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Abstract. The automorphism group of the Galois covering induced by a
pluri-canonical generic covering of a projective space is investigated. It is
shown that by means of such coverings one obtains, in dimensions one and
two, serieses of specific actions of the symmetric groups Sd on curves and
surfaces not deformable to an action of Sd which is not the full automorphism
group. As an application, new DIF6=DEF examples for G-varieties in complex
and real geometry are given.
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Introduction.

0.1. Terminology conventions. By a covering we understand a branched
covering, that is a finite morphism f : X → Y from a normal projective va-
riety X onto a non-singular projective variety Y , all being defined over the
field of complex numbers C. To each covering f we associate the branch locus
B ⊂ Y , the ramification locus R ⊂ f−1(B) ⊂ X, and the unramified part
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X \ f−1(B) → Y \ B (which is the maximal unramified subcovering). As is
usual for unramified coverings, there is a homomorphism ψ which acts from the
fundamental group π1(Y \B) to the symmetric group Sd on d elements, where d
is the degree of f . This homomorphism (called monodromy of f) is defined by
f uniquely up to inner automorphisms of Sd; reciprocally, according to Grauert-
Remmert-Riemann extension theorem the conjugacy class of ψ defines f up to
an isomorphism. The image G ⊂ Sd of ψ is a transitive subgroup of Sd.

As is well known, for each covering f there is a unique, up to isomorphism,

minimal Galois covering f̃ : X̃ → Y which is factorized through f , f̃ = f ◦ h,
by means of a Galois covering h : X̃ → X. The covering f̃ is called the
Galois expansion of f . The characteristic, minimality, property of the Galois

expansion f̃ is that any Galois covering which is factorized through f can be

factorized through f̃ . The Galois expansion of f can be obtained by Grauert-
Remmert-Riemann extension theorem from the non-diagonal component of the
fibred product over Y of d copies of the unbranched part X \ f−1(B) → Y \B

of f . In particular, the Galois group Gal(X̃/Y ) of the covering f̃ : X̃ → Y is
naturally identified with G = ψ(π1(Y \B)) as above.

In the present article, we study actions of finite groups on the Galois expan-
sions of generic coverings of the projective spaces. To give a precise definition
of a generic covering we need to introduce first some preliminary definitions
concerning the actions of symmetric groups.

Let I be a finite set consisting of |I| = d elements and let I1 ∪ · · · ∪ Ik = I

be a partition of I, |Ii| = di ≥ 1,
∑k

i=1 di = d. Such a partition defines a
unique, up to conjugation, imbedding of Sd1

× · · · × Sdk
in Sd which we call

a standard imbedding. A representation Sdi
⊂ GL(Vi), where Vi is a vector

space over C, will be called a standard representation of rank di − 1 if there is
a base e1, . . . , eri

of Vi, ri = dimVi ≥ di − 1, such that the action σ(j,j+1) of a
transposition (j, j + 1) ∈ Sdi

is given by

σ(j,j+1)(el) =

{
el if l 6= j, j + 1,
ej+1 if l = j,

for j 6= di − 1, and by

σ(di−1,di)(el) =

{
el if l 6= di − 1,

−
∑di−1

s=1 es if l = di − 1,

in the remaining case. A collection of standard representations of symmetric
groups Sdi

⊂ GL(Vi) of ranks di − 1, i = 1, . . . , k, defines a representation of
Sd1

× · · · × Sdk
⊂ GL(V ) with V = Vi1 ⊕ · · · ⊕ Vik which we call a standard

representation of the product Sd1
× · · ·×Sdk

of rank
∑
di − k. As is easy to see,

if Sd1
× · · · × Sdk

⊂ GL(V ) is a standard representation of rank
∑
di − k, then

the codimension in V of the subspace consisting of the vectors fixed under the
action of Sd1

× · · · × Sdk
is equal to

∑
di − k.
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Let the group Sd act on a smooth projective manifold Y . We say that the
action of Sd on Y is generic if the stabilizer Sta ⊂ Sd of each point a ∈ Y is a
standard imbedding of a product of symmetric groups and the action induced by
Sta on the tangent space TaY is a standard representation (both the product
and the representation depending on a). According to this definition, if the
action of Sd on Y is generic, then the factor-space Y/Sd is a smooth projective
manifold.

A covering f : X → Pdim X of degree d is called generic if the Galois group

G = Gal(X̃/PdimX) of the Galois expansion of f is the full symmetric group Sd,

the varieties X and X̃ are smooth, and the action of G on X̃ is generic. From
this definition it follows that, for any generic covering f of degree d, the group

Gal(X̃/PdimX) is the full symmetric group Sd and the subgroup Gal(X̃/X)
coincides with Sd−1 ⊂ Sd.

If X is non-singular and dimX = 1, then a covering f : X → P1 branched
over B ⊂ P1 is generic if and only if |f−1(b)| = deg f − 1 for any b ∈ B.

Furthermore, in the case of generic covering at each point b̃ ∈ f̃−1(b), b ∈ B,

the stabilizer group Steb ⊂ Sd = Gal(X̃/P1) is generated by a transposition,
Steb = S2.

If X is non-singular and dimX = 2, then a covering f : X → P2 is generic if
and only if the following conditions are satisfied: f is branched over a cuspidal
curve B ⊂ P2; |f−1(b)| = deg f − 1 for any nonsingular point b of B, and
|f−1(b)| = deg f −2 if b is a node or a cusp of B. In the case of generic covering

at each point b̃ ∈ f̃−1(b), b ∈ B, the stabilizer group Steb ⊂ Sd = Gal(X̃/P2) is
generated: by a transposition if b is a nonsingular point of B, and then Steb = S2;
by two non-commuting transpositions if b is a cusp of B, and then Steb = S3; by
two commuting transpositions if b is a node of B, and then Steb = S2 × S2 (for
a detailed exposition see Subsection 3.1).

Whatever is the dimension of a generic covering, the automorphism group

Aut(X̃) of the manifold X̃ contains the symmetric group Sd, but as the following

examples show, one can not expect that Aut(X̃) and Sd will necessarily coincide.
As a first example, let us pick a generic covering f1 : Y = P1 → P1 of degree

d + 1 and denote by f̃ : Ỹ → P1 the Galois expansion of f1, f̃ = f1 ◦ h1. Then

Gal(Ỹ /P1) = Sd+1, Y = Ỹ /Sd, and h1 : Ỹ → Y = P1 is a Galois covering

with Gal(Ỹ /Y ) = Sd. The covering h1 : Ỹ → Y = P1 can be considered as

the Galois expansion X̃ = Ỹ → Y = P1 (with Galois group Gal(X̃/P1) = Sd)

of a covering f : X → Y = P1, X = X̃/Sd−1. The latter is a generic covering
of degree d, and, now, if we start from f : X → P1, we obtain that its Galois

group Gal(X̃/P1) = Sd does not coincide with Aut(X̃), since Aut(X̃) = Aut(Ỹ )
contains at least the group Sd+1.
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Another example can be obtained as follows. Let f1 : Y = P1 → P1 be a
generic degree d covering branched over B1 ⊂ P1. Let us choose two points
x, y ∈ P1 not belonging to B1, and let f2 : Z = P1 → P1 be a cyclic covering of
degree p branched at x and y. Consider the fibred product X = Y ×P1 Z and
its projection f : X → Z = P1 to the second factor. It is easy to see that f is a

generic covering and Aut(X̃) contains Gal(X̃/P1) × Z/pZ.

0.2. Principal results. The aim of our research is to give numerical condi-
tions for a generic covering f : X → PdimX which ensure that Aut(X̃) =

Gal(X̃/PdimX) and which are preserved under any deformation of the Galois
expansion.

To state the results obtained we need to introduce one more auxiliary notion:
a covering f : X → PdimX is said to be (numerically) m-canonical if it is given
by dimX+1 sections of a line bundle numerically equivalent to the m-th power
K⊗m

X of the canonical bundle KX of X and these sections have no common
zeros.

Certainly, m-canonical coverings exist only if the Kodaira dimension of X
coincides with its dimension. If dimX = 2, then, in addition, X should be
minimal and it should not contain any (−2)-curve. If dimX = 1, then its genus
should be greater or equal to 2. Reciprocally, as is well known, any curve of
genus g > 2 possesses a m-canonical covering for m > 1, and, as is shown in [13],
any minimal surface of general type containing no (−2)-curves also possesses a
m-canonical covering at least for m > 10.

Theorem 0.1. Let X be a curve of genus g > 2 and f̃ : X̃ → P1 be the Galois

expansion of a m-canonical generic covering f : X → P1. If m(g − 1) ≥ 500,

the Galois group Gal(X̃/P1) is the full automorphism group of X̃.

Theorem 0.2. Let X be a surface of general type, and assume that it possesses

a m-canonical generic covering f : X → P2, m ≥ 2. If m2K2
X ≥ 2 · 842 and

f̃ : X̃ → P2 is the Galois expansion of f , the Galois group Gal(X̃/P2) is the

full automorphism group of X̃.

As a consequence, the G-curves like in Theorem 0.1 and the G-surfaces like
in Theorem 0.2 provide infinitely many examples of saturated connected compo-
nents in the moduli space of G-varieties, G = Sd, where a component is called
saturated if for any G-variety representing a point of this component G is the
full automorphism group of V . (It may be worth pointing some easy series of
saturated components with G 6= Sd, namely, the components given by curves
and surfaces with the automorphism groups of maximal order, that is 84(g− 1)
for curves, and 422K2 for surfaces. One can mention also deformation rigid
varieties with nontrivial automorphism group.)
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As another application of the above theorems, we give counter-examples to a
Dif=Def problem for complex and real G-varieties. Namely, we construct pairs
of complex (respectively, real) varieties V1, V2 such that the actions of AutV1

and AutV2 (respectively, KlV1 and KlV2; here, KlV is the group formed by the
regular isomorphisms X → X and X → X̄) are diffeomorphic but not defor-
mation equivalent. Up to our knowledge, such examples, specially at the real
setting, are new. (It may be worth noticing, that in [9] in our counter-examples
to the Dif=Def problem for real structures the surfaces have diffeomorphic real
structures, but the actions of the Klein group on these surfaces are not diffeom-
rophic.)

0.3. Contents of the paper. The proof of theorems 0.1 and 0.2 consists of two
parts. In the beginning (Section 1), by methods of group theory, we investigate
minimal expansions of the symmetric groups to restrict the number of possible
cases, and then the possible cases are investigated by geometric methods (Sec-
tion 2 for Theorem 0.1 and Section 3 for Theorem 0.2). Section 4 contains the
applications mentioned above.

1. Minimal expansions of symmetric groups.

1.1. Preliminary definitions. To formulate group theoretic statements which
we use in the proof of Theorems 0.1 and 0.2, we need to introduce few prelim-
inary definitions. We say that a group G containing the symmetric group Sd

satisfies the minimality property if there is no any proper subgroup G1 of G
which contains Sd and does not coincide with Sd, and call such a group G a
minimal expansion of Sd.

An imbedding α : Sd ⊂ Sd+2 is called quasi-standard if the image α(σi,j)
of each transposition σi,j = (i, j) ∈ Sd, 1 ≤ i, j ≤ d, is the product α(σi,j) =
(i, j)(d+1, d+2) of two transpositions (i, j) and (d+1, d+2) in Sd+2. Note that
for the quasi-standard imbedding the image of Sd is contained in the alternating
subgroup Ad+2 of Sd+2. This imbedding, α : Sd ↪→ Ad+2, is called standard.

Proposition 1.1. Let G be a minimal expansion of the symmetric group Sd of

index k = (G : Sd). Assume that k ≤ cdn, where either (i) c = 63 and n = 1,
or (ii) c = (4 · 42)2 and n = 2.

If d ≥ max(2c, 1000), then G is one of the following groups:

(1) G = Sd × Z/pZ, p is a prime number, p ≤ cdn;

(2) G = Ad o Dr, where 3 ≤ r ≤ cdn, r is odd, Dr is the dihedral group

given by presentation

Dr = 〈σ, τ | σ2 = τ 2 = (στ)r = 1〉,

and the action (by conjugation) of σ and τ on Ad coincides with the

action of the transposition (1, 2) ∈ Sd on Ad ⊂ Sd;
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(3) G = Sd+1 is the symmetric group;

(4) G = Ad+2 is the alternating group, the imbedding of Sd in Ad+2 is a

standard one, and such expansions can appear only under assumption

(ii).

The rest of this section is devoted to the proof of Proposition 1.1.

Proof. A priori, one of the following two cases occurs.
Case I. The group G contains a non-trivial normal subgroup.

Case II. The group G is simple.

Since d > 6, the group Sd has the unique non-trivial normal subgroup, namely,
the alternating group Ad and, consequently, Case I can be subdivided into the
following subcases, where N denotes a nontrivial normal subgroup of G.

Case I1. Sd ⊂ N .
Case I2. N ∩ Sd = {1}.
Case I3. N ∩ Sd = Ad.
In its turn, Case I3 can be subdivided into two subcases.
Case I31. Ad is a normal subgroup of G.
Case I32. Ad is not a normal subgroup of G.

1.2. Analysis of Case I1. It follows from the minimality property that Sd =
N . Let g1 be an arbitrary element of G \ Sd. The conjugation by g1 induces an
automorphism of Sd. Since d ≥ 7, any automorphism of Sd is inner. Therefore,
there is g2 ∈ Sd such that g = g1g2 commutes with all elements of Sd. Hence,
once more by the minimality property, the group G splits into the direct product
of Sd and the cyclic group 〈g〉 generated by g. Moreover, the order of g is a
prime number p.

1.3. Analysis of Case I31. According to subsection 1.2 we can assume that Sd

is not a normal subgroup of G. Therefore, there is g ∈ G such that S ′
d = g−1Sdg

does not coincide with Sd (but, it is isomorphic to Sd).
Since the group Ad is a normal subgroup of G, we have Ad ⊂ S ′

d ∩ Sd. Fur-
thermore, for any transposition σ ∈ Sd the element τ = g−1σg (which we call a
transposition in S ′

d) does not belong to Sd. Thus, by the minimality property,
it follows that the group G is generated by the elements of Ad and any two
transpositions σ ∈ Sd and τ ∈ S ′

d. Moreover, since conjugating by elements
of Sd (respectively, S ′

d) provides the full automorphism group Aut(Ad) of Ad,
we can choose the two generating transpositions σ ∈ Sd and τ ∈ S ′

d in a way
that στ commutes with all elements of Ad. And above all, we can assume that
the action (by conjugation) of σ and τ on Ad coincides with the action of the
transposition (1, 2) ∈ Sd.
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Denote by H a subgroup of G generated by σ and τ . Then H is isomorphic
to a dihedral group

Dr = 〈σ, τ | σ2 = τ 2 = (στ)r = 1〉

for some r ∈ N.
As is known, any element g ∈ Dr either belongs to the cyclic subgroup gen-

erated by στ or is conjugate to σ or τ . Therefore Ad ∩H is a subgroup of 〈στ〉,
and since the element στ commutes with all elements of Ad and Ad has trivial
center, we conclude that Ad ∩H = {1}. In addition, Ad is a normal subgroup
of G and G satisfies the minimality property, which implies

G = Ad oH ' Ad oDr.

Moreover, r is odd, since σ and τ are conjugate in G and, hence, in Dr.

1.4. Analysis of Case I2. It follows from the minimality property that in this
case the group G is isomorphic to a semi-direct product N o Sd.

If N is not a simple group, then we can find a minimal non-trivial normal
subgroup N1 of N . Note, first of all, that N1 can not be a normal subgroup of
G, since G satisfies the minimality property. Therefore, the set of subgroups of
G conjugated to N1 contains more than one element. Let {N1, . . . , Ns} be the
set of subgroups conjugate to N1 in G, s > 2. Each Ni, 1 6 i 6 s, is contained
in N , since N is a normal subgroup of G. Moreover, each of them is a normal
subgroup of N , since N1 is normal in N and conjugation by any element of G
induces an isomorphism of N . Besides, the action of Sd on the set {N1, . . . , Ns}
is transitive and this set is an orbit of the action of Sd by conjugation on the
whole set of subgroups of G.

Let us show that N ' N1 × · · · × Ns1
for some s1 ≤ s (maybe after a

renumbering the groups Ni). Note, first, that Ni ∩Nj = {1} for i 6= j. Indeed,
N1, . . . , Ns are minimal normal subgroups of N and the intersection Ni ∩Nj, as
an intersection of any two normal subgroups, is a normal subgroup. Therefore,
[N1, N2] ⊂ N1 ∩ N2 = {1} so that the subgroup N1N2 generated in N by the
elements of the groups N1 and N2 is isomorphic to N1 ×N2, and this subgroup
N1N2 is also a normal subgroup of N . By induction, assume that for some i < s
the subgroup N1,i = N1 . . . Ni of N is normal and isomorphic to N1 × · · · ×Ni.
Then, either N1,i ∩ Ni+1 = {1}, or Ni+1 ⊂ N1,i (here, once more, we use the
observation that Ni+1 is a minimal normal subgroup of N). If N1,i ∩Ni+1 = 1,
then

N1,i+1 = N1 · . . . ·Ni+1 ' N1 × · · · ×Ni+1,

since [N1,i, Ni+1] ⊂ N1,i ∩ Ni+1 = 1. This inductive procedure stops at some
subgroup N1,s1

⊂ N which, being normal in N and invariant under the action of
Sd by conjugation, is a normal subgroup of G. Therefore, N1,s1

coincides with
N . As a consequence, N ' N1 × · · · ×Ns1

.
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The groups N1, . . . , Ns, which are isomorphic to each other, are simple. In-

deed, if N1 is not simple, there exists a non-trivial normal subgroup Ñ1 of N1,

so that the group Ñ1 × {1} × · · · × {1} is a normal subgroup of N , which is
impossible, since, by assumption, N1 is a minimal normal subgroup of N .

Next, let us show that s1 = s if N1 is a non-abelian simple group. Here, we
are reasoning by contradiction and suppose that s1 < s. Then, Ns1+1 ⊂ N1 ×
· · ·×Ns1

, the projection of Ns1+1 to each of the factors is either an isomorphism
or the trivial homomorphism, and at least two projections are isomorphisms.
Without loss of generality, we can assume that the first two projections are
isomorphisms. So, if an element g ∈ Ns1+1 is written as a product g = g1g2 . . . gs1

of elements gi ∈ Ni, then g1 is uniquely determined by g2. On the other hand,
Ns1+1 is a normal subgroup of N , which implies that for any g = g1g2 . . . gs1

∈
Ns1+1 and any h ∈ N1 the products h−1gh = (h−1g1h)g2 . . . gs1

belong to Ns1+1.
Contradiction.

If N1 is a non-abelian simple group, then conjugation by the elements of Sd

permutes N1, . . . , Ns transitively and defines a homomorphism ψ : Sd → Ss.
Since d ≥ 7, there are only two possibilities: either s ≤ 2 and Ad ⊂ kerψ, or ψ
is an imbedding and, therefore, s ≥ d.

Suppose that N1 is a non-abelian simple group and s = 2. Then, conjugation
by the elements of Ad defines a homomorphism ψ : Ad → Aut(N1). Since
the outer automorphism group Out(N1) = Aut(N1)/Inn(N1) is solvable for a
simple group N1 (see [5], Theorem 4.240) and the group Ad is simple, we see that
ψ(Ad) ⊂ Inn(N1) and either ψ(Ad) = 1, or ψ : Ad → Inn(N1) is an imbedding
into the inner automorphism group. If ψ(Ad) = 1 , any element of N1 commutes
with the elements of Ad, and therefore Ad is a normal subgroup of G, since G
is generated by the elements of Sd and an element h ∈ N1, h 6= 1, and since
h commutes with the elements of Ad. But such a case is already considered
above (Case I31). If ψ : Ad → Inn(N1) is an imbedding, then the order of N1 is
greater than 1

2
d! and, consequently,

k = (G : Sd) ≥ (
1

2
d!)2,

which is impossible since, by assumption, d ≥ 1000 and k is not greater than
either 63d or (4 · 42)2d2.

Suppose, next, that N1 is a non-abelian simple group and s ≥ d. Then (as is
well known, A5 is the smallest non-abelian simple group)

k = (G : Sd) = |N |s ≥ |N |d ≥ 60d

which is impossible by the same reason as above.
Now, let N1 be an abelian simple group. Then N ' N1 × · · ·×Ns1

and again
conjugation by the elements of Ad defines a homomorphism ψ : Ad → Aut(N1).
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As above, if ψ(Ad) = 1, then Ad is a normal subgroup of G and this case is
already considered.

If ψ : Ad → Aut(N1) be an imbedding, then Lemma 1.3 (see below) implies
that s1 ≥ [d

4
]. Therefore,

k = (G : Sd) = |N1|
s1 ≥ 2[ d

4
],

which contradicts the assumption that d ≥ 1000 and k is not greater than either
63d or (4 · 42)2d2.

The rest of the subsection is devoted to a proof of Lemma 1.3, which is based,
in its turn, on the following Lemma.

Lemma 1.2. Let F be a finite field of characteristic p and let H be a subgroup

of PGL(F, n) isomorphic to the alternating group A4d1
, d1 ∈ N. Then n ≥ d1.

Proof. If d1 ≤ 2 the statement is obvious. Assume that it is true for d1 ≤ k and
put d1 = k + 1.

Consider the natural epimorphism ψ : GL(F, n) → PGL(F, n). The kernel
of ψ consists of scalar matrices λId, λ ∈ F ∗. Therefore the group ψ−1(A4(k+1))
is a central extension of the group A4(k+1).

Denote by Ξ the set of 4-tuples {i1, i2, i3, i4} of pairwise distinct integers 1 ≤
ij ≤ 4(k + 1) and for each I ∈ Ξ denote by xI the permutation (i1, i2)(i3, i4) ∈
A4(k+1). These permutations xI , I ∈ Ξ, generate the group A4(k+1) and, since
4(k+1) > 8, each two of them are conjugate in A4(k+1). For each pair I1, I2 ∈ Ξ
let us choose a word wI1,I2 in xI such that xI1 = w−1

I1,I2
xI2wI1,I2 in A4(k+1), then

pick elements x̂I ∈ ψ−1(xI) ⊂ ψ−1(Ak+1) and put

x̃I0 = x̂I0 for I0 = {4k + 1, 4k + 2, 4k + 3, 4k + 4},

x̃I = ŵ−1
I,I0
x̃I0ŵI,I0 for I 6= I0,

where ŵI,I0 is obtained from the word wI,I0 by substitution the elements x̂I

instead of xI .
For each I ∈ Ξ we have x̃I = µI x̂I , where µI ∈ kerψ are elements of the

center of GL(F, n). Therefore,

x̃I = w̃−1
I,I0
x̃I0w̃I,I0,

where w̃I,I0 is obtained from the word wI,I0 by substitution the elements x̃I

instead of xI . On the other hand, x2
I = 1 for each I ∈ Ξ which implies that

x̃2
I = λI ∈ kerψ. Since x̃I are conjugate to each other and x̃2

I = λI are the
elements of the center, all λI should be equal to each other. We denote this
element by λ.

Consider the group GL(F, n) as a subgroup of GL(F , n), where F is the

algebraic closure of the field F , and denote by Ã4(k+1) the subgroup of GL(F, n)

generated by x̃I , I ∈ Ξ, and the elements belonging to the center of GL(F , n).

It is easy to see that Ã4(k+1) is a central extension of the group A4(k+1).
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In Ã4(k+1) there is an element µ such that µ2 = λ−1. Put yI = µx̃I . Then

y2
I = 1 and all the yI are conjugate to each other: yI = v−1

I,I0
yI0vI,I0, where

vI,I0 is obtained from the word wI,I0 by substitution the elements yI instead of
xI . Furthermore, for each I = {i1, i2, i3, i4} ∈ Ξ with 1 ≤ ij ≤ 4k, we have
xIxI0 = xI0xI which implies that yIyI0 = µIyI0yI for some µI belonging to the
center of GL(F , n). Since y2

I = Id, then µI = ±Id, and since all the yI are
conjugate to each other by words depending on the elements yI, all µI should
be equal to each other. As a result, all µI with I ∈ Ξ are equal to either µ = Id
or µ = −Id.

Let us show that µ = Id. Consider the elements y1,2,3,4, y1,2,5,6, and put
ỹ3,4,5,6 = y1,2,3,4y1,2,5,6. We have ỹ3,4,5,6 = λy3,4,5,6, where λ is a central ele-
ment, since x3,4,5,6 = x1,2,3,4x1,2,5,6. Also, we have yI0y1,2,3,4 = µy1,2,3,4yI0 and
yI0y1,2,5,6 = µy1,2,5,6yI0. Hence, on the one hand,

yI0 ỹ3,4,5,6 = yI0λy3,4,5,6 = λµy3,4,5,6yI0 = µỹ3,4,5,6yI0

and, on the other hand,

yI0 ỹ3,4,5,6 = yI0y1,2,3,4y1,2,5,6 = µ2y1,2,3,4y1,2,5,6yI0 = µ2ỹ3,4,5,6yI0.

Therefore, µ = Id.
Denote by A4(k+1) the subgroup of GL(F , n) generated by yI, I ∈ Ξ. Obvi-

ously, its image in PGL(F , n) is A4(k+1). Consider a subgroup A4k of A4(k+1)

generated by the elements yI, I = {i1, i2, i3, i4} ∈ Ξ with 1 ≤ ij ≤ 4k. The
elements of A4k commute with yI0, and the image of A4k in PGL(F, n) is A4k.

Assume, first, that the characteristic p 6= 2. Then the vector space V = F
n

splits into a direct sum E+⊕E− of two eigen-spaces corresponding to the eigen-
values ±1 of yI0. Since yI0 does not belong to the center, dimE+ ≥ 1 and
dimE− ≥ 1. Since the elements of A4k and yI0 commute, the both eigen-spaces
E± are invariant under the action of A4k. This action is non-trivial on at least
one of these subspaces, say, on E+. Furthermore, since A4k is a simple group,
this action induces an imbedding of A4k into PGL(E+). Therefore, dimE+ ≥ k
and, as a result, dimV ≥ k + 1 = d1.

Suppose now that p = 2. Then, the subspace E = {v ∈ V | yI0(v) = v} of
V is invariant under the action of A4k and it is of dimension dimE < dimV .
If the action of A4k on E is non-trivial, then n = dim V > dimE ≥ k, that is,
n ≥ k + 1 = d1.

To end the proof, let us show that if the action of A4k on E is trivial, then
the induced action of A4k on V/E is non-trivial. Indeed, if the both actions are
trivial, then we can choose a basis in V such that in this basis each y ∈ A4k can
be represented by a matrix of shape

y =

(
Ida A
0 Idb

)
,
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where a = dimE, b = dimV − a, A is a (a × b)-matrix, and 0 is the zero
(b × a)-matrix. But, it is impossible, since the such matrices form an abelian
group, while the group A4k is non-abelian. Thus, we conclude that the action
of A4k on V/E is non-trivial, and, hence, n = dimV > dimV/E ≥ k, that is,
n ≥ k + 1 = d1. �

Lemma 1.3. Let F be a finite field of characteristic p and let H be a subgroup

of GL(F, n) isomorphic to the alternating group A4d1
, d1 ∈ N. Then n ≥ d1.

Proof. Since PGL(F, n) is the quotient group of GL(F, n) by its center and the
alternating group has trivial center, Lemma 1.3 follows from Lemma 1.2. �

1.5. Analysis of Case I32. Since N is a normal subgroup and N∩Sd = Ad, the
subgroup 〈N, σ〉 generated in G by the elements of N and a transposition σ ∈ Sd

is isomorphic to a semi-direct product N o 〈σ〉. The group Sd is contained in
〈N, σ〉, since Ad ⊂ N . Thus, the minimality property of G implies G = No〈σ〉.

Let us remind that, by assumption, Ad is not a normal subgroup of G.
Suppose first that the group N is not simple. Pick a minimal non-trivial

normal subgroup N1 of N . Then, either N1 ∩Ad = {1}, or N1 ∩Ad = Ad, since
Ad is simple.

If N1 ∩ Ad = {1}, then the group N2 = σ−1N1σ is a normal subgroup of N
and N2 ∩ Ad = {1}. If N1 = N2, then N1 is a normal subgroup of G and this
case is already considered (Case I2). If N1 6= N2, then [N1, N2] ⊂ N1∩N2 = {1}
and the group N1N2 ' N1 × N2 is a normal subgroup of G. Again, the case
when N1N2 ∩Ad = {1} is contained in Case I2. Therefore, we can assume that
N = N1N2. Since, Ni ∩ Ad = {1} for i = 1, 2, the projections of Ad to the
factors should be imbeddings. Therefore, |Ni| ≥ |Ad| = d!

2
. Hence,

k = (G : Sd) = (N : Ad) ≥
d!

2

which is impossible since, by assumption, d ≥ 1000 and k is not greater than
either 63d or (4 · 42)2d2.

If N1 ∩ Ad = Ad, then N2 ∩ Ad = Ad, where N2 = σ−1N1σ. If N1 = N2,
then N1 is a normal subgroup of G and this case is contained in Case I2. If
N1 6= N2, then N1 ∩ N2 is a normal subgroup of N and Ad ⊂ N1 ∩ N2 ⊂ N1.
Therefore, contrary to our initial assumptions, N1 is not a minimal non-trivial
normal subgroup of N .

Thus, it us remains to treat the case when N is a simple group and G =
N o 〈 σ〉. Obviously, N can not be a cyclic group.

If N is isomorphic to some alternating group Ad1
, then d1 − d = n1 ≥ 1 and

k = (G : Sd) = (Ad1
: Ad) = (d+ 1) . . . (d+ n1).
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By the hypotheses, d ≥ max(2c, 1000) and k ≤ cdn, where either (i) c = 63 and
n = 1, or (ii) c = (4 · 42)2 and n = 2. Therefore n1 ≤ 1 under assumption (i)
and n1 ≤ 2 under assumption (ii).

If n1 = 1, then G = Sd+1 (and, moreover, the imbedding of Sd into G = Sd+1

is the standard one).
Let us show (before ending with an analysis of other simple groups) that it

is impossible to have n1 = 2 under assumption (ii).

Lemma 1.4. An imbedding α : Ad → Ad+2 is conjugate to the standard one if

d ≥ 9.

Proof. Consider the standard actions of Ad ⊂ Sd and Ad+2 ⊂ Sd+2 on the sets
Id = {1, 2, . . . , d} and Id+2 = {1, 2, . . . , d+ 2}, respectively. If τ ∈ Ad is a cyclic
permutation of length 3, then its image α(τ) is a product τ1 . . . τs of pairwise
disjoint cyclic permutations, and for each i = 1, . . . , s it holds τ 3

i = 1. To prove
Lemma 1.4, it suffices to show that s = 1 for any 3-cycle τ ∈ Ad. Without loss
of generality we may assume that τ = (d− 2, d− 1, d).

Under the action of α(τ), the set Id+2 splits into a disjoint union of s orbits
O3,i, i = 1, . . . , s, of cardinality 3 and d+2−3s orbits O1,i, i = 1, . . . , d+2−3s, of
cardinality 1. Consider the subgroup Ad−3 of Ad which leaves fixed the elements
d− 2, d− 1, d ∈ Id. Each element of Ad−3 commutes with τ . Hence, the group
α(Ad−3) acts on the set of orbits O3,i and on the set of orbits O1,i. This action
defines a homomorphism β : Ad−3 → Ss × Sd+2−3s. But, s < d− 3 if d > 9, and
if s > 1, then d + 2 − 3s < d − 3. Therefore, β is the trivial homomorphism
if s > 1, since Ad−3 is a simple group and |Ad−3| > |Ss|, |Ad−3| > |Sd+2−3s| if
d > 9. Hence, the homomorphism α induces a homomorphism of Ad−3 to the
direct product of s copies of S3, which again should be trivial. Finally, if s > 1,
then α would not be an imbedding. �

Due to Lemma 1.4, we can assume now that G ' Ad+2 o 〈 σ〉 and that the
imbedding Ad ⊂ Ad+2 is standard. Let us show that in this case G ' Sd+2 and
the imbedding Sd ⊂ G ' Sd+2 is standard too.

Indeed, let look at the natural homomorphism i : Inn(G) → Aut(Ad+2) '
Sd+2. Obviously, i(Ad+2) = Ad+2 ⊂ Sd+2, and to prove that G ' Sd+2, it
suffices to show that i(σ) is not an inner automorphism of Ad+2 (recall that σ
is a transposition as an element of Sd). If i(σ) ∈ Inn(Ad+2), then there is an
element τ ∈ Ad+2 such that γ = στ commutes with all the elements of Ad+2.
In particular, it commutes with τ and therefore it commutes with σ. Since
σ 6∈ Ad+2, we have γ = στ 6= 1 and the group 〈Sd, γ〉 generated in G by γ and
the elements of Sd is isomorphic to Sd × 〈γ〉. But existence of such a subgroup
in G ' Ad+2 o 〈 σ〉 contradicts the minimality property of G.

To show that the imbedding j : Sd ⊂ G ' Sd+2 is standard, note that j(σ) is
a product σ1 . . . σs of odd number of pairwise disjoint transpositions σi ∈ Sd+2.
We must show that s = 1. Assume that s ≥ 3. As in the proof of Lemma 1.4,
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consider the standard action of Sd and Sd+2 on the sets Id = {1, 2, . . . , d} and
Id+2 = {1, 2, . . . , d+2}, respectively. Let σ ∈ Sd be the transposition (d− 1, d).
Under the action of j(σ), the set Id+2 splits into a disjoint union of s orbits O2,l,
l = 1, . . . , s, of cardinality 2 and d+ 2 − 2s orbits O1,l, l = 1, . . . , d+ 2 − 2s, of
cardinality 1. Consider the subgroup Sd−2 of Sd which leaves fixed the elements
d−1, d ∈ Id. Each element of Sd−2 commutes with σ. Hence, the group j(Sd−2)
acts on the set of orbits O2,j and on the set of orbits O1,j. Thus action defines a
homomorphism β : Sd−2 → Ss × Sd+2−2s. But, s < d− 2 (recall that d ≥ 1000),
and if s ≥ 3, then d+ 2 − 2s < d− 3. Therefore the composition of β with the
projection to each factor has a non-trivial kernel if s ≥ 3. This kernel is either
Ad−2 or the whole Sd−2. Therefore the image of each element of Sd−2 under the
imbedding j has the order not greater than 4, which is impossible if d− 2 ≥ 5.

The following Lemma forbids an appearance of other simple groups N in
G = N o 〈 σ〉 and thus completes the investigation of Case I23.

Lemma 1.5. Assume that a simple group G distinct from an alternating group

contains a subgroup Hd isomorphic either to the symmetric group Sd or the

alternating group Ad, d ≥ 1000. Then (G : Hd) > 1682d2.

Proof. To prove Lemma, we use the classification of finite simple groups (see
[5]).

The group G is non-abelian, since Hd is a non-abelian group.
The group G can not be a sporadic simple group, since the order of each

sporadic simple group is not divisible by d!
2

if d ≥ 33 (for the sporadic simple
groups either the multiplicity of the prime number 11 in its order is not greater
than 2, or the order is not divisible by 13), while |G| is divisible by |Hd|, which
is divisible by d!

2
.

Let G be a group of Lie type. Then G is a subgroup of either GL(F, n) or
PGL(F, n), where F is a finite field. Denote by q the number of elements of the
field F . Since Hd ⊂ G, then, by Lemmas 1.2 and 1.3, we have the inequality
n ≥ [d

4
].

If G is one of the following groups: An(q), Bn(q), Cn(q), Dn(q), 2An(q2),
2Dn(q2), then

|G| ≥ qr2/2,

where r = [n
2
]. Since 2

1

2
[ d
8
]2−16 > (d + 2) log2 d for d ≥ 1000, we have that

(G : Hd) > 1682d2.
To complete the proof of Lemma, note that all the other simple groups of Lie

type have a non-trivial irreducible linear representation of dimension less than
250 and therefore, by Lemma 1.3, they can not have a subgroup isomorphic to
Ad if d ≥ 1000. �
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1.6. Analysis of Case II. It follows from Lemma 1.5 that it remains to con-
sider only the case Sd ⊂ G = Ad1

.
The imbedding Sd ⊂ Ad1

induces an imbedding Sd ⊂ Sd1
. Since any imbed-

ding Sd ⊂ Sd+1 is standard, we have d1 − d = n1 ≥ 2. By the hypotheses,
d ≥ max(2c, 1000) and (Ad1

: Sd) = 1
2
(d+ 1) . . . (d+ n1) ≤ cdn, where either (i)

c = 63 and n = 1, or (ii) c = (4 · 42)2 and n = 2. Therefore n1 ≤ 2.
Let us show that if n1 = 2 then the imbedding Sd ⊂ Ad+2 is a standard one.

Indeed, by Lemma 1.4, the imbedding Sd ⊂ Ad+2 induces a standard imbedding
Ad ⊂ Ad+2. Moreover, the image in Ad+2 ⊂ Sd+2 of a transposition σ ∈ Sd is a
product of an even number s of mutually commuting transpositions σi of Sd+2.
To show that the imbedding Sd ⊂ Ad+2 is a standard one, it suffices to prove
that s = 2. We omit this proof, since it almost word by word coincides with
the proof of Lemma 1.4. �

2. Proof of Theorem 0.1.

2.1. Minimal expansions of the Galois groups of generic coverings.

Denote by g = g − 1 the arithmetic genus of X, g > 1, and by B the branch
locus of f : X → P1. Since f is m-canonical,

d = deg f = 2mg.

By Hurwitz formula applied to f ,

|B| = 2d+ 2g = 2(2m+ 1)g.

The branch locus of f̃ (the Galois expansion of f) coincides with B, and the

ramification indices of the ramification points of f̃ are all equal to 2. Therefore,

by Hurwitz formula applied to f̃ ,

2g̃ = −2d! +
1

2
d!|B| = d!(d+ g − 2), (1)

where g̃ = g(X̃) − 1 is the arithmetic genus of X̃.

Assume that Aut(X̃) 6= Gal(X̃/P1) and choose a subgroup G of Aut(X̃) such
that Sd ⊂ G is a minimal expansion of Sd.

Denote by k = (G : Sd) the index of Sd in G. The Hurwitz bound on the
order of the automorphism groups of algebraic curves (see, for example, [4])
implies that |G| ≤ 84g̃. Therefore,

k ≤ 42(d+ g − 2). (2)

In particular, we have
k < 63d. (3)

By Proposition 1.1, it follows that G is one of the following groups:

(1) G = Sd × Z/pZ, p > 2, p is a prime number;
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(2) G = Ad oDr, where r ≥ 3, r is odd, Dr is the dihedral group given by
representation

Dr = 〈σ, τ | σ2 = τ 2 = (στ)r = 1〉,

and the action (by conjugation) of σ and τ on Ad coincides with the
action of the transposition (1, 2) ∈ Sd on Ad ⊂ Sd;

(3) G = Sd+1 is the symmetric group.

2.2. Elimination of the remaining three cases. Consider Case (1). Denote
by γ a generator of Z/pZ.

Since the action of γ on X̃ commutes with the action of any element of Sd,

the action of the group 〈γ〉 on X̃ descends to both X and P1. Denote by

X̃1 = X̃/〈γ〉, X1 = X/〈γ〉 the corresponding factor-spaces and by r̃ : X̃ → X̃1,

r : X → X1, h1 : X̃1 → X1, and rP : P1 → P1/〈γ〉 ' P1 the corresponding
morphisms. We have the following commutative diagram:

X̃

er
��

h
// X

r

��

f
// P1

rP

��

X̃1 h1

// X1
f1

// P1.

The cyclic covering rP : P1 → P1 is of degree p > 2 and it is ramified at two
points, say x1, x2 ∈ P1. Therefore, the cyclic covering r is ramified at least at
2(d− 1) points lying in f−1(x1) ∪ f

−1(x2) and their ramification index is equal
to p. By Hurwitz formula,

2g ≥ 2p(g(X1) − 1) + 2(d− 1)(p− 1)

which implies

2g ≥ −2p+ 2(2mg − 1)(p− 1).

Finally, thus we get the inequality

p ≤
(2m+ 1)g + 1

2mg − 2
= 1 +

g + 3

2mg − 2
< 2

which shows that Case (1) is impossible.
Consider Case (2). For a suitable pair of generators σ, τ of Dr, we have

Sd = Ad o 〈σ〉 ⊂ G, while the group S ′
d = Ad o 〈τ〉 is conjugated to Sd and

does not coincide with Sd (but, it is isomorphic to Sd). Besides, Ad ⊂ S ′
d ∩ Sd.

Denote by X1 = X̃/S ′
d−1, P1 = X̃/S ′

d, and X0 = X̃/Ad the corresponding
quotient spaces. They can be arranged in the following commutative diagram
in which the morphisms f0i, i = 1, 2, are of degree two and, since f is a generic
covering, f01 is branched over all the points belonging to B.
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X̃

X X0 X1

P1 P1

�
�

��	

@
@

@@R?

@
@

@@R

�
�

��	? ?

h h0 h1

f
f01 f02

f1

The degree 2 morphisms f0i, i = 1, 2, define an imbedding i : X0 → P1×P1 with
i(X0) being a curve of bi-degree (2, 2) in P1 ×P1. Therefore, i(X0) is an elliptic
curve and the projection of i(X0) onto each factor is branched at four points.
On the other hand, f01 is branched at every point of B and |B| = 2d+ 2g > 4.
Therefore, Case (2) is impossible.

Consider Case (3). Note, first of all, that the imbedding of Sd into G = Sd+1

is the standard one.
Consider the quotient space X̃/G and the quotient map f : X̃ → X̃/G. The

latter factors through f̃ , so that X̃/G ' P1 and f is the composition of the
following morphisms

X̃
h

// X
f

// P1 r
// P1,

where r is a morphism of degree d + 1. Since Sd and Sd+1 have no common
normal subgroups, f is the Galois expansion of r.

Denote by B1 ⊂ P1 the branch locus of r and compare the cardinality of B
with the cardinality of r(B) ⊂ B1.

The symmetric group Sd+1 acts as the permutation group on the set I =
{1, . . . , d+1} ⊂ N. Denote byHi = {γ ∈ Sd+1 | γ(i) = i}, so that our Sd = Hd+1.
All groups Hi are conjugated to each other. Therefore for each i the covering

f̃i : X̃ → X̃/Hi ' P1 is the Galois expansion of a generic covering.

Let a ∈ X̃ be a ramification point of f̃d+1 = f̃ . The stabilizer group Sta(f) =
{g ∈ G | g(a) = a} is a cyclic group; its order is equal to the ramification index of

f at a. Let τ be a generator of Sta(f). The intersection Sta(f)∩Sd = Sta(f̃d+1)

is a group of order two generated by a transposition σ ∈ Hd+1, since f̃d+1 is the
Galois expansion of a generic covering. Therefore, σ = τ k, where τ 2k = 1,

Let us show, first, that k is odd. Indeed, let us write τ as the product of cyclic
permutations: τ = (i1,1, . . . , i1,k1

) . . . (is,1, . . . , is,ks
). We can assume that, up to

renumbering, σ = (i1,1, . . . , i1,k1
)k and (ij,1, . . . , ij,kj

)k = 1 for j = 2, . . . , s. Now,
it easy to see that k1 = 2, k is odd, and all kj are divisors of k for j = 2, . . . , s.

Let us show that k = 1, so that τ = σ. We have for each i the intersection

Sta(f) ∩Hi = Sta(f̃i) is a group of order at most two and if its order equal to
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two, then it is also generated by a transposition σi ∈ Hi, since f̃i is the Galois

expansion conjugated to f̃d+1. On the other hand, the element

στ = (i1,2, . . . , i1,k2
) . . . (is,1, . . . , is,ks

) ∈ Sta(f) ∩Hi1,1
= Sta(f̃i1,1

)

is of odd order. Therefore σ = τ .
Now, consider the fibre f

−1
(f(a)) containing the point a. The fibre f

−1
(f(a))

can be identified with the set of right cosets {Sta(f)γ} in Sd+1. The stabilizer
group St(a)γ(f) of the point (a)γ is generated by the transposition γ−1σγ.

The fibre f
−1

(f(a)) splits into the disjoint union of orbits under the action of

Hd+1 each of which is a fibre of f̃d+1. Without loss of generality, we can assume
that the group Sta(f) is generated by σ = (1, 2). Then it is easy to see that each
of these orbits can be identified with one of Fi = {Sta(f)γ | γ ∈ σiHd+1}, where
σi = (i, d+ 1) if 2 ≤ i < d+ 1, and σ = (1, 2), if i = d+ 1. (The transpositions
σ1 = (1, d+1) and σ2 = (2, d+1) give the same orbit under the action of Hd+1,
since (1, 2)(1, d+ 1)(1, 2) = Id · (2, d+ 1).)

Now, the points ai = (a)σi have the same stabilizer group

Stai
(f) = 〈(1, 2)〉 ⊂ Hd+1

if i > 2. Therefore for i ≥ 3 the points belonging to Fi are the ramification

points of f̃d+1 and hence f̃d+1(Fi) ∈ B. It is easy to see that the points belonging

to F2 are not the ramification points of f̃d+1. Therefore the point f̃d+1(F2) is a
ramification point of r.

As a consequence, we obtain that if b̃ ∈ r(B), then the fibre r−1(̃b) consists
of d− 1 points belonging to B and one point (a ramification point of r) which
does not belong to B. Hence, |B| = 2d + 2g = 2(m + 1)g is divisible by
d− 1 = 2mg − 1. Then, 2g + 1 should also be divisible by 2mg − 1. But, it is
possible only if g = 1 and m = 1 or 2. �

3. Proof of Theorem 0.2.

3.1. Local behavior of generic coverings and their Galois expansions.

In this subsection we specialize to surfaces the definitions related to generic
actions of the symmetric group, compare our definitions with the traditional
definition of generic coverings, deduce the local behavior of generic coverings
from the local behavior of these actions, and fix the corresponding notation and
notions.

Recall that the Galois expansion f̃ : X̃ → P2 of a generic covering f : X → P2

of degree d is factorized through f , f̃ = f ◦ h, by means of a Galois covering

h : X̃ → X with the Galois group Gal(X̃/X) = Sd−1 ⊂ Sd = Gal(X̃/P2). The

branch locus B ⊂ P2 of f coincides with that of f̃ . We have called f generic if

the action of Sd on X̃ is generic. The latter means that for any point a ∈ X̃ its
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stabilizer Sta(Sd) is a standard imbedded in Sd product of symmetric groups

(depending on a) and the actions induced by Sta(Sd) on the tangent spaces TaX̃
are standard representations of rank ≤ 2 (see Introduction).

On the other hand, in dimension two more traditionally one understands un-
der a generic covering f : X → P2 of degree d a covering whose local behavior
is as follows. The branch locus B of f is a cuspidal curve. Over a neighborhood
U of a smooth point of B the preimage f−1(U) splits into a disjoint union of
d − 1 connected components, in one of them the covering is two-sheeted and
isomorphic to the projection to x, y plane of the surface x = z2 at a neigh-
borhood of the origin, and in the other components it is a local isomorphism.
Over a neighborhood of a cuspidal point of B the preimage splits into a dis-
joint union of d− 2 neighborhoods, in one of them the covering is a pleat, that
is a three-sheeted covering which is isomorphic to the projection to x, y plane
of the surface y = z3 + xz at a neighborhood of the origin, and in the other
components it is a local isomorphism. Over a neighborhood of a node of B the
preimage splits into a disjoint union of d−2 neighborhoods, in two of them this
covering is two-sheeted and isomorphic in the union of them to the projection
to x, y plane of two surfaces x = z2 and y = z2 in a neighborhood of the origin
and in the other components it is a local isomorphism. The nontrivial local
Galois groups in the corresponding three cases are Z/2, S3, and Z/2×Z/2. But
all their nontrivial representations in GL(2,C) which produce a non-singular
quotient are standard representations of rank ≤ 2, and therefore our definition
of generic coverings coincides with the traditional one.

The local behavior of generic coverings is easily understandable from the
above local models. In particular, one observes that: f ∗(B) = 2R + C, where
R (the ramification locus of f) is nonsingular, C is reduced and non-singular
above the non-singular points of B; R and C intersect each other only above the
nodes and cusps of B; they meet at two points above each node and intersect
there transversally; and they meet at one point above each cusp and intersect
there with simple tangency.

Let us observe the same local behavior from the point of view of the action

of Sd on X̃, which will help us in our further considerations in this section.

At a small neighborhood of any point a ∈ X̃ the action of Sta(Sd) can be
linearized (Cartan’s linearization procedure [2], which by a suitable change of
coordinates identifies the local action with the action induced on the tangent

space TaX̃, is reproduced below in the proof of Lemma 4.1). Let us treat case
by case different possibilities for Sta(Sd) and, by means of a linearization of
the action and in accordance with the definition of standard representations,

analyze the local behavior of f , f̃ , and h.
If Sta(Sd) = S2 is generated by a transposition σ ∈ Sd, then in a neighborhood

of a the ramification locus R̃ of f̃ coincides with the set of fixed points of σ,
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which we denote by R̃σ. The latter is smooth everywhere, and, in particular,

R̃ is smooth at a. The image h(a) of a belongs to the ramification locus R of
f (equivalently, a does not belong to the ramification locus of h) if and only

if σ 6∈ Sd−1. Moreover, h(R̃σ) coincides with R at a neighborhood of h(a) if
σ 6∈ Sd−1 (otherwise, it coincides with C introduced above). In both cases,

σ ∈ Sd−1 and σ 6∈ Sd−1, the curve h(R̃σ) is smooth at h(a). Furthermore, in

both cases, f̃(a) belongs to B and B is non-singular at f̃(a).
If Sta(Sd) = S2 × S2 is generated by two commuting transpositions, σ1 ∈ Sd

and σ2 ∈ Sd, then the point a belongs to R̃σ1
∩ R̃σ2

, the curves R̃σ1
and R̃σ2

are nonsingular, and they meet transversally at a. Furthermore, h(R̃σ1
) and

h(R̃σ2
) are nonsingular and meet transversally. If one of the transpositions, say

σ1, does not belong to Sd−1 the curve h(R̃σ1
) is contained in R and, moreover,

coincides with R in a neighborhood of h(a). If σ1 ∈ Sd−1 the curve h(R̃σ1
) is not

contained in R (but contained in C). If both σ1 and σ2 belong to Sd−1, h(a) is

not a ramification point of f (and then it is a node of C with C = h(R̃σ1
)∪h(R̃σ2

)

in a neighborhood of h(a)). In any case, f̃(a) is a node of B.
If Sta(Sd) = S3 is generated by two non-commuting transpositions, σ1 ∈ Sd

and σ2 ∈ Sd, then the point a belongs to R̃σ1
∩ R̃σ2

∩ R̃σ3
, where σ3 = σ1σ2σ1,

the curves R̃σ1
, R̃σ2

, and R̃σ3
are nonsingular and meet pairwise transversally

at a. If all the three transpositions belong to Sd−1, the point h(a) is not a
ramification point of f . Otherwise, one and only one of the transpositions, say

σ3, belongs to Sd−1, and then: h(R̃σ1
) = h(R̃σ2

) and h(R̃σ3
) are nonsingular,

they are tangent to each other, and h(R̃σ1
) = h(R̃σ2

) coincides with R (while

h(R̃σ3
) coincides with C) in a neighborhood of h(a). In any case, f̃(a) is a cusp

of B.

3.2. Invariants of m-canonical generic coverings. Assume that f : X →
P2 is a generic m-canonical covering branched along a cuspidal curve B ∈ P2.
Then X is a minimal surface of general type, it does not contain any (−2)-curve,
and the degree of f is equal to

d = deg f = m2K2
X .

According to the formula for the canonical divisor of a finite covering, KX =
f ∗KP2 + [R]. Hence, the divisor R is numerically equivalent to (3m + 1)KX .
Since, in addition, the curve R is non-singular and X has no (−2)-curves (if f is
a m-canonical generic covering, then KX is ample), R is irreducible. Therefore,
B as a curve birational to R is irreducible as well. Thus, we can apply the
results from [11]. In particular, we get the following formulas for the degree
degB and the number c of cusps of B (see the proof of Theorem 2 in [11]):

degB = m(3m + 1)K2
X (4)
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and

c = (12m2 + 9m+ 3)K2
X − 12pa, (5)

where pa = pg − q + 1 is the arithmetic genus of X. Note that if deg f ≥ 3

for a generic covering f , then its branch curve B should have cuspidal singular

points, that is, c > 0 (indeed, the image in Sd of the monodromy of f is a

transitive subgroup of Sd and, for generic coverings, this image is generated by

transpositions, hence coincides with Sd; therefore πi(P
2 \ B) is non-abelian if

d > 3, while by Zariski’s theorem πi(P
2 \B) is an abelian group if B is a nodal

curve).

Finally, applying the projection formula for the canonical divisor to f̃ we

obtain K eX = f̃ ∗(KP2) + [R̃] = f̃ ∗(KP2 + 1
2
[B]), and therefore

K2
eX =

1

4
(degB − 6)2d! = d!(

m(3m+ 1)

2
K2

X − 3)2. (6)

3.3. Minimal expansions of the Galois groups of generic coverings.

Assume that Aut(X̃) 6= Gal(X̃/P2) and choose a subgroup G of Aut(X̃) such

that Sd ⊂ G is a minimal expansion of Sd. Denote by k = (G : Sd) the index of

Sd in G.

The Xiao bound (see [15]) on the order of the automorphism groups of surfaces

of general type states that |G| ≤ 422K2
eX . It implies

k ≤ 422(
m(3m+ 1)

2
K2

X − 3)2. (7)

Finally we get

k < (2 · 42)2d2. (8)

By Proposition 1.1, it follows that the group G can be only one of the following

groups:

(1) G = Sd × Z/pZ, p > 2, p is a prime number;

(2) G = Ad oDr, where r ≥ 3, r is odd, Dr is the dihedral group given by

representation

Dr = 〈σ, τ | σ2 = τ 2 = (στ)r = 1〉,

and the action (by conjugation) of σ and τ on Ad coincides with the

action of the transposition (1, 2) ∈ Sd on Ad ⊂ Sd;

(3) G = Sd+1 is the symmetric group;

(4) G = Ad+2 is the alternating group, and the imbedding of Sd into G =

Ad+2 is a standard one.
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3.4. Case (1). Denote by g a generator of Z/pZ. As in the proof of Theorem

0.1, since the action of g on X̃ commutes with the action of any element of Sd,

the action of the group 〈g〉 = Z/pZ on X̃ descends to both X and P2. Denote by

X̃1 = X̃/〈g〉, X1 = X/〈g〉 the corresponding factor-spaces and by r̃ : X̃ → X̃1,

r : X → X1, h1 : X̃1 → X1, and rP : P2 → P2/〈g〉 = Y the corresponding
morphisms. We have the following commutative diagram:

X̃

er
��

h
// X

r

��

f
// P2

rP

��

X̃1 h1

// X1 f1

// Y.

The automorphism g on P2 is defined by a linear map C3 → C3 of period
p. Therefore, it has either three isolated fixed points, say x1, x2, x3 ∈ P2, or
an isolated fixed point, say x ∈ P2 and a fixed line E ⊂ P2. Respectively, the
cyclic covering rP : P2 → P2 is of degree p and it is ramified either at three
points x1, x2, x3 or at the point x and along the line E. Consider this two cases
separately.

If rP is ramified at three isolated points, then r is ramified at at least 3(d−2)
points lying in F = f−1(x1) ∪ f

−1(x2) ∪ f
−1(x3) and the ramification index of

each of them is equal to p. The points of F are the only fixed points of the
automorphism g acting on X. Therefore, by Lefcshetz fixed point theorem we
have

|F | =
4∑

i=0

(−1)itri, (9)

where tri is the trace of the linear transformation g∗ acting on H i(X,R). It
follows from (9) that

3(d− 2) 6 |F | ≤
4∑

i=0

|tri| ≤
4∑

i=0

bi(X) = e(X) + 4b1(X) (10)

(where e stands for the topological Euler characteristic). On the other hand,

Noether’s formula 1 − q + pg =
K2

X
+e(X)

12
where 2q = b1 gives us

e(X) + 4b1(X) = 12 −K2
X + 12pg − 4q ≤ 12 −K2

X + 12pg (11)

Therefore, combining (10) and (11) with Noether’s inequality 2pg 6 K2
X + 4 we

get

3(m2K2
X − 2) ≤ 12 −K2

X + 12pg ≤ 5K2
X + 36. (12)

Hence,

(3m2 − 5)K2
X ≤ 42
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which contradicts to m2K2
X ≥ 2 · 842 if m ≥ 2, since K2

X ≥ 1 for any minimal
surface of general type.

Now, let us assume that rP is ramified at a point x ∈ P2 and along a line
E ⊂ P2. In this case each line L ⊂ P2 passing through x is invariant under the
action of g on P2. Therefore, each curve C = f−1(L) ⊂ X is invariant under the
action of g on X. Pick a generic line L passing through x. By Hurwitz formula,

2(g(C) − 1) = −2d+ degB − 2m2K2
X +m(3m + 1)K2

X = m(m + 1)K2
X , (13)

where g(C) is the geometric genus of C.
Consider the restriction r|C : C → C/〈g〉 = Z ⊂ X1 of r to C. The cyclic

covering r|C has degree p and it is branched at at least 2d − 3 = 2m2K2
X − 3

points belonging to f−1(x) ∪ f−1(L ∩ E). Therefore,

2(g(C) − 1) ≥ 2p(g(Z) − 1) + (2m2K2
X − 3)(p− 1). (14)

It follows from (13) and (14) that

m(m + 1)K2
X ≥ −2p+ (2m2K2

X − 3)(p− 1)

which implies
m(3m + 1)K2

X ≥ (2m2K2
X − 5)p.

Finally, since (m2 −m)K2 > 500 > 10, we get the inequality

p ≤
m(3m + 1)K2

X

2m2K2
X − 5

< 2,

which is a contradiction.

3.5. Case (2). Group theoretic part. Since r, r > 3, is odd, the conjugacy
class of σ in Dr consists of r elements σ1 = σ, σ2 = τ, . . . , σr. For each i, 1 6

i 6 r, the group Sd,i generated in G by σi and the elements of Ad is isomorphic
to Ad o 〈σi〉 ' Sd. The groups Sd,i are conjugate to each other in G. Besides,
σi ∈ Sd,i acts on Ad ⊂ Sd,i as the transposition (1, 2). The element of Sd,i which
is conjugate to σi and acts on Ad as a transposition (i1, i2) will be denoted
by σi,(i1,i2). Given two disjoint subsets J1 6= ∅, J2 of I = {1, . . . , d}, denote
by SJ1

F
J2,i the subgroup of G = Ad o Dr generated by the elements σi,(i1,i2),

(i1, i2) ∈ (J1 × J1) ∪ (J2 × J2).

Let Sta ⊂ AutX̃ be the stabilizer of a point a ∈ X̃. For a subgroup H of

AutX̃ put Sta(H) = H ∩ Sta. For each point a ∈ X̃ the action induced by

Sta(Sd) on the tangent space TaX̃ is a standard representation of rank ≤ 2,
and the group Sta(Sd) is trivial or can be expressed as SJ1

F
J2,1, where either

2 6 |J1| 6 3 and J2 = ∅, or |J1| = |J2| = 2. Since the groups Sd,i are conjugate

to each other, for each i and for each point a ∈ X̃ the group Sta(Sd,i) has
the same properties. Therefore, the intersection Sta(Sd,i) ∩ Ad is generated by
the cyclic permutation (i1, i2, i3) ∈ Ad if J1 = {i1, i2, i3} and J2 = ∅, and it is
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generated by the product of two transpositions if J1 = {i1, i2} and J2 = {i3, i4}.
In the remaining cases (|J1| = 2 and J2 = ∅, or Sta(Sd,i) = {1}) the group
Sta(Sd,i)∩Ad is trivial. This implies that if Sta(Sd,1) = SJ1

F
J2,1, where |J1| = 3

and J2 = ∅, then Sta(Sd,i) = SJ ′

1

F
J ′

2
,i, where J ′

1 = J1 and J ′
2 = ∅, for each i.

Similarly, if Sta(Sd,1) = SJ1

F
J2,1, where J1 = {i1, i2} and J2 = {i3, i4}, then

Sta(Sd,i) = SJ ′

1

F
J ′

2
,i, where J ′

1 = J1 and J ′
2 = J2, for each i. If Sta(Sd,1) =

SJ1

F
J2,1, where J1 = {i1, i2} and J2 = ∅, then for each i either Sta(Sd,i) is

trivial or Sta(Sd,i) = SJ ′

1

F
J ′

2
,i, where |J ′

1| = 2 and J ′
2 = ∅.

Let us examine more in details the case Sta(Sd,i) = SJ1

F
J2,i for each i, where

|J1| = 3 and J2 = ∅. Denote by y the cyclic permutation (i1, i2, i3) ∈ Ad, where
J1 = {i1, i2, i3}. The group Sta(G) contains a subgroup F3 generated by three
elements x1 = σ1,(i1 ,i2) (conjugate to σ), x2 = σ2,(i1 ,i2) (conjugate to τ), and y.
It is easy to see that F3 has the following presentation:

F3 = 〈x1, x2, y | x2
1 = x2

2 = (x1x2)
r = y3 = [y, x1x2] = [y, x2x1] = 1,

x−1
1 yx1 = y−1, x−1

2 yx2 = y−1〉
(15)

(recall that r ≥ 3). The group F3 is non-abelian. It contains a maximal normal
subgroup N3 generated by y and z = x1x2. This subgroup is isomorphic to the
direct product 〈y〉 × 〈z〉 of two cyclic groups of orders 3 and r, respectively.
On the other hand, according to well known properties of finite subgroups of
GL(2,C) (see, for example, [3]) the quotient of F3 by its center should be
either a cyclic group, or a dihedral group, or A4, or A5, or S5. But, F3 =
(Z/3Z × Z/rZ) o Z/2Z and thus it has the trivial center, since r is odd. All
together, these arguments imply that r should not be divisible by 3 (recall that
the branch curve does have at least one cuspidal point, see Subsection 3.2) and
F3 should be isomorphic to the dihedral group Dr′ , r′ = 3r.

In addition, once more due to the known classification of conjugacy classes of
finite subgroups of GL(2,C), the action of F3 ' D3r near the point a is isomor-
phic to the unique 2-dimensional linear representation of D3r. In particular, at
a neighborhood of a the fixed points of σi,(i1,i2), i1, i2 ∈ J1, form a smooth curve,

which we denote by R̃i,(i1,i2), and any two of them, R̃i,(i1,i2) and R̃i′,(i′
1
,i′

2
) with

(i, (i1, i2)) 6= (i′, (i′1, i
′
2)), are distinct and meet each other at a transversally.

Next, let us examine the case Sta(Sd,i) = SJ1

F
J2,i, where J1 = {i1, i2} and

J2 = {i3, i4}. The group Sta(G) contains a subgroup F2,2 generated by three
elements x1 = σ1,(i1,i2) (conjugate to σ), x2 = σ2,(i1,i2) (conjugate to τ), and
y = (i1, i2)(i3, i4) ∈ Ad. It is easy to see that F2,2 has the following presentation:

F2,2 = 〈x1, x2, y | x2
1 = x2

2 = (x1x2)
r = y2 = [y, x1] = [y, x2] = 1〉 (16)

(recall that r ≥ 3 and r is odd). The group F2,2 contains a maximal normal sub-
group N2,2 generated by y and z = x1x2. This subgroup is isomorphic to the di-
rect product 〈y〉×〈z〉 of two cyclic groups of orders 2 and r, respectively. There-
fore, F2,2 is isomorphic to the dihedral group D2r. According to the classification
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of conjugacy classes of finite subgroups of GL(2,C), the action of F2,2 ' D2r

near the point a is isomorphic to the unique 2-dimensional linear representation
of D2r. In particular, similar to the previous case, for any i1, i2, i

′
1, i

′
2 ∈ J1

⊔
J2,

the curves R̃i,(i1,i2) and R̃i′,(i′
1
,i′

2
) with (i, (i1, i2)) 6= (i′, (i′1, i

′
2)) are distinct and

meet each other at a transversally.
Finally, consider the case Sta(Sd,1) = SJ1

F
J2,1 and Sta(Sd,2) = SJ ′

1

F
J ′

2
,2,

where J1 = {j1, j2}, J2 = ∅, J ′
1 = {j3, j4}, J

′
2 = ∅. Let us show that either

J1 ∩ J
′
1 = ∅ and then Sta(G) contains a subgroup isomorphic to Dr, or J1 = J ′

1.
Indeed, if |J1 ∩ J

′
1| = 1, then we can assume that j2 = j3 so that σ2,(j3,j4) =

η−1σ2,(j1,j2)η, where η = (j4, j2, j1) ∈ Ad. We have η3 = 1 and

(σ1,(j1,j2)σ2,(j3,j4))
r = (σ1,(j1,j2)ησ2,(j1,j2)η

−1)r = (σ1,(j1,j2)σ2,(j1,j2)η)
r =

(σ1,(j1,j2)σ2,(j1,j2))
rηr = ηr = η±1,

since r is not divisible by 3. Therefore, η ∈ Sta(G) which contradicts the
assumption that Sta(Sd,1) = SJ1

F
J2,1.

If J1 ∩ J ′
1 = ∅, then σ2,(j3,j4) = η−1σ2,(j1,j2)η, where η = (i1, i3)(i2, i4) ∈ Ad.

We have η2 = 1 and

(σ1,(j1,j2)σ2,(j3,j4))
r = (σ1,(j1,j2)ησ2,(j1,j2)η

−1)r =
(σ1,(j1,j2)σ2,(j1,j2)η

2)r = (σ1,(j1,j2)σ2,(j1,j2))
r = 1.

Therefore, the subgroup H2 generated in G by σ1,(j1,j2) and σ2,(j3,j4) is isomorphic
to Dr. Note in addition that for each i the group Sta(Sd,i) = G ∩ Sd,i is non-
trivial and it is contains either σi,(j1,j2) or σi,(j3,j4).

3.6. Case (2). Geometrical part. We have Ad = Sd,i ∩Sd,j for i 6= j. Denote

by Xi = X̃/Sd−1,i, P2 = X̃/Sd,i, and X0 = X̃/Ad the corresponding quotient
spaces. They can be arranged in the following commutative diagram (a fragment
of which is drown below) in which the morphisms f0i, i = 1, . . . , r, are of degree
two.

X̃

Xi X0 Xj

P2 P2

�
�

��	

@
@

@@R?

@
@

@@R

�
�

��	? ?

hi h0 hj

fi f0i f0j
fj

Since each f0i is conjugate to the covering f01 : X0 → P2 branched alongB1 = B,
the covering f0i is branched over the points of a cuspidal curve Bi ⊂ P2 having
the same degree and the same number of nodes and cusps as B has. Denote by
Ri,0 ⊂ X0 the ramification curve of the covering f0i.
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The group Dr acts on X0. The image of σi,(j1,j2) ∈ Sd,i (see subsection 3.5)
under the natural epimorphism of G to Dr coincides with σi. Therefore, the
fixed point set of σi coincides with Ri,0.

The surface X0 is a normal projective variety. The set of its singular points
coincides with f−1

01 (SingB1): over each cusp we have a singular point of type
A2, and over each node we have a singular point of type A1. Therefore, for any
i, 1 6 i 6 r, all the points of f−1

01 (SingB1) belong to Ri,0. In addition, as it
follows from an observation made at the end of subsection 3.5, if two curves, say
R1,0 and R2,0, meet at a nonsingular point b ∈ X0, then the point b is common
for all the curves Ri,0 and at this point each pair of curves, Ri,0 and Rj,0, meet
transversally. Denote by e the number of nonsingular points b ∈ X0 common
to all the curves Ri,0.

Let ν : Z → X0 be the minimal resolution of singularities. The exceptional
divisor of this resolution look as follows:

E = ν−1(SingX0) =

c⋃

k=1

(E1,sk
∪ E2,sk

) ∪
2c+n⋃

l=2c+1

Esl
,

where E1,sk
, E2,sk

, (1 6 k 6 c), are the irreducible components of E contracted
to the cusp sk of X0, and Esl

(l = 2c+1, . . . , 2c+n) is the irreducible component
of E contracted to the node sl of X0.

Since f0i is a double covering branched along a cuspidal curve Bi0, the above
minimal resolution of singularities fits into the following commutative diagram

Z

f0i
��

ν
// X0

f0i

��

P
2

νi

// P2,

where νi blows up once each of the singular points of Bi, and f 0i is a two-sheeted

covering of P
2

branched over the strict transform Bi ⊂ P
2

of Bi.
Here is a more explicit description convenient for counting intersection num-

bers.
Let s be a cusp of Bi. Denote by E ⊂ P

2
the exceptional curve ν−1

i (s) = P1

of νi lying over s. Then Bi ⊂ P
2

meets E at one point, it is non-singular at
this point and has there a simple tangency to E. The lift Ri,0 = f−1

0i (Bi) is
the ramification curve of f0i, it is non-singular and coincides with the proper
transform of Ri,0. While f−1

0i (E) splits into E1,s ∪ E2,s ⊂ Z, a union of two
smooth curves intersecting transversally, so that

(E
2

1,s)Z = (E
2

2,s)Z = −2

and
(E1,s, E2,s)Z = (E1,s, Ri,0)Z = (E2,s, Ri,0)Z = 1.
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Let s be a node of Bi. Then Bi ⊂ P
2

meets the exceptional curve E = ν−1
i (s)

at two points, Bi is nonsingular at these points, and intersects E transversally.
The lift f−1

0i (E) = Es ⊂ Z is the exceptional curve of ν, it meets Ri,0 = f−1
0i (Bi),

which is non-singular, transversally, so that (E
2

s)Z = −2 and (Es, Ri,0)Z = 2.
Now, let us show that (Ri,0, Rj,0)Z does not depend on i and j if i 6= j.

Consider the commutative diagram

X

h0

��

µ
// X̃

h0

��

Z µ
// X0,

where X = X̃ ×X0
Z is the fibre product of X̃ and Z over X0, and µ : Z →

X0 is the composition of ν and the blow ups of the all intersection points of
(−2)-curves E1,sk

and E2,sk
(k = 1, . . . , c) lying in Z (these curves are those

components of divisor E which are constructed by ν to the cusps of X0). Denote
by E1,2,sk

⊂ Z the exceptional curve lying over the point E1,sk
∩ E2,sk

and, to
simplify the notation, denote by the same symbols, Ri,0, E1,sk

and E2,sk
, and

Esl
, the strict transforms in Z of the curves Ri,0, E1,sk

and E2,sk
(k = 1, . . . , c),

and Esl
(l = 2c+ 1, . . . , 2c+ n) in Z.

It is easy to see that h0 is a Galois covering branched along the curves E ·,sk

and Esl
. The ramification indices over the curves E ·,sk

are equal to 3 (cf. local

calculations in [13], §2) and the ramification indices over the curves Esl
are equal

to 2. The morphism µ blows up once each of the points lying over the nodes
of X0 and performs three blow ups at each of the points lying over the cusps of

X0. Therefore, the strict transforms µ−1(R̃i,(j1,j2)), 1 ≤ i ≤ r, 1 ≤ j1, j2 ≤ d,

pairwise do not meet. But,
⋃

j1,j2
µ−1(R̃i,(j1,j2)) = h

−1

0 (Ri,0). Hence, after the

blow down of all curves E1,2,sk
, we get (Ri,0, Rj,0)Z = c + e for i 6= j and these

intersection numbers do not depend on i and j. Note also that the intersection
numbers of the curves Rj,0 and an irreducible component of E do not depend
on j.

The action of Dr on X0 lifts to an action on Z. The curve Ri,0 ⊂ Z (re-
spectively, Ri,0 ⊂ X0) is the set of fixed points of σi ∈ Dr. Since σ−1

i σjσi 6= σj

for j 6= i, the curve σi(Rj,0) 6= Rj,0 (respectively, σi(Rj,0) 6= Rj,0) for j 6= i. In
particular, R3,0 = σ1(R2,0) 6= R2,0 and hence R2,0 + R3,0 = f−1

01 (D) for some
curve D ⊂ P2.

Since Dr acts transitively on the set of curves Ri,0 (respectively, on the set of

curves Ri,0), we have (R
2

1,0)Z = (R
2

2,0)Z = (R
2

3,0)Z and it was shown that

(R1,0, R2,0)Z = (R1,0, R3,0)Z = (R2,0, R3,0)Z .
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Denote by L the subspace of the Neron-Severi group NS(Z) ⊗ Q orthogonal
(via the intersection form) to the subspace VE generated by E1,sk

, E2,sk
, k =

1, . . . , c, and Esl
, l = 2c + 1, . . . , 2c + n. The intersection form is negative

definite on VE. Therefore, by Hodge index theorem, the intersection form on L
has signature (1, dimL− 1).

In what follows we make, first, certain calculations of intersection numbers of
some divisors in L. We project the Neron-Severi classes of the divisors Ri,0 to L,
denote the projections by (Ri,0)L and their intersections in L by (Ri,0 ·Rj,0)L (the
latter numbers, indeed, are equal to the corresponding Q-intersection numbers
on the Q-variety X0).

Observe, first, that f ∗
i,0Bi = 2Ri,0 and ν∗Ri,0 = 2Ri,0 mod L. Thus,

(R
2

i,0)L = (R
2

j,0)L =
1

2
(degB)2 > 0

for all i, j. Let (R2,0)L = λ(R1,0)L + T , where T ∈ L is orthogonal to (R1,0)L.
We have

(R2,0 ·R1,0)L = λ(R
2

1,0)L = (R3,0 ·R1,0)L = (R2,0 ·R3,0)L,

since the intersection numbers of the curves Rj,0 and an irreducible component
of E do not depend on j and the intersection numbers (Ri,0, Rj,0)Z also do not
depend on i and j for i 6= j.

Next, R2,0 + R3,0 coincides with ν∗(f ∗
01(D)). Therefore, (R2,0 + R3,0)L is

proportional to (R1,0)L = 1
2
ν∗(f ∗

01(B1)). Hence (R3,0)L = λ(R1,0)L − T and

λ > 0. We have (R
2

2,0)L = λ2(R
2

1,0)L + T 2 = (R
2

1,0)L, therefore

T 2 = (1 − λ2)(R
2

1,0)L ≤ 0.

Hence λ ≥ 1 and λ = 1 if and only if T 2 = 0, that is, if and only if T = 0 ∈ L.
Since (R2,0 ·R3,0)L = (R2,0 ·R1,0)L, we have

λ2(R
2

1,0)L − T 2 = λ(R
2

1,0)L

and

T 2 = (λ2 − λ)(R
2

1,0)L ≤ 0,

which yields λ ≤ 1. Combining this with the previous observations, we get
λ = 1 and T = 0, which implies that (Ri,0)L = (Rj,0)L for any i, j. It allows us
to conclude that degD = degB, since 2 degD = ((R2,0 +R3,0)

2)L = 4(R2
2,0)L =

2 degB.
Therefore, we have

(R
2

1,0)Z = (1
2
ν∗1(B) −

∑
(E1,sk

+ E2,sk
) −

∑
Esl

)2 =
1
2
(degB)2 − 2c− 2n = 1

2
(R1,0, R2,0 +R3,0)Z ≥ c.
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Hence

(degB)2 − 4n ≥ 6c.

On the other hand, as is known (see the proof of Lemma 3 in [11]),

(degB)2 − 2n ≤ 6c

for any generic covering of degree d > 3, while due to [12] n > 0 if d > 6. The
contradiction between these bounds eleminates Case (2).

3.7. Case (3). The symmetric group G = Sd+1 acts as the permutation group
on the set I = {1, . . . , d + 1} ⊂ N. Denote by Hi = {γ ∈ Sd+1 | γ(i) = i}, so
that our Sd = Hd+1.

As in the proof of Theorem 0.1, consider the quotient space X̃/G = Y and

the quotient map f : X̃ → Y . The surface Y is a normal projective variety. The

morphism f factors through f̃i, so that f is the composition of the following
morphisms

X̃
h

// X
f

// P2 r
// Y,

where r is a finite morphism of degree d+1. Since Sd and Sd+1 have no common
normal subgroups, f is the Galois expansion of r.

Let B ⊂ Y be the branch locus of r. We have r(B) = B1 ⊂ B. The preimage
r−1(B1) is the union of B and some curve B ′ ⊂ P2.

Since Y is a normal projective surface, we can find a non-singular projective
curve L ⊂ Y \ Sing(Y ) which intersects B transversally. Let E = r−1(L),

F = f−1(E), and F̃ = f̃−1(E). Then f|F : F → E is a generic covering

branched over B ∩ E, f̃| eF : F̃ → E is the Galois expansion of the generic

covering f|F : F → E with Gal(F̃ /E) = Sd, and f | eF : F̃ → L is the Galois

expansion of the covering r|E : E → L with Gal(F̃ /L) = Sd+1.
Consider the image b1 = r(b) of a point b ∈ B∩E. As in the proof of Theorem

0.1, it is easy to see that r−1(b1) consists of d−1 points belonging to B and one
point point belonging to B ′ (the ramification point of r|E). In other words, the
covering r|B′ : B′ → B1 is of degree 1, the covering r|B : B → B1 is of degree
d− 1, and r∗(B1) = B + 2B′. In particular,

degB′ · degE = (B′, E)P2 = (B1, L)Y ,
degB · degE = (B,E)P2 = (d− 1)(B1, L)Y .

Therefore

degB = (d− 1) degB ′.

It follows, since d = m2K2
X and degB = m(3m + 1)K2

X , that mK2
X + 3 is

divisible by m2K2
X − 1, which contradicts the assumption m2K2

X ≥ 2 · 842.
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3.8. Case (4). Denote the standard imbedding Sd → Ad+2 by α. For each

transposition σ ∈ Sd, the set X̃σ = X̃α(σ) ⊂ X̃ of fixed points of σ is a nonsin-

gular curve. Hence, for each τ ∈ Ad+2 which is conjugate to α(σ) the set X̃τ of
fixed points of τ is also a nonsingular curve.

By [12], if d > 6, then the branch curve B ⊂ P2 has at least one node.
Therefore for each product η = σ1σ2 of two commuting transpositions σ1, σ2 ∈
Sd, the set X̃η of fixed points of η is finite and non-empty. It implies that for any

η′, conjugated to α(η) in Ad+2, the set X̃η′ is also finite and non-empty. On the
other hand, if σ1 = (j1, j2) and σ2 = (j3, j4), then α(σ1) = (j1, j2)((d+1), (d+2)),
α(σ2) = (j3, j4)((d+1), (d+2)), and α(η) = (j1, j2)(j3, j4) are conjugate to each
other in Ad+2. Contradiction.

4. Few applications

4.1. Deformation stability. The aim of this subsection is to prove a certain
deformation stability of examples given by Theorems 0.1 and 0.2. To state the
corresponding results we need to fix few notions. Namely, by a G-manifold we
will mean a non-singular projective manifold equipped with a regular action of
the group G, and by a smooth G-family, or G-deformation, of G-manifolds we
will mean a proper smooth morphism (i.e., a proper submersion) p : X → B,
where X and B are smooth quasi-projective varieties, and X is equipped with
a regular action of G preserving each fiber of p (preservation of fibers means
p ◦G = p).

Proposition 4.1. If one of the fibers of a smooth G-family is the Galois ex-

pansion of a generic covering of Pn, then the whole family is constituted from

the Galois expansions of generic coverings of Pn.

To prove Proposition 4.1 we need the following Lemma.

Lemma 4.2. Let p : X → B be a smooth G-deformation of G-manifolds, G
being a finite group. Then for each element g ∈ G we have:

(i) the set X g = {x ∈ X | g(x) = x} of fixed points of g is a smooth closed

submanifold of X ;

(ii) the restriction of p to X g is a smooth proper surjective morphism;

(iii) the intersection of X g and each fibre Xt, t ∈ B of p is transversal.

Proof. As is known, at any point x ∈ X fixed by a subgroup H of G, the action
of H can be linearized, which means an existence of local analytic coordinates
with respect to which the action of H is linear.

Let us resume Cartan’s linearization procedure, see [2]. Start from any system
of local coordinates z1, . . . , zn taking value 0 at a chosen point x fixed by H. For
any h ∈ H denote by h′ the linear part of the Taylor expansion (with respect
to z1, . . . , zn) of h at x. Then the change of coordinates defined by the map
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σ = 1
|H|

∑
g∈H(g′)−1g makes linear the action of H. Namely, it conjugates h and

h′ for any h ∈ H, since σ ◦ h = h′ ◦ σ (indeed, σ ◦ h = 1
|H|

∑
g∈H(g′)−1g ◦ h =

1
|H|

∑
g∈H h

′(g′ ◦ h′)−1g ◦ h = 1
|H|
h′

∑
e∈H(e′)−1e = h′ ◦ σ).

This change of coordinates is tangent to identity and it acts as identity on
each linear, with respect to z1, . . . , zn, subspace on which H acts already linear.
Therefore, to prove (i) it is sufficient to linearize the action of g (then, in new
coordinates the set X g becomes linear), and to prove (ii) and (iii) it is sufficient
to pick any system of local coordinates at t ∈ B and include their lift into a
system of local coordinates z1, . . . , zn (thus one gets for granted the surjectivity
of the projection at the level of tangent spaces, Tx(X

g) → Tp(x)B; the properness
and surjectivity of p : X g → B then follow from properness of p : X → B and
closeness of X g in X ). �

Proof of Proposition 4.1. We will give the proof Proposition 4.1 only in the
case n ≤ 2, since the proof in the general case is similar.

Let Xo, o ∈ B, be a fiber of p which is the Galois expansion of a generic
covering Xo → Pn. The ramification locus of this covering is a union of smooth
codimension one manifolds Ro(i,j), 1 6 i < j 6 d; these latter manifolds are the
fixed point sets of the transpositions (i, j) ∈ Sd. Due to Lemma 4.2, the fixed
point sets X (i,j) ⊂ X of the same transpositions acting in X are also smooth
codimension one manifolds, and for any t ∈ B the intersection Rt(i,j) = X (i,j)∩Xt

is transversal for each (i, j) ∈ Sd. Besides, if X g 6= ∅ for some g ∈ Sd, g 6= 1,
then, by Lemma 4.2, X g ∩Xo 6= ∅, and since the action of Sd on Xo is generic,
it implies that g is a transposition in case n = 1 and g is either a transposition,
or a product of two disjoint transpositions, or a cyclic permutation of length
three in case n = 2.

Let n = 2 and g be a cyclic permutation (j1, j2, j3) (the other cases can
be treated in a similar way). Let us show that the action of S{j1,j2,j3} on X ,
as well as on each of the fibers Xt, t ∈ B, is generic. Indeed, without loss
of generality we can assume that dimB = 1. Then, by Lemma 4.2, X g is a
smooth curve, X (j1,j2) and X (j1,j3) are smooth surfaces, and they all meet the
fibers transversally. Since X g ∩Xo = Ro(j1,j2) ∩Ro(j1,j3), by applying once more

Lemma 4.2, we obtain that X (j1,j2) ∩ X (j1,j3) = X g and Xg
t = Rt(j1,j2) ∩ Rt(j1,j3)

for any t ∈ B. Therefore X g (respectively, Xg
t ) coincides with the fixed point

set under the action of S{j1,j2,j3} in X (respectively, in Xt).
As a result, the action of Sd on X and in each of Xt, t ∈ B, is generic.

Hence, the factor-space X /Sd is a smooth manifold and the induced morphism
p1 : X /Sd → B is smooth and proper. Thus, it remains to notice that Xt/Sd =
Xo/Sd = Pn for any t ∈ B, since due to a projective manifold M is isomorphic
to Pn as soon as there exists a C∞-diffeomorphism M → Pn which maps the
canonical class to the canonical class (for n = 1 it is known till Riemann; for
n = 2 one can use the Enriques-Kodaira classification, see [1]; it may be worth
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mentioning also that, in fact, due to Siu [14] in any dimension every compact

complex manifold deformation equivalent to Pn is isomorphic to Pn). �

Corollary 4.3. G-varieties like in Theorems 0.1 and 0.2 form connected com-

ponents in the moduli space of, respectively, G-curves and G-surfaces of general

type. These components are saturated (see the definition in Introduction). In

dimension 1, G-varieties like in Theorem 0.1 also form proper subvarieties in

the moduli space of curves of general type.

Proof. The first statement follows from Proposition 4.1. The second statement

follows from the first one and Theorems 0.1 and 0.2. The third statement follows

from the first one and an observation that any birational transformation of a

one-parameter deformation family of genus g > 2 curves which preserves each

fiber and regular at the all points of all the fibers, except a finite collection of

fibers, extends indeed to a transformation regular everywhere. �

4.2. Examples of Dif6=Def complex G-manifolds. Here we consider regular

actions of finite groups on complex surfaces and construct diffeomorphic actions

which are not deformation equivalent. The idea is to pick diffeomorphic, but

not deformation equivalent, surfaces and apply to them Theorem 0.2.

Let X be a rigid non real minimal surface of general type, that is a minimal

surface of general type which is stable under deformations and not isomorphic

to its own conjugate, X̄. Such surfaces are found in [10]. Denote by Y1 = X̃

the Galois expansion of a generic m-canonical covering X → P2, and by Y2 its

conjugate, Y2 = Ȳ1.

Proposition 4.4. Let Y1 and Y2 be as above and let m be like in Theorem 0.2.

Then the actions of Sd = AutY1 = AutY2 on Y1 and Y2 are diffeomorphic, but

Y1 and Y2 are not Sd-deformation equivalent.

Proof. According to Theorem 0.2, AutY1 = AutY2 = Sd where d is the degree

of the m-canonical covering X → P2. The action of Sd in Y1 is tautologically

diffeomorphic to that in Y2, since Y2 = Ȳ1.

Assume that Y1 = X̃ and Y2 = Ȳ1 are Sd-deformation equivalent. Let p :

X → B be a smooth Sd-deformation connecting them (the treatment of a chain

of deformation families is literally the same). By Proposition 4.1, for any t ∈ B

the covering Xt → Pn is generic. Hence, X /Sd−1 → B is a deformation family

connecting X = Y1/Sd−1 with X̄ = Y2/Sd−1, which is a contradiction. �
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4.3. Examples of Dif6=Def real G-manifolds. Here we extend the category
of G-manifolds, namely, we consider finite subgroups of the Klein extension of
the automorphism group. Let us recall that the Klein group K l(X) of a complex
variety X is, by definition, the group consisting of biregular isomorphisms X →
X and X → X̄ (some people call it the group of dianalytic automorphisms). If
X is a real manifold and c its real structure, then there is an exact sequence

1 → 〈c〉 = Z/2 → Kl(X) → AutX → 1.

Pick two real Campedelli surfaces (X1, c1), (X2, c2) constructed in [9], Sec-
tion 2. As is shown in [9], these particular surfaces are not real deformation
equivalent, but their real structures, c1 : X1 → X1 and c2 : X2 → X2, are
diffeomorphic.

The Campedelli surfaces are minimal surfaces of general type. Thus, we can
consider m-canonical generic coverings X1 → P2 and X2 → P2. Moreover, we
can choose these coverings to be real, that is to be equivariant with respect
to the usual, complex conjugation, real structure on P2 and the real structures

c1, c2 on X1, X2. Denote by X̃1 → P2 and X̃2 → P2 the Galois expansions. The

surfaces X̃1 and X̃2 are real with real structures lifted from P2.

Proposition 4.5. The Klein groups Kl(X̃1) and Kl(X̃2) are isomorphic, their

actions are diffeomorphic, while there exists no equivariant deformation con-

necting (X̃1,Kl(X̃1)) with (X̃2,Kl(X̃2)).

Proof. As in the proof of Proposition 4.4, the non existence of an equivariant
deformation is a straightforward consequence of Proposition 4.1.

Due to Theorem 0.2 to prove the other two statements, it is sufficient to

construct a real diffeomorphism X̃1 → X̃2 respecting the Galois action. In
its turn, to reach this task, it is sufficient to construct real diffeomorphisms
X1 → X2, P2 → P2 commuting with the initial m-canonical generic coverings,
X1 → P2 and X2 → P2.

Now, we need to recall some details of the construction of surfacesX1, X2 from
[9]. The construction starts from a real one-parameter family of Campedelli
line arrangements L(t), t ∈ T = {|t| 6 1, t ∈ C}, consisting of seven lines
L1(t), . . . L7(t) labeled by non-zero elements α ∈ (Z/2Z)3. The lines are real for
real values of t, and the family performs a triangular transformation at t = 0 (see
the definition of triangular transformation in [9]). Consider the Galois covering
Y → P2×T with Galois group (Z/2Z)3 branched in

∑7
1 Li,Li = {(p, t) ∈ P2×T :

p ∈ Li(t)} and defined by the chosen labelling of the lines. The fibers Yt under
the projection of Y to T are nonsingular Campedelli surfaces for generic t, in
particular, for any t 6= 0 close to 0. The surfaces X1, X2 we are interested in are
given by Yt with, respectively, positive and negative t close to 0. The fiber Y0 has
two singular points; each of these points is a so-called T (−4)-singularity; these
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points are not real but complex conjugate to each other. For each nonsingular
Campedelli surface Yt, t 6= 0, and each 1 6 i 6 7, the pull-back L∗

i (t) ⊂ Yt of
Li(t) ⊂ P2 represents the bi-canonical class, [L∗

i (t)] = 2KYt
.

Since Y → P2×T is a finite morphism, the divisors Em = m[L∗
i ] are relatively

very ample for any m sufficiently large (and any i), see for example [6]. Pick
such an integer m and consider the real, relative to T , imbedding of Y into
PN × T defined by the linear system |Em| (to show existence of relative to T
global sections, one can twist Em by a pull-back of a very ample divisor on T ).
Note, that according to [L∗

i (t)] = 2KYt
it defines 2m-canonical imbedding of

Campedelli surfaces Yt to PN . As it follows from Theorem 0.1 in [13], if m ≥ 5,
then the projection Yt → P2 from a generic PN−3 is a generic covering for any
but finite number of t ∈ T , in particular, for any t 6= 0 close to 0. For a real
PN−3 the projection Y → P2×T is real and, for a sufficiently generic real PN−3,
the two singular points of Y0 project to two distinct complex conjugate points.
Denote the singular points by y, ȳ, and their projections by b, b̄. One can show,
repeating word-by-word the arguments from [13], that the projection Y0 → P2 is
generic everywhere (generic at singular point means that the fibre of projection
passing through the singular point y ∈ Y0 (resp. ȳ ∈ Y0) is in generic position
with respect to the tangent cone CbY0 (resp. Cb̄Y0)).

Restrict, now, our attention to small values of t. The coverings Yt → P2 are
generic for t 6= 0, and the branching curves Bt are cuspidal. For t = 0, the
branching curve B0 is cuspidal everywhere, except two distinct, complex conju-
gate, points, b and b̄. Cut out small, Milnor, complex conjugate balls V (b), V (b̄)
around these two points. Use a family of Morse-Lefschetz diffeomorphisms to
complete the isotopy Bteiφ \ (V (b) ∪ V (b̄)) by an isotopy inside V (b), and then
complete it by a complex conjugate isotopy inside V (b̄). This isotopy provides
an equivariant diffeomorphism between Galois coverings branched in Bt and,
respectively, B−t. The Morse-Lefschetz diffeomorphisms can be seen as trans-
formations acting identically on the complement of V (b)∪ V (b̄). Therefore, the
epimorphism π1(P

2 \ Bt) → Sd defining the Galois coverings is not changing,
so that the constructed diffeomorphism between the Galois coverings acts from

X̃1 to X̃2 and it is equivariant with respect to the Galois action. It is also equi-
variant with respect to the real structure. Thus, it remains to notice that due

to Theorem 0.2 the full automorphism groups Aut(X̃1) and Aut(X̃2) coincide
with the Galois group. �
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