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Higher balancing for locally tropically convex tropical varieties

Emilio Assemany and Oliver Lorscheid

Abstract. In this text, we show that locally tropically convex tropical varieties in Rn have
locally a canonical polyhedral structure that satisfies higher balancing conditions at all cells
of positive codimension.

Introduction

Locally tropically convex tropical varieties. A subset X in Rn is tropically convex if
for all x,y ∈ X and a,b ∈ R, the tropical linear combination z = (a� x)⊕ (b� y) (with
coordinates zi =min{a+xi,b+yi}) is contained in X . A subset X in Rn is locally tropically
convex if every point of X has an open tropically convex neighborhood.

By [4, Prop. 3.3], a tropical variety X is locally tropically convex if and only if for every
point p of X , the (underlying set of the) star StarX(p) at p is the (underlying set of the)
Bergman fan of a matroid. Therefore the balancing conditions of locally tropically convex
tropical varieties can be traced back to the balancing conditions for Bergman fans.

Before we turn to Bergman fans in more detail, we cite some general facts about locally
tropically convex tropical varieties; for definitions cf. [4] and [12]. A tropical variety is
locally tropically convex if and only if it is tropically convex as a set ([4, Thm. 1.2]), and
tropical linear spaces are tropically convex ([4, Prop. 2.14]). In fact, the only discrepancy
between tropical linear spaces and tropically convex tropical varieties lies in the possibility
of higher weights: by [4, Thm. 1.1], the underlying set of a tropically convex tropical variety
is equal to the underlying set of a tropical linear space.

A preview on higher balancing. It is well-known that the Bergman fan of a matroid is a
tropical variety, which means that it satisfies the balancing condition for all top-dimensional
cones containing a given cone of codimension 1 (with respect to a constant weight function).
In this text, we show that a Bergman fan satisfies balancing conditions for polyhedra of
any codimension. These higher balancing conditions require a distinction of the cones of a
Bergman fan according to their ‘types’, which is a finer invariant than the dimension. The
formulation of the higher balancing conditions requires some preparatory definitions and
can be found in Theorem 2.

A remark on the relevance of higher balancing. Locally tropically convex tropical vari-
eties are blessed with the property that they look locally like a Bergman fan, and therefore
inherit a canonical polyhedral structure that satisfies higher balancing conditions with re-
spect to a constant weight function. Other types of tropical varieties do not come with such
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an intrinsic structure, but one needs additional information in order to extend the weight
function to polyhedra of higher codimension.

Tentative calculations show that in good cases a tropical basis for the tropical variety
provides enough structure to define weight functions for which higher balancing holds. In
particular, this works well for hypersurfaces with one defining equation. We have hopes
to extend this to all tropicalizations of classical varieties. It might also apply to tropical
prevarieties that are defined by tropical ideals in the sense of [9], but at the time of writing
it is not even clear whether they are balanced in codimension 1.

To conclude, we see higher balancing as an indication for that there might be interesting
information about the tropicalizations of classical varieties that has not been used so far. Our
hope is that this additional information finds a satisfactory explanation in terms of tropical
scheme theory, as developed in [3], [7] and [8]. In particular, we would like to propose the
following question as a guiding problem for further developments in tropical scheme theory.

Question. For which subschemes of the tropical torus (i.e. ideals in the semiring of tropical
Laurent polynomials) can we make sense of higher balancing?

Acknowledgements. We would like to thank Felipe Rincón and Kristin Shaw for their
comments on a first version on this paper.

1. The Bergman fan of a matroid

The Bergman complex of a matroid was introduced by Sturmfels in [13]. Subsequently the
related notion of the Bergman fan of a matroid was introduced by Ardila and Klivans in [1].
We will review this theory in the following. For a pleasant introduction, cf. section 2.2 of
[5].

Let M be a matroid with ground set E. The Bergman fan of M is the fan B(M) in RE

whose cones are defined as follows. Let {ei}i∈E be the standard basis of RE . For a subset
F of E, we define eF = ∑i∈F ei. A flag of flats is a tuple F = (F0, . . . ,Fd) of flats Fi of M
such that

/0 = F0 ( F1 ( · · · ( Fd = E.
The cone of F is defined as

cF =
d−1

∑
i=0

R+ · eFi +R · eE =

{ d

∑
i=0

λieFi

∣∣∣∣λi ∈ R+ for i = 1, . . . ,d−1 and λd ∈ R
}

where R+ are the nonnegative reals.
By definition, cF is a rational cone of dimension d (in the sense of toric geometry,

cf. [2]). The maximal linear subspace contained in cF is the line spanned by eE . Let
|F|= {F0, . . . ,Fd}. We have an inclusion cF′ ⊂ cF if and only if |F′| ⊂ |F|. In this case cF′
is a face of cF, and every face of cF is of the form cF′ for some flag of flats F′. In particular,
every cone cF contains c( /0,E) = R · eE as its unique 1-dimensional face. Given two flags
of flats F and F′, the intersection of the associated cones is cF ∩ cF′ = cF′′ where F′′ is the
flag of flats with |F′′|= |F|∩ |F′|. This shows that B(M) is an equidimensional polyhedral
complex whose dimension is equal to the rank rk M of M.

Note that some authors (e.g. Hampe in [4]) define the Bergman fan of M as the image of
B(M) in RE/R ·eE . This image is indeed a fan in the sense of toric geometry since all cones
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become strictly convex. Concerning balancing conditions, it does not make any essential
difference, which version of the Bergman fan one uses. For our purposes, we find it more
convenient to follow the definition of this paper.

Note further that the matroid M is determined by its Bergman fan B(M) since a subset
F of E is a flat if and only if eF is contained in the underlying set of B(M), which is the
union |B(M)|=

⋃
cF of all cones cF of B(M).

Let F = (F0, . . . ,Fd) be a flag of flats. The type of F is the tuple (rk F0, . . . , rk Fd), which
is a tuple of strictly increasing integers with rk F0 = 0 and rk Fd = rk M.

2. Balancing in codimension 1

The Bergman fan of a matroid is a tropical variety in the sense that it is balanced at cones
of codimension 1 with respect to a constant weight function on the top-dimensional cones.
This balancing condition was first considered in Speyer’s thesis [11], and can be formulated
as follows for Bergman fans. For details on matroid theory, we refer to [10].

Let M be a matroid with ground set E. Given flats F and F ′, we write F 6 F ′ if F ⊂ F ′.
We say that F ′ covers F , and write F <: F ′, if F 6 F ′ and rk F ′ = rk F + 1, i.e. if there
exists no flat strictly in between F and F ′.

Proposition 1. Consider a flag of flats F = (F0, . . . ,Fd) of length d = rk M−1, i.e. the type
of F is (0,1, . . . , i, i+2, . . . ,r) for some i ∈ {0, . . . ,r−2} where r = rk M. Then

∑
Fi<:F ′6Fi+1

eF ′ ∈ cF.

Proof. In the following, we reproduce the short argument from Huh’s thesis ([5, Prop. 16]).
As a first step, we consider the restriction M′ = M|Fi+1 of M to Fi+1, which results from

M by deleting E−Fi+1. The ground set of M′ is E ′ = Fi+1 and its flats are precisely those
flats of M that are contained in Fi+1. The matroid axiom for flats, applied to Fi as a flat of
M′, states that

Fi+1 − Fi =
∐

Fi<:F ′6Fi+1

F ′ − Fi.

Therefore

eFi+1− eFi = ∑
Fi<:F ′6Fi+1

(eF ′− eFi)

and thus

∑
Fi<:F ′6Fi+1

eF ′ = eFi+1 +(m−1)eFi ∈ cFi

where m> 1 is the number of flats F ′ with Fi <: F ′ 6 Fi+1. �

3. Higher balancing

We are prepared to state and prove the main result of this text.
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Theorem 2. Let M be a matroid with ground set E and F = (F0, . . . ,Fd) a flag of flats of
type (r0, . . . ,rd). Let i and k be integers such that 06 i6 d−1 and 16 k 6 ri+1− ri. Then

∑
F(0)<:···<:F(k)6Fi+1

(eF(k)− eF(k−1)) +
k−1

∑
l=1

(−1)k−l
∑

F(0)<:···<:F(l)6Fi+1

(eFi+1− eF(l−1))

+ (−1)k(eFi+1− eFi) = 0

where F(0) = Fi is fixed and F(1), . . . ,F(k) vary over all possible flats. We call this relation
the (i,k)-balancing condition at cF.

Proof. We prove the result by induction on k. For the sake of presentation, we will show
that the first sum in the balancing condition equals the inverse of the other terms.

The case k = 1 follows by the same argument that we have used to prove Proposition 1
where we note that the proof did not make any use of the assumptions that F is of length
d = rk M−1 and that ri+1− ri = 2. Therefore, we derive that

∑
F(0)<:F(1)6Fi+1

(eF(1)− eF(0)) = eFi+1− eFi = −
[
(−1)k(eFi+1− eFi)

]
,

where we use that (−1)k =−1 and that there is no middle term of the form “∑
k−1
l=1 . . .” since

k−1 < 1.
If k > 1, then we can split the sequences F(0) <: · · ·<: F(k) 6 Fi+1 into F(0) <: F(1) and

F(1) <: · · ·<: F(k) 6 Fi+1, which yields an equality

∑
F(0)<:···<:F(k)6Fi+1

(eF(k)− eF(k−1)) = ∑
F(0)<:F(1)6Fi+1

[
∑

F(1)<:···<:F(k)6Fi+1

(eF(k)− eF(k−1))

]
.

Applying the inductive hypothesis to the sum inside the brackets transforms this expression
into

− ∑
F(0)<:F(1)6Fi+1

[
k−2

∑
l=1

(−1)(k−1)−l
∑

F(1)<:···<:F(l+1)6Fi+1

(eFi+1− eF(l))+(−1)k−1(eFi+1− eF(1))

]
.

Merging the outer sum over F(0) <: F(1) 6 Fi+1 with the inner terms and replacing l by
l−1 yields

−

[
k−1

∑
l=2

(−1)k−l
∑

F(0)<:···<:F(l)6Fi+1

(eFi+1− eF(l−1))+(−1)k−1
∑

F(0)<:F(1)6Fi+1

(eFi+1− eF(1))

]
.

We can apply the case k = 1 to the sum on the right hand side and get

(−1)k−1
∑

F(0)<:F(1)6Fi+1

(eFi+1− eF(1)) = (−1)k−1
∑

F(0)<:F(1)6Fi+1

(eFi+1− eF(0))+(−1)k(eFi+1− eFi).

Substituting this term in the expression above produces the desired outcome

−

[
k−1

∑
l=1

(−1)k−l
∑

F(0)<:···<:F(l)6Fi+1

(eFi+1− eF(l−1))+(−1)k(eFi+1− eFi)

]
. �
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4. Geometric interpretation of higher balancing

Let F = (F0, . . . ,Fd) be a flag of flats in M of type (r0, . . . ,rd). The cases of (i,k)-balancing
for k = ri+1− ri are degenerate and we will discuss them below. For now we assume that
k < ri+1− ri and write F < F ′ for F ( F ′.

To begin with, we observe that the flags F(0) <: · · ·<: F(l) < Fi+1 that occur as indices
of the sums in the (i,k)-balancing condition can be identified with the cones cF′ with

F′ = (F0, . . . ,Fi,F(1), . . . ,F(l),Fi+1, . . . ,Fd).

Thus we can interpret the sum as varying over all cones in B(M) of type

(r0, . . . ,ri,ri +1, . . . ,ri + l,ri+1, . . . ,rd)

that contain cF.
Therefore the (i,1)-balancing condition

∑
Fi<:F(1)6Fi+1

(eF(1)− eFi)− (eFi+1− eFi) = 0

can be rewritten as

∑
F′=(F ′0,...,F

′
d+1) of type

(r0,...,ri,ri+1,ri+1,...,rd)
such that cF⊂cF′

eF ′i+1
= eFi+1 +(m−1)eFi ∈ cF

where m > 1 is the number of flags F′ of type (r0, . . . ,ri,ri + 1,ri+1, . . . ,rd) such that
cF ⊂ cF′ . Note that eF′ is a primitive vector for cF′ modulo cF, which is a ray. In particular,
this recovers the usual balancing condition for tropical varieties in the case that cF is of
dimension rk M−1.

For k > 1, a geometric interpretation of (i,k)-balancing involves different ‘types’ of
‘primitive vectors’, one for each ray of cF′ that is not contained in cF. Without spelling out
the obvious formula, the (i,k)-balancing condition states that a certain linear combination
of primitive vectors of (the rays of) cones containing cF, ordered by their types, is contained
in the linear subspace spanned by cF.

Balancing in the degenerate case k = ri+1− ri = 1 yields the trivial relation

(eFi+1− eF)− (eFi+1− eF) = 0.

If k = ri+1− ri > 1, then (i,k)-balancing results from (i,k− 1)-balancing after a trivial
rearrangement of terms, which brings, however, the relation into a more symmetric shape.
In particular, (i,k)-balancing implies that

k

∑
l=2

(−1)k
∑

Fi<:F(1)<:···<:F(l)6Fi+1

eF(l−1)

is contained in the linear subspace spanned by cF.
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5. Relation to CSM-balancing

Lopez de Medrano, Rincón and Shaw introduce in [6] the k-th Chern-Schwartz-MacPherson
cycle csmk(M) of a matroid M, which is the k-skeleton of the Bergman fan of the matroid
where k is an integer between 0 and rk M. The fan csmk(M) comes with certain weights
on its top-dimensional cones, which turn csmk(M) into a tropical variety, i.e. a polyhedral
complex that is balanced in codimension 1. We refer to this result by CSM-balancing for
short.

We can reinterpret this result as follows. We can endow all cones cF of the Bergman fan
B(M) of M with certain weights µF such that for every cone cF of dimension k < rk M,

∑
cF⊂cF′

dimcF′=k+1

µF′ eF′

lies in the subspace spanned by cF where eF′ is a primitive vector of cF′ modulo cF.
It is possible to express the weights µF′ as a linear combination of the number of cones

containing F′ (ordered by their types), which indicates a relation to higher balancing in
the sense of this paper. We were able to verify that CSM-balancing can be traced back to
certain linear combinations of the relations that occur in Theorem 2 up to codimension 3,
i.e. for rk M− k−1 6 3. We strongly suspect that CSM-balancing can be deduced from
higher balancing in general. A proof of this conjecture would be desirable.

6. Example

As an example, we consider the uniform matroid M = U3,4 of rank 3 with ground set
E = {1,2,3,4}. Its lattice of flats is as follows.

E

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1} {2} {3} {4}

/0

The different types of cones of the Bergman fan B(M) of M are described in the following
table where we fix an identification E = {i, j,k, l}.

type typical flag F (x1, . . . ,x4) in cF iff. dimension number of cones
(0,3) ( /0,E) xi = x j = xk = xl 1 1
(0,1,3) ( /0,{i},E) xi > x j = xk = xl 2 4
(0,2,3) ( /0,{i, j},E) xi = x j > xk = xl 2 6
(0,1,2,3) ( /0,{i},{i, j},E) xi > x j > xk = xl 3 12

We find non-trivial balancing conditions (i.e. k < ri+1− ri) at all cones of positive
codimension, i.e. at cones of types (0,1,3), (0,2,3) and (0,3). These balancing conditions
are, up to permuting E = {i, j,k, l}, as follows.
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(1,1)-balancing at c( /0,{i},E): ∑
{i}<:{i,n}<E

(e{i,n}− ei) − (eE − ei) = 0

(0,1)-balancing at c( /0,{i, j},E): ∑
/0<:{m}<{i, j}

(em− e /0) − (e{i, j}− e /0) = 0

(0,1)-balancing at c( /0,E): ∑
/0<:{m}<E

(em− e /0) − (eE − e /0) = 0

(0,2)-balancing at c( /0,E): ∑
/0<:{m}<:{m,n}<E

(e{m,n}− em) − ∑
/0<:{m}<E

(eE − e /0) + (eE − e /0) = 0

Note that the first two conditions are balancing conditions in codimension 1, i.e. they are the
‘classical’ balancing conditions for tropical varieties. In particular note that these classical
balancing conditions are divided into two different types.
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