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CHARACTERISTIC-FREE BASES AND BGG RESOLUTIONS
OF UNITARY SIMPLE MODULES FOR
QUIVER HECKE AND CHEREDNIK ALGEBRAS

C. BOWMAN, E. NORTON, AND J. SIMENTAL

ABSTRACT. We provide a homological construction of unitary simple modules of Cherednik and
Hecke algebras of type A via BGG resolutions, solving a conjecture of Berkesch—Griffeth—Sam.
We vastly generalize the conjecture and its solution to cyclotomic Cherednik and Hecke algebras
over arbitrary ground fields, compute characteristic-free bases for this family of simple modules,
and calculate the Betti numbers and Castelnuovo-Mumford regularity of certain symmetric linear
subspace arrangements.

INTRODUCTION

In [BGGT75], Bernstein—-Gelfand—Gelfand utilise resolutions of simple modules by Verma modules to
prove certain beautiful properties of finite-dimensional Lie algebras. Such resolutions (now known
as BGG resolutions) have had spectacular applications in the study of the Laplacian on Euclidean
space [Eas05], complex representation theory and homology of Kac-Moody algebras [GL76], sta-
tistical mechanics and conformal field theories [GJSV13, MS94, MWO03], and they provide graded
free resolutions (in the sense of commutative algebra) for determinantal varieties [Las78, EH04].
Remarkably, such resolutions have never been used in the study of symmetric and general linear
groups in positive characteristic — or indeed anywhere in modular representation theory!

One of the most important problems in Lie theory is to classify and construct unitary simple
representations. For Lie groups, this ongoing project draws on techniques from Dirac cohomology
[HPV17], Kazhdan—Lusztig theory [Yeel4], and the Langlands Program [Vog00], and has provided
profound insights into relativistic quantum mechanics [Wig39]. The Cherednik algebra of a complex
reflection group, W, is an important Lie theoretic object which possesses hallmarks from the classi-
cal theory: a triangular decomposition and a category O with a highest weight theory [GGORO03],
analogues of translation functors [Los17], induction and restriction functors [BE09a] with associ-
ated Harish—Chandra series [LSA18], and Kazhdan—Lusztig theory [RSVV16] (for W = G(¢,1,n)).
Both the unitary representations of real reductive groups [HC75, HC76a, HC76b] and those of
Cherednik algebras [Chel8] are of huge importance in algebraic harmonic analysis.

For Cherednik algebras of symmetric groups, Hj /.(&,), the simple unitary representations L(\)
of Hy/e(&,) were classified by Etingof, Griffeth and Stoica [ES09] by a combinatorial condition on
the partition A\ of n labeling the “highest weight” of L()). In the spirit of classical results in Lie
theory, Berkesch, Griffeth, and Sam subsequently conjectured that any unitary simple L()\) admits
a BGG resolution [ZGS14, Conjecture 4.5].

The primary purpose of this paper is to prove Berkesch—Griffeth—Sam’s conjecture and thus
homologically construct the unitary simple H, (&, )-modules:

Theorem A. Associated to any simple unitary H ;o(&y)-module, L(X), we have a compler Co(N) =
Do, AW)U(v)) with differential given by an alternating sum over all “one-column homomor-
phisms”. This complex is exact except in degree zero, where Hy(Cq(N)) = L(N).

In contrast to classical papers on BGG resolutions and unitary representations, which usually
(but not always! [BS11]) employ ideas from algebraic geometry, our methods are completely
algebraic and moreover yield several geometric results. Namely, each standard module A(v) is a

free Clzy, ..., zy])-module, and as a consequence we obtain &,-equivariant, graded free resolutions
(in the sense of commutative algebra) for the e-equals variety
Xein =6p{(z1,...,2n) €C" 1 2y = -+ = 2.},

and for the following algebraic varieties when n = ke:

Xekn = 6Gp{(21,-,20) €C" : 2jeq1 = -+ = z(341) for 0 < i < k.
1
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We hence provide formulae for the graded Betti numbers and calculate the Castelnuovo-Mumford
regularity of these varieties — a notoriously difficult problem in general [DS02, TT15]. Moreover,
we also provide formulae for these invariants in the cyclotomic case, where the equalities in the
equations defining the above varieties become equalities up to multiplication by an £th root of unity.
Finally, we remark that the Cherednik algebra approach to geometric resolutions was inspired by
the Lie theoretic construction of Lascoux’s resolutions of determinantal varieties (via parabolic
BGG resolutions of unitary modules) [EH04, ZGS14]; it would be interesting to find a purely
geometric proof of the resolutions of our varieties by analogy with [Las78].

A key ingredient to our proofs is to work in the 2-categorical setting of diagrammatic Cherednik
algebras of [Web17]. The diagrammatic calculus is easier for calculation and benefits from a graded
structure. The diagrammatic approach allows us to generalize the original conjecture to higher
levels and arbitrary ground fields; we prove this more general version. We recast the combinatorial
condition in type A for L(A) to be unitary [ES09] as, the partition A lies in the fundamental
alcove of the dominant chamber in an affine type A alcove geometry. In our BGG resolution, A(v)
appears in homological degree d if and only if v is obtained from A by reflecting across d walls
(increasing the distance from the fundamental alcove by 1 at each step). This alcove model vastly
generalizes to the set of all /-partitions whose components each have at most h columns, 2% (h).
For any multipartition lying in the fundamental alcove we then construct a BGG resolution of the
corresponding simple H.(G(¢,1,n))-module. We remark that Griffeth has obtained a combinatorial
description of the f-partitions that label unitary irreducible modules for H.(G(¢,1,n)), [Gri], and
it would be interesting to compare this condition to the one arising from the alcove model.

Working with quiver Hecke algebras furthermore allows us to obtain our results over an arbitrary
field, k. The search for an effective description of the dimensions of simple representations of
symmetric groups over arbitrary fields is a centre of gravity for much research in modular Lie theory
[RW16, LW18a, LW18b]. We show that our resolutions for unitary simples remain stable under
reduction modulo p — in other words the beautiful properties of unitary modules extend beyond
the confines of characteristic zero (a necessary condition for the definition of unitary modules via
bilinear forms to make sense) to “p-unitary simples” for arbitrary fields. Finally, in Theorem 6.4
and Proposition 6.2 we obtain a simple closed form for the Mullineux involution, M, on unitary
simples and explicitly construct this isomorphism — to our knowledge, this is the first time such
an isomorphism has been explicitly constructed (outside of the semisimple case).

This pivots the impact of our result from Cherednik algebras and geometry of subspace ar-
rangements, to modular representations of the symmetric group. As our main result is the first
of its kind for symmetric groups we state it now in this simplified form. For the far more general
statement concerning all cyclotomic quiver Hecke algebras, see Theorems 4.2 and 4.3.

Theorem B. Let k be a field of characteristic p > 0. For DX(\) a “p-unitary simple” we have an
associated kS, -compler Co(N) = @y, Sn(v){l(v)) with differential given by an alternating sum
over all “one-column homomorphisms”. This complex is exact except in degree zero, where

Ho(Cu(N)) = Dy ().

Moreover, the simple k&,-module D¥()\) has basis {cs | s € Std,(\)} where Std,(\) C Std()\) is
the set of p-restricted tableaux. The action on this basis is given in Theorem 4.3. We have that
DE(X) ® sgn = DE(\y) under the map : cs — csy,.-

We thus provide the first instances of BGG resolutions anywhere in modular representation
theory of finite and algebraic groups; in particular the first homological construction of a family of
simple modules for symmetric groups. For Hecke algebras of type B, the simplest examples of our
resolutions have appeared in work of mathematical physicists concerning Virasoro and blob algebras
[GJSV13, MS94, MWO03] and in Brundan—Stroppel’s founding work on categorical representation
theory [BS10, BS11]. The bases of our “p-unitary simples” first appeared in work of Kleshchev,
Ram, and Ruff [Kle96a, Ram03, Ruf06], where they received the names of “completely splittable”
and “calibrated” (when ged(p,e) =1 or p = e). We remark that our results for the Hecke algebras
depend only on the quantum parameter e € N and are entirely independent of the characteristic
of the underlying field (for £ = 1 we set e = p in Theorems 4.2 and 4.3 to obtain Theorem B for
symmetric groups).
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The partitions and multipartitions we consider (namely those lying in the fundamental alcove)
have no restriction on their e-weight; calculating the composition series of the corresponding Specht
modules for symmetric groups and Hecke algebras in positive characteristic is far beyond the
current realms of conjecture (which at present have been stretched as far as w(\) < p3 for h =
3 by Lusztig-Williamson [LW18a]). Over C calculating the composition series of these Specht
modules is theoretically possible using Kazhdan—Lusztig theory — however it quickly becomes
computationally impossible — we provide examples of series of Specht modules (of rank n as
n — oo) for which the length of the composition series tends to infinity. Thus Theorem B provide
the only contexts in which we can hope to understand unitary simple modules (see Section 4).

1. DIAGRAMMATIC ALGEBRAS

Fix a charge (e; Ko, ..., f—1) € N x Z'. We now recall the diagrammatic Cherednik and Hecke
algebras of [Web17] and results concerning their representation theory from [BC18, BCS17, BS18].

We define a partition, A, of n to be a finite weakly decreasing sequence of non-negative integers
(A1, A2,...) whose sum, |[A\| = A1 + A2 + ..., equals n. An (-partition \ = ()\(1), . )\(Z)) of n is an
(-tuple of partitions such that [AM| + - + |A\O| = n. We will denote the set of {-partitions of n
by 2. Given \ = ()\(1), A2 )\(8)) € 2!, the Young diagram of ) is the set of nodes,

{(r,e;m) | 1 <e<AMY,

r

We refer to a node (r,c¢,m) as being in the rth row and cth column of the mth component of A.
Given a box, (r,¢,m), we define the content of this box to be ct(r,c,m) = K, + ¢ —r and we
define its residue to be res(r,c¢,m) = ct(r,c,m) (mod e). We refer to a box of residue i € Z/eZ
as an i-box. We refer to a node of residue i € I as an i-node. Given A\ € 2, we let Rem()\)
(respectively Add(A)) denote the set of all removable respectively addable) boxes of the Young
diagram of X\ so that the resulting diagram is the Young diagram of a ¢-partition. Given i € I, we

let Rem;(\) € Rem(A) and Add;(A\) € Add(X) denote the subsets of boxes of residue i € I.

Each charge gives rise to a different ordering on 2, and hence a different Fock space, a different
(diagrammatic) Cherednik algebra, and a different lens through which to study the quiver Hecke
algebra [Bow]. These charged ordering on & are given as follows:

Definition 1.1. Given k € Z° such that 0 < k; — Kit1 < e we write (r,c,m) <, (r',d,m’) if
res(r,c,m) = res(r’, ¢/, m’) and either

(i) ct(r,e,m) < ct(r’,/,m’) or
(i1) ct(r,e,m) = ct(r’,c,m’) and m > m’

For \,u € 2%, we write i <, X if there is a bijective map A : [\] — [u] such that either
A(r,e,m) <y (r,e,m) or A(r,c,m) = (r,c,m) for all (r,c,m) € \.

Definition 1.2. Given A\ € 22!, we define a tableau of shape X to be a filling of the boxes of the
Russian array of A with the numbers {1,...,n}. We define a standard tableau to be a tableau in
which the entries increase along the rows and columns of each component. We let Std(\) denote
the set of all standard tableauz of shape A € 2.

Definition 1.3. Given A € 22 we let t* € Std()\) be the tableau obtained by placing the entry
n in the least dominant removable box (r,c,m) € X and then placing the entry n — 1 in the least
dominant removable box of A\ {(r,c,m)} and continuing in this fashion.

Definition 1.4. For h > 0 we say that k € Z* is h-admissible if h < r; — kj<efor0<i<j<H{.

Remark 1.5. For h > 0 and k € Z' h-admissible the dominance ordering in Definition 1.1 is
a coarsening of the usual c-function ordering on the Fock spaces of Foda—Leclerc—Okado—Thibon—
Welsh [Web17, Bow|. This is the only ordering for which we have a closed form for a labelling of the
simple modules for the quiver Hecke algebra [FLOT99] (in other words, a labelling of the component
of the sA[e crystal containing the empty £-partition). Notice that this combinatorial ordering and the
algebraic structures it underlies are completely different from the classical dominance order and the
(graded) cyclotomic q-Schur algebra [DJMI8, HM10, SW11]; see [Bow, Webl7| for more details.
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Given h € N, we let Z2¢(h) denote the subset of 22! consisting of those (-partitions which have
at most h columns in each component, that is

PLh) = {h= OO A A A" < hfor 1 <m < 0}

Given A € 22, we define its residue sequence, res(\) to be the sequence obtained by recording the
residues of the boxes of A according to the dominance ordering on boxes.

Definition 1.6. Let ¢ < L. To (r,c,m) € X we associate em) = ct(r,e,m) —m/l — (r + c)e.
Given \ € ,@f;, we let I§ denote the disjoint union over the I’(ﬁr,c’m) for (r,c,m) € \. We define a

k-diagram of type G(£,1,n) to be a frame R x [0, 1] with distinguished solid points on the northern
and southern boundaries given by Iy, and I for some A, pu € PL and a collection of solid strands
each of which starts at a northern point and ends at a southern point. Fach solid strand carries a
residue, i € Z/eZ, say (and we refer to this as a solid i-strand). We further require that each solid
strand has a mapping diffeomorphically to [0, 1] via the projection to the y-axis. Fach solid strand
is allowed to carry any number of dots. We draw

(i) a “ghost i-strand” 1 unit to the right of each solid i-strand and a a “ghost dot” 1 unit to
the right of each solid dot;

(13) wvertical red lines with x-coordinate kpy, —m/l € Q each of which carries the residue Kk, in
Z]eZ for 1 < m < £ which we call a red Ky,-strand.

Finally, we require that there are no triple points or tangencies involving any combination of
strands, ghosts or red lines and no dots lie on crossings. We consider these diagrams equivalent if
they are related by an isotopy that avoids these tangencies, double points and dots on crossings.

0 2 0 1 00
FIGURE 1. A k-diagram for £ = 1 and s € Z with northern and southern loading I¥ for w = (1%).

Definition 1.7 (Definition 4.1 [Web17]). We let A, (k) denote the k-algebra spanned by all k-
diagrams modulo the following local relations (here a local relation means one that can be applied
on a small region of the diagram). The product didy of two diagrams di,ds € A, (k) is given by
putting di on top of da. This product is defined to be 0 unless the southern border of di matches
the northern border of do, in which case we obtain a new diagram in the obvious fashion.

(D1) Any diagram may be deformed isotopically; that is, by a continuous deformation of the
diagram which avoids tangencies, double points and dots on crossings.

(D2) Any solid dot can pass through a crossing of solid or ghost i- and j-strands for i # j.
Namely:

(D3) We can pass a solid dot through a crossing of two like-labelled solid or ghost strands at the

expense of an error term:

i i i i i i i i i i
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(D4) For double-crossings of solid strands with i # j, we have the following local relation:

Performing relation (D) implicitly involves undoing the a corresponding double-crossing
of ghost strands at the same time (which we do not picture) and vice versa.

(D5) If j # i — 1, then we can freely pass ghosts through solid strands. We have the following
local relations:

1-1 1 -1 1 i 11
(D7) Solid strands can move through crossings of solid strands freely. In other words, solid strands
satisfy the naive braid relation:

i ok i j k

for any i,j,k € I. Performing relation (D7) implicitly involves resolving a braid of three
ghost strands at the same time (which we do not picture) and vice versa.
(D8) We can pull a solid i-strand through a ghost-crossing at the expense of an error term.

1 11 4 i 1-1 1

i;1 % iil z‘;1 7 i;1 iil 7 iil
Ghost strands and ghost dots may pass through red strands freely. For i # j, the solid i-strands

may pass through red j-strands freely. If the red and solid strands have the same label, a dot is
added to the solid strand when straightening. Diagrammatically, we have that

T ) Gl )

for i # j and their mirror images. All solid crossings and dots can pass through red strands, with
a correction term.

T K
LR XAK
X X XX

(D13) Any idempotent in which a solid strand is n units to the rightof the rightmost red-strand is
referred to as unsteady and set to be equal to zero.
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Given \ € Qzﬁ and ¢ € I, we have an associated idempotent 1%\ given by the diagram with
northern and southern points I, no crossing strands, and northern/southern residue sequence of

the diagram given by i € I"™. If the residue sequence is equal to that of the partition, res()\), then

we let 1y := lf\eS(A). We define the diagrammatic Cherednik algebra, A, (k) to be the algebra

An(’{') = E+An(/€)E+ where E+ = Z)\Eﬁ”f; ]_)\_

Definition 1.8. Let A\, u € P.. A A-tableau of weight u is a bijective map T : X\ — Ih. We
let T(\, p) denote the set of all tableaux of shape \ and weight p. We say that a tableau T is
semistandard if it satisfies the following additional properties
(1) T(1,1,m) < Ky,

(#) T(r,e,m) < T(r—1,¢,m)—1,

(131) T(r,e,m) < T(r,c—1,m)+ 1.
We denote the set of all semistandard tableauzr of shape \ and weight p by SStd(A\, p1). Given
T € SStd(\, i), we write Shape(T) = X. We let SStd,} (A, ) C SStd, (A, 1) denote the subset of
tableauz which respect residues. In other words, if T(r,c,m) = (r',c,m') for (r,c,m) € X and
(r',d,m’) € p, then Ky +c—1 = Kpy + ¢ — 7' (mod e).

Definition 1.9. Given S a tableau of shape A and weight p, we let Cs denote any diagram tracing
out the bijection S : [\] — I} using the minimal number of crossings. Given S, T a pair of tableau
of shape X (and possibly distinct weights) we set Cst = CsCT where Cy is the diagram obtained
from Ct by flipping it through the horizontal axis.

Theorem 1.10. The R-algebra A, (k) is a quasi-hereditary graded cellular algebra with basis
{Cs7|S € SStd(\, ), T € SStd(\, v), A, p, v € 2L}
and the subalgebra A, (k) is a quasi-hereditary graded cellular algebra with basis
{Cs7|S € SStdt(\, ), T € SStd™ (A, v), A, u, v € 2L},

For both algebras, the involution is given by x and the ordering on 2% (h) is that of Definition 1.1.
We denote the corresponding left cell-modules for A, (k) and A, (k) by A(X) and A(X) respectively.
The modules A(X) and A(X) have simple heads, denoted by L(\) and L(\) respectively.

The standard tableaux Std(\) form the predictable subset of semistandard tableaux of weight
w = (1") as follows. Let A € 2L, If s € Std()\) is such that s(ry, cx, mi) = k for 1 < k < n, then
we let S € T(A\,w) denote the tableau S : A\ — w determined by S(r, cx, my) = If;. 14 We have a

bijective map ¢ : Std(A) = T (A, w). given by ¢(s) =S.
Definition 1.11. We define the Schur idempotent, E,,, and quiver Hecke algebra, R, (k), as follows
Eo=> 1, and Rp(k) = E,An(k)Es,.
ielm
Theorem 1.12 ([Bow]). The algebra R, (k) admits a graded cellular structure with respect to the
poset (PL,1>), the basis
{est == Cys) o) | A € P55t € Std(N)},
and the involution x. We denote the left cell-module by Sp(\) = {cs | s € Std(A)}

When proving results on homomorphisms, the algebra A, (x) is smaller than A, (k) and much
easier for computation. We shall then (trivially) inflate these results to A, (x) and apply the Schur
functor to obtain the corresponding result for R, (k).

We have an embedding R, (k) < R,+1(k) and Ry,41(k) is free as a Ry, (k)-module. We let
res’ ™ : R, 1(k)-mod — R, (k)-mod ind”™! : R, (k)-mod — Ry 1(k)-mod

denote the obvious restriction and induction functors. We post-compose these functors with the
projection onto a block in the standard fashion. This amounts to multiplying by an idempotent

=41,y —1,T)
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for r € I. We hence decompose these restriction/induction functors into

n+1

r-res! ™! = E, o res!' ™!

: n _ : n
" r-ind;,_; = E; oind;,_;

Finally we recall a simple case of [Bow, Theorem 6.1]. If A has precisely one removable r-box,
O € Rem,(A), then we set E,.(A) = A — O and we have that r-res]_;(Sp(\)) = Sp—1(A —0).

n—1

Remark 1.13. The algebra A, (k) admits a Z-grading [Web17, Defintion 4.2]. We do not recall
this explicitly here, but in Section 2 we shall encode this grading using the path combinatorics of
[BC18]. We let t be an indeterminate over Zso. If M = @rez My is a graded k-module, we write

dim (M) = 3.z (dimy (M) )t~

Finally, we briefly recall from [BC18, Theorem 4.9] that for the above three algebras, there are
graded Morita equivalences relating the subcategories of A, (k)-mod, A, (k)-mod, and R, (x)-mod
whose simple constituents are labelled by £2%(h). In particular

Hom g, () (A1), A(A)) = Homg,, () (A (1), A(N)) = Homp,, () (Sn (1), Sn(A)) (L.1)

for \,u € 2%(h). This allows us to focus on the algebra A,(x) where we have the benefit of
a highest weight theory which is intimately related to the underlying alcove geometry. Both
isomorphisms are simply given by idempotent truncation from A, (k).

2. ALCOVE GEOMETRIES AND BASES OF DIAGRAMMATIC ALGEBRAS

In Subsection 2.1, we recall the alcove geometry controlling the subcategories of representa-
tions for quiver Hecke and Cherednik algebras of interest in this paper. In Subsection 2.2 we
cast the semistandard tableaux for diagrammatic Cherednik algebras in this geometry; this path-
combinatorial framework will be essential for our proofs. In Subsection 2.3 we cast the standard
tableaux combinatorics of the quiver Hecke algebra in this geometry — this allows us to define the
e-restricted tableaux which we will prove provide bases of simple R, (x)-modules in Section 4.

2.1. The alcove geometry. Fix integers h,¢ € Z-og and e > hf. For each 1 < ¢ < h and
0 < m < £ welet ey, denote a formal symbol, and define an ¢h-dimensional real vector space,

Ep,e = @ Rehm+i
1<i<h
o<m</t

We have an inner product (, ) given by extending linearly the relations
(Ehmis €ht+j) = 05 j0tm

for all 1 < 4,7 < hand 0 < m,t < ¢, where §; ; is the Kronecker delta. We let ® and ®; denote
the root systems of type Ag,_1 and Ap_1 X Ap_1 X ... Ap_1 respectively which consist of the roots

{e€hm+i — €nt+j | 1 <4, < hand 0 < m,t < £ with (i,m) # (j,t)} and
{ehm+i — €hms | 1 < 4,7 < h with i # j and 0 <m < ¢}
respectively. We identify \ € @fb(h) with a point in Ej, via the transpose map
()‘(1)1 R )‘(6)) = Z ()‘(m)),@rgh(m—l)-i-ia (21)

1</l
1<j<h

(where the T' denotes the transpose partition). Given r € Z and o € ® we let s, e denote the
reflection which acts on Ej, o by

Sare® =2 — ((z,0) — re)a
and we let W€ and Wy denote the groups generated by the reflections
SZ{Sa7re|a€(I>,T€Z} 30:{5a70\oz€<1>0}

respectively. For e € Z~( we assume that x € I is h-admissible. We shall consider a shifted action
of the Weyl group W€ on Ep; by the element

pi=(p1,p2,....p0) € I", pi:= (e —kie—k;—1,...,e —k; —h+1) € I",
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that is, given an an element w € W€, we set w -, z = w(x + p) — p. We let E(a,re) denote the
affine hyperplane consisting of the points

E(o,re) = {z € Epy | sare - =z}
Note that our assumption that x € I is h-admissible implies that the origin does not lie on any
hyperplane. Given a hyperplane E(«, re) we remove the hyperplane from Ej, ¢ to obtain two distinct

subsets E~ (o, re) and E<(«,re) where the origin © € E<(a,re). The dominant Weyl chamber,
denoted E% ¢» 18 set to be

Ep,= () E<(a,0).
acdg
Definition 2.1. Let A € Ep, 4. There are only finitely many hyperplanes lying between the point
A € Epy and the point v € Ep . For a root €; —ej € ®, we let €5i_5].(/\, v) denote the total number
of these hyperplanes which are perpendicular to ¢; —e; € ® (including any hyperplanes upon which
Aorv lies). Welet LA, v) =3 iz icpolei—e; (N V). Welet L(A) == £(X, @) for © the origin and
refer to €(\) simply as the length of the point X € Ey, 4.

Definition 2.2. Given n € N, we define the fundamental alcove to be
Fh(h) ={x e 2L | t(\) = 0}.

The name “fundamental alcove” is clearly inspired by classical Lie theory. We stress that Specht
modules from the fundamental alcove can become arbitrarily complicated and that understanding
the decomposition numbers dy, = [Sy(A) : Dyp(p)] for A € Fi(h) and p < A is, in general, a
hopelessly difficult task (see Remark 4.4 and Example 4.5). This might surprise classical Lie
theorists, but this is because we are working in the Ringel dual setting, see [BC18] for more
details.

Definition 2.3. Given a map s : {1,...,n} = {1,...,¢h} we define points S(k) € Ep, 4 by S(k) =
> 1<ick Esi) for 1 < k < n. We define the associated path of length n in Ep 4 by
S = (5(0),5(1),5(2), ..., S(n)),

where we fiz all paths to begin at the origin, so that S(0) = ® € Ep, o. We let S¢j, denote the subpath
of S of length k corresponding to the restriction of the map s to the domain {1,..., k} C{1,...,n}.
We let Shape(S) denote the point in Ep ¢ at which S terminates.

Remark 2.4. Let S be a path which passes through a hyperplane Eq o at point S(k) (note that k is
not necessarily unique). Let T be the path obtained from S by applying the reflection sq e to all the
steps in S after the point S(k). In other words, T(i) = S(i) for all 1 < i < k and T(i) = sqre - S(4)
for k <i < n. We refer to the path T as the reflection of S in Eq e at point S(k) and denote this
by sk . -S. We write S ~ T if the path T can be obtained from S by a series of such reflections.

a,re

Definition 2.5. Let T denote a fized path from ® to v € 22%(h). We let Path, (), T) denote the
set of paths from the origin to A obtainable by applying repeated reflections to T, in other words

Path, (A, T) ={S|S(n) =\,S~T}.
We let Path" (X, T) C Path,(\, T) denote the set of paths which at no point leave the dominant
Weyl chamber, in other words
Path (A, T) = {S € Path,(\, T) | S(k) € Ef, for all 1 <k < n}.
Definition 2.6. Given a path S = (5(0),5(1),5(2),...,S(n)), we define d(S(k),S(k—1)) as follows.
For a € ® we set do(S(k),S(k — 1)) to be

o +1 ifS(k—1) € E(a,re) and S(k) € E<(«,re);
o —1ifS(k—1) € EZ(a,re) and S(k) € E(a, re);

o 0 otherwise.

We set deg(S(0)) = 0 and define
d(S(k—1),5(k)) = Y da(S(k—1),5(k)) and deg(S)= > d(S(k),S(k—1)).

aced 1<k<n
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FIGURE 2. The black points label the 3-partitions of a block of Rg(0,1,2) with e = 4. The origin
is labelled as ®. There are three separate paths drawn on the diagram belonging to Path™*((1* | @ |
14), TA%1219)) Patht((16 | 1 | 1), T@11%12)) and Path™((12 | 1 | 1%), T@21%). These are coloured
red, blue, and violet respectively. We have labelled some of the points in the diagram for reference.

2.2. Semistandard tableaux as paths. Let e > hf. We now provide path-theoretic bases for
the diagrammatic Cherednik algebra. Let u € 2 (h). We define the component word of 1 to be
the series of /-partitions

d=u

(0) £X1, () +Xe ) £Xa Aot 1) AN ) )

where Xy, = (rg, cg, my) is the least dominant removable node of the partition pk) e g@,ﬁ(h). Using
the component word of u, we define a distinguished path T# from the origin to p as follows

T = (+€X1,+€X2,...,+€Xn).

For A € 2L(h), we let

S = (4+¢evy, +evy, - - -, ey, ) € Path(\, TH).
From S, we obtain a tableau S € T(\, ) by setting S(X) = Iy,. We freely identify paths and
tableaux in this manner (and so we drop the overline). Under this identification, we obtain a
bijection SStd™ (), u) > Path™()\, T#) and hence we can rewrite the basis of Theorem 1.10 in
terms of paths (see [BC18, Theorem 5.21]) as follows. For A € £2¢(h) we have that

A(N) = {Cs | S € Patht(\, T*), u € 2%(h)}. (2.2)

Definition 2.7. Let \,u € P5(h) and suppose that X > p. Then we let Th € Path(X, T#) denote
the unique path satisfying
deg(T4) = £(1) — £(N).

The above definition is well-defined by [BC18, Proposition 7.4] and these paths will be very
useful later on. Examples of this path/tableau for three distinct pairs (\, ) are given in Figure 2.

Remark 2.8. If e = h¥, then all the results of this paper go through unchanged modulo minor
edits to the proofs. Annoyingly, the definition of the degree and reflections of paths require some
tinkering (akin to the case e = 0o case covered in detail in [BC18, Section 6.4]). In what follows, we
only discuss the case e > h{ explicitly. For Cherednik algebras of symmetric groups, we provide an
explicit and independent proof of our main result in quantum characteristic e = h in Subsection 7.2.
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2.3. Standard tableaux as paths. Given A\ € 2%(h), a tableau t € Std()\) is easily identified
with the series of partitions t(k) for 0 < k < n, which in turn determine a path in EZ ¢, via the map

in equation (2.1). This provides path-theoretic bases of Specht modules S,,(\) for A € Z2¢(h). We
now restrict our attention to A € F£(h) C 22 (h) and define the subset of e-restricted standard
A-tableaux which will index the basis of the simple module D,,()\) for A € F(h).

Definition 2.9. Given A € F.(h), we say that s € Std(\) is e-restricted if s(k) € Fi(h) for all
1 <k <n. Welet Stde(\) denote the set of all e-restricted tableauz of shape A.

Given \ € F.(h), we say that a node (] € Rem()\) is good if A — O € F._(h) (we remark that
this is easily seen to coincide with the classical definition of a good node). We let Fp () denote
the set of all good removable nodes of A. The following result is obvious, but will be essential for
the proof of our main theorem.

Proposition 2.10. Given A € F.(h), we have that (cs,ct) = dsy fors,t € Stde(\). Furthermore,

k{cs|s € Stde(\)} € Dn(A)  and  Stde(N) ¢+ | | Stde(A—0).
OeFr(N)

Proof. For A € F.(h), we have that s € Std.(\) if and only if s},,_; € Std,(v) for some v €
Ft_,(h); the bijection follows. To see that {cs | s € Stde(\)} € DE()) and that {(cs,ct) = Js; for
s,t € Stde(\), it is enough to show that

176) 8, (1) # 0 implies v > X or v = A and 17°6) 5, (A) = ¢ (2.3)

for s € Stde(A). To see this, assume that ¢s for s € Std.(\) belongs to some simple composition
factor L(v) of S, (A) for v # A; in which case A > v and

SO L) C 159608, (1) # 0

which gives us our required contradiction. Now we turn to the proof of equation (2.3). If v < A,
then v € 2% (h). Given t € Std(v) with t(ry, cx, mi) = k, we identify t with the path

(+€hm1+617 +5hm2+627 +... ) +5hmn+cn)-
Given t € Std(v), we have that
Path®™ (A, t) = {u € Std(\) | res(u) = res(t)}.

Given any s € Stdc(\), we have that s(k) € Ff(h) for all 1 < k < n and hence s(k) ¢ E(a, me) for
any a € &, m € Z. Hence

s¢ | J Patht(\1) (2.4)
ve 2L (h)
teStd(v),t#s
and the result follows. O

Example 2.11. Let h = 1 and ¢ = 3 and k = (0,1,2) € (Z/4Z)? as in Figure 2. The unique
A € F3(h) is given by A = ((13), (13), (12))}. The tableau t* is the unique element of Std.()\) and
hence Dg(\) is 1-dimensional.

3. ONE COLUMN HOMOMORPHISMS

In Subsection 3.1 we construct the maps which will provide the backbone of our BGG complexes.
We then consider how these homomorphisms compose (in terms of “diamonds”) and it is these
in-depth diagrammatic calculations that provide the technical crux of the paper: In Subsection 3.2
we classify the diamonds in terms of pairs of reflections in the alcove geometry; in Subsection 3.3 we
localise to consider the p weight-spaces of cell-modules A(\) for p, A two points in a given diamond;
and finally in Subsection 3.4 we use these results to prove that, within a diamond, composition of
homomorphisms commutes (up to scalar multiplication by 41) or is zero (for degenerate diamonds).
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3.1. One column homomorphisms. Let e > h/. Given 1 <i < j < hf and o, B € PL(h), we
suppose that £(«) = £(8) —1 and that 5> «. Then there exists a unique hyperplane E(e; — ¢35, i1;5€)
for 1 <d,j < ht and p;; € Z such that s;_j,, (o) = 8. By definition, this amounts to removing a
series of nodes from the jth column of o and adding them in the ith column of « to obtain 8 € 2!
or vice versa. By not assuming that ¢ < j, we can use the notation

Si_jvﬂije(a) =p

to always mean that S is obtained by removing a series of nodes from the jth column of o and
adding them in the ith column of 8. There are two distinct cases to consider. The most familiar
case (to many Lie theorists) is that in which £, ¢, (a, 8) = 1. In other words p;; € Z is the unique
value such that

a€E>(6i*6]’,,uij6) BEE<(61*6]',,U,U6).
We refer to such pairs («, §) as maximal pairs. These pairs include those related by a reflection

“through a common alcove wall”. The other case (which should be familiar to those who study
blob and Virasoro algebras) is that in which

eai—aj (o, B) = 2€5i_8j (o) =1

and so E(g; — €5, ju55€) is just one of many hyperplanes lying between o and j3; these pairs (a, )
correspond to pairs which are as far away as possible in the alcove geometry. We refer to such pairs
(v, B) as minimal pairs (and they only exist for £ > 1). We wish to distinguish between such pairs.
Therefore, for a minimal (respectively maximal) pair we set m;; := ;5 (respectively M;; := ;).
We have that m;; € {0, 1} for any pair a, 8 € 2 (h).

Example 3.1. Let h =1, { =3 and k = (0,1,2) as in Figure 2. The pair (1% | @ | @),(1? | 7 |
19)) is a minimal pair. There are three hyperplanes parallel to Ec,—e5,0 separating these two points.

Remark 3.2. Note that, near the origin, it is possible that a reflection is both mazimal and
minimal. For example, consider the pair (15| @ | 12) and (1* | @ | 1*) pictured in Figure 2.

Theorem 3.3. Let e > hl and suppose that k € I is h-admissible. Let o, 8 € PL(h) be such that
£(B) =4€(a) = 1. Let 1 <i,j < ht and pi; € N be such that s;_j,,.(a) = 8. We have that

a\anp={Xy,Xs,...., Xk} and B\anp={Y1,Ys...,Y;}

with Xo > Xoi1 (respectively Y, > Yoi1) for 1 < a < k is a sequence of nodes belonging to the jth
column of a (respectively ith column of B). There is a unique TG € SStd™ (B, ), as follows

T5(0) =

O f0eang
Ve if0= X,

We have Homy,, () (A(a), A(B)) = k{pG} where ¢F is determined by pg(Cra) = Crg. We define
tons € Std(«) and tfm/g’ € Std(B) to be the unique standard tableaux of given shape determined by
tang(r,c,m) = t* % (r c,m) = tfmﬁ(r, c,m)
for (r,e,m) € an . We have that ¢%‘(Ctzmﬁ) = Cro determines the corresponding unique homo-

morphism in Hom n(a), Sy . e homomorphisms an are both of degree t*.
phism in Homp, () (Su(c), Su(B)). The h phisms ¢ and ¢3 are both of degree 1!

Proof. For the statement for A,(x) see [BC18, Corollary 10.12]. By the definition of t§ 5, we
have that Path(\,t5-5) = 0 unless A = «. Therefore e(ty5)A(A) = 0 unless A & . Therefore

G
Now, we have that

€ L(a) and thus it is enough to define a homomorphism, @3 say, by where it sends e,

C‘p(tgmﬂ)CTa =C S An(lﬁ)

5 e(th )

and so the result follows by applying the Schur idempotent. U
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3.2. Diamonds formed by pairs of one-column morphisms. We wish to consider all possible
ways of composing a pair of such one-column homomorphisms. Let a, 3 € 22%(h) be such that
B> a and (a) = £(5) + 2. There are six such cases to consider which we now list. The first five
cases of homomorphisms should be familiar to all Lie theorists. We first consider the cases in which
a, B differ in precisely three columns. In other words, a, 5 belong to a plane R{e; —¢;,e, —¢;} for
some 1 < 14,7,k < h¢ and (without loss of generality) we can assume that
(a,g5) > (a,g5) > (o, ep). (3.1)
(1) We have 3 := s u;,e8j—iuje() and 7 := s;j_; ,..c(a). There are two subcases
(a) 8= sp—jupe() € PL
(b) 0= sk—jue(c) & Pps
(2) we have 8 := Sk jy eSk—j,up;e(@) and v := sg_j 4, .o (). There are two subcases
(@) 0:= sj-ipye(@) € Zp;
(b) 0:= sj-ipe(a) & Pp;
(3) 0 := Sj_l'”ujie(a) and v 1= Sp_j ye(a) B = sk_j,ukje(é) = Sj—i,ujie(7)7 all belong to QZfL;
(4) 6 := sk—jupe(a), and v 1= sp_j yye(@) B 1= Sjip;ie(6) = Sk—jup e(7), all belong to PL.
We now assume that « and 3 differ in four columns (so that we cannot picture them belonging to
a plane). Without loss of generality, we assume that

(o, €5) > (a, €5) (o, e) > (e g).
This is the case in which
(5) 7 = Sj—iyyie(N), 0 := S1kpe(@), and B 1= si_j ue(¥) = 8j—ip;e(0) all belong to FL.
Finally, we have one additional case to consider in which « and g differ only in 2 columns. In other
words « and [ belong to a line R{e; —¢;}.
(6a) We have B = s;_j (1_m,,)eSj—i,mse(@) and v := s;_i prj,e(a) belong to PL and
(1) 0 := 8j—im;;e(a) does not belong to PL
(i7) For £ > 1 we have that & := s;_jm,,c() does belong to Z;
(6b) For £ > 1 we have that 8 := Si jmjeSj—iMue(@), and v = sj_jre(a) and 0 =
Sj—i;me(@) belong to #f and cannot be written in the form specified in case (6a).
In the “does belong to 22¢” cases, we get a diamond in the complex and so we refer to these
4-tuples as diamonds and (o, 3) as a diamond pair. In the “does not belong to Z2.” case, we get a
single strand in the complex, and so we refer to these 3-tuples as degenerate-diamonds or strands.

The first four cases can be pictured by projecting into the plane R{e; —¢;,e — &;} as depicted in
Figure 3.

+ei

+e;

+ek

FIGURE 3. The first four cases of diamond pairs («, ).

In the first two cases, the lightly coloured-in region denotes the “missing” region of (1b) and
(2b). For diamonds formed entirely of maximal pairs, the pictures in Figure 3 consists only of six
e-alcoves and their walls; thus the hyperplanes pictured are the only hyperplanes between o and 3.
See Figure 2 and equation (3.4) for such an example. For (degenerate) diamonds involving one or
two minimal pairs, there can be many other hyperplanes between o and 8 which are not pictured.
See Figure 2 and equation (3.3) for such an example. The fifth case arises from a pair of orthogonal
reflections and cannot be pictured in 2-dimensional space, however it is also the easiest case and so
we do not lose much by being unable to picture it. The subcases of (6) for which ¢ > 1 are easily
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pictured and should be familiar to those who work with Virasoro and blob algebras. See Figure 2
and equation (3.2) for such an example (many further examples can be found in [BCS17]).

Example 3.4. Let h=1 and { =3 and k = (0,1,2) as in Figure 2. The diamond consisting of

a=1%ole) F=01%2]|1%) 7=(0°|2]1®) o=(1"]2|1°. (3-2)
is as in case (6a). The diamond consisting of the 3-partitions,
a=(@|1%2) B=01°1]1) y=01"|g[1]) =(2|17]1). (3-3)
is as in case (4) and is a mizture of minimal and maximal pairs. Let
a=(@]2|1%) B=(2[1]15) 4=(@|1*|1%) 6=(%|o|1. (3.4)

The diamond («, 3,7,0) is as in case (4) and consists solely of maximal pairs.

Remark 3.5. We added a clause so that cases (6a) and (6b) are mutually exclusive. Without that
clause, these cases would have a non-trivial intersection for points near the origin (see Remark 3.2).
We have added this clause as these two subcases are genuinely different, see Proposition 3.8 below.

Definition 3.6. Let (a, ) be a non-degenerate diamond pair. We define the (o, 3)-vertex to be
E=(anpBnyné) e Z(h).

In case (6), there exists 0 < y < e and x > 0 such that (a« =&, €;) = xe+y. In cases (1), (2) and (4),
we let We denote the copy of &3 generated by the reflections through the hyperplanes E(j — i, jj:e),
E(k — j, pxje), and E(k — 1, puyie). Given s € We we let

T = <Ck - §7Ei> = <S<CM) - €7Es(i)> Y= <Oé - §7 8]) = <S(C¥) - 57 88(j)>
We let {Xls(a),XQS(a),...,Xi(a)} denote the final x nodes of the s(i)th column of s(a) and let
{Yls(a),Y;(a), ...,sz(a)} denote the final y nodes of the s(j)th column of s(«).

Remark 3.7. In cases (1), (2) and (4) we have that 0 < y < e and res(Xy) = res(Yy) for
1 <k < min{z,y}.

3.3. Paths in diamonds. We shall now consider reflections of the corresponding paths in the
hyperplanes described in our 6 cases above. We remark that each of these paths passes through
each hyperplane at most once. Therefore, we simplify our notation of Remark 2.4 by dropping the
superscript on the reflection. We now consider the (dominant) paths in Path(5, ). In case (la)
there at two paths

a . o . (e Qo . @
B8 = s]*kvukjesk*%ukie(-r ) and TB T SJ—%ujz'eSk*J,Mkje(T )

of degrees 0 and 2 respectively, which are both dominant. Generic examples of such paths (drawn
from the point at which they meet the hyperplane E(k — j, ux;e) onwards) are pictured below

IR A

and are of degree 0 and 2 respectively. In case (2a) there is a unique path

o, (6%
TB T sk—Z7l,Lk268k—],},LkJ8(T )

which is of degree 2 and dominant. A generic example of such a path is pictured below.
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In each of cases (1b) and (2b) there is a single path
Sj*kwjkesk*i,#kie(-ra) and Sj—i#jiesk*i,#kie(-ra)

of degree 2, neither of which is dominant. These are pictured below

+ei
+e;

In each of cases (3) and (4) there is a unique path

a._ . o o oL . @
T3 o= Sk—junseSj—ipsie(T%) 5 = Sj—iuizeSkh—jupze(TT)

respectively, of degree 2. Generic examples of such paths are pictured below

+€&i

STUARA

In case (5), the reflections are orthogonal and there is a unique (dominant) path and if we assume
(without loss of generality) that (a,e;) > (o, eg), then this path is given by

Tg = Sl—k,,ulkesj—i,ujie(—ra)

and is of degree 2. In case (6a) we have (z—1) distinct dominant paths of degree 0 given as follows,

S, — {Si—j,(Mij—x—1)68¢—j,(Ml—j—X)e(Ta) for m;; =1

Si—j,(Mij+X+1)68i—j,(Mij+X)6(Ta) for mg; =0
for 1 < x < z (for z as in Definition 3.6); we also have a unique path of degree 2 given by
T = iji,(lfmji)esi—ﬁmije(Ta) € Path(p, T9)
which is dominant if and only if we are in case (6a)(i7). In case (6b) we have a unique (dominant)
path
TG = 8ij 2myi—M;p)eSi—i;mjie(T%)

of degree 2. Using equation (2.2), we now summarise the above as follows.

Proposition 3.8. Let o, 3 € 2(h) be a pair such that B> a and £(a) = £(B) + 2. We have that

(

0 in cases (1b) and (2b)
241 in case (la)
dimy (1,A(B)) = | 2 in cases (2a),(3), (4),(5) and (6b)
x—1 in case (6a)(7)
Kt2 +x—1 in case (6a)(ii)

where © € Z~q is defined in Definition 3.6 and t is the indeterminate over Z=q from Remark 1.13.

Example 3.9. In Figure 2, we have that the tableaur

T@elz) _ ()

8 8 7 s
oty = 5375y © 5501 gy (TET2120) - THEE) = 57 W (T0elo)

© S3_1,Ms; (14]g14) = S3—-1,ms1 © S1-2,M1»

and  TE22) _ (6) 6) (p0tiele))

(14|2)14) — S1-2,m12 © 93-2,maz

are as in cases (6a), (4), and (4) respectively and are all of degree t2.
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3.4. Compositions of one-column homomorphisms in diamonds. We now consider the
composition of the one-column homomorphisms in terms of the path basis constructed in Propo-
sition 3.8. Let T € T(\, p) and T(X) =1I§ € Zle] for X € A\, Y € p; we abuse notation by writing
either T(X) =Y or T(X) =I{. From Proposition 3.8, we deduce the immediate corollary.

Corollary 3.10. The composition of two one-column homomorphisms is zero in the degenerate
cases, in other words cases (1b), (2b) and (6a)(i).

Proof. Cases (1b) and (2b) are clear. Case (6a)(i) follows because the composition of two homomor-
phism of degree t! must be a vector of degree t? and no such vector exists (by Proposition 3.8). O

Proposition 3.11. Let a, 8 € 2% (h) be a pair such that 1>« and £(a) = £(B) +2. Assume that
we are not in one of degenerate cases of Corollary 3.10. We have that
o CTg = CTg CT% i all remaining cases;

o Crg = CTg CT} in all remaining cases except (la), (6), and (4).

Proof. For v € 2¢ (similarly for § € 2¢) it is clearly enough to show that
Tg‘Tg =T3€T(B,) (3.5)
on the level of bijective maps : f — «, and furthermore that if
(r,e,m) > (', ¢, m’) and Tg(r, c,m) < Tg(rl, ¢, m') implies Tg‘Tg(r, c,m) < T;“Tg(r/, d,m’) (3.6)

for any two nodes (r,c,m), (r',c/;m") € B\ £ of the same or adjacent residue. This is simply by the
definition of the bases elements corresponding to these tableaux (and the fact that double-crossings
between strands of non-adjacent distinct residues can be removed by relation (D5)). The cases
listed in the above proposition are precisely those for which equation (3.5) and (3.6) are both true
(in other words, 3.5 and 3.6 both hold in all cases except in cases (1la), (4), and (6) for the product
T?‘/TZ} — which will be discussed separately).

We shall consider case (2), as the other cases are identical. It is clear that S(r,¢,m) = (r,¢,m)
if (r,e,m) € & for Tﬁ for \,u € {a, B,7,6}. Thus it remains to consider the restriction of these
bijections to : B\ & — a \ £ (via both v\ £ and § \ €). We have that

By — By _ B8y _
Tg<Xp) - va Tg(Xerq) - X;+q Tg(yp ) - X;
T =Y TG, = Xy, THOG) = X7
and
) _ ) ) B _ ) 9 v
TB(XI?) =X) THX,.,)=X)., Tﬁ(lff) =Y
TR =Yy TN = Xy, TR = X7
and
_ By _ _
TEX)) =Yy THX,,,) =X, Ti)) =Xy

for 1 <p<yand 1< qg<x—y. Therefore equation (3.5) holds. To see that equation (3.6) holds,
one requires the following observation

B B y vy 5 )
XjDYj YjDXj X; > Y] YjO‘DX]Q‘

for all 1 < 7 < y; one can apply this observation to each of the above tableaux in turn. Thus
equation (3.6) holds, as required. O

It remains to consider the  subcases of (1), (4), and (6) not considered above. In all these
cases, we shall see that equation (3.5) and (3.6) fail. Thus, we must apply some relations in order
to rewrite each product-diagram in the required form. We let A%” (K) = Yoasp An(r)InAn(K).
Given (r,c,m) € «, we let y(r,c,m)1l, denote the diagram 1, with a dot added on the vertical
solid strand with z-coordinate given by I7 . Following [BK09], we set yr = y(k, 1,¢).

(r,e;m)

Proposition 3.12. Let (o, ) be a diamond pair as in case (1a). Then
CTgCTg = —y(X;)lang = (—1)y+1CTg + Agﬁ(/ﬁ}). (3.7)
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Proof. In case (1a), we have TS ng = Sg € T (B, a) as bijective maps. However, the corresponding
product of diagrams has a single double-crossing of non-zero degree; this is between the strand
from X, p 41 on the southern edge to X7 ; on the northern edge and the strand from Yﬁ on the

southern edge to X;’ on the northern edge. In particular, res(X5+1) = res(Yyﬁ) —1, and

X+1<1Y5 TH(X)

) =X Y = Tg(Yyﬁ) TAY,)) = X > X0 = TIX) ).

For 1 < p,p’ < y the strand from XP,  on the southern edge to X, on the northern edge double-

y+p y+p
crosses with the strand from Yp’? on the southern edge to Xl‘)", on the northern edge; since y < e,
we can remove all of the double-crossings for (p,q) # (1,1) using relation (D5). We now resolve
the final double crossing (for (p,q) = (1,1)) using relation the leftmost equality of (D6) and hence

obtain
CTQY‘CT'BY = y(X;+1)1aCS% — Y(X;é)lacsg-

Concerning the former diagram: we pull the dot down the strand and encounter no like-crossings on
the way; hence this term is equal to zero. It remains to prove the second equality in equation (3.7).

We let U, € T(«, 3) denote the map

Xy for (r,c,m) = Xyﬂ
Uy(r,e,m) = Yy for (r,c,m) = Yyﬁ :
S5(r,c,m) otherwise.

We claim that
y(X})1aCsg = —Cy, + AP (k).

To see this, pull the dot at the top of the diagram y(X;)lang down the strand on which it lies

(from X, on northern edge to Yyﬁ on the southern edge) towards the bottom of the diagram. By
Definition 1.7, we can do this freely until we encounter a like-crossing of the form in relation (D3).
Such a crossing involves the aforementioned strand (between points X, and Yy’B on the northern
and southern edges) and some vertical strand of the same residue. Such a vertical strand either
(7) corresponds to a step of the form +e,, for m & {7, j,k} or (i7) is the vertical strand from Xf
on the southern edge to Y;* on the northern edge. In the former case, the resulting error term

belongs to AP (k). In the latter case, we apply relation (D3) to move the dot past the crossing
at the expense of acquiring an error term, which is equal to —Cly,. Finally (in the diagram which
has a dot) we continue pulling the dot reaches the bottom of the diagram, the resulting diagram

again belongs to A5, g (k). Thus the only non-zero term acquired in this process is —Cly, and the
claim holds. If y = 1, then Uy = T3 and we are done. Suppose that y > 1. Consider

(7) the solid strand from Yﬁ 1 on the southern edge to X' ; on the northern edge
(i) the solid strand from X o _, on the southern edge to YO‘ 1 on the northern edge
(797) the ghost strand from Yyﬁ on the southern edge to Y;* on the northern edge.
These three strands together form a triple-crossing as on the right-hand side of the rightmost
equation in relation (D8). Applying relation (D8), we can undo the crossing (at the expense of
multiplication by minus one and an error term with the same number of crossings). Consider the
error term: We are free to pull the ghost strand (of the strand connecting Yyﬁ and Yyo‘) to the left

to obtain a diagram which belongs to A5 A (k). That leaves one remaining non-zero diagram which
differs from —Cy,, in that we have undone the aforementioned triple-crossing; to summarise

y—1 for (r,c,m) = X’B
y(X;)laCSZ =Cy,_, + Aiﬁ(“) with Uy (r,c,m) = Yty for (r,c,m) = Yﬂ

Uy(r,c,m) otherwise.

Repeat this argument until all y crossings have been resolved, the results follows. O
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Proposition 3.13. Let (o, B) be a diamond pair as in case (4). Then
CTQ;C'TZ = (—l)chg + AE'B(K).

Proof. We have that

Xo=Ta(Y)) if (r,e,m) = <p<uz
:Tg(Xg) if (r,c,m) = YB forl<p<z

Yo =Tg(Yy) if (re,m) = +1<q

T4(r,c,m) for (r,c,m) € €

TS o Tg(r, c,m) =

Consider

(7) the solid strand from Y# on the southern edge to X< on the northern edge;
(7i) the solid strand from X2 on the southern edge to Y on the northern edge;

(7i7) the ghost strand of the strand from Y, p Y, .1 on the southern edge to Y% ; on the northern edge.

These strands together form a crossing as on the righthand-side of the rightmost equation in
relation (D8). Undoing this crossing we obtain an error term (corresponding to the diagram on the

lefthand-side of the rightmost equality in relation (D8)) which belongs to Ay, g (k) and another (non-
zero) term. One can then repeat the above argument with the latter diagram (except replacing
the subscript ‘2’ with ‘z — 1’). Continuing in this fashion, we obtain the required result. O

Proposition 3.14. Let («, 5) be a diamond pair as in case (6b). Then
COryCry = (=1)"Crg + A77 ().

Proof. We let {X{, X§, ..., X%, Y, ... ,Yyo‘} denote the final ze + y nodes of the ith column of

a. We let {Xlﬁ, Xg, A eg[;} denote the final ze nodes of the jth column of S and {Ylﬁ7 .. ,Yyﬂ}
denote the final y nodes of the ith column of 3. We have that

T%‘(Yi):X;‘ for (r,c,m) = X; and 1<p<y

TS oTh(r,e,m) = 5( PB) P or (r,¢,m) = 7, and Py
T3 (Xg) =Xy for (r,e,m) =X andy <g<er
Tg(r, c,m) for (r,c,m) €

Consider

(7) the solid strand from Yyﬁ on the southern edge to X on the northern edge;
(73) the solid strand from X, I on the southern edge to Y, on the northern edge;
(7i1) the ghost of the strand from x7 y+1 on the southern edge to X’ ; on the northern edge.

These strands together form a crossing as on the righthand-side of the latter equality in relation
(D8). Undoing this crossing we obtain an error term (corresponding to the diagram on the lefthand-
side of the latter equality in relation (D8)) which belongs to A5” (k) and another (non-zero) term.
One can then repeat the above argument with the latter diagram (except replacing the subscript
y" with ‘y — 1’). Continuing in this fashion, we obtain the required result. O

Proposition 3.15. Let (o, B) be a diamond pair as in case (6a)(ii). Then
CreCry = (—1) DO 4+ AP (k).

Proof. We first fix some notation. We denote the final e nodes at the end of the jth column of
8 by Xl’B, e XE. We denote the final e(z — 1) + y nodes at the end of the ith column of 5 by
x° X0, YY) We let X§, Xg,..., X%, Y, ..., Y denote the final ex + y nodes at

e+1r° > ex?
the end of the ith column of «. Given o € 696 we define U, € T(f, ) as follows,

Us (X5, o) = Us(XD U, (V) =¥ (3.8)

er—q eo(p)—q)
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for 1 <p,<z,0<¢g<e, 0<t<yandsuch that Us(r,e,m) = (r,c,m) for (r,c,m) € {&. We have
that Tg = Ujq for id € &, and S, = U, for 0 = s1s2...5, for 1 < x < z (and so any element of
SStd (S, ) can be written in the form of equation (3.8)).

We now state a claim that will provide the crux of the proof. Set ¢ = s1s3...5, for 1 < x < =.
Given 1 < r < x, we refer to the strand in Cy, from Xg on the southern edge to X7, on the
northern as the principal strand. Let CY; denote the diagram obtained from Cy, by placing a dot
on the principal strand at any point in the interval (I“Xgr, I’“‘X;H) x [0, 1]. For o # s1, we claim that

Oy, = O+ (=)o) (3.9)
Cy,, = Oy, + (=1)°Cu,, (3.10)

modulo Aiﬁ(lﬁl) where 0/ = s189...8._1841--. sy. Diagrammatically, we can think of our claim
as simply a beefed-up version of relation (D3) in which we consider crossings involving collections
of strands (each of size e > 1). We let i = res(X?).

We now prove the claim. First apply relation (D3) to pull the dot through the crossing i-strands
and hence obtain C’G;l plus another term with a minus sign. For this latter diagram, the ghost
of the principal i-strand can be pulled to the left through the crossing solid (i 4+ 1)-strands as in
relation (D8). We hence obtain two diagrams: one with the same number of crossings, and one in
which the crossing of (i + 1)-strands has been undone. The former is zero modulo the stated ideal.
The latter diagram now has a crossing of two solid (i 4+ 2)-strands and a ghost (i 4+ 1)-strand as
in relation (D8). Repeating as necessary, this process terminates with a diagram (occurring with
coefficient (—1)¢) which traces out the bijection of U,s but with many double-crossings.

o If 0 = sy, then all of these double-crossings are of degree zero;
o If o # s1, then precisely one of these double-crossings has non-zero degree: that between the
solid strand from Xeﬁ on the southern edge to X/, on the northern edge and the ghost of the

strand from Xfe_eﬂ on the southern edge to X7, .., on the northern edge.

In the latter case, we resolve this double-crossing as in relation (D8) and obtain two diagrams: one
is of the required form and the other belongs to the stated ideal. In either case, the claim holds.
Having proven our claim, we are now ready to prove the result. We have that

U51-~~Sx—1(XtB) = ge—e—l—t for (Tv Gy m) = Y;}IB and 1 <t <y
TS o Tg(r, c,m) = Usl...sz_l(Yiﬁ) =Y~ for (r,c,m) = Xtﬁ and 1 <t <y
Usi .50 (7“, c,m) otherwise.

Therefore, using y applications of (D8) we obtain a diagram which traces out the same bijection
as Us, .5, , (modulo error terms). However the resulting diagram contains a single degree 2

double-crossing between the solid strand from X2 to X2 (on the southern and northern edges,
respectively) with the ghost of the strand from Ylﬁ to Y1* (on the southern and northern edges,

respectively). Resolving this crossing using relation (D6), we obtain that
CTgCTg = (—1)y+lcusl4.4sm_1 + AZP (k).

We now successively apply equation (3.9) a total of z — 1 times, followed by a single application
of equation (3.10). The error terms all belong to AE'B(/{) and the result follows. O

Theorem 3.16. Let o, 8 € PL(h) be a non-degenerate diamond pair. We have that

(—1)v+t in cases (la)

_1)
-1) in cases (6b)
—1)e@ED+Y i case (6a)(id)

otherwise.

v in cases (4)

<

805& © 4,055 = (‘Og = 80‘75,’%5()0'0; o 9023 where €a,B,7,6 =

_ o~~~

Moreover the map ¢f is determined by ¢3(Cra) = Crg and dimy (Homg () (A(), A(B))) = t2.
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Proof. This theorem is mostly a restatement of the earlier results of this section (proved in the
A, (k) setting) using equation (1.1). To verify that the homomorphism space is 1-dimensional, it
remains to check that Cs € L() for S € SStd™* (8, a) for each S such that deg(S) = 0. We will not
need the dimension result in what follows and so we leave this as an exercise for the reader. (]

4. A CHARACTERISTIC-FREE BGG-COMPLEX IN THE QUIVER HECKE ALGEBRA
AND CHARACTERISTIC-FREE BASES OF SIMPLE MODULES

We are now ready to prove the main result from the introduction over k an arbitrary field.
Given a € F.(h), we define an associated R, (x)-complex and show that this complex forms a
BGG resolution of D, («). We simultaneously construct bases and representing matrices for D,,(«)
and completely determines its restriction along the tower of cyclotomic quiver Hecke algebras.

Proposition 4.1. Let e > hl. For A\ € FL(h), we set
Co(N) = P An(w)e(w)]
ABp
where for ¢ > 0 we define the differential is the homomorphism of graded degree t' given as follows
64 = Z 8(/'67 I/)@ﬁ
A u>v
for e(u,v) € k\ {0} assigned arbitrarily, providing that each diamond in the complex satisfies
€a,B,7,6 = _5(04'7)8(0‘75)8(77 6)5(57 B) (41)
In which case, we have that Im(dp41) C ker(dy), in other words Cq(N) is a complex.

Proof. This is a standard argument using Theorem 3.16 and the fact that if /() = £(8) 4+ 2, then
there exists at most two ¢-partitions, v and d say, such that a >, > . O

We now apply the Schur functor to the above to obtain a complex of modules in the quiver
Hecke algebra as follows,

Co(N) = E,Co(N) = @ Su(w)[€(p)]  with  Ed, =0y,

Ap

Theorem 4.2. Let e > h, let k € I* be h-admissible, let k be a field, and X € FL(h). The
R, (k)-complex Co(N) is exact except in degree zero, where

Ho(Ce(A)) = Dn(A).
We have D, (A) = k{cs | s € Stde(A)} and rad(Sn(N\)) = k{cs | s € Std(A) \ Stde(N)}. Furthermore,

resi 1 (Dp(A) = €D Dn(A-0).
OeFn(N)

Proof. We assume, by induction, that if A € F_;(h), then the complex Co()\) forms a BGG
resolution and that {cs | s € Stde(\)} forms a basis of the simple module D, (\). We now assume
that A\ € F£(h) and consider the complex Cy()). We have that

ress_y (Ca(V) = D E-(Ca(N).
rel
We now consider one residue at a time. As A\ belongs to an alcove, we have that A (and any <1 \)
has either 0 or 1 removable r-boxes for each r € I. We let E,(\) denote the unique ¢-composition
(respectively f-partition) which differs from A by removing an r-node. For each residue, there are
two possible cases.

o We have that E,.(\) lies on an alcove wall or E.(\) € 2% By restriction, we have that
Im(E;dp41) C ker(E,dy) and so E,(Ce(N)) forms a complex. We have that E,(X) is fixed by

reflection through some hyperplane and the ¢-compositions of n which dominate A € F%(h)
come in pairs (u*, u”) with g~ > p* and £(ut) = £(p~) + 1 and furthermore such that

Er(u™) =Ep(u7) = pp € Spe - (Ex(N)).
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We have that
_ 0 if either u* ¢ 2L or u= ¢ 24
ET(Sn(N+)) =E(Su(n7)) = {

Sp—1(p) otherwise

Thus our complex E,(Ce())) decomposes into two chains of identical modules as follows,

E-(Ce(N) = B Sulwll(n) —1]) ) Sulw)[t(w)). (4.2)

p<A—0 p<A—00
Given pu < A — [, the restriction of qbl‘jir € Hompg, (Sn(u™), Sp(™)) is equal to
1, € Endpg, ) (Su(1) (13)
by the construction of qﬁZ " in Theorem 3.3 and [Bow, Theorem 6.1]. By restriction, we have

Im(E;(6¢+1)) C ker(E,(6¢))

and by equation (4.3), we have that E.d,y; = ZZ(#):ZH 1, + ... and so the complex is exact.
We conclude that H(E,(Ce(N\)) = 0.
o We have that E,.(\) € F2_;(h). Then E.(C,s())) is given by

e, (Dsule))

ABp
with homomorphisms E,.d; : E,,C'f; — ErCfL_l. We have that

E-Sn()l(w)] = Sn-1(p — O)[£(p — O)]
if Rem;(p) # 0 and is zero otherwise. In the non-zero case, this is simply because p — O
belongs to the same alcove as p (and therefore the lengths coincide) for p < A\. Now, for a
pair p, 4 with O € Rem;(u) and [ € Remy ('), we have that E,¢, = ¢Zl%/ (again by the
construction of gbﬁ, in Theorem 3.3 and [Bow, Theorem 6.1]). Thus E,(Ce(\)) = Co(A — O) and
the righthand-side is exact except Ho(Ce(A — 0)) = D, (A — 0) by our inductive assumption.
Thus E,(Ho(Ce(N))) = Ho(Co(A —0O)) = Dy (A —0O) and E,(H;(Ce(N))) = 0 for all j > 0.

Putting all of the above together, we have shown that

n ) D,(A—-0) ifj=0
res,_y (Hj(Ca(N))) = ¢ 77+ : (4.4)
0 otherwise.
Now, since Head(S,,()\)) = D, (\) ¢ Im(d1), we are able to conclude that
resi_1(Dn(A) € €D Da(A—0). (4.5)
OeFn(A)
Conversely, we have that
Stde(V)| = > [Stde(A — D) (4.6)
OeFr(N)

by Proposition 2.10. By induction, the righthand-side of equation (4.6) is equal to the dimension
of the righthand-side of equation (4.5). The lefthand-side of equation (4.6) is a lower bound for
the dimension of the lefthand-side of equation (4.5). Putting these two things together, we deduce
that

resi_1(Dn(A) = €D Du(A-0) (4.7)
OeFn(X)
and furthermore, the set {cs | s € Stde(\)} does indeed form a basis of D, ()\); to obtain the
basis of the radical, recall that e;L(p) = 0 for A > p and t € Stde()\). Putting equation (4.4) and
equation (4.7) together, we have that
res; _Dp(N\) ifj=0
0 otherwise

D,(\) ifj=0
0 otherwise

res;, _1(H;(Ce(N))) = { HilCel) = {
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where the second equality follows because res]!_; Dy, (1) # 0 for any A = p (even though E, (D, (1)) =
0 is possible for a given r € I, as seen above). O

Note that the restriction rule was used as the starting point in [Kle96a], where Kleshchev obtains
results concerning the dimensions of simple modules. Weirdly, our proof deduces that the homology
of the complex is equal to DX()), that the basis D¥()) is of the stated form, and the restriction of
the simple module is of the stated form all at once!

Theorem 4.3. For A € F.(h) the action of R, (k) on Dy()\) =k{cs | s € Stde(\)} is as follows:

() =0 15(6) = dipes wr<cs>={65k%+l gl el Dl

0 otherwise

where sgsk41 18 the tableau obtained from s by swapping the entries k and k + 1. In particular,
the subalgebra (y, 15 | 1 < k < ryi € I™) < Rp(k) acts semisimply on Dyp()\). The weight-spaces
of Dyp(X) are all 1-dimensional and Dy, (\) is concentrated in degree zero only. Finally, the cellular
bilinear form is given by (cs,ct) = sy fors,t € Stde(N).

Proof. The statements not relating to the action follow from Proposition 2.10 and equation (2.4)
and Theorem 4.2. The action of the idempotents is obvious. The other zero-relations all follow
because the product has non-zero degree (and the module D, (\) is concentrated in degree 0).
Finally, assume |res(s(r)) —res(s(r+1))| > 1. The strands terminating at (r, 1,¢) and (r + 1,1,¢) on
the northern edge either do or do not cross. In the former case, we can resolve the double crossing in
1.cs without cost by our assumption on the residues and the result follows. The latter case is trivial.
Finally, notice that sgx+1 € Stde(\) under the assumption that |res(s(r)) —res(s(r+1))| > 1. O

Remark 4.4. Let p > 0. Combinatorially computing the composition series of Sp(\) for X €
PL(h) for arbitrary primes seems to be an impossible task [Will7b]. If we assume that p > h is
suitably large then we can use Kazhdan—Lusztig theory to combinatorially calculate dimy (D, (X)),
this requires (as a minimum) that all partitions p € PL(h) such that u <1 \ belong to the first
p?-alcove [RW16]. This is equivalent to the requirement that the p-weight of A (defined in Section 5)
is less than p. For h = 3 this combinatorics has been conjecturally extended (in terms of billiards in
an alcove geometry) to the first p>-alcove [LW18a]. We stress that there is no restriction on the p-
weight of A € F}(h). Therefore understanding the composition series of unitary Specht modules is
well beyond the current state of the art. Thus our two descriptions of the simple modules Dy, () for
A € FL(h) provide the only contexts in which these modules can currently be hoped to be understood.

Example 4.5 ([BC18, Proposition 7.6]). Let £ > 2, e =£+1, and k = (0,1,2,...,0—1) € (Z/eZ)*,
and k be arbitrary. We have that A := ((n), (n),...,(n)) € Ft,(h) and that

[Sne((n), (), () : Dye(w)] = ) + .. (4.8)

modulo terms of lower order degree. Therefore every simple module D(v) for A\> v € '@;;e(l)
appears with multiplicity at least 1. Therefore as n — oo, the number of composition factors of
Spe((n), (n),...,(n)) tends to infinity and so is impossible to compute. In contrast, the module
Dy(v) is 1-dimensional and easily seen to be spanned by c,n for t* as in Definition 1.5.

5. SYMMETRIC GROUP COMBINATORICS: e-ABACI

We now discuss how the combinatorial description of resolutions simplifies for (diagrammatic)
Cherednik algebras of symmetric groups. In this case, we choose to emphasize the abacus presen-
tation of partitions. We first recall this classical combinatorial approach, then flesh out the notion
of homological degree introduced in [ZGS14] that is key to [ZGS14, Conjecture 4.5], and finally
identify all this as the level 1 case of the alcove geometry already studied in the previous sections.

5.1. The abacus of a partition. Let A € Z22!(h). Then ) can be encoded by an abacus with at
least h beads, where each bead stands for a column of A. This is simply a sequence of spaces and
beads which records the shape of the border of A, since knowing the border of X is the same as
knowing A. We form the Z-abacus A%(A) with h beads by walking along the border from the top



22 C. BOWMAN, E. NORTON, AND J. SIMENTAL

right corner to the bottom left corner of the Young diagram of A\, writing a space every time we
walk down and a bead every time we walk left.

Example 5.1. The Z-abaci of (3%,1),(33,2,1%) € 2}5(3) with 3 beads are as follows
Q@+~ @@+

Fix e > 2. We obtain an e-abacus A.(\) by looping the Z-abacus around e horizontal runners.
This can be described as follows: subdivide A%()\) into segments of length e starting from the
leftmost position, then rotate each segment counterclockwise by ninety degrees so that it is vertical.
The partition is now written on e horizontal runners. Thus the runners of our e-abacus resemble
a musical staff, and A.(\) resembles sheet music. Like a staff, the runners of A.(\) are bounded
to the left. We let them extend infinitely to the right, because we want to think of being able to
move beads in that direction by adding boxes or e-strips at the bottom of the Young diagram of a
partition. In French a musical score is called a partition, so we may say that our abaci are written
in the French style.

Example 5.2. A 5-abacus.

o o o 0 90 0 o
P P ®

We let we(\) denote the total number of vacant spots which have a bead to their right and refer
to this as the e-weight. If w(p) = 0 then we say that p is an e-core. Given a partition A, we define
the e-core of A\ to be the partition obtained by moving all beads on A.(\) as far left as possible.
We let

A(p,w) == {ut [p| + we | e-core(n) = p}
for p an e-core.

Example 5.3. The 4-abaci with 3 beads of (3%,1), (33,2,12), (3,2°) and (33,1%) € 2{5(3) are as
follows
We have that wy(X) = 3 and 4-core(\) = (1) for each of these examples.

Remark 5.4. Note that for p € PL(h), its removable box of highest content has content h — k,
where k is the position of the first bead in the Z-abacus A%(u). In particular, this bead sits in runner
k mod e in the e-abacus AM(y). Thus, in order to make the labels of the runners of the e-abaci in
u correspond in a nice way to the contents of addable and remowvable i-boxes of the partitions, one
should label the runners from bottom to top by h—1,h—2,...,1,0,e—1,e—2,...,h+1,h. With
this convention, removing a box of content i mod e corresponds to moving a bead on runner i — 1
down to runner i; and adding a box of content i mod e corresponds to moving a bead on runner i
up to runner i — 1.

5.2. e-unitary partitions and posets. We recall the definition of e-unitary partitions from
[ZGS14] and show that these are precisely the partitions in 7} = Up>1F} (k) studied in this paper.

Definition 5.5. [ES09, ZGS14] Fiz e > 2. Suppose A has exactly h columns and form AL(N) the
abacus on h beads. We call A an e-unitary partition if all the beads on .A%()\) lie in an interval of
width e. In particular, Ae(\) has at most one bead on each runner. Given an e-unitary partition
A, we let Po.(\) denote the set of all the e-abaci obtained from \ by successively moving a bead on

some runner one step to the right so long as we also move a bead on a different runner one step
to the left.
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Proposition 5.6. The set F. = Up>1F.(h) is precisely equal to the set of e-unitary partitions.

Proof. Suppose A € P} has exactly h columns and let vy, 71 denote the positions of the leftmost and
rightmost beads on A% ()\). Now simply note that v; —y, < e—1 if and only if (\+p,e1—ep) < e—1
if and only if A € FL(h). O

Example 5.7. When e = 4, (3*,1) is a 4-unitary partition, and (33,2,12), (3,2%), (33, 1%) € Poy()).

Remark 5.8. If e = h then X is e-unitary if and only if X\ = (e*) for some k € N. If X\ is an
e-unitary partition, then any p € Poc(\) is always e-restricted unless X = (e¥) and pn = \.

If an e-abacus A.(p) has at most one bead on each runner, let b; be the unique bead on the
runner labeled ¢ if such a bead exists, and let 8; € Z>( be the horizontal position of b;. Sometimes
by abuse of notation we might just refer to 5; as a bead.

5.3. The affine and extended affine symmetric group actions. There is a natural action of
the affine symmetric group &, on Po.(\) when we take the presentation of &}, given by generators
iy © € Z/hZ, subject to the relations s? =1, s;55 = sj8; if |i — j| > 1, and si8;418; = Si+15iSi+1
(where all subscripts are taken mod h). &, = (s1,...,s,-1) acts by permutation of the h runners
containing beads, while sy switches the top and bottom beads in the abacus, then moves the
bottom bead one step to the right and the top bead one step to the left. From the description of
Poc(A) in Definition 5.5, &}, acts transitively on Po.(\).

Example 5.9. [llustration of the action of so:

4

0@ 5 o

1 o o

2 9 9

3 -3 K
0123456789 01234567289

The extended affine symmetric group éh is the semidirect product Z" x &},. There is a natural
action of @h on the set of e-abaci with exactly one bead on a fixed subset of h runners, and no
beads on the other runners: Z" acts as the group of horizontal translations of the beads on their
runners, and &j, as permutations of the A runners containing the beads. This action is locally
nilpotent for the subgroup ZZO consisting of left translations of the beads. In terms of partitions,
the meaning is as follows: let p be an e-core of some unitary partition; equivalently, A.(p) has
its beads pushed all the way to the left and they are concentrated in the leftmost column of the
e-abacus. Let P.(p); be the union of all Po.(A), A an e-unitary partition such that the e-core of A
is p and A has h columns. Let ¢; = (0,...,1,...,0) € Z" with the 1 in the i’th position. Then ¢;
acts on p € Pe(p)n by shifting the bead on the i’th runner containing a bead one unit to the right;
on the Young diagram of u it adds an e-rimhook whose arm-length is at most h — 1. Observe that
Pe(p)n is generated by A.(p) under the action of &y

G- Aclp) = Pelp)n

Pe(p)p is naturally identified with the monoid Zgg as a left éh-module by identifying an abacus
A € Pe(p)p, with the h-tuple of its beads’ positions (51,...,0,) € Z;LO.

5.4. The homological degree statistic. Let A be an e-unitary partition. We recall the homo-
logical degree statistic on Pog(A) introduced by Berkesch-Griffeth-Sam.

Definition 5.10. Suppose A is an e-abacus with at most one bead on each runner. A disorder
of A is an unordered pair {i,j} such that runners i and j both contain a bead, satisfying B; > f3;
and bj is above b;. In other words, a pair of beads of A yields a disorder if one bead is above and
strictly to the left of the other bead.
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Definition 5.11. [ZGS14, Definition 4.3] Let p € Poc(\). The homological degree of p, written
hd(u), is the sum of the differences of all horizontal positions of beads in A.(u) minus the number
of disorders of Ae(p):

hd(w) = > |8 — 8| — #{disorders of Ac(n)}
ijeL/eZ
by b 70
b; is below b;

Example 5.12. In Ezample 5.9, let v denote the partition whose abacus is on the left, and let
= so(v) as in the picture. Then As(v) has 6 disorders and hd(v) =1+24+8+14+7+6—6 = 19;
As(p) has 1 disorder and hd(pu) = 64+54+6+1+1—1 = 18. Observe that sg changed the homological
degree by 1.

5.5. Homological degree produced recursively by elements of @e. Notice that empty run-
ners of A.(u) play no role in hd(u); if the empty runners are removed from A, (1), the homological
degree remains the same. For simplicity of the formulas and exposition, we therefore work in the
case that there are no empty runners, that is, h = e columns and A = (ek) for some k € N. The
empty runners can be put back in at the end.

Our first characterization of the homological degree produces this statistic recursively starting
from the empty partition by applying sequences of special elements 7; € @e, 1=e—1,e—2,...,1,0,
in a non-increasing order with respect to i.

Definition 5.13. Let 7; € ée be defined as follows: T; fizes the bottom i runners; on the top e — i
runners, it first cyclically rotates the beads in the topwards direction, then shifts one space to the
right the bead on the (e — i) ’th runner from the top.

Each 7; is the “affine generator” of the subgroup ée_i of ée which fixes the bottom ¢ runners:
7; together with &._; generates S._; [LT00, Section 2.1]. We are interested in applying 7; to abaci
whose bottom ¢ runners have their beads pushed all the way to the left.

Example 5.14. Consider the 5-abacus of (3'1,23,11). Then 7 acts as follows:

Q Q
o . Q
Q o
? ?

o @
01234567 01234567

Observe that o increased the homological degree of the abacus by 2.

Suppose T is a partition all of whose parts are of size at most e — 1, and which may contain parts
of size 0, s0 7 = ((e—1)%~1, (e —2)%~2,...,1%,0%). Thus 7 fits inside an e — 1 by k box, where k
is the total number of parts of 7. Now identify 7 with the element of @e given by the composition
of operators 75°7{" ... 7.°;". By abuse of notation we will also call this element 7. The proof of

the following lemma is straightforward:

Lemma 5.15. Let 7 = ((e — 1)%1, (e — 2)%-2 ... 19,0%) with Y55 a; = k € Zsg. Then
T(A(0)) = Ac(p) with p € Pog(e¥). Any u € Po.(e¥) is produced in this way from a unique such

T, and we have:
e—1

hd(u) = 3 ia; = ||

1=0

Let A be an arbitrary e-unitary partition. By removing the empty runners from the e-abaci in
Poe(A), there is likewise a natural bijection between the partitions p in Po.(A) and partitions 7
which fit inside an (h — 1) by k box,

(]
{n€Poc(N)} < {7 C (h -1,
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given by ®(r) = 7(0) (where 7 on the right-hand-side is the corresponding element of &), as
described above). This bijection identifies hd(u) with |7|.

Remark 5.16. Such a bijection turns up elsewhere in representation theory: notably, partitions T
which fit inside an (h—1) by k box also parametrize (1) the simple and standard modules of a reqular
block BP of parabolic category O for gl(h — 1+ k) with respect to the maximal parabolic gl(h—1) x
gl(k) [Str09]; (2) the Schubert cells in the Grassmannian Gr(k,h—1+k) = Gr(h—1,h—1+k). The
category BP is equivalent to perverse sheaves on the Grassmannian [Bra02, Str09], ezplaining the
coincidence of (1) and (2). Let L(,_1yx denote the simple module in BY labeled by T = (h — 1)F, the
unique mazximal element of the poset (the poset structure is given by inclusion of Young diagrams).
The bijection following Lemma 5.15 identifies the characters of unitary L(A) € [O1/e(6y,)] and
L—1yr € [OF]. Moreover, L(,_1yx has a BGG resolution [BH09] and via the bijection ® we obtain
a natural bijection between the Verma modules appearing in degree i of the respective resolutions
in O1/¢(Sn) and OP. However, the categories Oy,.(&Gn)<x and B are not equivalent if k > 2, and

as a poset Po.(\) has “extra edges” coming from the Sp-action if k > 2. The difference between
the resolutions of L(\) and L _1yr thus manifests itself in the maps in the complex.

5.6. Homological degree via rimhooks of minimal leg-length. Consider again the case there
is exactly one bead on every runner of the abacus. By the definition of 7;, it follows that the effect
of applying 7 = ((e — 1)%~1, (e — 2)%~2 ... 191,0%) to the empty partition is to build a Young
diagram A by successively dropping e-rimhooks which meet the leftmost column (with leg-lengths
e—1 (ae—1 times), e — 2 (a.—2 times) and so on) Tetris-style on top of the partition constructed so
far, then letting the boxes slide down the columns so that the result is a partition. This can change
the shape of the previous rimhooks that were added, but not the set of their leg-lengths. Thus we
obtain a second combinatorial explanation of the homological degree: if e = h then hd(\) is the
sum of the leg-lengths of the e-rimhooks of minimal leg-length composing A. If e > h then hd(\)
is the sum of the leg-lengths of the e-rimhooks of minimal leg-length composing A minus (e — h)k,
where k = e-weight(\). This can be restated in a uniform way by considering the arm-lengths
instead of the leg-lengths of the rimhooks: hd(u) is equal to (h — 1)k minus the sum of armlengths
of the (minimal leg-length) rimhooks removed.

Example 5.17. Lete = h =5 and 7 = (3,3,1,0). Then 7(0) = (5,4,2%,1) =: X and hd()\) = 7.

We show the process of applying T on abaci and partitions and the four 5-rimhooks of minimal
leg-lengths 3,3,1,0 which compose A:

o

T3 T3

1LARAl

= 777"

5.7. Homological degree is the length function. We now give a third combinatorial descrip-
tion of the homological degree by identifying it with the length function on &p. This unifies the
combinatorics of abaci with that of alcove geometries and allows us to describe the BGG complex
in type A in terms of abaci. Let A be a unitary partition, and suppose A has h < e columns.
Lemma 5.18. The following are equivalent for v, u € Po.(\), p>v:

o l(v) =L(pn) + 1 and v is obtained from pu by moving a column of boxes as in Theorem 3.3;
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o tu = v for some transpositiont € éh acting on abaci as above, subject to the following conditions
on the beads B; of Ac(i):
(1) if t € S, and swaps runners i and j, then for each runner k between runners i and j,
B ¢ [Bi, Bjl;
(2) if t is conjugate to sy and acts nontrivially on runners i and j, runner i below runner j,
then: for each runner k below runner i, By, ¢ [8;, Bj + 1] and for each runner ¢ above runner

j; 6@ ¢ [5@—176]]
Therefore, the homological degree statistic on Po.(\) coincides with the length function on Pog(X)
coming from the &y, alcove geometry.

Proof. This is a translation of 1-column moves from the language of Young diagrams into the
language of abaci. A direct computation using Definition 5.11 shows that the conditions for a
transposition ¢ to increase the homological degree by 1 are exactly those given by (1) and (2). O

52

~a L
S1| 518281 ~>2 525182 52
- ~

-
- S

o———
~—e— e
— —e—

52 %

o
Aei
—

|0

FIGURE 4. On the left we have the alcoves corresponding to partitions in Po.(A) when h = 3 and
e = 5. The fundamental alcove is at the bottom and contains (3°) € Fi5(3). Each alcove contains
a number indicateing the length/homological degree for a point in that alcove. The grey region
denotes the non-dominant region. The dotted lines indicate that we tile one sixth of R? when we
let n — oo. Crossing a wall of color ¢ corresponds to applying s; to the partition in that alcove,
with 4: 0, 1, . On the right-hand side, we have extracted the poset Po.(\). The homological

degree increases from the bottom (where it is zero) to the top (where it is 6). The edges of the
poset are coloured and decorated so as to facilitate comparison between the two pictures.

The superficial difference between the two S}, actions on Poe(A), the one coming from abaci, the
other from alcove geometry, is simply the difference between generating sets for &y: the generators



ON SIMPLE MODULES FOR QUIVER HECKE AND CHEREDNIK ALGEBRAS 27

s; in the former case may be identified with the reflections across the hyperplane walls bordering
the fundamental alcove in the latter case. Since all s; play a symmetrical role, we can cyclically
relabel the simple reflections s; so that sy is the reflection across the unique wall that must be
crossed to get out of the fundamental alcove while staying in Po.(A).

Example 5.19. The conditions (1) and (2) on abaci in Lemma 5.18 in a picture: applying t will
increase the homological degree by 1 if and only if no bead lies in the red regions of the runners.

J o J o
(1) (2)

i o i o

6. THE MULLINEUX MAP ON UNITARY SIMPLE MODULES

We first recall the Mullineux involution on the quiver Hecke algebra of the symmetric group:
Let M denote the R,-automorphism determined by

MZG(il,iQ,...,in)He(—il,—ig,...,—in) M:wTH@/)r Mlkayk (61)

for0 < k<mnand 0 <7 <mnandi= (i,...,i,) € I". Given a simple module D¥X()\), we let
DE(MM denote the module with the same underlying vector space but with the multiplication
defined by twisting the action with the involution M. The relationship between these two simples
was the subject of a conjecture of Mullineux [Mul79]. The combinatorics of this relationship
is fiendishly complicated in general and is only understood on the level of the labels of simple
modules. The purpose of this section is to examine the effect of the Mullineux map on the simple
modules D¥(\) for A € F}. We show that the set of these simples is preserved under the Mullineux
involution. Moreover, we construct an explicit Mullineux isomorphism in terms of the bases and
representing matrices of these simples given in Theorems 4.2 and 4.3 — we remark that this is the
time the Mullineux isomorphism has been explicitly constructed (outside of the trivial semisimple
case). Furthermore we shall see that the Mullineux combinatorics drastically simplifies on unitary
e-regular partitions A and that we can easily compute M(A) on the e-abacus of \. We define the
unitary branching graph, ), to have vertices on level k given by

Vi = {\| X is e-restricted and \ € F} }
and edges connecting levels k and k + 1 given by
Ehpr1 ={AN = | A€V, € Ypy1 and A = p— O for O a good node}.

We first discuss how the abaci of an e-core p and its transpose p' are obtained from one another
when p has at most e — 1 columns. Recall the basics of abaci from Section 5.1. First, note that
if p has at most h < e columns then p’ has at most e — h columns. Now, let A”(p) denote the
e-abacus of p written with h beads, and perform the following procedure on it: (1) swap the empty
spots and the beads in the first column (so that the resulting abacus has e — h beads), then (2)
flip this abacus upside down. The resulting abacus, Ag_h(pt)7 is the e-abacus of p! written with
e — h beads.

Definition 6.1. Let A\ € F,(h) for some 1 < h < e and let p be the e-core of A\. Write w(\) =
(e — h)qg+r for some ¢ =0, 0 < r < e—h. Define A\ to be the partition with abacus obtained
from AS"(p) by moving the bottom r beads (q+ 1)-units to the right, and the top e — h —r beads
q units to the right.

Proposition 6.2. If A\ € Y, then A\ € V. Specifically: in the case X = p, we have py = pt.
Otherwise, we have A\ € Fp(e — h).

Proof. If A = p is an e-core, then w(A) = 0 and algorithm just stops after the step where we take
the transpose of p. The abacus AS"(p?) clearly satisfies the criterion for unitarity (Definition 5.5)
since all of its beads are concentrated in the first column. If w(A) > 0, so A is not an e-core, we
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must move the bottom-most bead of AS~"(p) at least one unit to the right to obtain A" (Ay).
This guarantees that AS~"(\y) does not start with a bead, and since A" (\y;) has e—h beads, we
conclude that Ay has precisely e — h columns. Finally, by construction, Ay satisfies the conditions
of Definition 5.5. (]

Example 6.3. Lete =5, h =2, A = (22,13), w()\) = 11. We obtain A\ = (3'9,12) as follows:
° transpose o 11=3-3+2 °

e — h beads
0123456 012 012 01234

Theorem 6.4. The map M : Vi, — Vi, for k > 0 is a well-defined graph involution. Given
s= (A0 I\ 2, Iy z\())

we let sy denote the path

sy= (A9 A 22y 2y \)y
We have that D (Am) = (DE(A\))M and that the isomorphism is determined by : cs = cs,, -

Proof. The Mullineux involution M is characterized as the unique involution on e-regular partitions
mapping @ to § and such that M(f;(A)) = f_i(M()\)) [Kle96b, FK97, BO98]. We want to identify
Am with M()) for all vertices A of Y. By construction we have that Ay is also vertex of ), whenever
Ais, and that (Ay)m = . It is clear that §y; = . Thusifi € {0,...,e—1} is such that f;(\) € F},
we need to show that

(F),, = F-iCa).

We remark that, if A € F}, then f;(\) adds the leftmost addable box of content residue i, if any.
In order to keep track of the action of ﬁ on abaci, we follow the conventions of Remark 5.4, so we
label the runners of an e-abacus with h beads, at most one bead per runner, from bottom-to-top
by h—1,h—2,...,1,0,e — 1,...,h. This is done so that the labels of the runners correspond
nicely to the contents of addable/removable boxes. Note that the labeling of runners changes in
the process of constructing Ay, when A (p) with h beads is replaced by A.(p') with e — h beads.
The abacus A¢(\) has a bead (resp. empty space) on runner i if and only if A.(A\y) has an empty
space (resp. bead) on runner —i — 1. Finally, observe that if the top runner is labeled m in these
conventions, that fm increases the weight w of a partition by at most 1 but all fi, i # m, do not

increase the weight. Now set p to be the core of f;(A). We consider two cases.
Case 1. w(fi(\)) = w(\). So either i # h or i = h and X is a core. In the latter case, f;()\)

is also a core, and both (fi(A\))y and f_;(Au) coincide with the transpose of f;(A). In the former
case, the abaci A¢(p) and A¢(p) coincide on all runners except those labeled by ¢ and ¢ — 1. Thus,
Ae(p') and A.(p') only differ on runners —i — 1 and —i: A¢(p') has a bead on runner —i — 1 and
an empty space on runner —i, while the opposite is true for A.(p!). Thus, ( f,(/\))M is obtained
from Ay by sliding the bead on runner —i up runner —¢ — 1. But this is exactly how we obtain

f—i(A) from Ay, We are done in this case.

Case 2. w(fi(\)) = w(\) 4+ 1. So i = h, and the abacus of f;()\) is obtained from that of \ by
moving the bead on the top runner (labeled h) down to the bottom runner (labeled A — 1) and
then one unit right. Just as in the first case, the abaci A.(p') and A.(p") only differ on runners
—h and —h — 1. Note that these are the top and bottom runners of the abacus, respectively. Write
division with remainder w = w(\) = (e — h)q + r, so that Ay is obtained from A.(p") by moving
the bottom r beads ¢+ 1 units to the right, and the remainder e — h — r beads ¢ units to the right.
We have a subdivision into two further cases.

Case 2.1. r <e—h—1. Sow+1 = (e—h)q+ (r+1) is division with remainder, and (f;(A))u is
obtained from A.(p!) by moving the bottom r+ 1 beads ¢+ 1 units to the right, and the remaining
beads ¢ units to the right. Note that the beads 2,...,r + 1 of A.(p") coincide with the beads
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1,...,7 of Ac(p!). Thus, (f;(A\))u is obtained from Ay by taking the bead in the top runner,
moving it down to the bottom runner and sliding one unit to the right. This is precisely f_i(/\M).

Case 2.2. r=e—h—1. Sow+1= (e — h)(q+1). Here, (fi(\))n is obtained from A.(p") by
moving all beads ¢ + 1 units to the right, while Ay is obtained from A.(p!) by moving all beads
q + 1 units to the right, except the one in the top runner, that we only move ¢ units to the right.
So we see that, again, (f;(\))m is obtained from Ay by taking the bead in the top runner, moving
it down to the bottom runner and sliding one unit to the right. So (f;(A\)am = f—i(Am).

This proves that the involution )V — ) given by A — Ay coincides with the Mullineux involution
restricted to ). Now, the bases of D)()\) for A € F} are given by the paths in the unitary branching
graph terminating at said vertices. By Theorem 4.3 we can match up these bases through the action
of the idempotents under the twisting by the Mullineux map (see equation (6.1)). O

Example 6.5. Let e = 7. We have that M(3'0,2%) = (4%,13). We depict these partitions, and
the manner in which they can constructed via adding rim 7-hooks in Figure 5. Furthermore, we
provide an example of t € Std7(31°,2%) and tyy € Std7(4%,13). Note that the map on the level of
tableau preserves the rim hooks drawn in the two diagrams!!

1 2 3

19 20 21|24
16 17 21 25 26 27 28
22 23 24 29 33 34 35
30
31
32

FIGURE 5. A pair of tableaux t € Std7(3'°,2%) and ty € Std7(4%,1%) indexing basis elements
swapped under the isomorphism D% (319 24)M = Dk (48 13).

7. THE RATIONAL CHEREDNIK ALGEBRA OF THE SYMMETRIC GROUP OVER C

For the remainder of the paper, we restrict our attention to the field C and rational Cherednik
algebras of type G(1,1,n). Let &, be the symmetric group on n elements. The group &,, acts on
the algebra of polynomials in 2n non-commuting variables C(x1, ..., %y, y1,...yn). Fix a number
¢ € C. The rational Cherednik algebra H.(S,,) is the quotient of the semidirect product algebra
C(x1,. -y Tn,Y1,---,Yn) X S, by the relations

[z4, 5] = 0, [vi,y;] = 0, [yi, z5] = c(ij) (i # 7), i, @] =1—c) (i)
J#1
where (ij) denotes the transposition in &, that switches ¢ and j, see [EG02]. H,. has three
distinguished subalgebras: Cly] := Cly1,...,yn], Clz] := Clx1,...,2y], and the group algebra
C6&,,. The PBW theorem [EG02, Theorem 1.3] asserts that multiplication gives a vector space
isomorphism
Clz] ® C6, ® Cly] = H.

called the triangular decomposition of H., by analogy with the triangular decomposition of the
universal enveloping algebra of a semisimple Lie algebra.

We define the category O.(S,) to be the full subcategory consisting of all finitely generated
H.-modules on which y1, ..., y, act locally nilpotently. Category O, is not always very interesting.
By [DdJO94], see also [BE09a, Section 3.9], O, is semisimple (and equivalent to the category of
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representations of &,,) unless ¢ = r/e, with ged(r;e) = 1 and 1 < e < n. Equivalences of categories
reduce the study of O, /(&) to O;,.(6,), for 1 < e < n [Roul8]. For the rest of the paper we
work with Oy /.(&,). It will be convenient to set

O1/e = D 01/(&).

n=0

The category O1,.(Sy) is Morita equivalent (over C) to A,(k) for any value of k € I [Webl7,
Theorem A]. Thus, O, /C(Gn) is a highest weight category with respect to the dominance ordering
> on #}. The standard modules are constructed as follows. Extend the action of &, on S, ()\)
to an action of C[y] x &,, by letting y1,...,y, act by 0. The algebra C[y| x &,, is a subalgebra of

Hy /. and we define
A()‘) = Ind(c[g}xgnsn()‘) = Hl/e ®(C[g]><16n Sn()‘) = (C[Q] ® Sn()‘)

where the last equality is only as C[z]-modules and follows from the triangular decomposition. We
let L(\) denote the unique irreducible quotient of A(\).

Any module M € O /.(&,) is finitely generated over the algebra C[z] and, as such, it has a
well-defined support supp(M) C C" = Spec(C|z]). We now explain a way to compute the supports
of simple modules in O, /.(&,) that was obtained in [Will7a]. To do this, for any i =0, ..., [n/e],
denote by X; the variety

— n.. — — — — — —
X; = GH{(zl,...,zn) eC":n =29 =" ZeyRetl = = 22, 7Z(i—1)e+1—"'—2ie}

By its definition, X; is a &,-stable subvariety of C". Note that Xy = C™, and these subvarieties
form a chain Xo 2 X1 2 -+ 2 X|;/¢- Now recall that a partition A is said to be e-restricted if
Ai — Aip1 < e for every ¢ > 0, that is, if no two consecutive parts of A differ by more than e — 1
parts. By the division algorithm, for any partition A there exist unique partitions u,r such that
A =ep+ v and v is e-restricted. Then, according to [Will7a, Theorem 1.6],

supp(Li/e(A) = Xy

So, for example, Ly/.()) has full support if and only if A is e-restricted. On the other hand, if e
divides n, then L;/.(\) has minimal support if and only if A = eu, where p is a partition of n/e.

The categories O /.(&;,) come equipped with induction and restriction functors
Resy, 11 O01/6(6n) 2 O1/6(6p-1) : Indy;_

that were constructed by Bezrukavnikov and Etingof in [BE09a]. Their definition is quite technical
and will not be needed. In fact, Bezrukavnikov and Etingof constructed restriction functors for
any parabolic subgroup of &,,, [BE09a]. It follows from their construction that M has full support
if and only if it is not killed by restriction to any parabolic subgroup. We will use this property
below without further mention.

7.1. Unitary modules. For A € &} fix a positive-definite, &,,-invariant Hermitian form on the
irreducible representation S, (\). A standard argument shows that this form can be extended to
a Hermitian form (-,-) on the standard module A, /()), which is H-invariant in that (y;v,v’) =
(v,ziv") for every v,v" € Ay/()\) and i = 1,...,n. The simple module L;,.(}) is the quotient
of Aj/.(A) by the radical of this form. In particular, L; . (\) is equipped with a H-invariant,
non-degenerate Hermitian form. We say that L; /() is unitary if this form is positive-definite.

Theorem 7.1. [ES09] The Hermitian form on L(X\) is positive-definite if and only if X is an
e-unitary partition. Thus L(\) is unitary if and only if X\ € F}

Applying the KZ functor to these simples, we obtain the complete set of simple unitary modules
for the Hecke algebra. We emphasise that the simples labelled by A = (e*) for some k > 0 do not
survive under the KZ functor and so there are fewer unitary simples for the Hecke algebras.

Theorem 7.2 ([Sto, Corollary 4.5]). The simple R,-module DS(X) is unitary if and only if X is
e-restricted and \ € F!
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Remark 7.3. We would like to say some words on higher levels. Associated to the group G(£,1,n)
there is a rational Cherednik algebra H.(G(¢,1,n)), where ¢ = (cp,c1,...,co—1) 18 now a collection
of £ complex numbers. The definition of a unitary module goes through unchanged. We let £ = 2
and taking the charge ¢y = 1/e and ¢ = 0 so that we are, essentially, working with rational
Cherednik algebras associated to the Weyl group of type D. We have checked (using Griffeth’s
classification of unitary modules [Gri]) that if X\ € F2 then L()) is indeed a unitary module.

7.2. Changing quantum characteristics. Having constructed a BGG resolution for any unitary
module with h < e columns, we proceed to relate these complexes to each other for various e, and
to construct the complex in the special case h = e for the unitary module L(e¥). As observed in
Section 5, the e-abacus of any unitary module which is not of the form L(e) will contain empty
runners; removing the empty runners produces the h-abacus of a partition of the form (h*), with
h < e and k equal to the weight of the block containing A\. So we may try using the runner removal
Morita equivalences of Chuang-Miyachi which upgrade the combinatorial operation “removing
runners” to an equivalence of highest weight categories [CM10]. Given an e-core partition p and
k € N, let n :=|p| + ek and set

Alp, k) == {N| X € P} e—core(N) = p,w(\) = k} C P},
Af(p k) = {2 € A(p,k) | A € ZA(R)} € Alp, k)}
Ay (p, k) == {\| A € ZL(h),e—core(N) = p",w(\) = k} C A(p”, k).

Notice that the transpose map gives a bijection between the sets A, (p, k) and A} (p, k); under this
map the partial ordering on the sets is reversed. Let Oy /.(p, k) denote the block of category O/,
corresponding to A(p, k). Note that the set A, (p, k) is co-saturated in A(p”, k) so we can consider
the quotient category of Oy, (pT', k) by the Serre subcategory spanned by simples whose label does
not belong to A, (p, k). We denote this quotient by (’)l_/e ,(p, k) This is a highest weight category,
with standard objects A} (v) := w(Ay . (v)), where v € A} (p, k) and 7 : Oy (p", k) — (’)1*/e w0 k)
is the quotient functor. We remark that = admits a left adjoint 7' : C’)l_/e’h(p, k) — Ol/e(pT,k),
and 7' (A~ (v)) = A(v) for v € A, (p, k).

Given v € A, (p, k) we set ATM (v) := Ay (V7). Let r= (ro,...,Th_1,71) € Z;Lgl, and construct
a partition v* as follows. In the abacus AgM (v), insert ; empty runners between runners i — 1
and 7 (so ro and 7, are the number of empty runners inserted at the top and bottom of the abacus,

respectively). This creates a new e-abacus, A, with e := h + ro + - -+ 4+ 7, runners. We denote by
vt the unique partition such that A = ASM (v+). We let p = @+. We have a bijection

R:A(2,k) = A (p, k)

given by R : v+ vt and we let R™! : v+ v~ denote the inverse. We are now able to recall the
main result of Chuang—Miyachi.

Theorem 7.4 ([CM10]). The categories O
weight categories. Moreover, the equivalence

R: Ol_/hﬁ(@, k) — Ol_/eyh(% k)

@,k) and O]

1/eh(p, k) are equivalent as highest

1_/h,h(

sends the standard module A, (v) to the standard module A, (VR).

Note, however, that we cannot apply the above theorem directly since we are interested in the

subcategories O;r/h (D, k) and C’)Ir/e ,(pT, k) rather than the quotient categories O;/h (D, k) and

(p, k), where O;r/h 1 (D, k) denotes the Serre subcategory spanned by the simples whose label

1/e,h

belongs to A1 (2, k), and similarly for C’)f/e (0, k). Let us fix this. Following [GGORO03, Section

4], we note that the rational Cherednik algebra H;,, := H/.(&,) has finite global dimension

and is isomorphic to its opposite algebra; an explicit isomorphism is given by w — w™!, z —

z, y — —y. In particular, the functor RHomHl/E(o, Hy.) gives an equivalence Db(Hl/e—mod) —
Db(Hl/e-mod"pp). Let us denote by D the functor RHomp, , (e, Hy/)[n]. The following theorem
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summarizes various results of [GGORO03, Section 4.3.2]. We denote by Db(Ol/e(Gn)) the subcat-
egory of D°(H, Je-mod) consisting of complexes with homology in O, /., and by OlA/e the category
of objects in Oy, that admit a A-filtration.

Theorem 7.5. The functor D induces a derived equivalence D : Db(Ol/e((‘Sn)) — Db((’)l/e(Gn)Opp)
as well as an equivalence of exact categories D : Ol/e(Gn)A — (01/6(6n)A)°pp. For a partition
AEn, D(AN) = AAT) (where both sides of the equation are interpreted as complexes concentrated
in degree 0).

By abuse of notation, we will write D : D*(Oy /) — Db((’)i’i’s) for @0 RHomy, , (s,)(®, H1/e(Gn))[n]-
Let us mention a property of D that will be important later. The following is an immediate con-
sequence of [Los17, Lemma 2.5] and the definition of a perverse equivalence [Los17, Section 1.4].

Lemma 7.6. For every n > 0, the functor D induces a (contravariant!) abelian autoequivalence
of the category of minimally supported modules in category Oy /.(&y).

Let A € F} C 2L(h) be such that (hF)* = A, where k is the e-weight of A and & the number of
nonempty runners in 4.(A). Define the functor R~ via the following composition

Fi_ = Dﬂ-!B_lﬂ-D : Db(Ol/e(p7 k)) - Db(ol/h(gak)))

Each functor in the composition defining R~ takes Vermas to Vermas, and is either an equivalence
of A-filtered categories or exact on A-filtered categories while being an isomorphism on spaces of
homomorphisms between Vermas. It follows that for € Po()\), R"A(x) = A(u~), and that
R~ takes a complex to a complex and sends nonzero maps to nonzero maps (however, we cannot
conclude from this that R~ takes a resolution to a resolution). Define Cy(h*) = R™(C4())). By
construction, this is a complex whose /-th term is given by

Gy = @ A= @ Aw
puEPo(N) TEPoy, (hF)
hd(p)=¢ hd(r)=¢
and which has a map A(r) — A(7’) whenever hd(7) = ¢, hd(7") = ¢ — 1, and Ap(7) = tAL(7)
for some transposition t € &),. Co(h*) is a complex that looks identical to Cy(A) but with the
partitions p relabeled by p~, and in particular L(h*) is the head of Co(h*) = A(RF).
The following theorem answers [ZGS14, Conjecture 4.5] in the affirmative.

Theorem 7.7. If L(A\) € Oy/.(6,) is unitary then L(\) has a BGG resolution Ce()\) whose (th
term is given by
cN= P Aw
nEPoC ()
hd ()=
Proof. We have already shown the conjecture holds if h < e. Let n = ke for some k > 0 and
take (), the unique unitary partition of n with e columns. Choose any ¢’ > e and any unitary
partition A € PY% with e columns and €’-weight k. Let Co(\) be the BGG resolution of L(\) and
apply R to it. By the remarks above, R™(Cy(\)) = C4(eF) is the desired complex and L(e¥) is the
head of Cy(e¥). We need to show that Cy(e¥) is exact except in degree 0, where Hy(Co) = L(e¥).
As in the proof of the h < e case, if A € Po.(e¥)\{(e*)}, then ) is e-restricted. Thus E;(L(\)) # 0
for some i € Z/eZ, so if L(\) is a composition factor of a homology group H;(C,) then E;(C,) will
fail to be exact. Similarly, it holds (by basic properties of highest weight categories) that L(e)
occurs exactly once in the composition series of all the C';, when j = 0.
Next, E;(L(e*)) = 0 since ¥ has a single removable box and it is never a good removable box.
Thus, it suffices to check that E;(C,) is exact for each i € Z/eZ. This is identical to the argument
used in the h < e cases for those ¢ such that E;(L()\)) = 0. O

We also make the observation that resolutions of unitary modules are, in a manner of speaking,
independent of e. Let h be the number of columns of A and let k be the e-weight of A.
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Corollary 7.8. Let A € F!. The shape of the BGG complex Cs()\) depends only on h,k € N.
Proof. R~ identifies Cy(\) with Cy(h¥), thus sends a resolution of L()) to a resolution of L(h¥). O

7.3. Ringel duality and more BGG resolutions. We can also construct some new BGG
resolutions as corollaries of Theorem 7.7 via Ringel duality. These resolutions will also be used
in the study subspace arrangements in Subsection 8.1.3. The character of L(ek) = L(triv) €
O1/¢(Sex) is dual to the character of L(e¥) in the sense that its character is obtained from that of

L(e*) by taking the transpose of each partition labelling a Verma module [EGL15, Remark 5.1]:

Liek) = 3 (~)fAQT),

puEPo ()

hd(p)=¢
This is every bit as much an alternating sum character formula as that of L(e”), so we may naturally

ask whether its character formula also comes from a BGG resolution.

Let C, be the BGG resolution of L(e*). We apply Ringel duality to construct a complex, D(Cs,),
in the principal block O(@, k) C O /(&ex). The complex D(C,) is obtained from Co by replacing
A(p) with A(uT) for all g € Po.(e*) and reversing the direction of all the arrows (since D is a

contravariant functor which takes Vermas to Vermas). By [EGL15], the alternating sum of the
terms of D(C,) in the Grothendieck group [O(@, k)] coincides with the character of L(triv) = L(ek).

Corollary 7.9. D(C,) is a BGG resolution of L(triv) = L(ek).

Proof. A resolution is quasi-isomorphic to the module it resolves, so in D?(O; e(Gek)), L(eb)
is isomorphic to its resolution C,. Since the Ringel duality D is a derived self-equivalence of
D*(01/¢(Ser)) [GGORO03], this implies D(C,) ~ D(L(e*)) in D*(O1/(Sex)). We know that at the
end of the complex we have: A(ek —1,1) — A(ek) — 0, and so L(ek) = Head(A(ek)) must occur
in the homology of D(C,). Therefore L(ek) is a composition factor of D(L(e¥)).

We claim that D(L(e*)) = L(ek). This follows from [Los17, Lemma 2.5] which states that D is
a perverse equivalence with respect to the filtration by dimensions of support: in particular, D is
a self-equivalence of the semi-simple subcategory spanned by the minimal support modules L(eo).
Since D? = Id, it follows that D must permute the minimal support simple modules L(ec), o - k.
We have already seen that D(L(eF) = D(L(e(1%))) contains L(ek) = L(e(k)) as a composition
factor; it follows that D(L(e*)) = L(ek).

To conclude, D(C,) is equivalent to L(ek) in Db((’)l/e(Gek)), where L(ek) is considered as a
complex concentrated in degree 0. Hence H;(D(C,)) = dioL(ek), as required. O

Let m denote the quotient functor which kills the subcategory generated by { L(v) | v has more than e rows}.

Corollary 7.10. 7D(Cs) is a BGG resolution of L(triv) = L(ek) in the quotient category w(O e(Gpe))-
By adding an arbitrary configuration of a € Z~y empty runners to the abacus, RrD(C,) is a BGG
resolution of RL(triv) in Rm(O1 /e(Gge))-

Proof. The quotient functor 7 is exact, sends A(u) to the standard module A(u), and sends L(u)
to the simple module L(u). The first claim then follows from Corollary 7.9, implying the second
claim by Theorem 7.4. U

7.4. Computation of Lie algebra and Dirac cohomology. BGG resolutions for classical
and affine Lie algebras over C are closely related to the computation of Lie algebra cohomology
[Kos61, GL76, BH09]. Recently, a version of Lie algebra cohomology (and homology) for rational
Cherednik algebras over C was constructed in [HW18]; h* := € Cx; plays the role of the nilradical
n C b C g, and the complex reflection group W plays the role of the Cartan subalgebra.

Theorem 7.11. Let A € F} C ZL(h). We have that
Hi(h", L) = €D Salw).

nEPoC(N)
hd(u)=i
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Proof. This follows immediately from our main theorem and [HW18, Proposition 6.1]. O

Likewise, if L(\) € O.(G(¢,1,n)) where ¢ corresponds to the rank e and charge s = (k1, k2, ..., K¢) €
Z* for the Fock space, and \ € ffl, then

Hi(h*, L) = @ Sn(n).
ISP
£(p)=i
This also computes the Lie algebra cohomology H®(h*, L()\)). Indeed, by Poincaré duality (cf.
[HW18, Proposition 2.7]), we get

H'(h*, L(\)) = Hn—i(b*, L(\)) ® A"B,

where n := dimb. A consequence of the computation of Lie algebra cohomology for unitary
modules admitting a BGG resolution is that this immediately gives the computation of the Dirac
cohomology Hp(L(A)). This is defined as the usual Dirac cohomology, where the Dirac operator
D € Hy;(6&,) ® ¢ has been constructed in [Ciul6]. Here ¢ is the Clifford algebra associated
to @ Cux; @ @ Cy; with its natural nondegenerate bilinear form (z;,y;) = d;5. For a module
M € 01/.(6y), the algebra H; ;.(6&,) @ ¢ acts on the space M ® A®h, and the Dirac cohomology is

defined to be, as usual, ker(D)/ker(D) Nim(D). This is a representation of W, a certain double-
cover of the group W. Then, by [HW18, Theorem 5.1], Hp(L(A)) = €D,,<) Sn(n) ® x, where x is

a 1-dimensional character of the double cover W. We refer to [HW18] for details.

8. GRADED FREE RESOLUTIONS OF ALGEBRAIC VARIETIES,
BETTI NUMBERS, AND CASTELNUOVO—MUMFORD REGULARITY

We now consider the consequences of our results for computing minimal resolutions of linear
subspace arrangements. Easy examples of ideals whose resolutions we compute include the braid
arrangements of type A and type D. Such minimal resolutions are difficult to compute geomet-
rically [Las78]. As a consequence, we prove a combinatorial formula for the Betti numbers of
the ideal of the m-equals arrangement predicted in [ZGS14]. We also calculate the Castelnuovo—
Mumford regularity for the coordinate ring of these arrangements, a notoriously difficult problem
in general (see [DS02, TT15]).

It is pointed out in [EHO04] that BGG resolutions via parabolic Verma modules for Lie alge-
bras can be used to provide commutative algebra resolutions of determinantal ideals by viewing
the coordinate ring as a unitarizable highest weight module. We employ our Cherednik algebra
resolutions in an analogous fashion. The first of these commutative algebra resolutions, given in
Subsection 8.1.1, was predicted in [ZGS14] and concerns the smallest ideal, I ; 5, of the polyno-
mial representation (this is the vanishing ideal of the subspace arrangement, X ; ., consisting of
e equal coordinates for e < n). We then provide a cyclotomic generalisation of this resolution in
Subsection 8.1.2. The third resolution, given in Subsection 8.1.3, concerns the smallest quotient,
C[Xe¢ k], of the polynomial representation (this is the coordinate ring of the subspace arrange-
ment, X, j,, consisting of k clusters of e equal coordinates for ke = n); the ideal vanishing on
this space was studied in [ZGS14], however since neither this ideal nor its quotient is unitary (in
general) the authors did not predict any resolution arising via Cherednik algebras.

8.1. Commutative algebra. Let us discuss the consequences that the existence of the BGG
resolution has for the study of graded modules over Clxy,...,z,] = C[z]. First of all, for every
p = n, the standard module Ay /.(x) is free as a C[z]-module. So the resolution Ce(A) is, in fact,
a free resolution of L;,.(\) when we view all involved modules as C[z]-modules.

An observation now is that every module in category O /G(Gn) automatically acquires a grading
compatible with the usual grading on C[z], as follows. Consider the deformed Euler element®
eu = 3> Ty + yixi € H, /.. This is a grading element of H /. in the sense that [eu,z;] =

IWe remark that our Euler element ‘eu’ differs from the one used in [ZGS14] by the constant n(e —n + 1)/2e
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74, [eu, y;] = —yi, and [eu,w] = 0 for w € &,,. Any module in category O/.(&y) is now graded by
generalized eigenspaces for eu:

M = P Mo, My := {m € M : (eu — a)*m = 0 for k > 0}.
acC

Note that, since the grading on M was defined using an element of Hj/., every morphism in
category Oy /(&) has degree 0. In particular, this grading is different from the grading of objects
in O /E(Gn) that has been used so far in this paper. The grading by generalized eigenspaces of eu,
however, is better-suited for the purposes of commutative algebra.

A priori, M € Oy,.(&,) is only C-graded, but in our case we can do better. Since [eu, w] = 0 for
w € &, eu may be seen as an endomorphism of the &,-module S, (7) 2 1® S,(7) CClz] @ T =
Ay/e(7). Thus, eu acts by a scalar ¢, on S,(7), and by the definition of A;/.(7) we get that
Ay/e(T)a # 0 if and only if @ = ¢, + k for some k € Z>(. Moreover,

Al/e(T)cTHf = Clz]r ® Sn(7)

where Clz]j; denotes the subspace of homogeneous polynomials of degree k in the variables x1, ..., zp.
We will write C[z] ® S, ()) to refer to the Clz]-module A} /.())[c,], where the brackets denote the
usual grading shift. Thus, C[z] ® S,()) is Zs-graded, and (Clz] ® Sp(\))k = Clz]r @ Sn(N).
Now consider the resolution of the graded C[z]-module L;,.()\)[c\], where the i-th term of the
complex is given by
D (Cla]® Sa(w)ler — ¢l
HEPOo(N)
hd(p)=i
We remark that, since A and p belong to the same block of category Ol/e(Gn), ¢y — ¢, is actually
an integer. Of course, this is the same as the BGG resolution Ce(\), but we write it in this way
to emphasize that we are only interested in the Clz]-module structure. By abuse of notation, we
also denote this complex by Ce(A). Note that (Clz] ®@ Sn())lex — cu] = Ayje(p)[en], from where
it follows that all the maps in the complex have degree 0 as maps of graded C[z]-modules. In
particular, Ce()) is a graded-free resolution of L; /. (A)[cy].
The value of ¢y can be expressed in terms of the content of the boxes of A, namely

n 1
=57 Z column () — row(0)

It follows from Section 5.6 or from Lemma 5.18 that if hd(x) < hd(v) then ¢, < ¢,. In particular,
when viewing the differential in the resolution Ce()\) as matrices with coefficients in C[z], no
nonzero entry of the differential is a degree 0 element of C[z]. It follows immediately that:

Lemma 8.1. The complex Co()) is a minimal graded free resolution of Ly c(A)[ca].

Lemma 8.1 implies a combinatorial formula for computing many interesting invariants of the
module Lj/.(A)[cx]. In the rest of this section, if L;/.(A) is unitary we write:

n:= |\, k:=e-weight(\), h:= Fcolumns(\)

Recalling the basics of abaci in Section 5.1 this means that the abacus A.(\) has h nonempty
runners and there are k vacant spaces in A () with some bead to their right.

Proposition 8.2. Suppose Ly/.()) is unitary. Then,

(1) Bij= Y dim(S,(u)),
pEPoe ()
CAx—Cu=—]
hd(u)=i

(2) pdim(Ly.(N) = (h — 1)k,
(3) depth(Lyjo(N) =n — (h — 1)k

where f3; j denotes the (i, j)-graded Betti number of Ly.(A)[cx], and pdim stands for the projective
dimension as a graded C[z]-module.
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Proof. Statement (1) is clear from the form of the resolution Ce(A). The maximal homological
degree of a partition in Po.()\) is acquired by sliding all the beads to the left and then sliding the
highest bead k spaces to the right. (2) follows from here. Finally, by the Auslander-Buchsbaum
formula, (3) is equivalent to (2). O

Another consequence of Lemma 8.1 and the fact that the function c) is strictly increasing on
homological degrees, is the computation of the Castelnuovo-Mumford regularity of the module
Lyje(N)[ea]- Recall that, by definition, the regularity of a module M is

reg(M) := max{j : there exists i such that 3; ;1 ;(M) # 0}
In other words, for a minimal graded-free resolution Cy of M, for each i = 0,...,pdim(M), let n;
be the maximum degree of a generator of C;, and m; := n; — 7. Then, reg(M) = max;{m;}. The

Castelnuovo-Mumford regularity is a measure of the computational complexity of the module M
and it is, in general, incredibly difficult to compute, cf. [DS02, TT15].

Proposition 8.3. Suppose L;/.(\) is unitary. Let jig € Poc(\) be obtained by, first, sliding all
beads of Ae(N) to the left, and then, sliding the upmost beat k spaces to the right. Then,

reg(L1/e(A)]er]) = (e —ex) — (h— 1)k

Proof. As in the paragraph above the statement of the proposition, let us denote by n; the max-
imum degree of a generator of C'(\);, and m; := n; —i. Note that n; := max{c, —c\ : p €
Poc(A),hd(p) = i}. Since the c-function is increasing in homological degree, the sequence (n;) is
increasing and therefore the sequence (m;) is nondecreasing. So the regularity of Ly/.(A)[ca] is
Mpdim(L, /,(\)- Since pdim(L; /.(A)) = (h — 1)k, the result follows. O

Example 8.4. Consider e =5, n =15 and A\ = (3*,2,1). Then, pdimLyj.(N) =4, so Lyj(N) is
not Cohen-Macaulay and a minimal graded-free resolution of Ly c(\)[ea] is

0— (3,2, 110)[—9] — (3,22,17)[-5] — (3,2%)[=3] @ (33,1%)[-3] — (33,22,1%)[-1] — (3%,2,1)
- Ll/e()‘)[c)\] —0

where for brevity, we write p[d] in place of (Clz] @ Sn(w))[d]. From the resolution, we see that
reg(Ly/e(A)[ea]) = 5.

8.1.1. The e-equals ideal. We examine these results in the situation where the modules L; /()
have a clear geometric meaning. The representation theoretic import of X, 1, was first noticed
and explained in [ZGS14]. Resolutions of the ideals vanishing on these subspace arrangements are
given by BGG resolutions of the corresponding unitary module for Hy/.(&y).

Let n = (e — 1)p+ ¢, with 0 < ¢ < e — 1. Consider the partition A = ((e — 1)?,q) of n. Note
that the e-abacus of A has exactly one empty runner, and the module L;/.(A) is unitary. In fact,
it follows from [Will7a] that L, /.(A) is isomorphic to the socle of the polynomial representation

Ay e (triv) = Clwy, @2, .. ., Tn)

which by [ES09, Theorem 5.10] coincides with the e-equals ideal I, ; 5, of functions vanishing on the
set
Xein =6p{(21,...,2,) €C" 121 = -+ = 2.}

Note that X1, is an arrangement of (Z) linear subspaces of C", each of dimension n — e + 1.
When e = 2, X1, is nothing but the braid arrangement in C", which consists of the reflection
hyperplanes for the action of &,, on C". Let us give a set of generators for the ideal I 1 ,, following
[£S09, FS12]. Consider the partition AT = ((p + 1)9,p®~179), which has exactly e — 1 parts. Now
consider the polynomial

p)\T(l'l, v ,l’n) = V(l’l, .o .,Z‘A?)V("L‘A{JA, . e .,l‘)qur)\%") . -V(l’/\?+...+/\z_2+1, ce ,l’n)

where V(z1,...,x)) is the Vandermonde determinant HK]-(%‘ — xj). Then, the ideal I, is
generated by the &,, images of the polynomial pyr.

Since Ly /.(A) and Ly /. (triv) lie in the same block of category O ., the weight of the partition A
is k = |n/e]. Thus, as was observed in [ZGS14], the projective dimension of the algebra of functions
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ClXean] = Clr, ..., 20])/Ienn is pdim(C[Xe1n]) = pdim(Ly . (N)) +1 = (e — 2)|[n/e] + 1. Since
dim(Xe1,) = n—e+1, it follows that C[X, 1 5] is Cohen-Macaulay if and only if e = 2 or [n/e| = 1.
This way, we recover part of [EGL15, Proposition 3.11].

Example 8.5. Consider e =4, n = 10. The minimal submodule in Al/e(triv) is 141,10, and it is
isomorphic to Ly,.(3%,1). Note that cy = 23/4. The resolution of Ly,4(3%,1)[—23/4] is given by
0— (2,1%)[—8] — (22,1%)[-6] — (2°)[-3] @ (3%, 1)[-2] — (3%,2,1%)[-1] — (3°,1)
— Ly/4(3%,1)[-23/4] = 0
A resolution of the coordinate ring Clx1,...,x10]/Is1,10 looks similar, but each term is further

shifted by —12 (because ciiv — ¢y = —12), and the end of the sequence is (33,1)[—12] — (10) —
Clz]/I4,1,10 = 0. Note that the regularity of Clxy,...,z10]/1a1,10 s 15.

Let us now compute the regularity of the subspace arrangement X 1 .
Proposition 8.6. The regularity of the Clz]-module C[X, 1] is given by

In/e](n—e+1)—1, ifnfecZ

reg(C[Xe1,0]) = {Ln/ej (n—e+2)—1, else.

Proof. Let us writen=(e—1)p+qg=ep1 + ¢, with0 < g<e—1and 0 < ¢ < e. As above, let
A = ((e = 1), q) be the partition such that L;/.(A) is isomorphic to the socle of Ay /. (triv). Note
that the e-core of any partition in the block of triv = (n) is (¢1) and the e-weight is p;. It then
follows from the rimhook description of homological degree in Section 5.6 that the partition pg
with highest homological degree in Po.(\) is given by adding p; vertical strips of length e in the
leftmost column to the e-core of \: thus pg = (a,1""%) where a = ¢ if ¢ >0 and a =1if ¢ =0,
and hd(ug) = (e — 2)p1. Now it follows by a direct computation that

(n_a)n—(e—2)p1—1

which coincides with the formula in the statement of the proposition. O

reg((C[Xe’Ln]) = Cug — Ctriv — (e=2)py —1=

8.1.2. More BGG resolutions and a generalisation of the e-equals ideal. We take £th powers and
obtain a generalisation of the e-equals ideal. These subspaces arrangements admit commutative
algebra resolutions which can be constructed via BGG-resolutions for the Cherednik algebra of
G(¢,1,n) (which we also construct in this section). Consider the ideal I.;,(¢) of polynomials
vanishing on the set

Xein(l) =6,{(21,...,2n) €C": zf = zg =...= zﬁ}.

Note that X, 1, (¢) is an arrangement of ¢¢ (Z) linear subspaces of C", each of dimension n —e + 1.
When e = ¢ =2, X5 1 ,(2) is the braid arrangement of type D,,, consisting of reflection hyperplanes

for the reflection representation of the Weyl group of type D,, on C". To give a set of generators

for the ideal I 1,(f), recall from the previous subsection the partition A = ((e — 1)P,¢) and the
polynomial pyr € Clz1,...,x,]. According to [FS12, Proposition 2.5], a set of generators of the
ideal I. 1 ,(¢) is given by the &,-images of pyr(z{,...,z5).

Our next goal is to construct a graded-free resolution of the algebra of functions Clz1, ..., zy]|/Ie1.n(¢).

In order to do this, we will use the following well-known commutative algebra result.

Lemma 8.7. Let I, Fy, Fy be free Clxy, ..., x,)-modules of finite rank, with bases {vi,... v} },

? Y
{v3,... ,11122} and {v3,. . .,vf’g}, respectively. Let A : Fy — Fy, B : Fy — F3 be morphisms defined
in the given bases by matrices (fij(x1,...,%n)), (gjk(z1,...,2n)), respectively, and define new mor-
phisms A, B by the matrices (fi;(x],...,2%)), (gjx(x4, ..., 2%)), respectively. If im(A) = ker(B),

then im(A) = ker(B).

Note that, for u € 2} the module C[z1,...,7,] ® S,(1) has a distinguished basis indexed by
Std(p). Thus, if X is a unitary partition, we can apply Lemma 8.7 to the complex Co(\) (viewed
as a complex of free C[z1, ..., z,]-modules) to obtain a complex Co()\), which is exact outside of
degree 0. By construction, thanks to [FS12, Proposition 2.5], when A\ = ((e — 1), q), the zeroth
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homology of 5.()\) coincides with the ideal I, 1 x(¢). Moreover, by multiplying the grading shifts of
Ce(X) by £, this obtains a minimal graded-free resolution of I, x, and extending by Clx1,. .., z,],
of the algebra of functions C[X, 1 ,(¢)]. We then obtain the following result.

Proposition 8.8. The projective dimension of C[Xc1,(¢)] coincides with that of C[Xe 1,y], which
is (e —2)|n/e| +1 so that, regardless of £, C[X¢1,(0)] is Cohen-Macaulay if and only if e =2 or
|n/e] = 1. The regularity of C[Xc1n(f)] is given by

In/e](l(n—1)—e+2)—1 ifnfecZ

reg(ClXea (O] = {Ln/ej (In—e+2)—1 else

We have obtained the complex 5’.(/\) by means of pure commutative algebra. As it turns
out, 5’.(A) is a complex of standard modules for the rational Cherednik algebra of the group
G, 1,n) := &, x (Z/¢Z)™ under a special class of parameters. The group G(¢,1,n) is a complex
reflection group, acting naturally on C”, and the rational Cherednik algebra depends on a function
¢: S8 — C, where S C G(¢,1,n) is the set of reflections and ¢(s) = ¢(wsw™!) for every s € 9,
w € G(¢,1,n). Here, for a complex number ¢ € C, we will take any function ¢ such that ¢(s) = ¢, if
s € G(¢,1,n) is conjugate to a reflection in &,,. Any other reflection in G(¢,1,n) is conjugate to a
nonzero element of, say, the first copy of Z/¢Z, so we have £ —1 more parameters for Hz(G(¢,1,n)),
let us call them cy,...,co_1.

The rational Cherednik algebra Hz(G(¢,1,n)) admits a presentation very similar to that of the
rational Cherednik algebra H.(S,,) of the symmetric group. We will not give this presentation.
Instead, we remark that Hz(G(¢,1,n)) is the subalgebra of Endc(C[z1,...,z,]|) generated by the

functions z; of multiplication by z; (i = 1,...,n), the elements of G(¢,1,n) (naturally viewed as
automorphisms of Clz, ... azn}) and the Dunkl-Opdam operators:
-1 2%
12—3—022 (ij)t)—Zm(l—ff)
i =0 ¥ k=1 !

where £ := exp(2nyv/—1/¢), & € G(¢,1,n) is the element that acts by multiplication by £ on the
i-th coordinate in C", and (i) € G(¢,1,n) is (ij)! = §f§;t(ij). Let us remark that a similar
presentation exists for the algebra H.(&,,), the Dunkl operators are now given by

D; = 0 —cle_% (i5)).

We will need the following result, that relates the operators D; and lN)Z

Lemma 8.9. For g € Clxy,...,x,], denote by g := g(x%,...,2t). Then, for anyi=1,...,n

rrn

Di(5) = ta! ' Dil9)

Proof. First of all, note that g is invariant under the action of (Z/¢Z)" on Clz1,...,x,], and so it
follows that
-1 ~
g—
QORI 3 il
j#i t= 0

Now let h(zq,.. xn) € Clz1,...,zy] be such that g — (zy)g = (x,, —2;)h. Note that it follows that
g — (ij)g = (af —t)h, so
i ¢ -1

0—
Z 5t:c] ZH §k$j =lx Z lh

t=0 k=0
kAt

and the result follows. O

The algebra Hz(G(¥, 1,n)) still admits a triangular decomposition Hz(G(¢,1,n)) = Clzy, ..., z,]|®
CG(4,1,n) ® Cly1, ..., yn], where y; is the Dunkl-Opdam operator D;. In particular, one can still
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define standard modules. For an irreducible representation E of G(¢,1,n), we have the standard
module Az(E). As a C[zy,...,x,)-module, Az(E) = Clzy,...,2,] ® E.

The irreducible representations, Sy, (\), of G(¢,1,n) are indexed by the set 22¢, and each S, ()\)
has a natural basis indexed by the set Std(\). In particular, if A € £} we can consider the
(-partition A € 22! given by A = (X, 0,...,0). The sets Std(X) and Std()\) are obviously identified.
Moreover, G(¢,1,n) admits a natural surjection to &,,, and the irreducible representation Sn(X)
of G(¢,1,n) is simply given by the &,-irreducible S, () under this surjection.

Proposition 8.10. Let c € C. Then, for any A\, u € 2} and any parameter ¢ as above, there is a
natural identification

~ : Homgy, e, (Be(N), Ae()) — Homi (6,1, (A2(N), Az(R))
given as follows. For a standard Young tableau t € Std()), if f € Homp, (g,)(Ac(N), Ac(p)) is
given by f(1®1) = 3 cspaqu frs(@1,- - ) @, then fF(LO1) = 3 csia() fis(@f, ... 2l) @s.

Proof. We need to show, first, that ﬂl@%(i) is a map of G(¢, 1,n)-representations. This follows

from the fact that, for any polynomial g € Clzy,...,z,], g(x{, ..., %) is invariant under the action

’rrn
of (Z/¢Z)". Now we need to show that, for any standard Young tableau t € Std(\), fa® t) is
annihilated by all Dunkl operators lNDZ This is a direct consequence of Lemma 8.9.

This shows that f — fdoes define a morphism, which is clearly injective. To show that it is
bijective, let h : AE(X) — Ag(p) be a morphism. In particular, h|1®5n® is a map of G(¢,1,n)-
modules. This implies that, if (1 ®t) = ZSQStd(u) his(z1,...,25) ® s, then hes(x1,...,2,) €
Claf,..., 2] for every s € Std(p). Thanks to Lemma 8.9, this implies that h = f for some
FoAN) = Ac(p). O

Remark 8.11. Ifc & 1/2+7Z, then the existence of an isomorphism between Homp, (s,)(Ac(N), Ac())
and HomHE(G(&Ln))(Ag(X), Az(p)) follows from [GGORO03, Proposition 5.9].

By Proposition 8.10 and Lemma 8.7, we have that if A is a unitary partition of n, then the
complex Cq () is actually a complex of standard modules for Hz(G(¢,1,n)), which is exact outside
of degree zero, and thus it is a BGG resolution of its zeroth homology.

Remark 8.12. The zeroth homology of Ce()) is not necessarily an irreducible Hz(G(¢,1,n))-
module. For ezample, if A\ = ((e — 1)?, q), we have seen that Ho(Ca())) is the ideal Ic1,(0). When
(=2, e <n is even and the parameter ¢ is such that ¢(s) = 0 if s is not conjugate to a reflection
in Sy, then this is an indecomposable, but not irreducible, Hz(G(¢,1,n))-module.

Remark 8.13. Fven if the zeroth homology ofC' (M) is irreducible (and thus it necessarily coincides
with Lz(\)) the natural Hermitian form on Lz(X) does not need to be positive-definite, even if that
for Le(N\) is. An example of this is given by taking £ = 2, odd n, e = n, A = (e — 1,1) and the
parameter ¢ as in Remark 8.12 . In this case, Lz(\) = e.1n(2), which does not admit an invariant
positive-definite Hermitian form, cf. [FS12, Proposition 7.1]

8.1.3. The (k,e)-equals ideal. We now consider the subspace arrangements of k distinct clusters of
e equal parameters for n = ke. We show that the BGG resolution of L(triv) is a minimal resolution
of the coordinate ring of this subspace arrangement and generalise this to type G(¢,1,n) as before.

Let n = ke, as we have seen, in this case we can give a BGG resolution of L /e(triv). It follows
from [ES09, Theorem 5.10] that rad(A; /.(triv)) is the ideal Iy, of functions vanishing on

Xekn = 6p{(21,--,20) €ECY 121 =+ = 26,2641 = =" = 225+, Z(h=1)et]l = *** = Zke}

Recall that the resolution of L; .(triv) is obtained as the Ringel dual of the resolution of L; /e(ek).
Thus, the projective dimension of the algebra of functions C[Xe k] = Clz]/Ie kn = Ly /e (t1iV)[Coriv]
is (e — 1)k. By the Auslander-Buchsbaum formula, the depth of C[X. ] is n — (e — 1)k = k. So
C[Xe¢ k] is always Cohen-Macaulay, and we recover a special case of [EGL15, Proposition 3.11].
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Let us now analyze the regularity of L;/.(triv)[cuiv]. By an argument similar to the proof of
Proposition 8.6, this is given by ¢(xey — Criv — (e — 1)k. By a direct computation, this is
k(n—e—k+1)

2
Example 8.14. Assume e = 3, n = 6. Then we have that a resolution of L(triv)[cyiv] =
Clz1,--- ,z6]/I326 is given by
0= (2°)[=6] = (3,2, 1)[=5] = (3%)[~4] @ (4,1%)[-4] — (5,1)[-2] = (6) = Clz]/L326 — 0
and reg(Clz]/I326) = 2.

reg(LI/e (triv) [euiv]) =

Of course, for £ > 1 we also have the subspace arrangement
l l L l 0 l
Xepn(l) =6 {(z1,...,20) €C" 12y = = 25,21 =+ = Zoer s B(fml)etl =7 = Zre }
And its defining ideal I, (¢). Since I, is the unique maximal submodule in A, /. (triv) and
the submodules of this standard module are linearly ordered, the ideal I, is generated in a
single degree. Thus, the exact same argument as that in the proof of [FS12, Proposition 2.5], if

q(x1,..-Tn), .., q(x1,...,2,) are generators of I, ,, of minimal degree, then ¢; (zf,...,2%), ...,
qr(zf, ..., xt) are generators of I, j ,(¢). It follows that the complex C,(triv) is a minimal graded-

free resolution of the algebra of functions C[X, j ,(¢)], and the variety X, (¢) is always Cohen-
Macaulay. Moreover, the regularity of C[X (f)] is given by £(c(re) — curiv) — (e — 1)k, or more
explicitly,
kfin+e—k—1)—2(e—1
reg(C[Xe s (0) = 4 o2esll
We remark that in general as Hz(G (¢, 1,n))-modules, C[X, i »(n)] does not coincide with Lz(triv).
For example, if £ = 2, e = n is even and ¢(s) = 0 for a reflection s not conjugate to an element of

Sy, then Lm(triv) is finite-dimensional, while C[X 1 ,(2)] is not.

Remark 8.15. Changing the parameter of the rational Cherednik algebra to ¢ = a/e > 0 with
ged(a;e) = 1 does not change the shape of the resolution Ce(X), so the projective dimension and
depth of Lyjc()) are independent of a € Z~o when X is e-unitary. However, the value of cy is not
independent of a € Z~q, and we get

Bi,j(La/e(A) = /Bi,j/a(Ll/e(A))

where we implicitly agree that B; j,, = 0 if j/a & Z. For any such a € Zxq the module L ((m —
1)?,q) can be identified with an ideal of Clz] whose vanishing set coincides with X1 . This ideal
is radical if and only if a = 1, cf. [ES09, Theorem 5.10]. Similar considerations apply to L e(triv).
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