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The investigation of partial differential equations on manifolds with singularities, origi­
nated from the well-known paper [1] by Agmon and Nirenberg on equation on the infinite
cylinder being published as early as in 1963 have been developed further in papers of a lot
of ma.thematicians. Having no aim of presenting a full history of the question, we mention
here the paper [2] published in 1967 which has originated the investigation of differential
equations in domains with conical points, as weH as in a lot of other works (see [3] ­
[10], and the bibliography therein). However, these investigation were mainly concerned
with singular points of the conical type (clearly, there were exceptions from this ruIe; we
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mention here tbe papers [11], [12], wbere boundary value problems with cusp-type points
on the boundary are treated in some particular case).

Tbe appearence in the recent time of aresurgent analysis - a powerful tool of inves­
tigation of asymptotic behavior of solutions to differential equations (both ordinary and
in partial derivatives) allowed to begin the serious investigation of eHiptic partial differ­
ential equations on manifolds with cusp-type singularities ([13], [14], [15].) However, the
description of the type of singular points of the manifold was not quite satisfactory. The
matter is that the considered manifolds are topologicaHy equivalent to a cone

K = {[O, 1] x f!} / {{O} x f!} (1)

with a smooth base n in a neighborhood of all such points (we consider here isolated
singularities), and the only difference between conical and cuspidal singularities lies in the
form of the differential operator in question. So, the operators with conical degeneracy
are of the form

iI = r-
m

H (r,w, -ir :r' -i :w) , (2)

near the corresponding singular point of the manifold M, where (r,w) are coordinates on
K corresponding to representation (1) and nl is an order of the operator iJ j in this case
such a point is referred a.s a point of conical singularity. On the contrary, the operators
of cuspidal degeneracy of order kare given by

HA _ -m (k+ 1) H ( . k+ 1 8 . 8 )
- r r, w, -1 r 8r' -z 8w (3)

with some integer k > 0; here we refer this point as a singular point of cuspidal type 0/
order k.

So, the type of singularitiy is defined, in fact, by the dass of differential operators
considered in a neighborhood of the point in question. Clearly, such a description is
possihle, hut it is preferrable to have a direct (structure) description of singularities of a
manifold such that aH the analysis and, in particular, the theory of differential equations
is a consequence of this structure description.

This paper is an attempt to answer the question: what a point with the given type
of singularity is? Clearly, if one considers a Riemannian manifold, then the type of sin­
gularity can be characterized by the type of degeneration of the considered Riemannian
metrics in a neighborhood of a singular point of this manifold. However, the Rieman­
nian structure is, dearly, an additional structure, and cannot be used as a basis of the
description of singularities. This concernes also to the theory of differential equations.
The Rielnannian structure takes part only in the description of concrete differential oper­
ators connected with geometry of Riemannian manifolds such that the Beltrami-Laplace
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operator. Later on, another approach to the definition of a type of singular point is the
notion of an elnbedded submanifold with singularities of some smooth manifold also is not
quite satisfactory since it essentially depends on the embedding. At the same time, for
investigation of manifolds with singularities by themselves one needs internal description
of this notion.

Certainly, the most general description of a manifold (smooth or with singularities)
is a description with the help of the structure sheaf of this manifold. All information
abaut the manifold in question, including the form of differential operators, admissible
Riemannian structures, and so on, must be expressed in terms of the strueture sheaf.

. Sinee we are intended to eonsider manifolds smooth everywhere exeept for some dis­
erete set of si ngular points, a ri ng of germs of t he strueture ri ng at some (arbi trary )
singular point is of Inain interest for uso In what follows, this ring will be referred as
a structure ring of the singular point in question or even simply as structure ring if the
point in question is elear from the context.

Evidently, the structure ring determines all the analysis in a neighborbood of tbe
given point: the elass of Riemannian metrices, the ring of differential equations, ete. In
partieular, the different ehoice of strueture rings leads to different classes of differential
equations. Namely, for different strueture rings we shall arrive at equations with "eonieal
degeneraey", "euspidal degeneracy", and a lot of other types of degeneraey which up to
now have not been considered in the theory of differential equations. Same of them are
eonsidered in the present paper.

And the last relnark. As we have al ready n1entioned, in this paper we consider ooly
isolated singularities. This is connected with the fact that the consideration of isolated
singularities is crudal for cOllstructing a general Inanifold with singularities of noniso­
lated type. The latter can be obtained from the formers with the help of direct product
operation, as it will be explained below.

1 Examples and Motivations

To motivate the approach to the description of singular points of the manifolds with
singularities, we consider two examples.

1.1 Circular cone

Let us consider a circular cone !( with the vertex in the origin and opening () embedded
in the three-dimensional Carthesian space RJ (see Figure 1.) It seems to be natural to
consider the restriction of the loeal structure ring [COO (R3 )]0 as a strueture ring [COO (1<)]0
of the cone [( at its vertex. So, the elen1ents of [COO (1<)]0 will be germs of functions in
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Figure 1. Circular cone.

the coordinates (r, <p) having the fornl

F (r sin 0 cos <p, r sin 0 sin <p, r cos 0)

for different slTIooth functions F (x, y, z) in a neighborhood of the origin in R 3
.

However, there exists nluch better description of the above introduced local ring. To
obtain this description, let us consider the Riemannian metrics

(4)

on ]( induced by the standard RiClnannian metries of the space R3. One can see that this
metrics is degenerated at the point r = O. To resolve this degeneration, one can perform
the variable change

(5)

transforming metries (4) to the form

ds2 = e- 2l (dt 2 + sin.2 Od<p2) ,

which becomes to be nondegenerated after dividing by an inessentail factor e-2t
• So, the

more convenient representation of the cone']( is not a representation of the form (1), hut
the representation of ]( as a one-point compactification of the infinite cylinder

!( = [0, +00] XSI

5
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with the coordinates (t, <p) on it. For such representation, the elements of the local
structure ring have the fonn.

F (e- t sin ecos <p, e- t sin esin <p, e-t cos 0), F E [Coo (R3
)] 0

of smooth functions on the infinite cylinder given by (6) having exponential stabilization
at injinity.

We remark also that such representation of the local ring gives an opportunity to define
naturally tbe dass of differential operators to be considered on the cone K. Namely, they
must be obtained by tbe variable change (5) from differential operators of the canonical
form

H= H (e-t,~,-i :1' ~)
with coeficients stabilizing with exponential speed (that is, belonginig to the above defined
local ring). This leads us to a dass of differential operators of the form

.. ( 8 8)H = H r, <p, - ir 8r' 8<p

exactly coinciding with operators (2) with conical degeneracy.

1.2 Circular cusp

Let us consider the circular cusp Co obtained by rotation of the parabola

of order karound the axis Oz (see Figure 2). Then elements of the restriction of the ring
[Coo (R3)]0 to Co have the form

F (zk+l cos <p, zk+l sin ep, z) .

The corresponding Rienlannian nletrics is

The variable change elilninating the degeneracy of the metrics (7) is

1 1
t = kzk' Z = k1fkt1/ k '

6
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Figure 2. Circular cusp.

The latter variable change transfofllls the llletrics (7) to the form

2_ (~)2(1+1/k) [( (k +1)2) 2 2]
ds - kt 1 + k2 t2 dt + d'P

which is evidently nondegenerated in a neighborhood of t = 00.

Now the loca.l ring [Coo (Co)]o can be described as a ring of functions

F (t-1/\'P) , F E Coo

with power stabilization at infinity (with the speed t- 1
/

k .)

This description of the local ring leads us again to the description of differential op­
erators which are naturally defined on the lllanifold near the cusp point. Namely, these
must be the illlages of the operators

under the action of variable change (8). These operators have the form

iI = H .(k1/kZe"J _iZk+1~ -i~)
, T , 8z ' 8c.p ,

which again coincide with (3).
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1.3 Conclusions

The exampies eonsidered in the Introduetion show that:

• The eonvenient topological model of the isolated singular point of a manifold is a
one-point eompaetifieation

M10c = Cu {oo}

of a infinite half-eylinder
(9)

with a sIuooth eompaet hase 0 without houndary rather than a topologieal eone

!( = {[O, 1] x o} / {{O} x o} . (10)

Topologieal models (9) allel (10) are homeOIllorphie to eaeh other sinee a segment
[0,1] is hOilleonl0rphie to the eOlupaetifieated half-axis R+ U {oo} with 0 eorre­
sponding to 00, hut the deseription of loeal rings looks more clear on the model
A11oc '

• The loeal rings detennining a type of an isolated singular point of Mare deserihed
with the help of thc speed of stahilization of funeiions given on the loeal model Mloc

as t ---+ 00. ~llore exaetly, if <.p (t) is a smooth funetion on R+ such that

Hln<.p (t) = 0,
t-O

(in what follows we refer <.p (t) as a weight funetion) then tbe appropriate candi­
date for the role of a loeal ring deseribing the type of the singular point under
eonsideration is a set of funetions

u(t,w) = F(<.p(t),w), F(r,w) E coo ([0, 1] x 0).
.,r.

(11)

Here by w we denote loeal coordinates on the manifold O. Clearly, the set of
functions of the type (11) have to be modificd up to a ring of functions closed with
respect to differentiation so that this l110dified ring could serve as a Ioeal ring for
the manifold AI at the singular point in question.

• The ring of Ioeal differential operators on the manifold M10c must be defined now
as a ring 0/ operators of the form

m ( 8)j( 8)°?= L ajo (t,w) -i 8t -i 8w
];0 lol:5 m- 1

8
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with coefficients from the loeal strueture ring at the singular point. One more reason
for the requirement that the loeal ring must be closed under the differentiation is
that this requirement guarantees that the set of operators (12) form a ring (algebra. )

In the following seetion we construet some seale of loeal rings on M 10c deseribing ascale
of types of isolated singulari ties of the manifold Al. Clearly, the scale presented below
does not pretend to be a eomplete classifieation of types of singular points of a manifold
M with singularities. For exalnple, one can eonsider singular points for which the speed
of stabilizatioD depends on the point w of tbe base O. Besides it seems to be impossible to
write down all weight funetions tp ( t) of the above deseri bed type, so we restri et ourselves
by eonsideration of the most interesting cases whieh appear in applieations.

Further, as it was already rnentioned in the Introduction, we eonsider here only iso­
lated singularities of the underlying Inanifold M. More complicated singularities ean be
obtained by iterations with the help of direct product operations. For example, we can
eonsider a wedge of the type <p (t) as a direct product of the model manifold (M1oc , Cf' (t))
with a smooth 111anifold X or a corner of the type (<p (t) ,1/1 (t)) as a product of (MIoe, Cf' (t))
by same manifold N having isolated singularities of the type (Alloe, "p (t)).

2 Structure rings of singular points

2.1 Power stabilization

Let us eonsider the case of power stabilization, that is

for some positive value of, (this value is fixed for eaeh given type of singularity.) Denote
by'R,"Y the loeal ring

'R,"Y = {u(t,w) = F (t---',w) IF(r,w) E Coo ([0, 1] x O)}

(we consider only genns of functions u(t, w) at infinity.) This ring is not in general closed
with respeet to differentiation since

a
a F (t-I,w) = _,t-I- 1 aaF (t-I,w)
t r

cannot be represented in the fornl C(t-I,w) for a Coo-function C(r,w) on [0,1] x fl. So,
to obtain a strueture ring describing a singular point with power stabilization, one have
to extend this ring up to a ring closed under differentiation. Such an extension is given
by

{u (t,w) = F (t-r,w) + t-IC (t-I , t- 1 ,w) IF (r,w) ,C (r, p,w) E cool ;
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Since

we denote this ring by n~c' The corresponding singular point of the manifold considered
with such local ring will be called a singular point 0/ power stabilization; in Section 4 we
shall show that geometrically such point is a cusp point of degree ß = 1 +,-I.
Remark 1 There is an important particular case of a singular point of power stabiliza­
tion. This case corresponds to the values of 1 of the form 1 = k- 1 for positive integers
k E Z+. In this case one has

n 1
j k = ntf:

since the power t-1 can be represented as a COO-function of the variable t-1jk :

t-1 = (t- 1/ k ) k •

As we shall see below 1 geolnetrieally this casse corresponds to the caspidal point of integer
degree k + 1.

2.2 Exponential stabilization of first order

This case (which is in SOIne sense a linut case of power stabilization as Q' ~ 00) 18

determined by the weight function

As above, we consider a loeal ring

nexp = {u(t,w) = F(e-t,w) IF(r,w) E C oo ([O,I] X O)}.

ß (-t) -t ßF (-t )ßt Fe, w = - e ßr e ,w ,

this ring is closed under differentiations and, hence, can serve as a Iocal ring on manifold
with singularities corresponding Lo a singular point. It will be denoted also by

...,.,exp = ...,.,exp
I\...loc I\... •

The corresponding singular point of the manifold considered with such structure ring
will be called a singular point 0/ (si7nple) exponenlial slabilizalion. As we shall see in
Section 4, such point is none nlore than a conical point of singularity of the manifold M
under consideration.

Remark 2 With the sanle function r.p (t) = e- t , one can consider also a ring

n~~'
1 = {u (t, w) = F (e- t , t -1 , w) IF (r, p, w) E C oo ([0 1 1] x [0, 1] x O)} .

Funetions from this ring possess a power, not exponential, stabilization, but the consid­
eration of singular points of this type is not quite senseless.
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2.3 Exponential stabilization of an arbitrary order

For construction of such a ring, one have to consider the weight function

(13)

for a real positive ,. The local ring of functions with this type of stabilization can be
described as follows:

'R,"1,exp = {u (t,w) = F (e-t\w) jF (r,w) E Coo ([0,1] x n)}.

This ring is not closed with respect to the differentiation since

aF (-t"J) t"1- 1 _t"J 8F (-t"J )ßt e ,w = -, e ßr e , w .

The closure of this ring is given by

'R,~~XP = {u(t,w) = F(e-t\w) + tN"Ye-t"JG (t-\t-"Y, e-t"J,w)

IF (r,w), G (rl' r2, r3,w) E Coo}.

This is exactly the structure ring corresponding to speed of decay (13). The corresponding
singular point of the manifold considered with such Iocal ring will be called a singular
point 0/ exponential stabilization 0/ degree ,.

The important particular case of this singularity type corresponds to integer values of
I = k. Since in this case the power t"1 is a COO-function of the variable t- 1 , the description
of the structure ring for such values of , can be simplified. Namely, we have

nt~~xp = {u(t,w) = F(e-tk,w) +tNe-tkC(t-l,e-t\w)

IF (r, w) , G (rl, r2, w) E COO}

The geometry of such kind of singularity will be described in Section 4; as far as
we know, the singularities of this type have not been examined in the literature (this
concernes also the next. type of singularity.)

2.4 Strong exponential stabilization

For constructing singular points 0/ strong exponential stabilization we consider the weight
function

Consider the loeal ring

ns,exp= {u (t,w) = F (e-e
l ,w) IF (r,w) E Coo ([0,1] x O)} .

11



This ring is not closed with respect to the differentiation since

B F (_eI) t _eI BF (_eI )
Bt e ,w = -e e Br e ,w .

The closure of this ring up to a ring closed under differentiation is given by

n~~:xp = {u (t,w) = F (e-el,w) + PN (et
) e-elG (e-el,w)

IF (r,w), G (r,w) E cool .

This is exact1y the structure ring corresponding to a singular point of strong exponential
stabilization. The reason why we have included into consideration this type of singular
points will be clear in the next section.

3 Local rings of differential operators

In this section, we come back to the conical model of a manifold with singularities near
an isolated singular point. \Ve recall that topolog~cally the model for singularities of all
the above described types is the cone

I( = {[0, 1] x n} / {{O} x n} . (14)

To rewrite the definition of a loeal ring to this model it suffiees to use the variable change

r=cp(t),

where (l',W) are coordina.tes on the cone I< corresponding to representation (14). Dur
aim is to deseribe the fonll of differential operators corresponding to different types of
singular points in tenns of the coordinates (r,w).

3.1 Power stabilization

First of all we remark that if we use the standard local representation of M near its
singular point in the form of one-roint compactification of a half-cylinder, then the form
of differential operators is quite clear. Namely, any differential operator of order m must
be represented in the form

A m ( a)j ( a)O
H= ~ L ,Ujo(t,w) -iat -i aw

)::;:;0 lo!$m-)

12
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So,

b· (r-l/"Y w) =)0 ,

.,

with the coefficients ajo (t, w) frolll Rioc near each point of power stabilization of degree
,. The only thing rest is to perform the variable change

in expression (15) of the differential operator H. Since for any smooth function f (t,w) =
F (t-"Y ,w) we have

-i!!.-~ i-vrl+l/ry..!!.-
8t I 8r'

and, hence, operator (15) can be rewri t ten in the form

A m (8)j ( 8)0
H =?= L. bjo (r- lh ,w) _irl+l/'Y 8r -i 8w '

}=o loISm-}

where bjo (t, w) = (_,)10 1ajo (t, w) are functions from Rioc:

b'o (t-"Y ) + t-'Yb'~ (t-"Y t- 1 ) 1
}o ,w }O' ,w t=r-1h

= bio (r,w) + rb'Jo (r, r1/"Y,w)

. with some CCO-functions bio (r, w) and bJo: (r, p, w). Finally, we obtain a form of differential
operator near a singular point of power stabilization as

HA _ ~ " (b' ( ) b" ( Ih )) ( . 1+1/...,. 8 )j ( .8 ) 0:
-~ L jor,w+rjo: r,r ,w -zr 8r -z8w

}:;;::o 10J$m-j

(16)

Consider now the particular case I = 1/k, k E Z+. In this case, as it follows from
Remark 1, the function rb'Jo can be omitted, and we arrive at the representation of a

differential operator iJ of the fonn

HA _ ~ " b ( ) ( . .1+k 8)j ( .8)0
- ~ L jo r,w -11 8r -z 8w '

}=o 10: 1Sm - j

13



which coincides with the fonn (3) of an operator with cuspidal degeneracy up to an
inessential factor r-m (k+l). This gives rise to a guess that such points are exact1y tbe
singular points of the manifold of the cuspidal type of order k. This guess will be confirmed
in the next section.

Remark 3 The above considerations show, that the correct form of a differential operator
at a cuspidal point of noninteger order is (16).

3.2 Exponential stabilization of first order

To obtain the form of differential operator for this type of stabilization, we have to perform
the variable change

(17)

in expression (15). Since for any function of the form f (t, w) = F (e- t , w) we have

af () -t aF (-t) aF ( )-8 [,w = -e -8 e ,w =-r-
8

r,w,
t r r

hence, the operator -ia/8t is transfonned into the operator

.a . a
-1.- 1----+ 1.r-at 8r'

under the action of the variable change (17). Having in mind the fact that the coefficients
of operator (15) must belang to the ring R~::, we see that this operator ca~ be represented
in the form

.. rn ( a )i ( a ) 0

H =?= L bjo (r,w) -ir ar -i 8w '
;:=0 lol$m-i

(where bjo (r,w) E Coo ([0,1] x f!)) of an operator with conical degeneracy (up to an
inessential factor r-rn.) This allows HS to refer singular points with exponential stabilization
as conical points of a manifold Al. This will be confirmed from the geometrical viewpoint
in the next section.

3.3 Exponential stabilization of an arbitrary order

Let us derive the [onn of differential operator near a singular point of exponential stabi­
lization of degree f. Perfonning the variable change

-t"l
r=e

14



in the expression (15), we see that the operator - ia/at is tranformed into the operator

8 (1) 1-11",; 8
-i- 1----+ i, In - r-at r 8r

with same integers Njc'O and, hence, operator (15) is transformed to an operator

with a ja (t, w) E n~:xp. This means that

. (t ) - , (_('f ) + tNjo"Y -t"1 " (t- 1 t-"'; -t"1 )a)O ,w - a jo e ,W e a jo , ,e ,W,

and, hence, operator (15) takes the form

m ( (I) Nj
O (( 1)-I/"Y (1)-1 ))fJ - f; !o,E-i ajo (r,w) + In;: a'Jo In;: , In;: ,r,w

( ( 1)1-1h 8)j( 8)0
x i,r In - - -i-

r' a.,. fJw
(18)

As far as we know, the operators of this kind were not considered in the literature (for
, = 1 we obtain the siluple exponential stabilization considered in the previous section,
the case 0 < , < 1 Iyies between silnple exponential stabilization and power stabilization,
and the case , > 1 corresponds to l110re strong exponential stabilization than a simple
one.) The geonletry of singular points of this type will be considered in the next section.

3.4 Strong exponential stabilization

This case is interesting Inainly due to the fact that it in same sense is a limit case of a
point with exponential stabilization with degree , as , ~ 00. We shall not present here
all the computations for this case and silnply write down the answer. NameIy, the form
of a differential operator in this case is

15



(19)

This operator ean be obtained from operator (18) with the heip of the limit
f --+ 00. The corresponding geoIlletry will be eonsidered in the next seetion.

4 Riemannian metrices and geometry of singulari­
ties

In this seetion, we shall eonsider how Ioeal rings introduced in Section 2 define the class of
Riemannian metrices compatible with these rings. First of all, it is clear that admissible
metrices on the one-point compaetification of the infinite eylinder

!( = [0, +00] x n
have the form

ds 2 = C (t) (900 (t, w) dt
2 + ;~l 9ij (t, w) dwi<J.wi )

(we have taken into account the st ructure of t he cl irect pfoduct on !(.) The normalizing
factor c (t) must be chosen such that tbe distance fronl the infinite point of one-point
compactification to any finite point of [( is finite. This can be ach~eved in the following
way.

Let us perform the variable change

(we recall that the function c.p directly multiplied by the identity diffeomorphism of n
determines a diffeolnorphisln between !{ and the cone

!( = {[0, 1] x n} / { {O} x n}

without its vertex such that the vertex of the cone comes to the infinity point of one-point
eompactification.) ~1etrics (19) will be transfofllled into the metrics

ds
2

= c (t) ((<p' (t))-2 900 (t, w) dr
2 + iL'J:' 9ij (t, w) dw;W)

t=l.p-l (r)

and the required nonnalization will be achieved if we put

c (t) (cp' (t)) -2 = 1. (20)

Remark 4 The latter condition can be replaced with the requirement that the coefficient
of dr is integrable up to r = O. In most cases condition (20) will be sufficient.

Let us eonsider this procedure for all above defined types of stabilization.
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4.1 Power stabilization

Here we have
Cf' (t) = t---r,

and, hence, tbe general expression for the Riemannian metrics has the form (19) with
goo (t,w), 9ij (t,w) from the ring n~c' Hence, this expression has the form

ds 2 = c(t) [(g~ (t-'Y,w) + t---rg::o (t--v,t-t,w)) dt 2

+;t; g:j (C'" ,w) + C"'g:j (C", C\w) dw;W] ,

or, after the variable change r = t-'"(,

ds 2 = c (r- 1/,,) [,-2 r-2(1+1 / --r) (9~ (r,w) +rg~ (r, r'Y,w)) dr2

+t (g:j (r,w) + rg:j (r, r"',w)) dwitJwi] .
I,J=1

Taking into account relation (20), we obtain finally

ds 2 = [(g~(r,w)+rg::O(r,r\w))dr2

+r'r'(I+lhl.t (g:j (r,w) + rg:j (r, r"', w)) dw;W] .
1,)=1

In the special case 1 = l/k, k E Z+, we have

ds 2 = [900 (", w) dr 2 + r2
(l+k) .t gij (r, w) dwitJwi] ;

I,J=1

we remark that the lTIetrix (7) OITI the cusp of degree k has exactly this form. So, the
power stabi/ization corresponds geoTrl,etrically Lo cusps 0/ power degree.

4.2 Exponential stabilization of first order

Having in mind that
cp(t)=e- t

,

we write down the expression of the general fonTI of the metrics near a singular point with
exponential stabilization of the tnanifold Al:

ds 2 = c(t) (900 (e-t,w) dt' +;~l gij (e-t,w) dwitJwi)

17



(we have taken into account that the coefficients 900, 9ij have to be chosen from the ring
'R,exp .) After the variable change

-tr = e ,

we arrive at the expression

Using (20), we obtain finally

n

d 2 (-t) dt 2 2 '" (-t ) dwidwis = 900 e , w + r L-J 9ii e , w ,
i,i=1

which includes, in particular, the expression (4) for a metrix on the circular cone. Hence,
we see that the exponential stabilization corresonds to the conical singularities.

4.3 Exponential stabilization of an arbitrary order

Let us find out what geometry corresponds to the exponential stabilization with an arbi­
trary clegree , > 1. First, let us derive the general expression for a Riemannian metrics
near a singular point of this type. Since the coefficients 9ij of this metrics must be chosen
from 'R,~xp, we have

ds 2 = c(t) [(9~ (e-t'Y,w) + t Noo"le- P 9:fo (t- 1,t-"I,e- fY ,w)) dt 2

+ t (g;j (e-'O, w) + tN,;ry e-P g;j (Cl, C\ e-t
', w)) dwidw j ] ,

1,)=1

where Nii are SOIlle nonnegative integers. Having in mind that r = e-f', and using tbe
relation (20), we obtain

(21)

18
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Figure 3. \Veek smoothness and week cusp.

Now let us try to construct an elnbedding of sOllle two-dimenional surface ioto R 3 for
which the induced metries have the fonn (21). To do this, we consider the surface S in
R 3 obtained by rotation of the curve

with some real 8 around the Oz axis (see Figure 3). One can easily compute the expression
for the Rielnannian metries on S inducer frmn R3:

which coincides with (21) for fJ = 1 - 1/,/. So, the considered type of singularity corre­
sponds to a surface with weck Silloothness at its singular point for fJ < 0 (see Figure 3
all, and with week cusp for 8 > 0 (see Figure 3 b)); in the last case the latter expression
needs some renormalization (cf. Remark 4 above.)

4.4 Strang expanential stabilizatian

For this case one has

ds2 = {[g~O (r,w) + rP~~) (lnng~ (r,w)]

19



+t [g;j (r,w) +rPt!l (In ~) g;j (r,w)] tfuJiiJwi,
1,]-1

where p~~/, pt~) are polynomials of degree Nool Nij , respectively. The corresponding
embedded surface can be obtained as a rotation of the curve

1
x = z In-

z

around the Oz axis. Tbe Riemannian metrics induced from R 3 is

(we leave all the cOluputations to the reader.) This surface is drawn on Figure 3 b) with
<5 = 1.

5 Concluding remarks

5.1 Week power tangency

Here we consider the case of a two-dilnensional surface in R3 obtained by the rotation of
the curve

x = zß

for 0 < ß < 1. It is easy to see that thc induced lnetrics in this case has the form

ds 2 = [1 + ß2Z2(ß-l)] dZ 2 + Z2ßdcp2.

Since ß - 1 < 0, we transfonTI this expression in the following way:

ds 2 = Z2(ß-l) { [Z2(1-ß) + ß2] d Z 2 + z2d<p2} ,

which corresponds to the stabilization speed

<p ( t) = e-ßt .

This can be confirmed also by a forn1 of the Beltrami-Laplace operator on this surface:

-2ß { 1 (a )2 (1 - ß) Z2(1-ß)

ß g = Z Z2(1-ß) + ß2 Zaz 2(Z2(1-ß) + ß2)

X (z~) + :;2}.
The details of the consideration of this example are left to the reader.
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5.2 Types of asymptotics

Here we consider the types of asYlnptotic expansions for solutions to differential equations

Hu = 0 (22)

for differential operator iI near points of singularity of underlying manifold M of differ­
ent types. It will be convenient to deal with these operators written on the one-point
eompaetifieation of a half-eylinder

as on the loeal model. Then equation (22) ean be rewritten in the form

m ( 8)j ( 8)0L L ajo (t,w) -i 8t -i 8w u = 0,
j;;:;O lol:5m-j

where the eoeffieients belong to the eorresponding loeal ring. Roughly speeking, these
funetions are functions of the type

ajo (t,w) = A jo (<p (t) ,w)

(the eIosing of the ring in quest ion with respeet to the differentiation will not affeet our
eoneIusions) with SOBle COO-functions Ajo (r, w). The soluions to equation (22) with con­
stant eoeffieients are exponentials eAt • Hence, as it follows from the paper [16], solutions
to equation (22) will have resurgent type (see [13], "[14]) if and only if the decay of the func­
tiOD <p (t) is weaker than exponential one. So, it is eIear that oue should obtain resurgent
asymptoties in the easpidal types of singularities and only conormal type asymptotics
in all cases with stronger speed of stabilization. These asymptotic expansions can be
obtained by the scheme deseribed in [17], [13], anel the finiteness theorems (Fredholm
property) - by noneoillmutative analysis methods (see [14], [15]).
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