β-train-track representative f of ϕ

there exists an eigenvector ~v ∗ as above with T = T~v
∗
.

This gives a finite set of strong structural decomposition invariants for any outer automorphisms
of FN .

1. Introduction

In the mid 80’s M. Culler and K Vogtmann [8] introduced for any integer N ≥ 2 a space CVN ,
now called Outer space, on which the group Out(FN ) of outer automorphisms of the free group
FN of finite rank N ≥ 2 acts in a similar vein as the mapping class group acts on Teichmüller
space. And just as in that case, the space CVN has a natural compactification CVN to which the
Out(FN )-action extends canonically. An element of CVN is a homothety class [T ] of very small
R-trees T with isometric FN -action.

The space CVN and its Out(FN )-action (a right action !) have been studied extensively, but both
still remain largely mysterious. Even for single automorphisms ϕ ∈ Out(FN ) the precise action of
ϕ on CVN is only known in a rather special case:

If ϕ is an iwip automorphism (= irreducible with irreducible powers, also called fully irreducible),
it has been shown in [14] that ϕ acts on CVN with North-South dynamics, with both fixed points
[T+], [T−] in the Thurston boundary ∂CVN := CVNrCVN , one of them expanding, i.e. T+ϕ = λT+

with λ > 1, and the other contracting (= expanding for ϕ−1).
If ϕ is a Dehn twist automorphism, then by [5] the ϕ-action on CVN is parabolic with fixed

points all assembled in a particular simplex σϕ ⊂ ∂CVN . This result has recently been generalized
to quadratically growing automorphisms in [23]; however, in both cases the action on ∂CVN is
more complicated and not totally understood: For example, in general there are more fixed points
in ∂CVN than just the points in σϕ.

Generalizing the above iwip case, let us assume that ϕ can be represented by a graph map
f : Γ → Γ which has the train track property: for any edge e of Γ and any exponent t ≥ 1 the
path f t(e) is reduced. Then (see [16, 18]) every row eigenvector ~v ∗ with eigenvalue λ > 1 of the
non-negative transition matrix M(f) defines an R-tree T~v

∗
. This tree is contained in the boundary

∂cvN of the unprojectivized version cvN of Outer space CVN , and it is projectively ϕ-invariant
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and expanding, just as the tree T+ above in the iwip case (which corresponds indeed to a subcase
of the special case where M(f) is primitive, see Remark 7.9 (2)).

Unfortunately the set of automorphisms which do admit absolute train track representative is
not exhaustive, not even among hyperbolic ϕ ∈ Out(FN ) (see [20]). This is the reason why in the
present paper we work with β-train-track maps, introduced first in [16] and studied further in [19].
In section 4.1 we review their fundamental properties which are used in this paper. β-Train-track
maps are a universal tool, as any automorphism of FN can be represented by such a map (see [19]).
They have a wide range of applications, and are a corner stone in the solution of the conjugacy
problem in Out(FN ) lined out in [16].

The following proposition is a streamlined version of Theorem 5.2 below, which explains in
particular the precise way how ~v ∗ determines T~v

∗
and the associated translation length function

|| · ||T~v ∗ on FN .

Proposition 1.1. Consider any automorphism ϕ ∈ Out(FN ) and any β-train-track representative
f : G → G of ϕ. Then every non-negative row eigenvector ~v ∗ with eigenvalue λ > 1 of the transition
matrix M(f) defines an R-tree T~v

∗ ∈ ∂cvN , which is projectively invariant under ϕ and expanding:

T~v
∗
ϕ = λT~v

∗

Since for non-polynomially growing ϕ the existence of an eigenvector ~v ∗ as in the above proposi-
tion is ensured by standard results from Perron-Frobenius theory of non-negative matrices, we call
the tree T~v

∗
a Perron-Frobenius R-tree (with respect to the β-train-track map f). It follows from

our main result that this definition is actually independent from the particular β-train-track map
used to construct T~v

∗
. Indeed, we show (see section 6):

Theorem 1.2. Let ϕ ∈ Out(FN ) be an outer automorphism, and let T ∈ cvN be a projectively
ϕ-invariant expanding R-tree.

Then for any β-train-track map f : G → G which represents ϕ there exists a non-negative
eigenvector ~v ∗ of M(f), with eigenvalue λ > 1, such that T is a Perron-Frobenius tree with respect
to f :

T = T~v
∗

Perron-Frobenius theory of non-negative matrices M has been studied intensively; for a quick
survey of the general case (i.e. without assuming that M is primitive or irreducible) see Appendix
A.3 of [1]. It is well known that any such M possesses (up to rescaling) only a finite number
of extremal non-negative eigenvectors, and any other non-negative eigenvector of M is a convex
combination of the latter. Hence for our purposes it is enough to consider the finitely many extremal
eigenvectors ~v ∗ of M(f), which can be readily computed from the given map f . This is explained
in Remark 7.5 below.

For any eigenvector ~v ∗ as above we consider in section 7.3 the zero-subgraph G~v ∗ ⊂ G, which
consists of all edges where ~v ∗ has coordinate value 0, and the non-trivial connected components Gi
of G~v ∗ . The given marking θ : π1G → FN defines an (up to conjugation) finite, partially ordered
system U(T~v

∗
) of finitely generated subgroups θ(π1Gi) of FN . Alternatively, the subgroups of the

system U(T~v
∗
) are given by the non-trivial stabilizers of the branch points of T~v

∗
, see Remark

7.11.
It follows from Theorem 1.2 that these subgroups are up to conjugation in FN structural invari-

ants of ϕ, i.e. they do not depend on the choice of the particular β-train-track representative f of
ϕ. Denoting by U(ϕ) the union of the U(T~v

∗
), for any eigenvector ~v ∗ as in Proposition 1.1, we

obtain (see Corollary 7.13 for more detail):

Corollary 1.3. Let ϕ,ϕ′, ψ ∈ Out(FN ) be automorphism which satisfy ϕ′ = ψ ◦ϕ◦ψ−1 . Then one
has:

U(ϕ′) = ψ(U(ϕ))
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Since generators for any subgroup from the system U(ϕ) can be determined algorithmically from
any β-train-track representative f : G → G of ϕ, the finite system U(ϕ) constitutes a powerful
computable conjugacy invariant for any ϕ ∈ Out(FN ). Further structural information about ϕ
derived from U(ϕ) as consequences of the above stated results are discussed in section 7.

History and Acknowledgements: This paper is an elaboration and extension of what has been
presented in sections 1 and 2 of the MPI-preprint [16]. This work has started during the author’s
2000-01 stay at the the Max-Planck Institut für Mathematik in Bonn, and was extended further
during his renewed visit in the Fall of 2016.

2. Preliminaries

2.1. Basics on graphs and graph maps.
Throughout this paper a graph Γ means a topological space that consists of vertices and edges

in the usual manner. Unless explicitly specified (for example if the graph in question is a covering
space of another graph), we assume tacitly that Γ is finite (i.e. there are only finitely many vertices
and edges). We also assume tacitly that Γ is connected, unless otherwise stated.

For every oriented edge e of Γ we denote by e the oppositely oriented edge, which gives e 6= e
and e = e for any edge e. We randomly pick for any set {e, e} one of its elements, and assemble all
those chosen edges in the subset Edges+(Γ) of the set Edges(Γ) of all edges of Γ.

An edge path γ = e1e2 . . . es is said to have combinatorial length |γ| = s. The path γ is trivial if
it has combinatorial length |γ| = 0. We say that γ is reduced if ei+1 6= ei for all i = 1, . . . , s− 1. If
γ is not reduced, then one can perform an elementary reduction, which means erasing a subpath
eiei+1 with ei+1 = ei. For any edge path γ there exists a well define reduced path, denoted [γ],
which has the same endpoints as γ and can be obtained from γ by a finite sequence of elementary
reductions. A loop γ̂ is reduced if the underlying path γ is reduced and cyclically reduced (i.e.
γ1 6= γs).

An edge path γ which has coinciding initial and terminal vertex P ∈ Γ and can be reduced to
the trivial edge path [γ] = P performing iteratively elementary reductions, is called an backtracking
path. It follows that an edge path γ is reduced if and only if it doesn’t contain any non-trivial
backtracking subpath.

A map f : Γ → Γ is a graph map if f sends vertices to vertices and edges to (not necessarily
reduced) edge paths. An edge path γ is called legal (with respect to f) if all forward f -iterates of
γ are reduced: one has

[f t(γ)] = f t(γ) for all t ≥ 1 .

The map f is said to have the train track property (or f is a train track map) if every edge,
viewed as edge path of combinatorial length 1, is a legal path.

For any graph map f : Γ→ Γ let M(f) = (me′,e)e′,e∈Edges+(Γ) denote the (geometric) transition

matrix for f , i.e. the entry me′,e ≥ 0 denotes the number of times the path f(e) crosses over the
edge e′, disregarding the orientations.

An edge e of Γ is polynomially growing under iteration of a map f : Γ→ Γ if the combinatorial
length of the paths f t(e) is bounded above by a polynomial in t ∈ N.

A graph Γ is marked if it is provided with an FN -marking (or simply marking), i.e. a surjective
homomorphism θ : π1Γ → FN , where FN denotes the free group of finite rank N ≥ 0. As is
common, we consider two markings as equal if they only differ by an inner automorphism of FN ,
which is why we do not need to specify a base point of Γ.

Throughout this paper we denote by Γ̂ the covering of Γ which is defined by ker θ; on this “Galois
covering” the group FN acts freely as group of deck transformations (= covering translations). If

θ happens to be an isomorphism, then Γ̂ coincides with the universal covering Γ̃ of Γ.
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A graph map f : Γ→ Γ of a marked graph Γ represents an outer automorphism ϕ ∈ Out(FN ) if
the given marking epimorphism θ and the endomorphism f∗ induced by f on π1Γ satisfy:

θ ◦ f∗ = ϕ ◦ θ
Here f∗ is understood as “outer endomorphism”, i.e. it is well defined only up to composition with
inner automorphisms.

This terminology is sometimes extended to non-marked graphs Γ: In this case we say that a
graph map f : Γ → Γ represents ϕ if there exists a marking θ : π1Γ � FN so that f represents ϕ
with respect to θ.

A lift f̂ : Γ̂ → Γ̂ of f represents an automorphism Φ ∈ Aut(FN ) if for any element w ∈ FN one
has:

f̂w = Φ(w)f̂ : Γ̂→ Γ̂

In this case it follows that f represents the automorphism ϕ ∈ Out(FN ) which is the image of
Φ under the quotient map Aut(FN ) → Out(FN ). Furthermore, any preimage Φ′ of ϕ can be

represented by a properly chosen lift f̂ ′ of f , and f̂ ′ is uniquely determined by Φ′.

The above introduced terminology will also be used in a more general context, i.e. for any space
Z provided with an FN -action: We say that h : Z → Z represents Φ ∈ Aut(FN ) if one has

(2.1) Φ(w)h = hw : Z → Z for any w ∈ FN .
For any second such space Z ′ and map h′ : Z ′ → Z ′ which also represents Φ we say that an
FN -equivariant map j : Z → Z ′ semi-commutes with h and h′ if one has:

(2.2) jh = h′j

A further generalization of equality (2.1) which is occasionally useful occurs if Φ : G1 → G2 is
any group homomorphism, and Z1 and Z2 are spaces with actions of G1 and G2 respectively. Then
any map h : Z1 → Z2 is said to represent Φ if one has

(2.3) Φ(g)h = hg : Z1 → Z2 for any g ∈ G1 .

2.2. Perron-Frobenius length functions.

Definition 2.1. Let Γ be a graph with FN -marking, and let f : Γ → Γ be a graph map that
represents an automorphism ϕ ∈ Out(FN ).

(1) Any map

L+ : Edges+(Γ)→ R≥0

can be completed to an edge length function

L : Edges(Γ)→ R≥0

by the convention L(e) = L(e) for any edge e of Γ.

(2) For any edge path or loop γ = e1e2 . . . eq in Γ the edge length function L defines the path length

L(γ) =

q∑
k=1

L(ek) .

By lifting L equivariantly and setting

(2.4) dL(P,Q) = inf{L(γ) | γ connects P to Q}

for any two vertices P and Q of Γ̂, one obtains a pseudo-metric dL on the set of vertices of Γ̂, i.e.

a non-negative continuous function on Γ̂× Γ̂ that differs from a metric only in that distinct points
may well have distance 0.
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(3) If need be, we will distribute for any edge e of Γ the length L(e) along e so that distance
can be measured between any two points of Γ. More importantly, by lifting this extension of L

equivariantly, the above distance function dL extends to a pseudo-metric on all of Γ̂.

(4) For any constant λ > 1 which satisfies L([f(e)]) ≤ λL(e) for any edge e of Γ, we define the limit
length Lλ∞(γ) to be the following length infimum:

Lλ∞(γ) = inf
t∈N

1

λt
L([f t(γ)])

If this limit length needs to be distributed along the interior of the edges of Γ, we always use the
convention that for any points x and y on e which are mapped to vertices P = f t(x) and Q = f t(y)
the length of the segment [x, y] on e is given by

(2.5) Lλ∞([x, y]) :=
1

λt
Lλ∞(γ′) ,

where γ′ is the subpath of f t(e) which joins P to Q. It follows that on the closure P of the set of

those points, which are eventually mapped by iterates of f to vertices, the distance function dL
λ
∞

from (2.4) is well defined, and through extending it by the constant function to the complement of

P, one obtains a well define pseudo-metric dL
λ
∞ on Γ̂.

(5) An edge length function
L : Edges(Γ)→ R≥0

is a Perron-Frobenius length function (abbreviated to PF-length 1) if there exists a non-negative
right eigenvector ~v ∗ = (ve)e∈Edges+(Γ) of the transition matrix M(f) with eigenvalue λ > 1, such

that for any edge e ∈ Edges+(Γ) the coordinate equality

ve = L(e)

is satisfied. In this case it is convenient to specify the above notation to L~v
∗

:= L, L~v
∗
∞ := Lλ∞ and

d~v
∗
∞ = dL

λ
∞ .

We observe directly from this definition:

Remark 2.2. Let L = L~v
∗

be a Perron-Frobenius length function on Γ as in Definition 2.1.

(1) For an arbitrary path or loop γ = e1e2 . . . eq in Γ we define a length vector

~v(γ) = (|γ|e + |γ|e)e∈Edges+(Γ) ,

where |γ|e denotes the number of times that γ crosses over e (in forward direction only). Then the
length vector of the unreduced path f t(γ) is given by the following matrix product:

~v(f t(γ)) = M(f)t ~v(γ)

Furthermore, the PF-length L(γ) is given as scalar product

L(γ) = ~v ∗ · ~v(γ) ,

so that the PF-length of the unreduced path f t(γ) is given by

(2.6) L(f t(γ)) = ~v ∗M(f)t~v(γ) = λtL(γ) .

(2) Since reduction of paths always diminishes length, the sequence 1
λtL([f t(γ)]) is decreasing, so

that one has

(2.7) L~v
∗
∞(γ) = lim

t∈N

1

λt
L([f t(γ)]) ≤ L(γ) .

1 For convenience we allow ourselves to abbreviate on and off the two great mathematicians Perron and Frobenius
to “PF” and much apologize for this !
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In the special case that γ is legal, one has [f t(γ)] = f t(γ) for any t ≥ 0, and hence

(2.8) L~v
∗
∞(γ) = L(γ) .

(3) From equality (2.6) we deduce in particular that for any polynomially growing edge e one has
L(e) = 0 and thus

L~v
∗
∞(e) = 0 .

(4) If f has the train track property, then there exists always a legal loop γ̂ in Γ with L~v
∗
∞(γ̂) > 0.

Indeed, since ~v ∗ is an eigenvector and thus ~v ∗ 6= ~0, it suffices to iterate some edge e with length
L(e) > 0 until it is long enough to contain a suitable loop as subpath, which happens eventually
due to the finiteness of Γ and our assumption λ > 1.

2.3. R-trees and Outer space.
An R-tree T is a non-empty path-connected 0-hyperbolic metric space. Equivalently, T is a

non-empty metric space which has the property that for any two points x, y ∈ T there is a unique
isometric embedding of the interval [0, d(x, y)] ⊂ R into T such that the image is a segment [x, y] ⊂ T
which connects x to y.

All R-trees in this paper are provided with an action of FN by isometries (written as left-

multiplication). Examples are given by the universal covering Γ̃ of a graph Γ which is provided
with a marking isomorphism θ : π1Γ → FN , and with a positive edge length function L that is

lifted to Γ̃ (see Definition 2.1 (3)).

Such metric simplicial R-trees T = Γ̃, with free FN -action by deck transformations, are precisely
the points of the unprojectivized Outer space cvN for FN , provided that T is minimal, i.e. there is
no non-empty FN -invariant proper subtree of T . The classical Outer space CVN is obtained from
cvN by projectivization, i.e. T is replaced by the class [T ] of all R-trees T ′ that are obtained from
T by uniform rescaling with a factor λ > 0:

T ′ ∈ [T ] ⇐⇒ T ′ = λT

Every R-tree T defines a translation length function || · ||T on FN given by

||w||T = inf{d(x,w · x) | x ∈ T} ,
which is well known to depend only on the conjugacy class [w] of w in FN . Two R-trees T1 and T2

have the same translation length function if and only if their minimal subtrees are FN -equivariantly
isometric (see [9]).

In particular, it follows that the issuing map

cvN → RFN≥0 , T 7→ || · ||T
is an embedding, which is used to define the topology on cvN . Every point in closure of the image
of cvN (but not in the image itself) is the translation length function of a well defined minimal
R-tree T with isometric FN -action that is either not free or not simplicial (or neither). Such R-trees
T constitute the Thurston boundary ∂cvN of cvN , and projectivization gives the compactification
CVN = CVN ∪ ∂CVN of Outer space.

The spaces cvN , cvN = cvN ∪ ∂cvN ,CVN and CVN are equipped with a natural right action
by Out(FN ), which is properly discontinuous on CVN , so that the latter is rightfully considered a
proper analogue of Teichmüller space, with Out(FN ) taking on the role of the mapping class group.

An R-tree T ∈ cvN defines a fixed point

[T ] = [T ] · ϕ ∈ CVN

of ϕ ∈ Out(FN ) if T · ϕ = λT for some λ > 0. Equivalently, one has

(2.9) Φ(w)H = Hw : T → T for any w ∈ FN ,
6



for some homothety H : T → T with stretching factor λ and some lift Φ ∈ Aut(FN ) of ϕ (in which
case H represents Φ). We say that [T ] is an expanding fixed point of ϕ if the homothety H expands
T , i.e. if the stretching factor satisfies λ > 1. In this case the set of branch points is dense in T , so
that T is not simplicial, and hence one has:

(2.10) T ∈ ∂cvN

Minimal non-simplicial R-trees T ∈ ∂cvN are not complete as metric spaces. We denote by T the
metric completion of any R-tree T . Any homothety H : T → T extends canonically to a homothety
H : T → T with the same stretching factor as H. Clearly H represents the same Φ ∈ Aut(FN ) as
does H.

An important property of R-trees T comes from considering “arcs”, i.e. segments [x, y] ⊂ T
which are not degenerated, i.e. with x 6= y. By the stabilizer in FN of such an arc we always mean
the point-wise stabilizer. The tree T (or the FN -action on T ) is called small if the stabilizer of any
arc in T has rank ≤ 1, i.e. it is infinite cyclic or trivial. A further restriction, called very small, is
to impose that the set of fixed points of any w ∈ FN r {1} does not contain any tripod, and that
w doesn’t invert any arc. It has been shown in [2, 5] that cvN is precisely the set of all very small
minimal R-trees.

2.4. Bounded backtracking.
In [11] the following notion for isometric FN -actions on R-trees has been introduced and studied:

Definition 2.3. The action of FN on the R-tree T has bounded backtracking (for short: T satisfies
BBT) if for every Q ∈ T and every basis A of FN there exists a constant C ≥ 0 such that for any
reduced words v, w ∈ FN with reduced product vw one has d(vQ, [Q, vwQ]) ≤ C.

In this paper we will use the property BBT explicitly in the following equivalent form:

Lemma 2.4. (1) The FN -action on T satisfies BBT if and only if for any graph Γ with marking

isomorphism θ : π1Γ
∼=−→ FN and any FN -equivariant map i : Γ̃ → T the following property is

satisfied:

(*) There is a constant c ≥ 0 such that for any two vertices P and Q of the universal covering

tree Γ̃ the reduced edge path γ from P to Q is mapped by i into the c-neighborhood of the
geodesic segment [i(P ), i(Q)] ⊂ T .

(2) The FN -action on T satisfies BBT if property (*) holds for some Γ and some i as in (1) above.
tu

Remark 2.5. (1) It is easy to see that Lemma 2.4 stays valid if Γ is replaced by a graph Γ′ which
has as marking only a (not necessarily injective) epimorphism θ : π1Γ′ � FN , the universal covering

Γ̃ is replaced by the FN -covering Γ̂′, and the reduced path γ is replaced by any quasi-geodesic path
γ′ from P to Q with a priori fixed quasi-geodesy constants.

(2) If the FN -action on the R-tree T satisfies BBT, then so does the induced action of FN on the
metric completion T of T . This follows directly from Definition 2.3 or Lemma 2.4.

It has been shown in [11] that from a bounded cancellation lemma due to Bestvina-Feighn-Handel
(see [3], Lemma 3.1 or [10], Lemma 2.2.4), the following can be derived:

Proposition 2.6. Every R-tree T ∈ cvN satisfies BBT. tu

3. R-trees obtained through train track iterations

In [11] a construction of R-trees through iterations of a given train track map has been introduced,
which plays a crucial role in this paper. We review in this section the main ingredients of this
construction, in a slightly generalized form.
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Let Z be a path-connected topological space with an action of FN by homeomorphisms. Assume
that the space Z is equipped with an FN -invariant pseudo-metric d. Let h : Z → Z be a map which
represents some automorphism Φ ∈ Aut(FN ) (see equality (2.1)). Let λ > 1 be a constant which
satisfies

(3.1) d(h(x), h(y)) ≤ λd(x, y)

for any points x, y ∈ Z. For any integer k ≥ 0 we define a new FN -equivariant pseudo-metric on Z
through

(3.2) dk(x, y) :=
d(hk(x), hk(y))

λk
,

and from (3.1) we deduce dk(x, y) ≤ dk+1(x, y). Hence the dk converge to an FN -equivariant
pseudo-metric

(3.3) d∞(x, y) = lim
k→∞

dk(x, y)

which satisfies

d∞(x, y) ≤ d(x, y)

and

d∞(h(x), h(y)) = λd∞(x, y)

for all x, y ∈ Z.
Let T∞ be the canonical metric quotient space of Z with respect to the pseudo-metric d∞,

equipped with the FN -action inherited from Z. Then the quotient map

i : Z → T∞

is FN -equivariant and continuous, and in particular T∞ is path-connected. From the construction
of the limit space T∞ and the map i we observe directly that there is a homothety H : T∞ → T∞
with stretching factor λ which represents the same automorphism Φ ∈ Aut(FN ) as does the map
h. In particular i semi-commutes with h and H (see equality (2.2)).

Remark 3.1. It may well occur that the limit pseudo-metric d∞ is the zero pseudo-metric through-
out all of Z. This happens in particular if λ is chosen non-minimal with respect to inequality (3.1).

We now assume that the pseudo-metric d on Z is 0-hyperbolic. Since h is distance decreasing,
the same follows for any of the intermediate pseudo-metrics dk. Hence the limit metric d∞ is also
0-hyperbolic, so that (see [11]) the limit space T∞ is an R-tree with an action of FN by isometries
and an FN -equivariant map

(3.4) i : Z � T∞

which is surjective and preserves the d∞-pseudo-metric in that

d(i(x), i(y)) = d∞(x, y)

for any x, y ∈ Z. The tree T∞ is uniquely determined, up to FN -equivariant isometry, by the space
Z, the map h, the pseudo-metric d on Z, and by our choice of λ > 1, and we call it the iteration
tree defined by those data. We thus have

(3.5) Φ(w)H = Hw : T∞ → T∞

for all w ∈ FN , and

(3.6) ih = Hi : Z → T∞ .
8



Remark 3.2. (1) With the above generality, of course, the iteration tree T∞ may well consist of
a single point only.

(2) The generality of the construction presented here also allows situations where the iteration
tree T∞ is non-zero, but not minimal. This can be achieved easily through attaching equivariantly
additional edges e to Z along their terminal endpoint, with h(e) = e ◦ γ for some suitable path γ
in Z.

To finish this section we want to consider a special case of the above construction which plays
an important role in the subsequent sections:

Lemma 3.3. Let Z, h and Φ be as above. Assume furthermore that Z is a topological tree, provided
with a pseudo-metric d as above, which has the following properties, where Z∗ denotes the minimal
FN -invariant subtree of Z (= the intersection of all FN -invariant subtrees):

(1) There is a constant C ≥ 0 such that every point in Z has distance at most C from Z∗.
(2) Every arc in Z has as stabilizer a subgroup of FN which is of rank ≤ 1.

Then the iteration tree T∞ has trivial arc stabilizers, satisfies BBT, and is contained as subtree in
the metric closure T ∗∞ of its minimal subtree T ∗∞:

T∞ ⊂ T ∗∞
Proof. In order to see that property (2) is inherited by the R-tree T∞ we consider any segment
[x, y] ⊂ Z and any w ∈ FN . We assume that d∞(x, y) > 0, and that there is no proper subsegment
[x′, y′] & [x, y] with d∞(x′, y′) = d∞(x, y) (or else we pass to such a subsegment). If w stabilizes the
image segment [i(x), i(y)], then one has d∞(x,wx) = d∞(y, wy) = 0, and since Z is topologically
a tree, any two points on the unique embedded arc connecting x to wx, or on the similar arc
connecting y to wy, have d∞-distance 0. From the above choice of x and y we deduce that each of
these two arcs intersects the segment [x, y] only in their common endpoint. Thus [wx,wy] contains
[x, y] as subsegment.

But w acts on Z as homeomorphism which preserves the d∞-length, so that it preserves the “no
proper subsegment” property used in the above choice of x and y. Hence we deduce wx = x and
wy = y. Thus the stabilizers of [x, y] and of its i-image in T∞ are identical. This shows that the
tree T∞ is small.

In the proof of Lemma 2.8 in [11] a general argument has been given, for any small R-tree, to
show that equality (3.5) implies that the R-tree in question has trivial arc stabilizers. Hence we
conclude that T∞ is very small, so that (see subsection 2.3) the minimal subtree T ∗∞ of T∞ satisfies

T ∗∞ ∈ cvN .

By Proposition 2.6 this implies that T ∗∞ has property BBT, and so has its metric closure T ∗∞ (see
Remark 2.5 (2)).

Furthermore, hypothesis (1) implies that with respect to the pseudo-metric dk from (3.3) any

point from Z has distance C
λk

from Z∗, so that in the limit we have T∞ ⊂ T
∗
∞, and thus T∞ also

inherits BBT. tu

4. β-train-track maps

4.1. Definition and basic properties.

Definition 4.1. Let Γ be a finite graph, and let f : Γ → Γ be a graph map. Let Γ0 ⊂ Γ be a
possibly non-connected subgraph which is f -invariant:

f(Γ0) ⊂ Γ0
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(1) An edge path γ in Γ is reduced relative Γ0 if every non-trivial backtracking subpath of γ
(see section 2.1) lies in Γ0. In other words, γ maps to a reduced edge path if Γ is mapped
to the quotient graph defined by contracting every connected component of Γ0 to a single
point.

(2) An edge path γ in Γ is legal relative Γ0 if f t(γ) is reduced relative Γ0, for any integer t ≥ 0.

Definition 4.2. Let Γ, f and Γ0 be as in Definition 4.1. Let Γ′ ⊂ Γ be a connected, possibly not
f -invariant subgraph, and let r : Γ → Γ′ be a graph map which is a retraction (i.e. r(e) = e for
any edge of Γ′).

(1) An edge path γ in Γ is strongly reduced relative Γ0 if both, γ and r(γ), are reduced relative
Γ0.

(2) An edge path γ in Γ is strongly legal (rel. Γ0) if f t(γ) is strongly reduced relative Γ0 for
any integer t ≥ 0.

(3) The graph map f : Γ → Γ has the strong train track property (rel. Γ0) if every edge e is
strongly legal (rel. Γ0).

If the relative part Γ0 ⊂ Γ has been specified clearly beforehand, then we allow ourselves to drop
the parenthesis “(rel. Γ0)”. We will also generalize slightly the use of the terminology “rel. Γ0”, in
that a property of any mathematical object in Γ is true “relative Γ0” if the image object has this
property when passing to the quotient of Γ obtained by contracting every connected component of
Γ0 to a single point. For example, two edge paths γ and γ′ in Γ are equal relative Γ0 if γ and γ′

coincide up to subpaths entirely contained in Γ0 .

Definition 4.3. Let G be a finite connected graph and let f : G → G be a graph map. Define
X ⊂ G to be the (possibly non-connected) subgraph which consists of all vertices of G and of all
edges that grow polynomially under iteration of f .

Then f is called a weak β-train-track map if the following conditions are satisfied (where for all
paths or loops “strongly legal” means “strongly legal rel. X”):

(1) There exists a connected, possibly not f -invariant subgraph Γ ⊂ G, which contains all
vertices of G, and a retraction r : G → Γ, such that complement satisfies:

G r Γ ⊂ X

(2) The map f has the strong train track property relative X.
(3) Strongly legal paths γ and γ′ in G with r(γ) = r(γ′) are equal relative X.
(4) For every loop γ in G there is an exponent t(γ) ≥ 0 and a strongly legal loop γ′ such that

[rf t(γ)(γ)] = r(γ′).
(5) There is a finite filtration of G, given by f -invariant and r-invariant subgraphs G1 ⊂ G2 ⊂

. . . ⊂ Gs = G which are not necessarily connected, pairwise distinct, and not contained in
X. Relative to X there is no refinement of this filtration by decomposing some Gk into
further f -invariant subgraphs. Setting Xk = Gk ∩X for k ≥ 1 and G0 = X ∩ Γ, one has:

(4.1) r(Xk) ⊂ Gk−1 for all k ≥ 1

Definition-Remark 4.4. Let f : G → G be a weak β-train-track map.

(1) We consider the “Galois covering” Ĝ associated to ker r ⊂ π1G. It follows directly that the

full lift Γ̃ ⊂ Ĝ of Γ is a simplicial tree, and that there is a unique lift r̂ : Ĝ → Γ̃ of r which is a

retraction. We will use the notation X̂ to denote the full lift of X to Ĝ, and a map f̂ : Ĝ → Ĝ will
always denote a lift of the map f .

It follows directly that any path γ in Ĝ is strongly legal relative X̂ with respect to f̂ if and only if
γ is the lift of some path in G that is strongly legal relative X with respect to f . The same applies
to “strongly reduced” etc.
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(2) If the fundamental group of the subgraph Γ ⊂ G is identified with a free group FN of finite

rank N ≥ 1 (which then acts as deck transformation group on Ĝ - a free action !), we refer to the

covering space Ĝ also as the FN -covering of G.

(3) Sometimes the free group FN is given a priori, and the identification π1Γ ∼= FN is given by
a marking of G, i.e. a epimorphism θ : π1G � FN which satisfies the condition θ = θ ◦ r∗ and
restricts to an isomorphism θ|π1Γ. (We don’t specify a base point of G as θ only matters up to inner
automorphisms of FN .)

As in subsection 2.1 we say that a marked β-train-track map f : G → G represents an automor-
phism ϕ ∈ Out(FN ) if the given marking satisfies ϕθ = θf∗. If G is unmarked, then f represents ϕ
if there is a marking θ of G such that f represents ϕ with respect to θ.

From the above definitions we observe directly the following:

Lemma 4.5. For any strongly reduced edge path γ in Ĝ every vertex on γ is also contained in the
reduced path r̂(γ). tu
Remark 4.6. The author would like to point out that weak β-train-track maps as define above are
a generalization of stronger β-train-track maps that have been considered and studied before, in
various dialects (see [16, 19]). These “strong” β-train-track maps have a lot more specific properties,
like for example (for the terminology used below see for instance [21]):

(1) The composed map r ◦ f |Γ : Γ→ Γ is a classical relative train track map as in [4].
(2) Every auxiliary edge e, i.e. e belongs to G r Γ, has the property that there is a periodic

INP-path η = γ ◦ γ′ in G with strongly legal branches γ, γ′ and same endpoints as e, such
that r(e) = r(η).

(3) The r-image of any strongly legal path in G is pseudo-legal (=a legal concatenation of legal
and periodic INP subpaths) in Γ.

However, the precise definition of a strong β-train-track map is a lot more involved, so that we have
preferred to present here the “light” version given in Definition 4.3, which only states the properties
needed in this paper. Since the stronger version will not appear any further in this paper, we refer
from now on to weak β-train-track maps simply as β-train-track maps.

Proposition 4.7. Let f : G → G be a β-train-track map which represents ϕ ∈ Out(FN ) with respect
to some marking θ of G. Then the following holds:

(1) Every strongly reduced path γ in Ĝ is relative X̂ equal to a quasi-geodesic, with respect to

the combinatorial metric on Ĝ (for quasi-geodesy constants fixed independently of γ).
(2) For every conjugacy class [w] ⊂ FN there is a strongly legal loop γ(w) in G and an exponent

t(w) ≥ 0 such that γ(w) represents ϕt(w)([w]) with respect to the given marking θ : π1G �
FN .

The loop γ(w) is uniquely determined relative X by ϕt(w)([w]).

Proof. (1) Since we are allowed to modify γ within X̂ we can assume that γ is reduced (meant

here in an absolute sense and not rel. X), and that γ doesn’t cross over any edge e from X̂ − Γ̃

with r̂(e) ⊂ X̂ (or else we replace e by r̂(e)). It follows from Lemma 4.5 that there is an upper
bound to the combinatorial length of any backtracking subpath in r̂(γ). Thus γ fellow travels the

geodesic [r̂(γ)] in the tree Γ̃, and since the embedding Γ̃ ⊂ Ĝ is a quasi-isometry, it follows that γ

is a quasi-geodesic in Ĝ.

(2) This is a direct consequence of properties (3) and (4) of Definition 4.3. tu

The prime examples of β-train-track maps are absolute train track maps f : Γ → Γ without
periodic INP-paths. Here one simply sets G = Γ and r = idG and notices that in this case the
notions of “legal” and “strongly legal” edge paths agree.
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However, as is well known, not every ϕ ∈ Out(FN ) can be represented by an absolute train track
map, not even if one assumes that ϕ is hyperbolic (see [20]). But this is remedied by the following:

Theorem 4.8 ([19]). For every automorphism ϕ ∈ Out(FN ) there is a β-train-track map that
represents ϕ.

4.2. β-train-tracks and R-trees.
In this subsection we will draw some first connections between β-train-track maps and isometric

FN -actions on R-trees. Throughout this subsection we will work with the following data, which are
natural assumptions, in light of what has been presented in section 3:

Hypothesis 4.9. Let ϕ ∈ Out(FN ) and let Φ ∈ Aut(FN ) be a lift of ϕ. Let f : G → G be a β-train-

track map which represents ϕ, and let f̂ : Ĝ → Ĝ be the lift of f to the FN -covering Ĝ of G which

represents Φ. Assume that the vertex set of Ĝ is equipped with an FN -invariant pseudo-metric d.
Let T be an R-tree with isometric FN -action (where T is possibly non-minimal or trivial), and

let H : T → T be a homothety with stretching factor λ > 1 which represents Φ:

(4.2) Φ(w)H = Hw : T → T for all w ∈ FN
Let i : Ĝ → T be an FN -equivariant map which is distance decreasing:

(4.3) d(i(P ), i(Q)) ≤ d(P,Q) for any vertices P, Q of Ĝ

Furthermore assume that i, f̂ and H satisfy:

(4.4) if̂(P ) = Hi(P ) for any vertex P of Ĝ

Lemma 4.10. Assume that all data from Hypothesis 4.9 are given. Then for any edge e of Ĝ,

which under iteration of f̂ grows polynomially, the endpoints P and Q of e are mapped by i to the
same point i(P ) = i(Q) ∈ T .

Proof. If one has i(P ) 6= i(Q), then by the assumption λ > 1 the distance d(Hti(P ), Hti(Q)) grows
exponentially in t. From equalities (4.4) and (4.3) we deduce that the same holds for the distance

d(f̂ t(P ), f̂ t(Q)). But this contradicts the assumption that e grows polynomially. tu

From Lemma 4.10 and from the definition of X ⊂ G in Definition 4.3 we obtain directly that for

any vertex space Xv of Ĝ, i.e. any connected component of the full lift X̂ ⊂ Ĝ of the relative part

X ⊂ G, the i-image must be a single point i(Xv) ∈ T . We say that an edge path γ in Ĝ traverses

a vertex space Xv ⊂ Ĝ if γ crosses over at least one vertex of Xv.

Proposition 4.11. Assume that Hypothesis 4.9 is given, and assume that T satisfies BBT (see

subsection 2.4). Let γ be a strongly legal edge path in Ĝ with terminal vertices spaces XP and XQ.
Then any vertex space XR traversed by γ is mapped by i to a point i(XR) on the geodesic segment

[i(XP ), i(XQ)] ⊂ T . Furthermore, the order of such traversed vertices spaces Xj along the path γ
is preserved by the map i.

Proof. We recall from Proposition 4.7 (1) that any strongly legal path γ in Ĝ is a quasi-geodesic

relative to the full lift X̂ ⊂ Ĝ of the relative part X. In other words: there is a quasi-geodesic γ′

in Ĝ, with respect to the combinatorial metric in Ĝ, which differs from γ only in subpaths entirely

contained in X̂.
But since we derived above that i maps any vertex space Xv to a single point in T , it follows

i(γ) = i(γ′). Hence we derive from the BBT assumption on T and from Lemma 2.4 and Remark
2.5 (1) that there is a constant c ≥ 0, which does not depend on the choice of γ, such that i maps
the strongly legal path γ into the c-neighborhood of the geodesic segment [i(XP ), i(XQ)].
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Now any of the paths f̂ t(γ) with t ≥ 0 is again strongly legal, and for any vertex space XR

traversed by γ the image vertex space f̂ t(XR) is again traversed by the reduced edge path f̂ t(γ),

so that the point i(f̂ t(XR)) must be contained in the c-neighborhood of the geodesic segment

[i(f̂ t(XP )), i(f̂ t(XQ))], for any t ≥ 0. Let c′ ≥ 0 be the distance of i(XR) to [i(f̂ t(XP )), i(f̂ t(XQ))].

Since we know from condition (4.4) of Hypothesis 4.9 that i(f̂ t(XR)) = Ht(i(XR)) and that

[i(f̂ t(XP )), i(f̂ t(XQ))] = [Ht(i(XP )), Ht(i(XQ))], and since H is a homothety with stretching factor
λ > 1, it follows that the distance betweenHt(i(XR)) and [Ht(i(XP )), Ht(i(XQ))] is equal to λtc′, so
that we can conclude from the previous paragraph and from the assumption λ > 1 of Hypothesis 4.9
that c′ = 0. This means that i(XR) must actually lie on the geodesic segment [i(XP ), i(XQ)] ⊂ T .

In order to show that i preserves the order of the vertex spaces Xj traversed by γ it suffices
to consider the sub-edge-path γ′ of γ bounded by any two such vertex spaces X1 and X2: The
previously derived result shows that any further such vertex space X3 traversed γ′ is mapped by i
to a point on the segment [i(X1), i(X2)] ⊂ T . tu

Remark 4.12. We would like to point out a subtlety in the above proof: The fact that the
given strongly legal path γ (or the derived edge path γ′) is a quasi-geodesic with respect to the

combinatorial metric in Ĝ does not imply that γ (or γ′) is a quasi-geodesic with respect to the given
distance function d.

In fact, this discrepancy is the reason why in the approach pursued in this paper one needs to
keep track of the subgraph Γ ⊂ G in Definition 4.3.

On the other hand, however, one can deduce the fact that γ is a quasi-geodesic with respect to
d from the above Proposition 4.11, provided that no edge e of d-length > 0 is contracted by the
map i to a single point.

Remark 4.13. When dealing with β-train-track maps f : G → G, the philosophy is always to
consider everything relative to the polynomially growing part X ⊂ G. Equivalently, when passing

to the FN -covering Ĝ, one actually works (at least morally) in the quotient space of Ĝ defined by
contracting every vertex space Xv to a single point.

However, when applying the previous Proposition 4.11 it is sometimes useful to notice that its

statement can easily improved to the following statement, which is not meant relative X̂:

Any strongly legal path γ in Ĝ is mapped by i : Ĝ → T in a vertex-order preserving fashion to a
segment in T .

This follows directly from the fact that every vertex space Xv is mapped by i to a single point
i(Xv) in T , so that every subpath of γ entirely contained in Xv is mapped by i in a “vertex-order
preserving fashion” to this point i(Xv).

5. Perron-Frobenius trees

Throughout this section we work with a β-train-track map f : G → G which represents a given
automorphism ϕ ∈ Out(FN ). We consider a Perron-Frobenius eigenvector ~v ∗ for f with eigenvalue
λ > 1, by which we mean a non-negative row eigenvector ~v ∗ of the transition matrix M(f) with
eigenvalue λ. As laid out in subsection 2.2 the vector ~v ∗ determines an associated edge length
function

L~v
∗

: Edges(G)→ R≥0 ,

which in turn defines the limit length L~v
∗
∞ (see Definition 2.1 (5)).

Recall from Remark 2.2 (3) that for any edge e from the polynomially growing part X ⊂ G one
necessarily has L~v

∗
(e) = L~v

∗
∞(e) = 0
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In particular (see equalities (2.7) and (2.8)), we will use below that for any strongly legal path
γ one has the equalities

(5.1) L~v
∗
∞(γ) = lim

t∈N

1

λt
L~v
∗
([f t(γ)]) = lim

t∈N

1

λt
L~v
∗
(f t(γ)) = L~v

∗
(γ) .

We now recall from Proposition 4.7 (2) that for every conjugacy class [w] ⊂ FN there is an expo-

nent t(w) ≥ 0 and a strongly legal loop γ(w) which represents the image conjugacy class ϕt(w)([w]).

Here γ(w) is uniquely determined, relative to the polynomially growing part, by ϕt(w)([w]).
It hence follows from (5.1) that any PF-length L~v

∗
on G induces a length function

L~v
∗

FN
: FN → R≥0

which is well defined by

(5.2) L~v
∗

FN
(w) :=

1

λt(w)
L~v
∗
∞(γ(w)) =

1

λt
L~v
∗
(f t−t(w)(γ(w)))

for any t ≥ t(w).

Remark 5.1. There is always some element w ∈ FN with L~v
∗

FN
(w) > 0. This follows as in Remark

2.2 (4), with “legal” replaced by “strongly legal”.

The goal of this section is to prove the following, which is a strong version of Proposition 1.1:

Theorem 5.2. Consider any ϕ ∈ Out(FN ), and let f : G → G be a β-train-track map which
represents ϕ via some marking θ of G.

Let ~v ∗ 6= ~0 be a Perron-Frobenius eigenvector for f with eigenvalue λ > 1, let L~v
∗

be the
associated edge length function on G, and let L~v

∗
FN

be the derived length function on FN as in (5.2).
Then there exists an R-tree T with the following properties:

(1) The tree T is ϕ-invariant with stretching factor λ. Furthermore T has trivial arc stabilizers
and satisfies BBT. The tree T is contained in the metric completion T ∗ of its minimal subtree T ∗.

(2) There exists a surjective FN -invariant map i = i~v
∗
: Ĝ � T which maps every strongly legal path

γ to a geodesic segment of length L~v
∗
(γ) in T .

(3) The map i semi-commutes with the lift f̂ of f to Ĝ and the homothety H : T → T , if both
represent the same lift Φ ∈ Aut(FN ) of ϕ (compare (2.2) and (2.9):

(5.3) Hi = if̂

(4) The translation length function associated to T satisfies

||w||T = L~v
∗

FN
(w)

for all w ∈ FN . In particular, the minimal subtree T ∗ of T is non-trivial.

Proof. We prove the statement by induction over the number s of subgraphs G1 ⊂ G2 ⊂ . . . ⊂ Gs = G
of the β-train-track map f : G → G, provided by property (5) of Definition 4.3. For the purpose of
the induction we need to work with a small modification of our claim: We include the possibility
that ~v ∗ is the zero vector, and hence T is degenerated to the trivial tree T0 which consists of just
a single point. Hence we denote - just for the length of this proof - by cv∗N the set of R-trees T for

which the minimal subtree T ∗ belongs to cvN or is equal to T0, and which satisfy T ⊂ T ∗.
By setting G′ := Gs−1 we can decompose G into an f -invariant, not necessarily connected sub-

graph G′ ⊂ G and a “top stratum” H := GrG′, such that H∩Γ determines in the transition matrix
M(f) a diagonal block MH which is irreducible (including the exceptional case of the (1 × 1)-
zero-matrix, which may occur in the inductive procedure). The irreducibility of MH is a direct
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consequence of the condition in property (5) of Definition 4.3, that relative X there is no proper
f -invariant refinement of the given strata-decomposition.

Then ~v ∗ determines on every f -invariant connected component G′k of G′ an eigenvector ~vk
∗ with

eigenvalue λ (including the possibility ~vk
∗ = ~0), so that by induction we can assume that for G′k there

is a PF-tree Tk := T~vk
∗

which has all properties as stated in the claim (including the possibility
Tk = T0).

If the component G′k of G′ is not f -invariant but only f -periodic, then we replace f by a suitable
positive power, proceed as above, and pass back to the corresponding root of this power, which
then permutes the components of G′ in question. Correspondingly, the associated PF-trees are
permuted by the resulting homotheties Hk : Tk → Tk′ with stretching factor λ.

If a component G′k of G′ is not f -periodic, we fix the smallest exponent tk ≥ 1 such that f tk(G′k)
is contained in some f -periodic component G′k′ of G′. Since f induces ϕ which is an automorphism,
and since G′ = Gs−1 is r-invariant (see Definition 4.3 (5)), it follows that θ(π1G′k) = θ r∗(π1G′k) is

trivial (see Definition-Remark 4.4 (3)). Thus every lift Ĝ′h of G′k to Ĝ is a homeomorphic copy of

G′k. Such a connected component Ĝ′h of the full lift Ĝ′ ⊂ Ĝ of G′ will be called inessential; any other

connected component Ĝ′j of Ĝ′ will be called essential.

We now build a “mixed” R-tree TH in several steps: We first consider the FN -covering Ĝ of G and

a lift f̂ : Ĝ → Ĝ which represents some lift Φ ∈ Aut(FN ) of the given outer automorphism ϕ. We

now replace in Ĝ every essential connected component Ĝ′j of Ĝ′ by a copy Tj of the corresponding

R-tree Tk, where “corresponding” means that Ĝ′j is a covering of the connected component G′k. Let

ij : Ĝ′j → Tj be a copy of the map i~vk
∗

k : Ĝ′k → Tk provided by induction through our claim.

For any inessential connected component Ĝ′h of Ĝ′, which is a copy of some non-periodic com-

ponent G′k of G′, we consider the essential component Ĝ′j which contains f̂ tk(Ĝ′h). We set T ′h :=

ij(f̂
tk(Ĝ′h)) ⊂ Tj and observe that T ′h is a finite metric tree. In order to built TH from Ĝ, any

inessential Ĝ′h is replaced by the scaled-down finite metric tree Th = λ−tkT ′h. We define a map

ih : Ĝ′h → Th as composition of the map ij f̂
tk with the scaling-down homothety T ′h → Th.

To finish the construction of TH at this state, any edge e′ of Ĝ r Ĝ′ is replaced in TH by a copy,
called e, where the endpoints of e are attached to the above trees Tj and Th according to the

following rule: If an endpoint of e′ is attached to some vertex P of an essential component Ĝ′j ⊂ Ĝ′,
then we attach the corresponding endpoint of e to ij(P ). If an endpoint of e′ is attached to some

vertex Q in an inessential component Ĝ′h ⊂ Ĝ′, then we attach the corresponding endpoint of e to
ih(Q).

This gives an FN -equivariant map iH : Ĝ → TH, which is a simplicial isomorphism on Ĝr Ĝ′ and

restricts on each component Ĝ′j or Ĝ′h of Ĝ′ ⊂ Ĝ to the map ij or ih respectively.
Note that at this state of the construction TH is not necessarily a tree, since there may be edges in

X that do not belong to G′. However, from the inclusion (4.1), applied to the top stratum of G, we

know that for any edge e′ from X̂− Ĝ′ the endpoints P and Q both belong to the same component

Ĝ′j or Ĝ′h, and from Lemma 4.10 we deduce iH(P ) = iH(Q). Hence we can modify TH and iH in

that, rather than attaching an edge e corresponding to e′ along its endpoints at iH(P ) = iH(Q), we
map all of e′ by the map iH to the point iH(P ) = iH(Q). After this modification the “mixed” space

TH is indeed topologically a tree, since the edges from Ĝr Ĝ′ outside X̂ belong to the simplicial tree

Γ̃ ⊂ Ĝ (see Definition-Remark 4.4 (1)). By construction, the FN -action on Ĝ induces an FN -action
on TH, which makes the quotient map iH FN -equivariant.

We can now define an FN -equivariant map fH : TH → TH in the following manner:
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(a) Any edge e = iH(e′) with e′ in Ĝ r Ĝ′ is mapped to the path fH(e) := iH(f̂(e′)). More
precisely, any point x on e, which is the iH-image of some well defined point x′ on e′, is

mapped by fH to iH(f̂(x′)).

(b) For any essential connected component Ĝ′j we know from the f -invariance of G′ that there

is some essential connected component Ĝ′j′ with f̂(Ĝ′j) ⊂ Ĝ′j′ . We define fH on Tj = iH(Ĝ′j)
to be the homothety wjHj : Tj → Tj′ , where Hj is a copy of the corresponding homothety
Hk : Tk → Tk′ provided above by our induction hypothesis. The element wj ∈ FN is a
correction term needed because of the possible difference between the restriction to π1Gk
of the above automorphism Φ ∈ Aut(FN ) (which represents the chosen lift f̂ of f) on one
hand, and on the other hand the isomorphism Φk which is represented by Hk (compare
(2.3)).

(c) For any inessential component Ĝ′h let Ĝ′h′ be the (essential or inessential) component which

contains f̂(Ĝ′h). Then our definition of Th = iH(Ĝ′h) gives straight forward a map Hh : Th →
Th′ for which the co-restriction Th → Hh(Th) is a homothety with stretching factor λ. This
map defines fH on Th.

Combining these three definitions together gives a map fH : TH → TH, which by construction also
represents Φ, and which satisfies the equality

fHiH = iHf̂ .

We now provide every edge e = iH(e′) of the “top stratum” iH(Ĝ r Ĝ′) of TH with the length

L~v
∗
(e′) defined by the eigenvector ~v ∗ and lifted from G to Ĝ. Since e′ is strongly legal (by Definition

4.3 (2)), we have from (5.1) the equality L~v
∗
(e′) = L~v

∗
∞(e′). We use the convention from Definition

2.1 (4) and (5) to distribute this length along e′, and transfer it via iH to e. In this way we obtain
an FN -equivariant pseudo-metric dH on the tree TH which extends the given R-tree metrics on any
of the subtrees Tj or Th.

Since T0 is topologically a tree, the pseudo-metric dH is automatically 0-hyperbolic. Furthermore
it satisfies by construction

d(fH(x), fH(y)) ≤ λd(x, y)

for any points x, y both contained in an edge e from the top stratum, or both contained in any of
the metric trees Tj or Th. Hence, using again that TH is topologically a tree, this inequality holds
also for arbitrary two points x and y of TH.

Thus fH and TH satisfy all conditions used in section 3 to define (for Z = TH and h = fH)
“intermediate” 0-hyperbolic pseudo-metrics dk on TH, which all agree on any of the subtrees Tj or
Th with the given R-tree’s metric. The pseudo-metrics dk converge to a 0-hyperbolic limit pseudo-
metric d∞, which gives as associated canonical metric quotient space an R-tree T with induced
action of FN by isometries. From the construction in section 3 we also obtain a surjective, FN -
equivariant and distance-decreasing map i′H : TH → T , which restricts to an isometric map on any
of the subtrees Tj or Th. The construction in section 3 yields furthermore a homothety H : T → T
which restricts on any Tj to the homothety wjHj , and on any Th to the homothety Hh. From
equality (3.6) we furthermore obtain

Hi′H = i′HfH ,

so that the composition with the the above derived equality fHiH = iHf̂ gives the claimed equality
(5.3), for the composed map i := i′HiH. This proves part (3) of the claimed statement.

We now use that by induction claim (1) holds for the subtrees Tj , and that the FN -action on Ĝ
is free, in order to deduce that TH and fH satisfy all conditions of Lemma 3.3. This proves part
(1) of the claimed statement, and shows in particular that T belongs to cv∗N .
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In order to prove part (2) we consider any strongly legal path γ in Ĝ. Since we know from part
(1) that T satisfies BBT, we can apply Proposition 4.11 to obtain that i(γ) is a segment in T , and
that the map i preserves along this segment the order of vertices and hence the order in which

the maximal subpaths γ` of γ occur that are contained in Ĝ′. For any such subpath γ` we know
from our induction procedure that the segments iH(γ`) and thus also i(γ`) have the same length

as L~v
∗
(γ`). For any top-stratum edge e on γ, i.e. e belongs to Ĝ r Ĝ′, we know from the above

definition of the pseudo-metric dH that the endpoints of iH(e) in TH have distance equal to L~v
∗
(e).

Hence the map iH preserves along γ the pseudo-distance defined by L~v
∗
, and the same is true for all

iterates f̂ t(γ) of γ. It follows that the pseudo-metric iteration procedure on TH to define the limit
metric space T is described along γ by the length function iteration of L~v

∗
given by the equality

(5.1). This proves statement (2) of our claim.
Since by the defining equality (5.2) the length function L~v

∗
FN

on the elements (or rather “conjugacy

classes”) of FN reduces to considering strongly legal loops only, we obtain now part (4) of the claim
as direct consequence of the already proved part (2). The fact that T ∗ is non-trivial is a consequence
of the observation stated as Remark 5.1. This completes the proof. tu
Definition-Remark 5.3. (1) The “clumsiness” in the above proof which comes from including
non-minimal trees in the iteration process is unfortunately forced on us: For example, it may well
occur that in some f -invariant subgraph Gk of G the top stratum consists of a single edge e only,
which is attached to the rest of Gk only at one of its endpoints, say P , and is mapped by f to a
path f(e) = e ◦ γ. If, through a proper choice of γ, this image path “picks up” some non-zero limit
length from lower strata, then it can happen that in the limit the endpoint of e other than P will
be contained in the completion of the minimal subtree T ∗k , but not in T ∗k itself. On the other hand,
this “other endpoint” of e may be needed in order to attach edges from the top stratum of G, and

hence its lifts to Ĝ as well as their iH-images are essential in the construction of the mixed tree TH.

(2) The classical construction of the ϕ-invariant tree T ∗ via absolute train track maps f : Γ → Γ
rather than β-train-track maps can be reinterpreted (see [18]) as defining T ∗ ∈ ∂cvN as limit of
the sequence of rescaled ϕ-iterates 1

λtT · ϕ
t in unprojectivized Outer space cvN , which makes the

arguments for the above proof (for this particular case) a lot easier. However, a similar approach
for the general case must fail, independently of which kind of train track maps one may try to put
at work. The reason is that for some eigenvectors ~v ∗ the projective tree class [T ∗] is simply not
the limit point for any ϕ-orbit in Outer space CVN , and not even for any ϕ-orbit of projectivized
simplicial trees in ∂CVN .

(3) Instead, the inductive procedure presented in the above proof, amounts to combining in the
construction of the “mixed tree” TH a simplicial component for the top stratum with iteratively
obtained R-trees for the connected components Gk of the lower strata. On the bottom strata the
classical argument applies, as there the restriction of f are absolute train track maps (relative X).
It follows by induction that each of the T ∗k are very small trees, and hence the mixed tree TH,
after passing to its canonical metric quotient tree, possesses a minimal subtree, denoted T ∗H, which
belongs to cvN . We thus obtain the minimal subtree T ∗ of the limit tree T as forward limit point
of the ϕ-orbit in CVN of the projective class [T ∗H], which gives an alternative argument why T ∗

does belong to cvN . In fact, by (2.10) we actually know T ∗ ∈ ∂cvN .

(4) To summarize this discussion, we introduce the terminology Perron-Frobenius tree for the min-
imal subtree T ∗ of the tree T obtained in Theorem 5.2, and denote it from now on by T~v

∗
. We

have thus shown:

Corollary 5.4. Any Perron-Frobenius eigenvector ~v ∗ with eigenvalue λ > 1 for a β-train-track
map f : G → G defines a Perron-Frobenius tree

T~v
∗ ∈ ∂cvN .
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If f represents ϕ ∈ Out(FN ), then T~v
∗

is projectively fixed by ϕ, and expanded by ϕ with factor λ.
tu

This proves Proposition 1.1 from the Introduction.

6. Proof of Theorem 1.2

6.1. A criterion for Perron-Frobenius trees.
In this subsection we give a criterion for projectively ϕ-invariant R-trees to be Perron-Frobenius.

Proposition 6.1. Let f : G → G be an β-train-track map which represents an automorphism

ϕ ∈ Out(FN ), and let f̂ : Ĝ → Ĝ be a lift of f to the FN -covering Ĝ of G which represents some
preimage Φ ∈ Aut(FN ) of ϕ.

Let T be a (not necessarily minimal) very small R-tree with isometric FN -action, which is
equipped with a homothety H : T → T with stretching factor λ > 1 that also represents Φ. We
assume in addition that T is contained in the metric closure T ∗ of its minimal subtree T ∗.

Assume furthermore that for the vertex set V (Ĝ) of Ĝ there exists an FN -equivariant map i :

V (Ĝ)→ T which satisfies:

(6.1) if̂(P ) = Hi(P ) for any vertex P of Ĝ

Then there exists a Perron-Frobenius eigenvector ~v ∗ for f with eigenvalue λ, such that the
minimal FN -invariant subtree T ∗ ⊂ T is FN -equivariantly isometric to the Perron-Frobenius tree
T~v
∗
.

Proof. We define a length L(ê) for every edge ê in Ĝ, say with initial and terminal vertices P and
Q, through

L(ê) := d(i(P ), i(Q)) .

As i is assumed to be FN -equivariant, this induces a well defined edge length function L : Edges(G)→
R≥0 on G. As explained in Definition 2.1 (1) and (2) this defines for any edge path γ = e1 . . . er in

G (and similarly in Ĝ) a path length L(γ) =
r∑

k=1

L(ek), and consequently a pseudo-metric dL on the

vertex set of Ĝ.
It follows from the triangular inequality that the pseudo-metric dL satisfies

d(i(P ), i(Q)) ≤ dL(P,Q)

for any vertices P,Q of Ĝ, so that all conditions of Hypothesis 4.9 are satisfied. In addition T satisfies
BBT, since it is assumed that T ⊂ T ∗, and T (and thus T ∗) is very small, so that Proposition 2.6
and Remark 2.5 (2) apply.

Hence we can use Proposition 4.11 and Remark 4.13 in order to deduce that for any edge ê of

Ĝ all vertices of the strongly legal path f̂(ê) are mapped by i in an order-preserving fashion to the

geodesic segment [if̂(P ), if̂(Q)] in T , where P and Q are the endpoints of ê. Hence we deduce

from the above definition of the length function L that the length of the segment [if̂(P ), if̂(Q)] is

equal to L(f̂(ê)).
On the other hand, the length of [i(P ), i(Q)] is equal to L(ê), and from hypothesis (6.1) we know

[if̂(P ), if̂(Q)] = H([i(P ), i(Q)]). Since H is a homothety with stretching factor λ, we deduce that

L(f̂(ê)) = λL(ê).
We now pass to the image edge e of ê in G and obtain

(6.2) λL(e) = L(f(e)) =
∑

e′∈Edges+(G)

me′,e L(e′) ,
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where the me′,e are the coefficients of the transition matrix M(f) as given in subsection 2.1. But
(6.2) is the defining equality for the coefficients of a row eigenvector of a matrix with coefficients

me′,e, so that we conclude that the length function L on the edges of G (and of Ĝ) is given by a
Perron-Frobenius row eigenvector ~v ∗ of M(f), with eigenvalue equal to the given stretching factor
λ > 1 of H. This gives:

L = L~v
∗

It has been shown above that any strongly legal edge path γ is mapped by i to a segment
i(γ) ⊂ T , and that the length of this segment is equal to L(γ). Hence for any w ∈ FN we derive
from the definition of L~v

∗
FN

(w) in (5.2) that the translation length ||w||T in T satisfies:

||w||T = L~v
∗

FN
(w)

Since from property (4) of Theorem 5.2 we know that L~v
∗

FN
(w) = ||w||T~v∗ , it follows directly (see

subsection 2.3) that the minimal subtree T ∗ of T must be FN -equivariantly isometric to the Perron-
Frobenius tree T~v

∗
. tu

6.2. Fixed points of homotheties.
The purpose of this subsection is to construct a map i as in Proposition 6.1. We crucially use

the dynamics of H to define this map i.

Throughout this section we assume that T is an R-tree with isometric FN -action, and that
H : T → T is a homothety with stretching factor λ > 1 that represents some automorphism
Φ ∈ Aut(FN ). For the proof of Proposition 6.5 below one does not need to assume that the tree T
is minimal, nor that T satisfies BBT.

We denote by T the metric completion of the tree T , and by H : T → T the well defined
continuous extension of H to T . Clearly H is also a homothety with stretching factor λ which
represents Φ.

Furthermore, let f : G → G be an β-train-track map that represents the outer automorphism

ϕ ∈ Out(FN ) defined by Φ. As before, we denote by f̂ : Ĝ → Ĝ the lift of f to the FN -covering Ĝ
of G which represents Φ.

We first assemble some useful facts:

Fact 6.2. Let H : T → T be as above, and consider any element w ∈ FN and any integer m ≥ 1.
It follows that wH

m
: T → T has a fixed point

Q(w,m) ∈ T
which is uniquely determined by w and m, as the stretching factor of the homothety wH

m
is equal

to λm > 1.

This is a direct consequence of the fact that T is metrically complete and that H−1 is contracting.

Fact 6.3. Since H : T → T represents Φ ∈ Aut(FN ), for every w ∈ FN one has Hw = Φ(w)H and

hence (through replacing w by Φ−1(w) and through conjugation by H
−1

) also H
−1
w = Φ−1(w)H

−1
.

Iterated applications of these formulae gives H
m
w = H

m−1
Φ(w)H = H

m−2
Φ2(w)H

2
= . . . and

hence

(6.3) H
m
w = Φm(w)H

m
: T → T

for any m ∈ Z.

Similarly, since f̂ : Ĝ → Ĝ also represents Φ, iterated application of the formula f̂w = Φ(w)f̂ for
arbitrary w ∈ FN gives

(6.4) f̂mw = Φ(w)mf̂m : Ĝ → Ĝ ,
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but here we have to assume m ≥ 0, since f−1 is not well defined.

Fact 6.4. The set V (G) of vertices of G is finite. Let V0 ⊂ V (G) be the set of f -periodic vertices.
Thus for some suitable integer m ≥ 1 we obtain fm(P ) = P for every P ∈ V0 and fm(P ) ∈ V0 for
every P ∈ V (G) r V0.

Recall from Definition-Remark 4.4 (2) that the action of FN on Ĝ by covering translations is

free. It follows that for every vertex P in the full lift V̂0 ⊂ Ĝ of V0 there is precisely one element
wP ∈ FN which satisfies (for m fixed from now on to be as in Fact 6.4):

(6.5) wP f̂
m(P ) = P

We use Fact 6.2 to define a map i : V (Ĝ)→ T , given for any P ∈ V̂0 through

(6.6) i(P ) := Q(wP ,m)

and for all other vertices P ∈ V (Ĝ)− V̂0 with P0 = f̂m(P ) through

(6.7) i(P ) = H
−m

if̂m(P ) = H
−m

(Q(wP0 ,m)) .

Proposition 6.5. The above defined map i : V (Ĝ)→ T satisfies

(a) vi = iv for all v ∈ FN , and

(b) if̂ = Hi.

Proof. (I) We first consider the case P ∈ V̂0, and let P ′ = vP . In order to prove (a) we have to
show that Q(wP ′ ,m) = vQ(wP ,m), for m ≥ 1 as in Fact 6.4:

From the above equations (6.4) and (6.5) one derives f̂m(vP ) = Φm(v)f̂m(P ) = Φm(v)w−1
P P =

Φm(v)w−1
P v−1(vP ). This shows wP ′ = vwPΦm(v−1). On the other hand, for Q = Q(wP ,m)

the definition of Q(wP ,m) gives wPH
m

(Q) = Q, and thus we derive from (6.3) that H
m

(vQ) =

Φm(v)H
m

(Q) = Φm(v)w−1
P Q = Φm(v)w−1

P v−1(vQ). This proves Q(vwPΦm(v−1),m) = vQ and
hence Q(wP ′ ,m) = vQ(wP ,m).

In order to prove (b) for the case P ∈ V̂0 we have to show that H(Q(wP ,m)) = Q(w
f̂(P )

,m):

From (6.5) and (6.4) it follows f̂(P ) = f̂(wP f̂
m(P )) = Φ(wP )f̂m+1(P ) = Φ(wP ) f̂m(f̂(P ))

and hence w
f̂(P )

= Φ(wP ). But then the definition of Q(wP ,m) in Fact 6.2 together with (6.3)

gives w
f̂(P )

H
m

(H(Q(wP ,m))) = Φ(wP )H(H
m

(Q(wP ,m))) = Φ(wP )H(w−1
P Q(wP ,m)) = Φ(wP )

Φ(w−1
P )H(Q(wP ,m)) = H(Q(wP ,m)). This implies H(Q(wP ,m)) = Q(w

f̂(P )
,m).

(II) Assume now P ∈ V (Ĝ) r V̂0, and let P0 = f̂m(P ) ∈ V̂0. In order to show (a) we use (in
this order) the equalities (6.7), (6.4), the above derived equation (a) for P0, (6.3) and finally again

(6.7), in order to compute i(vP ) = H
−m

if̂m(vP ) = H
−m

iΦm(v)f̂m(P ) = H
−m

i(Φm(v)P0) =

H
−m

Φm(v)i(P0) = vH
−m

if̂m(P ) = vi(P ).

In order to show (b) for P we use (b) for P0 to computeHi(P ) = HH
−m

if̂m(P ) = H
−m

Hi(P0) =

H
−m

if̂(P0) = H
−m

if̂m+1(P ) = if̂(P ). The last equation, in case f̂(P ) ∈ V (Ĝ) r V̂0, follows from

the definition of the map i in (6.7), and in case f̂(P ) ∈ V̂0 it follows from equation (b) as proved

above for vertices in V̂0. tu

Now all arguments are ready to prove the main result of this paper:

Proof of Theorem 1.2. We first observe that from the assumption T ∈ cvN it follows that T is
minimal and that T satisfies BBT. From the assumption that T is ϕ-invariant and expanding it
follows (see subsection 2.3) that there is a homothety H : T → T with stretching factor λ > 1
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which represents some preimage Φ ∈ Aut(FN ) of ϕ. Let f̂ : Ĝ → Ĝ be the lift of f which also
represents Φ.

We now replace T by its metric completion T and H by the canonical extension to H. We

then apply Proposition 6.5 to obtain an FN -equivariant map i : V (Ĝ)→ T which satisfies if̂ = Hi.
Thus Proposition 6.1 shows that there is an eigenvector ~v ∗ for f with eigenvalue λ such that for the
corresponding Perron-Frobenius tree T~v

∗
there is FN -equivariant isometric embedding j : T~v

∗→ T .
But as T is the minimal subtree of T , it follows that j induces an FN -equivariant isometry onto T ,
so that we have:

T = T~v
∗ ∈ cvN

tu

7. Comments and outlook

7.1. The fixed point set T(ϕ) and its linear structure.
The proof of our main result shows actually something slightly stronger than what is stated in

Proposition 1.1 and in Theorem 1.2. In order to explain this, we define

T(ϕ) ⊂ cvN

to be the set of all very small minimal R-trees which are expandingly fixed by the automorphism
ϕ ∈ Out(FN ). We will denote by PT(ϕ) ⊂ CVN the image of T(ϕ) under the projectivization, i.e.
the set of all [T ] ∈ CVN with Tϕ = λT for some λ > 1.

We also need to consider, for any β-train-track map f : G → G, the non-negative cone C(f) :=

REdges+(G)
≥0 and the subset PF(f) ⊂ C(f) which consists of all Perron-Frobenius eigenvectors ~v ∗ for

f with eigenvalue λ > 1. Projectivization gives PPF(f) ⊂ PC(f) ⊂ PREdges+(G)
≥0 .

Corollary 7.1. For any β-train-track representative f : G → G of any ϕ ∈ Out(FN ) the association

~v ∗ 7→ T~v
∗

defines a bijective linear map

b : PF(f)→ T(ϕ)

which quotients to the bijection

B : PPF(f)→ PT(ϕ)

Proof. The existence and well-definedness of b and B has been proved in Theorem 5.2, and the
injectivity as well as the linearity is a direct consequence of its statement (4). The surjectivity is
the content of Theorem 1.2. tu

We’d like to add a word of caution here: From the above proposition we deduce that β-train-
track representatives f+ of ϕ and f− of ϕ−1 serve to determine precisely all expanding and all
contracting fixed points of any automorphism ϕ ∈ Out(FN ) in the boundary ∂CVN of Outer space.
However, in general the automorphism ϕ may possesses further fixed points [T ] ∈ ∂CVN which are
neither expanding nor contracting: Such “neutral fixed points” can even exist for automorphisms
that admit absolute train track representatives with primitive transition matrix, but which are not
iwip.

Remark 7.2. A particularly easy way to construct such an automorphism is given by taking an
absolute train track representative f0 : Γ0 → Γ0 of some iwip automorphism ϕ0 ∈ Out(FN−1) and
glueing together two distinct vertices of Γ0 that are both fixed by f0. This gives an absolute train
track map f1 : Γ1 → Γ1 which then represents some “outer” endomorphism ϕ1 of FN ; the latter is
easily seen to be an automorphism ϕ1 ∈ Out(FN ).
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A useful description of the “neutral” fixed point for ϕ1 is obtained by going back to Γ0 and
adding an extra edge e, which connects the two fixed points in question and is itself fixed by
f . The graph-of-groups decomposition G of FN , obtained from this augmented graph through
contracting all edges but e to a single vertex and providing this vertex with π1Γ0 as vertex group,
describes precisely (through passing to the associated Bass-Serre tree TG) the “neutral” fixed point
[TG] of ϕ1 in ∂CVN . The above “1-edge/1-vertex” graph which underlies G shows up again below
as “decomposition graph” in Remark 7.9.

7.2. Non-ergometric, dusted and other decomposable trees in T(ϕ) and its convex hull.

In this subsection we will use Corollary 7.1 to analyze the set T(ϕ) and its elements further. We
first recall the embedding

cvN → RFN≥0 , T 7→ || · ||T
from subsection 2.3 and note that for arbitrary trees T1, T2 ∈ cvN a non-negative linear combination

of the two translation length functions || · ||T1 and || · ||T2 in RFN≥0 will in general not define an R-tree
length function. An exception is given if T1 and T2 are based on the same topological tree, or
equivalently, if T1 and T2 determine the same dual algebraic lamination (see [6] for details). In this
case we denote the resulting tree by

T = λ1T1 + λ2T2 ,

with λ1 and λ2 given through || · ||T = λ1|| · ||T1 + λ2|| · ||T2 .

Definition 7.3 (see [6]). (1) A tree T ∈ cvN is called ergometric if for any linear combination

(7.1) T = λ1T1 + λ2T2

with T1, T2 ∈ cvN and λ1, λ2 > 0 the three trees T, T1 and T2 are equal up to rescaling: for some
λ > λ1 one has T = λT1 = λλ2

λ−λ1T2.

(2) In the complementary case, i.e. if T can be written as positive linear combination as in (7.1)
with [T1] 6= [T2], we say that T is non-ergometric.

Since arbitrarily chosen trees T1, T2 ∈ cvN do in general not admit convex combinations in cvN ,
non-ergonometric trees have to be considered as exceptional. This gives a certain interest to the
linearity of the map b from Corollary 7.1, as it is fairly easy to construct examples of β-train-track
maps f : G → G that admit such convex combinations based on points in the subset PF(f) of the
non-negative cone C(f).

Remark 7.4. Non-ergometric trees T show up in the context of the set T(ϕ) as a composition of
the following two basic types:

(a) The tree T is the non-trivial convex combination λT~v1
∗

+ (1− λ)T~v2
∗

of two PF-trees T~v1
∗

and T~v2
∗

which have both the same stretching factor. In this case T as well as the whole
line segment [T~v1

∗
, T~v2

∗
] ⊂ cvN belong to T(ϕ).

(b) There is a tree T~v
∗

in T(ϕ) which is “dusted” (= “pointillé”), see [13]. In this case there is
a second PF-tree T~v0

∗ ∈ T(ϕ), which is simpler in that it is not dusted, and T~v0
∗

has strictly
smaller stretching factor than T~v

∗
. The whole segment [T~v

∗
, T~v0

∗
] belongs to cvN and is

fixed by ϕ, but not pointwise: under iteration of ϕ all points of this segment except for the
non-dusted endpoint T~v0

∗
converge to the dusted endpoint T~v

∗
. Thus only the endpoints of

the segment belong to T(ϕ). Every tree T in the interior of the segment [T~v
∗
, T~v0

∗
] ⊂ cvN

is non-ergometric, and also dusted. The two endpoints T~v
∗

and T~v0
∗

are both ergometric
(as they are “principal”, see below), so that T~v

∗
is an example for the remarkable case of

a dusted but ergometric R-tree.
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The general case is of course more complex, and the issuing dynamics of ϕ on the “convex hull” of
T(ϕ) has some unexpected, rather interesting features.

A more complete understanding of the set T(ϕ) is obtained when passing via Corollary 7.1 (1) to
the subset PF(f) of the non-negative cone C(f). For this purpose one has to consider the transition
matrix M(f) and apply some basic Perron-Frobenius theory (see [1]) or [22]).

Remark 7.5. (1) Let M be a non-negative integer square matrix. After a suitable permutation
of the coordinates there is a partition of the coordinates in canonical coordinate blocks Bk, such
that the issuing subdivision of M into matrix blocks gives a lower triangular block matrix, with
the property that each diagonal matrix block Mk,k is irreducible.

Here irreducible means that Mk,k is either the 1×1 zero-matrix, or a (non-splittable) permutation
matrix, or else it is expanding, i.e. its PF-eigenvalue (= the spectral radius) satisfies λk > 1, in
which case we also say the the corresponding coordinate block Bk is expanding. Furthermore, an
expanding irreducible block Mk,k, has always a positive power fp which is a block diagonal matrix
where all coordinates of any diagonal block are positive. If there is only one such diagonal block,
then Mk,k is called primitive.

The lower triangular block structure of M defines a natural partial order Bh � Bk among the
coordinate blocks, which is generated by all non-zero off-diagonal blocks Mk,h of M .

A coordinate block Bk is distinguished if and only if λk > λh for all blocks Bh 6= Bk with
Bh � Bk.

For each distinguished block Bk there is a special eigenvector ~vk of M which is called principal
if Mk,k is primitive, and barycentric principal otherwise. A vector ~v 6= ~0 is a Perron-Frobenius
eigenvector of M (i.e. all coordinates of ~v are non-negative) if and only if ~v is a non-negative linear
combination of such (barycentric) principal ~vk which all have the same eigenvalue λ ≥ 0.

In Appendix A.3 of [1] some more details are assembled in a fairly accessible survey presentation.

(2) We will term a block Bk polynomial if no block Bh with Bh � Bk is expanding. For our purposes
it is convenient to assemble all coordinates that belong to a polynomial block into a single block B0.
Of course, the corresponding diagonal block M0,0 will in general not be irreducible. By definition
the block B0 is minimal with respect to the partial order (also denoted by �) that is induced by
� on the “quotient partition” obtained from assembling all polynomial blocks into the single block
B0.

We now apply this terminology to the transition matrix M(f) of any β-train-track map f : G →
G:

Lemma 7.6. (1) Let G0 ⊂ G1 ⊂ . . . ⊂ Gs = G be the filtration of f given by Definition 4.3 (5).
Then there is a 1-1 correspondence between the strata Gk r Gk−1 from this filtration on the one
hand, and the non-polynomial canonical coordinate blocks Bk of M(f) on the other.

More concretely, for any k ≥ 1 the coordinates of Bk are given precisely by the edges that belong
to Gk − (Gk−1 ∪X).

(2) The total order G0 ⊂ G1 ⊂ . . . ⊂ Gs = G, when translated via the above 1 - 1 correspondence
into a total order of the coordinate blocks of M(f), is a refinement of the natural partial order �
on the coordinate blocks defined in Remark 7.5 (1) and (2).

Proof. This is a direct consequence of the facts and conventions from Remark 7.5, together with
the “no refinement” condition in part (5) of Definition 4.3. tu

Since in the context of Perron-Frobenius R-trees we have to work with row eigenvectors of M(f),
we need to first transpose the matrix and then apply the facts and the terminology assembled in
Remark 7.5. This means that for M(f) we have to replace the partial order � by its reversion �,
which leads of course to very different distinguished coordinate blocks.
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It is often convenient to raise ϕ to a positive power ϕp such that for every expanding distinguished
block Bk of M(fp) = M(f)p the corresponding diagonal block Mk,k is primitive. In this case the
expanding distinguished blocks Bk (with respect to the reversed order �) are in 1-1 correspondence
with the principal eigenvectors ~vk

∗ of M(fp) with eigenvalue λ > 1. We call the corresponding
trees T~vk

∗
principal Perron-Frobenius trees for ϕ. From the following proposition it follows that,

up to uniform rescaling, these T~vk
∗

depend only on ϕ and not on the particular β-train-track
representative f .

Proposition 7.7. For every automorphism ϕ ∈ Out(FN ) and any β-train-track representative
f : G → G of ϕ there is an exponent p ≥ 1 such that the following holds:

(1) There are finitely many principal PF-trees T~vk
∗

in T(ϕp), and every other T ∈ T(ϕp) is a
non-negative linear combination of the latter.

More precisely, a positive linear combination of some principal PF-trees T~vk
∗

belongs to T(ϕp) if
and only if all those T~vk

∗
have the same stretching factor λ > 1.

(2) The automorphism ϕ permutes the projectivized principal PF-trees [T~vk
∗
] ∈ PT(ϕ) for ϕp and

fixes for each permutation-orbit its barycentric convex combination. Every T ∈ T(ϕ) is a non-
negative linear combination of those “barycentric principal PF-trees”, and any positive linear com-
bination of some of the latter belongs to T(ϕp) if and only if these barycentric principal PF-trees
have the same stretching factor.

Proof. This is a direct consequence of Corollary 7.1, as the equivalent statement holds for the set
PF(f). Indeed, the exponent p ≥ 1 has been exhibited in Definition-Remark 11.8 and Remark
11.9 of [1]; in Proposition 11.11 of [1] it has been shown that for every distinguished coordinate
block there exists “principal eigenvector” with the properties stated in part (1) of our claim, and
in Definition-Remark 11.13 “barycentric principal eigenvectors” with the properties from part (2)
have been exhibited. Since the eigenvectors in question are row eigenvectors, we have to transpose
M(f) before applying the above named quotes. tu

From this proposition we see that the principal PF-trees determine extremal points of PT(ϕp).
From the finite dimensionality of cvN (see [12]) and general facts from ergodicity theory one can
hence deduce that the principal PF-trees are ergometric, while statement (1) of Proposition 7.7
shows that all other points of PT(ϕp) determine non-ergometric R-trees. Going back to Remark
7.4, we see that these non-ergometric PF-trees are all of the type (a) described there. However,
the non-ergometric trees from type (b) in the convex hull of PT(ϕp) can also be seen directly from
PF(f) and the linear bijection b, namely as follows:

Using again the partial order � for the coordinate blocks of M(f), or rather the reversed order �
for the transpose tM(f), one sees directly (see [1], Proposition 11.11 (3a)) that for every non-minimal
distinguished expanding block Bk of tM(fp) there is a minimal expanding block Bh (or possibly
several ones) such that the corresponding (barycentric) principal eigenvectors satisfy λ~vh

∗ < ~vk
∗

(meant coordinate-wise) for some λ > 0. From property (4) of Theorem 5.2 one can then derive
that the tree T~vk

∗
is dusted, while the “minimal-matrix-block” PF-tree T~vh

∗
isn’t, and that any

positive linear combination of T~vk
∗

and T~vh
∗

defines a non-ergometrix R-tree in cvN (albeit not in
T(ϕ) !).

“Dustedness” is only one of the two basic phenomena when trying to decompose an R-tree as
combination of simpler R-trees (see [13]). In fact, one should not think that the non-dusted principal
PF-trees T~vh

∗
are indecomposable, as the other basic decomposition principal may still apply: in

general a minimal-matrix-block PF-tree T~vh
∗

as above may well be a “graph-of-actions”, which can
be seen as follows:

Definition-Remark 7.8. (1) From Remark 7.5 (1) it follows that every coordinate block which is
minimal among the expanding coordinate blocks of tM(f) is automatically distinguished. It follows
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that for any coordinate block Bh which is maximal among the expanding coordinate blocks of M(f)
there is always an associated principal (or barycentric principal) PF-tree T~vh

∗
.

(2) Any such “maximal” Bh defines an augmented expanding top stratum B∗h of f , which consists
precisely of those edges of G that belong to coordinate blocks which are bigger or equal to Bh with
respect to the natural partial order � (and are hence not expanding, if distinct from Bh, since Bh
is maximal among the expanding coordinate blocks).

(3) Since they play an important role, we will use the term expanding top tree for the principal or
barycentric principal PF-tree T~vh

∗
that correspond to the above considered “maximal” Bh. The tree

T~vh
∗

is always non-dusted, and it is ergometric if and only if it is principal and not just barycentric
principal.

It is hence quite possible that the stratum of f , which corresponds to an expanding block Bh that
defines some given expanding top tree T~vh

∗
, is not the top stratum of f , in that there are higher-up

strata which define periodic (or zero) diagonal blocks Bk of the matrix M(f) with Bh � Bk. If
G has no vertices of valence 1, then such strata always define a refined decomposition of T~vh

∗
as a

graph of actions. However, the converse conclusion will in general fail, so that one needs to be very
careful here:

Remark 7.9. (1) Let f : G → G be a β-train-track representative of ϕ, and assume that the
top stratum of G (with respect to the total order on the strata from Definition 4.3 (5)) defines
an irreducible diagonal block Bs of M(f) which is expanding. Let T~vs

∗
be the expanding top tree

which is associated to Bs. Let us furthermore assume that f = fp for the exponent p ≥ 1 from
Proposition 7.7, i.e. “principal” and “barycentric principal” coincide, so that T~vs

∗
is a principal

PF-tree for f .
Even then, the tree T~vs

∗
will in general not be indecomposable: An example is given by the abso-

lute train track map f1 described in Remark 7.2, where M(f1) consists only of a single expanding
diagonal block, while from the construction of f1 we see that f1 decomposes as graph of actions:
the decomposition graph is a loop with a single vertex, and the vertex tree is given by the (up to
uniform rescaling unique) PF-tree of the iwip automorphism ϕ0 defined by the original train track
map f0.

(2) The above automorphism ϕ1 a typical example for a class of automorphisms that are well known
among the experts for iwip automorphisms: Every iwip automorphism ϕ ∈ Out(FN ) possesses
an absolute train track representative f : Γ → Γ without polynomially growing edges and with
transition matrix M(f) that is primitive.

On the other hand, an arbitrary graph map f : Γ → Γ, with primitive transition matrix M(f)
and without polynomially growing edges, does in general not represent an iwip automorphism: In
order to conclude that ϕ is iwip the map f also needs to satisfy a “connectedness condition” on
the Whitehead graph of each vertex, which turns out (see section 8 of [7]) to be equivalent to the
condition that the PF-tree T~v

∗
determined by the (up to scaling unique) PF-eigenvector ~v ∗ for f

is indecomposable.

The reason for this apparent “incoherence” is that the expanding diagonal blocks of M(f) are
in a strong, well-defined sense (see subsection 7.3) structural invariants of ϕ, while the appearance
or non-appearance of possible non-expanding diagonal blocks is accidental and depends on the
particular β-train-track map chosen to represent ϕ.

Remark 7.10. It turns out that for many algorithmic purposes the indecomposability of the
expanding top tree (or of the more general principal PF-trees) is not relevant. For example, the
solution of the conjugacy problem for iwip automorphisms ϕ ∈ Out(FN ) presented in [18], which
is crucially based on the use of the unique expanding ϕ-invariant R-tree, extends fairly directly to
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the more general situation given by any of the above defined augmented expanding top strata of
f , together with its unique associated expanding top tree.

This leads (see [17]) to a “relative solution” of the conjugacy problem for arbitrary ϕ,ϕ′ ∈
Out(FN ) that are not polynomially growing, as for such automorphisms there is at least one aug-
mented expanding top stratum in any β-train-track representatives f : G → G and f ′ : G′ → G′ of
ϕ and ϕ′ respectively, and hence at least one expanding top tree T~v

∗
.

In fact, the technique from [18] allows one to deduce from the assumption of a conjugating
automorphism ψ the existence of a conjugating graph map h : G → G′ with upper bounds for the
top-stratum-length of the h-image for any edge of G, which can be derived algorithmically from f
and f ′. In addition we deduce a bijection from the subgraphs of G to those of G′ which are non-
trivial connected components of the complement of the augmented expanding top strata (as they
represent the non-trivial branch point stabilizers of T~v

∗
, see Remark 7.11 (3)). On these subgraphs

the conjugacy of the restrictions of ϕ and ϕ′ has yet to be decided, but the rank is now strictly
smaller than N , so that one can put in place an induction procedure.

The relative finiteness of the centralizer of ϕ shown in [18] translates here into finitely many
possibilities of how the attaching data (see [17]) from the augmented expanding top stratum are
mapped to β-train-track representatives of the branch point stabilizers of T~v

∗
, modulo powers of

the restricted automorphisms. In the long run this will lead to a normal form for arbitrary outer
automorphisms of FN .

7.3. The set U(ϕ) of characteristic subgroups.
In this subsection we will explain the relevance of the set PT(ϕ) of projectively invariant ex-

panding R-trees for a structural understanding of any given automorphism ϕ ∈ Out(FN ). The
fundamental approach here is that, by definition, the sets T(ϕ) and PT(ϕ) are invariants of ϕ: If
ϕ′ ∈ Out(FN ) is conjugate to ϕ, say through ϕ′ = ψ−1 ϕψ for some ψ ∈ Out(FN ), then one has:

T(ϕ′) = T(ϕ)ψ and PT(ϕ′) = PT(ϕ)ψ

On the other hand, a given automorphism ϕ can have many distinct β-train-track representatives
f : G → G, and it is a priori not at all clear to what extend for example the strata structure of such
(or other types of) train track maps is an invariant of ϕ. Hence the maps b and B from Proposition
7.1 play a fundamental role to deduce from T(ϕ) and PT(ϕ) data of f that are structural invariants
of ϕ. For this purpose we first note:

Remark 7.11. (1) Let T ∈ cvN be an R-tree with trivial arc stabilizers. Then every point xi ∈ T
with non-trivial stabilizer stab(xi) ⊂ FN is a branch point, and stabilizers of distinct points have
trivial intersection. It is well known (see [12]) that there is only a finite number of FN -orbits of
points xi with stab(xi) 6= {1} (indeed less then 2N − 1), and that each stab(xi) has finite rank
(indeed bounded above by N − 1). Since for points xi in the same FN -orbit the stabilizers stab(xi)
are conjugate in FN , such a tree T determines a finite set U(T ) of conjugacy classes [Ui] of finitely
generated non-trivial subgroups Ui := stab(xi) in FN . For more detail about such trees and its
point stabilizers see [12].

(2) If we now pass to the special case of a PF-tree T~v
∗
, then each conjugacy class [Ui] ⊂ U(T~v

∗
)

is represented by a subgraph Gi of G. Indeed, the vector ~v ∗ = (ve)e∈Edges+(G) determines a zero-

subgraph G~v ∗ ⊂ G, which consists of all edges e with ~v ∗-coordinate ve = 0. It follows directly from
Theorem 5.2 (4) that every connected component Gi of G~v ∗ , when lifted to a connected component

of Ĝ, is mapped by i~v
∗

to the FN -orbit of some point xi ∈ T~v
∗
, and that stab(xi) is conjugate in FN

to the zero-subgroup θ(π1Gi). If θ(π1Gi) = {1} we say that the component Gi is trivial; otherwise
Gi is called non-trivial, and in this case xi is a branch point of T .

(3) This defines a bijection from the set of non-trivial connected components of the zero-subgraph
G~v ∗ to the set U(T~v

∗
). Since T~v

∗
is projectively ϕ-invariant, it follows that ϕ preserves U(T~v

∗
)
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by permuting the conjugacy classes of the zero-subgroups Ui = θ(π1Gi). Correspondingly, the
zero-subgraph G~v ∗ is f -invariant, and f permutes its non-trivial connected components.

In light of this remark, we now obtain the following invariant:

Definition-Remark 7.12. (1) For any ϕ ∈ Out(FN ) we define the set

U(ϕ) = ∪{U(T ) | T ∈ T(ϕ)}

of conjugacy classes of characteristic subgroups Ui of ϕ.

(2) For any β-train-track representative f : G → G we have

U(ϕ) = ∪{U(T~v
∗
) | ~v ∗ ∈ PF(f)}

(3) Every conjugacy class [Ui] in U(ϕ) is represented by a characteristic zero-subgraph Gi of G via
Ui = θ(π1Gi), where Gi is a non-trivial connected component of the zero-subgraph G~v ∗ of some
Perron-Frobenius eigenvector ~v ∗ for f :

U(ϕ) = {[Ui] | Ui = θ(π1(Gi)) 6= {1}, Gi ∈ π0(G~v ∗), ~v ∗ ∈ PF(f)}

Since G has only finitely many subgraphs G′, the set of those which are invariant under f (or
under powers of f) can be readily computed. Not any such invariant subgraph G′, however, is a
connected component of the zero-subgraph G~v ∗ of some Perron-Frobenius eigenvector ~v ∗. In order
to distinguish those, one has to consider the transition matrix M(f) and apply the canonical block
decomposition together with the natural partial order � from Remark 7.5. From the expanding
distinguished coordinate blocks of tM(f) and the associated finitely many principal eigenvectors we
obtain hence directly the computable conjugacy invariants exhibited in Corollary 1.3, stated here
in a more explicit form:

Corollary 7.13. For any automorphisms ϕ ∈ Out(FN ) we consider the set U(ϕ) of conjugacy
classes [Ui] characteristic subgroups Ui.

(1) The set U(ϕ) is finite, and for each of its elements [Ui] the rank is finite:

rk Ui ≤ N− 1

(2) The set U(ϕ) is a conjugacy invariant of ϕ: For any ψ ∈ Out(FN one has:

U(ψ ◦ ϕ ◦ ψ−1) = ψ U(ϕ)

(3) The set U(ϕ) can be determined algorithmically: A finite generating set of a representative
subgroup Ui, for each element of U(ϕ), can be derived (essentially by hand) from any β-train-track
representative f : G → G of ϕ.

(4) The inclusion in FN induces a natural partial order on U(ϕ), such that the following holds:
The elements of the maximal classes [Uj ] are precisely the point stabilizers of the finitely many

expanding top trees T~v
∗ ∈ T(ϕ) from Definition-Remark 7.8 (3): The zero-subgraph G~v ∗ of such a

PF-eigenvector ~v ∗ is characterized by the following properties:

(1) G~v ∗ contains all but one of the expanding strata of the β-train-track map f : G → G,
(2) G~v ∗ is f -invariant, and
(3) G~v ∗ is maximal with respect to the properties (1) and (2). tu

In order to draw the connection with the previous subsection more closely, we’d like to note here
that for any expanding top tree T~v

∗
the complement of the zero-subgraph G~v ∗ in G gives precisely

the augmented expanding top stratum associated to the principal eigenvector ~v ∗.
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Remark 7.14. This last observation is the starting point of a structural decomposition of G into
f -invariant, partially ordered expanding coarse strata Hj by an iterative procedure “from the top”,
i.e. starting with f and G. Here each stratum Hj is an augmented expanding top stratum of the
restriction of f (or of a positive power of f) to some connected component of the zero-subspace of
some expanding top tree previously obtained in our iterative procedure.

The ϕ-invariant collection U∗(ϕ) of conjugacy classes of subgroups that results from this expanding-
coarse-strata decomposition of G is slightly richer (but also more complicated to describe) than the
collection U(ϕ) from Corollary 7.13, since every expanding coordinate block Bk for M(f) (i.e. not
just the distinguished ones) gives rise to a subgroup in this collection: the expanding coarse stratum
Hk associated to the expanding block Bk consists of all blocks Bh such that Bk is maximal among
the set of all expanding blocks Bk′ which satisfy Bk′ � Bh.

Each expanding coarse stratum Hk defines a possibly non-connected zero-subgraph GHk ⊂ G,
which consists of all edges that belong to any stratum Bh 6= Bk with Bh � Bk. Here each
polynomial coordinate block Bh has to be treated individually (i.e. without assembling all of them
into B0 as in Remark 7.5 (2)). Each non-trivial connected component G∗j of GHk gives rise to an

element [U∗j ] = [θ(π1Gj)] ∈ U∗(ϕ).

The importance of Corollary 7.13 (or of the expanding-coarse-strata decomposition from Remark
7.14) is emphasized by the following warning:

Remark 7.15. (1) While the decomposition of FN into the characteristic subgroups from U(ϕ) or
from U∗(ϕ), derived from the expanding distinguished coordinate blocks Bk or the coarse expanding
strate Hj respectively, are structural invariants of ϕ, the analogous statement is not true for the
totally ordered strata decomposition of G from property (5) of Definition 4.3.

(2) Of course, the strata-decomposition of any a classical relative train track representative of ϕ has
no claim to structural ϕ-invariance either, as they are indeed structurally weaker than β-train-track
representatives. In fact, it is easy to construct examples of relative train track representatives of the
same automorphism which differ in the number of strata and also in their order, when compared
by checking the associated eigenvalue.

(3) To the best of our knowledge the same is true for any of the improved and improved-improved
versions of relative train tracks that presently exist in the literature.

(4) The ever growing fan club of free factor systems, free factor complexes, etc may want to notice
that the above exhibited structurally invariant characteristic subgroups from U(ϕ) or U∗(ϕ) are
finitely generated and of infinite index, but in general not free factors of FN .

(5) The only known structural invariants that are comparable to the characteristic subgroups from
U(ϕ) or U∗(ϕ) are the expanding algebraic laminations, or perhaps more telling, the associated
sets of attracting fixed currents that can be derived for example from an absolute train track
representative of ϕ (see [21]). It is possible (but not at all obvious) to derive carrier subgroups for
such laminations (see [15]), and there is indeed a strong relationship to the invariant subgroups
U∗i = θ(π1G∗i ) named above, but the resulting decompositions are not identical:

For example, consider the automorphism ϕ1 and the absolute train track map f1 : Γ1 → Γ1

from Remark 7.2, derived from an absolute train track representative f0 : G0 → G0 of an iwip
automorphism ϕ0 through identifying two distinct vertices fixed by f0. The characteristic subgroup
set U(ϕ1) from Corollary 7.13 is empty: There is only a single stratum which contains all of the
graph Γ1 (see Remark 7.9). The carrier subgroup of the (unique) expanding lamination, however,
would not be the full group π1Γ1 but only the fundamental group π1Γ0 $ π1Γ1 of the graph Γ0

from before doing the above two-vertex identification.
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