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Introduction

For zero-dimensional schemes in P? there are many interesting results such that

- The Hilbert functions of sets of points in uniform position is of decreasing type.
- Cayley-Bacharach theorem on the configuration of points.
- Dubreil theorem on bounds for the minimal number of generators of the defining ideals.

For all these results the Hilbert-Burch structure theorem usually plays an important
role. It is well-known that there is no similar structure theorem for zero-dimensional
schemes in higher projective spaces. But one may still raise the question whether the
above mentioned results can be extended to zero-dimensional schemes in P*, n > 2.

In this paper we will present a method to do that. This method is based on a well-
known property of graded artinian Gorenstein rings which gives a sort of duality between
an ideal and its annihilator. This idea already appeared in [DGO]. Using this method
we will study properties of a zero-dimensional scheme X in P" by means of the degree
of the hypersurfaces of a complete intersection passing through X . Algebraically, we
have to study properties of ideals in a artinian graded complete intersection ring (which
is Gorenstein).

The main result of this paper (Theorem 2.1) gives strong information on the ba-
haviour of the Hilbert function hx(t) of X'. More precisely, we can control the h-vector
of hx(t) for the last part. As applications we present large classes of zero-dimesional
schemes X in P™ for which the h-vector of hx(¢) is of unimodal type or decreasing
type. Such behaviours of the Hilbert functions are of interest for different reasons [Hal,
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Typeset by ApsS-TiX



2 ON ZERO-DIMENSIONAL SUBSCHEMES OF COMPLETE INTERSECTIONS

[MRYJ, [St], [Hi]. These classes include for example all zero-dimesional schemes in P2 or
those in P? which lie on irreducible quadrics or cubics.

Moreover, we also obtain results on the superabundance of linear systems of hyper-
surfaces passing through X and on upper bounds for the minimal number of generators
of the defining ideal of X . From these results we can generalize Cayley—Bacharach the-

orem (Theorem 3.2) and Dubreil theorem (Theorem 4.2 ) to zero-dimensional schemes
m P n>2.

1. Basic facts

Let k& be any infinite field. By a graded ring A we always mean a standard graded
k-algebra of finite type, that is, A is the quotient of a polynomial ring over k& by an
homogeneous ideal. We denote by

hM(t) = dimy M,

the Hilbert function of any finitely generated graded A-module M. The generating
function of this numerical function is the formal power series Pps(2) := 3,54 ha(t)z".
In the case M = A, as a consequence of the Hilbert-Serre theorem, we can write
Pa(z) = Ha(2)/(1 — 2)¢, where Hq(z) € Z[z] is a polynomial with integer coefficients
such that H4(1) # 0. The natural number H4(1) is the multiplicity e(4) of A while
the degree of H4(z) is the socle degree of A. We will write s(A) to indicate the socle
degree of A. From the definition we get that the socle degree of a graded artinian ring

Ais s if ha(s) > 0 and ha(s + 1) = 0. For example, the socle degree of an artinian
complete intersection k[Xy,..., X,}/(Fy,..., Fy) is 3., deg(F}) — n.

We shall often use the fact (see e.g. [St]) that if A is a graded artinian Gorenstein
ring, then the Hilbert function of A is symmetric, which means that if welet s := s(A)
then

ha(t) = ha(s —1t)
for every t =0,...,s.

The basic result for our investigation is the following well-known property of the
Hilbert function of an ideal in a graded artinian Gorenstein ring.

Theorem 1.1. Let A be a graded artinian Gorenstein ring and let I be an homoge-
neous ideal of A. Then for every t =0,...,s(A)

ha(t) = hasr(t) + hajo.n(s(4) —t).
A proof for Theorem 1.1 can be found for example in [DGO)].

The following consequence of Theorem 1.1 is more or less a well-known result in the
ideal theory of Gorenstein rings.

For an homogeneous ideal I of A let v(I) denote the minimal number of generators
of I. Let 7(A4) denote the Cohen-Macaulay type of A. Note that if A is an artinian
graded ring, 7(A) is the dimension of the socle 0: A; of A.
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Corollary 1.2. Let A be a graded artinian Gorenstein ring and I an homogeneous
ideal of A. Then for every t =0,...,3(4)

hrra () = heo.a 1) 0:n(s(A) — ).

In particular

w(I) = r(4/(0: I))

Proof. By Theorem 1.1 we have ha(t) = ha;r(t) + hajo.n(s(4) — t), hence H(t) =
hajo:n(s(A) — ). In the same way we get ha,1(t) = haj.4,1y(s(4) —t). Hence

hija () = hayo:n(s(A) =t) = hajo.a,n(s(4) = t).
This proves the first assertion. Since v(I) = dimy(I/A,I) and
T(A/(0: 1)) = dim((0: I): A))/(0: 1)) = dimi((0: A, 1)/(0: 1)),

the second assertion follows as well.

2. Hilbert Function

The main result of this paper is the following theorem which gives strong information
on the Hilbert function of the graded ring R/I in terms of the degrees of the elements
of a regular sequence in I.

Theorem 2.1. Let R = k[Xi,...,X,] and I be a zero-dimensional homogeneous

ideals of R such that I contains a regular sequence F,...,F, of forms of degrees
dy <--<d,. Set d:=3 1 di —n.

=1

(a) If i is an integer, 1 < ¢ < n, then
hrir(t) 2 hpy(t+1)+n—:
for d—d; +1 <t < s(R/I). Moreover,
hpy(d—d;) > hpy(d—di + 1) +n —1

fdi<di+--+dicy -1+ 1.
(b) If ¢ is an integer, 1 <1 < n —1, such that (Fy,...,F;_1) is a prime ideal, then

hR/j(t) > min{nhgﬂ(t + 1), hR/I(t + 1) +2n—1—2}
ford—d; +1 <t < s(R/I).

The most interesting cases of Theorem 2.1 are for : = n, n — 1. In these cases, we
have the following statements on the behaviour of the Hilbert function of R/I near to

s(R/T).
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Corollary 2.2. Let I be a zero-dimensional homogeneous ideal as in Theorem 1.1.
Then
(a) hpyi(t) is not increasing for t > d — d,, + 1. Moreover,

hrii(d—dy) 2 hpy(d—d, +1)

if and only if there is a form of degree < dy +---+dn—1 —n+ 1 in I which does not
belong to (Fy,... , Fa_1).
(b) hpyi(t) is decreasing for d — dn—1 +1 <t < $(R/I). Moreover,

hry(d —dn-1) > hpy(d = dnq + 1)

ifdn—l $d1+"'+dn—2_n+2~
(c) If (F1,...,Fn=2) is a prime ideal, then

h’R/I(t) 2 hR/[(t + 1) +n — 1
ford—d,—1+1<t<s(R/I).

This corollary covers some interesting results on the postulation of zero-dimesional
schemes.

Let X be a zero-dimensional scheme in P® = P"(k), where k is an algebraically
closed field. We denote by A x(t) the first difference of the Hilbert function of X, which
is defined as follows:

Ax(t) = 1 if t=0,
VT U hx(®) —hx(t—1) i t>0.

The non-zero values of Ax(t) form the so called h-vector of hx(t).

Following {St] and [MG] we say that the Hilbert function hx(t) of X is of unimodal
type if Ax(t) is non-decreasing up to the maximum of Ay (t) and then non-increasing
(i.e. Ax(t) has only a local maximum) and that hx(t) is of decreasing type if moreover
Ax(t) is (strictly) decreasing until it reach zero once it starts to decrease.

The first notion has been studied mainly from the combinatorial point of view-(see
e.g. [St], [Hi]). It was conjectured that if the homogeneous coordinate ring of X is
Gorenstein, then X is of unimodal type [Hi, Conjecture 1.5]. The latter notion plays
an important role in the characterization of zero-dimensional schemes in P? (e.g. points
in uniform psoition) which arise as hyperplane sections of smooth curves in P*. In fact,
Harris [Ha] showed that the Hilbert function of such a zero-dimensional scheme is of
decreasing type. By [GP] and [MR], this condition exactly characterizes the Hilbert
functions of hyperplane sections of reduced irreducible curves (see also [GM]). Similar
results on the postulation of zero-dimensional schemes on smooth quadrics in P? have

been recently discovered by Raciti, Paxia and Ragusa [R1], [R2], [PRR]. We shall see
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that for many zero-dimensional schemes this behaviour of the Hilbert functions are easy
consequences of Corollary 2.2.

In the sequel we will denote by a;(X) < ... < a,.(X) the degrees of the elements
of a homogeneous minimal basic of the defining ideal of X arranged in non-decreasing
order.

Theorem 2.3. Let X be a non-degenerate zero-dimesional scheme in P" and a; =
a;(X). Assume that X lies on a complete intersection of n — 1 hypersurfaces of degree
ajy... ,ap—1 and ap > a1 + -+ an—1 —n. Then hx(t) is of unimodal type.

Proof. Let I(X) be the defining ideal of X in S = k[X,,... ,X,]. Without restriction
we may assume that X, is a non-zerodivisor of I(X). Let I denote the artinian
reduction I(X) + (Xo)/(Xo) of I(X) in R = k[Xy,... ,X,]. Then hp/i(t) = Ax(t).
Moreover, there exists in I a regular sequence Fi,...,F, with degF; = a;, 1 =
1,...,n~1,and deg F;, > a,. It is clear that for t < an, —1, hp/;(t) equals the Hilbert
function of B = R/(F1,... ,Fy—1). Since B is a one-dimensional Cohen-Macaulay ring,
the latter function is increasing until it reachs ¢ = a; ++-+a,—1 —n+1 when it remains
constant. Put d; = deg F; and d = Z:;] d;—n. Note that d—d, = a;+- - +an_y —n.
Then hR/[(t) 1s increasing for ¢t < d—d,, if a, 2 a1+ ---ap—1—n+lorfort <d-d,-1
if ap =a; +---an—1 —n. On the other hand, the statement (a) of Corollary 2.2 say
that hg/r(t) is non-increasing afterwards. Hence hx(t) is of unimodal type.

In Theorem 2.3 we can replace the condition that X lies on a complete intersection

of n — 1 hypersurfaces of degree ay,...,an,—1 by the stronger condition that X lies on
an irreducible complete intersection C' of n — 2 hypersurfaces of degree a;,... ,an—z.
Moreover, the condition a, > a1 + -+ + ap—y — n is satisfied in the following cases:
n=2;
n= 3, a; < 3,

n=4,a =a; =2.

Now we will present some cases where hx(t) is of decreasing type. Let us assume
that X lies on a complete intersection of n hypersurfaces of degree a;,... ,a,. By the
proof of Theorem 2.3, A x(t) is increasing up to ¢t = min{a; + -+ +an—1 —n+1, ap —1}
when it eventually remains constant until ¢ = a, — 1. Now using the statement (b) of
Corollary 2.2 we have that Ax(t) is decreasing for for t > a, f d ~an-1 +1 < a, or
d—ap-1 =ay and ap—; <a; + -+ ap—2 —n+ 2, where d = E:;l a; —n. It is easy
to check that these conditions are satisfied only for the following cases:

n=2;
n=3, a =2
n=4,a =a =az3=2.

Combining the above observations with Theorem 2.3 and Corollary 2.2 (¢) we obtain
the following results on the postulation of zero-dimensional schemes in P* | n = 2,3,4.
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Corollary 2.4. (cf. [H]) Let X be a zero-dimensional scheme in P%?. Then
(a) hx(t) is of unimodal type.
(b) hx(t) is of decreasing type if X lies on a complete intersection C of two curves

of degrees a < b such that there is no curve of degree < b passing through X but not
C.

The assumption of Corollary 2.4 (b) is satisfied if X arises as an hyperplane section
of an reduced irreducible curve of P?. According to [Sau] and [GM)] (see also [HTV])
any reduced irreducible curve V in P? lies on a complete intersection C' of two surfaces

of degrees a < b such that there is no surface of degree < b passing through V but not
C.

Corollary 2.5. (cf. [R2], [PRR]) Let X be a non-degenerate zero-dimensional scheme
in P?. Then

(a) hx(t) is of unimodal type if X lies on an irreducible quadric or cubic.

(b) hx(t) is of decreasing type if X lies on a complete intersection C of a quadric
with two surfaces of degree a < b such that there is no surface of degree < b passing
through X but not C'. Moreover, if the quadric is irreducible, then Ax(t) > Ax(t)+2
for t > b.

By the above remark, the assumption of Corollary 2.5 (b) is satisfied if X is the
intersection of a quadric with a reduced irreducible curve in P3,

Corollary 2.6. Let X be a non-degenerate zero-dimensional scheme in P*.

(a) hx(t) is of unimodal type if X lies on an irreducible complete intersection of two
quadrics.

(b) hx(t) is of decreasing type if X is lies on a complete intersection C of three
quadrics and an hypersurface of degree a > 2 and there is no hypersurface of degree
< a passing through X but not C. Moreover, Ax(t) 2 Ax(t)+ 3 for t > «.

For Corollary 2.6 (b) we can show that C lies on an irreducible complete intersection
of two quadrics by using a kind of Bertini theorem (see e.g. [T, Hauptsatz}).

Now we want to show that from Theorem 2.1 we easily get a strong version of a
classical result which, accordingly to [D], was first noted by Castelnuovo and reborn a
number of times since: see [Hn], [GP], [Hs], [DGM] and especially [D] where a new and
elementary proof is presented. This classical result is a special case, namely the case
n = 2, of the following corollary.

Corollary 2.7. Let R = k[X,,...,X,] and V be a proper subspace of R, whose
elements generate an ideal of height n. If t is an integer such that t > ns —2s —n +1
and codim{R:V) > 0, then

codimp(Riy1 V) < codimi (R, V).
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Proof. Let I be the ideal generated by a vector base of V. Then Ij4,41 = R4V and
Itys = RiV. Hence codimi(Re+1V) = hgyr(t+s+1) and codimp(RV) = hpy(t +3).
The conclusion now follows from Corollary 2.1 (a) because sn—s—n+1 < t+s < s(R/T),
where the last inequality follows from the assumption that codimi(R.V) > 0.

Another easy consequence of Theorem 2.1 is the following result which has been
proved in [DGM, Theorem 2.4] by using an anusual genericity argument. Here we write
Ah 4 for the first difference of the Hilbert function of a graded ring A, which is defined
as follows:

N (_)_{1 it =0,
Y U hali) = ha(i=1) i i>o0.

Corollary 2.8. Let R = k[X,Y] and J C I be homogeneous ideals of R such that
J =(F,G) where F,G is a regular sequence of degree a < b. Then

Ahpyy(t) 2 Ahpy(i)
for every i =0,...,s(R/I)+ 1.
Proof. 1t is well known that
if 0<t<a—-2

-1 if b-1<t<a+b-2.

Since hpyr(n+1) — hpyi(n) <1 for every n > 0, the conclusion follows immediately

in the interval 0 < ¢t < a — 2, while in the interval a — 1 <t < 3(R/I), it is a trivial
consequence of the Corollary 2.2 (c).

The following example shows that this result does not hold if R has dimension > 2.

Ezample. Let R = k{X,Y,Z], J = (X%, Y, 2% and I = (X3 X%Y,X2Z3, Y4, 2°).
Then s(R/I) =7 but Ahg,;(7) = =3 while Ahpg,;(7) = =2.

For the proof of Theorem 2.1 we need the following lemima.

Lemma 2.9. Let A be a graded ring of depth ¢ > 1 and embedding dimension n. If
V is a subspace of A; of dimension r > 0, then

dimp(A\ V)21 +¢—1.
Further, if ¢ > 2 and V contains an element which is a non zero divisor in A, then

dimp(4,V) > min{rn,7 + n+ ¢ — 3}.
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Proof. Let Fy,...,F, be a vector base of V' and let z;,...,z, be a regular sequence
of linear forms in A. Set z :=(z,,...,z,).

Claim 1. The vector space zV generated by the rg vectors {z;F;}, ¢ =1,...,¢9 and
j =1,...,r, cannot be generated by a set of vectors {z;F;} involving only z1,...,zm
with m < g¢.

Assume the contrary. Then we have z,F; € 2V C (21,...,2m), hence Fj €
(z1,...,zm) for every j. Thus zV C (z1,...,7m)?, and, for every j, we get z,F; €
zV C (21,...,2m)?. Since z1,...,z, is a regular sequence, this implies that for ev-
ery j, F; € (z1,...,2m)* so that 2V C (z1,...,zm)%. Going on in this way, we get
zV C (z1,...,om)""2, which is impossible. This proves Claim 1.

Now 1t is clear that =, Fy,x1F3,...,z1 F, are vectors in zV which are linearly inde-
pendent. We can use ¢ — 1 times Claim 1 to find vectors z2F;,,...,2,F;, in 2V such
that

IE]F],IB]FQ, e ,J!]Fr,JJQF,'z, AN ,J!QF,'“

are linearly independent. This proves the first part of Lemma 2.9.
As for the second assertion, let z;,...,z, be the linear forms which are a k-basis of

A;. We may assume that Fy,zq,...,2,-1 form a regular sequence in A.
Clarm 2. Fyzy, Fyzq,...,Fiz,, Fyzy,..., Frz; are linearly independent vectors in 4, V.
Let

i APz + i: wiFiz; =0
1=1 1=2

for some A;, i € k. Then we get

p ($50) s (£ ) .

=1 =2

This implies E:';z wiFy € (Fy). Since Fy,..., F, share the same degree and are linearly
independent, we get po,...,u, = 0. Since F} is a non zero divisor in A, we get
Sty dizi = 0 and this implies Ay = .-+ = A, = 0 by the linear independence of
Z1,...,Zn. This proves Claim 2.

Claim 2 implies that we have n+7—1 vectors in 4; V' which are linearly independent.
Hence, if r = 1, then n +r — 1 = rn and the conclusion follows.

Claim 3. Let » > 2 and z :=(z1,...,%9—1). Then 2V cannot be generated by
F1.'E1,F1:B2, .o ,ijn,FQ.’El, e ,Fr:z:l

plus a set of vectors {z;F;} involving only zy,...,&m with m < g—-1.
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Assume the contrary. Then we have
g1 F; €2V C(F1,21,...,2m),

hence F; € (Fy,z1,...,%m) for every j. Thus 2V C (Fy) + (z1,...,7m)? and, for
every j, we get
:L'g_le czV C (F]) -+ (.’El,.. .,.'Bm)z.

Since Fi,zi1,...,Zm 1s a regular sequence, this implies that for every j, F; € (F}) +
(z1,...,Zm)? so that zV C (F}) + (21,...,2m). Going on in this way we get =V C
(F1) 4+ (z1,...,2m)"% so that zV C (F1). This implies for example z; F; = FyL for
some linear form L in A. Hence F3; = «F}, a contradiction. This proves Claim 3.

We can use g —2 times Claim 3 to find vectors 2o F},, ..., 241 F} in zV such that

g—1

F}ﬂ?],Flmg, ‘e .,Flmn,FQ.’Bl,.. . ,Fr$1,$2F§2,.. . ,:I:g_].F,‘n_l

are linearly independent. This proves the second part of Lemma 2.9.

Proof of Theorem 2.1. Let A := R/J and I :=I/J, where J = (F\,...,F,). Using
Theorem 1.1 we get

hrpr(t) = hasr(t) = Ha(t) — hgjo.p(d — 1)
= HA(t) - HA(d - t) + hU:f(d‘ - t) = hO:I_(d - t)

for every t < d. For convenience we set m =d —t.
To prove the first assertion of Theorem 2.1 (a) we need to verify that

h’U:I-(m) Z hO:f(m - 1) +n—z

for d—s(R/I) <m < d;~1.Set B=R/(F1,...,Fi_1) and Q@ = (J : I)/(F1,... JFic1).
For m < d; — 1, we have J, = (F1,...,Fi—1)m so that we may identify 0:1,, = (J :
I/J)m with the subspace Qm of B,,. For m > d — s(R/I), we have t < s(R/I) so
that

dimiQum_1 = ho,f(m —1) = hp(t +1) > 0.

Therefore we can apply the first part of Lemma 2.9 to @,,—;. Note that B has depth
n—12+4+1>0. Then we get

ho.;(m) = dimiQm 2 dimpQm—1 B
>dimpQm-1 +n—1=hg(m—-1)+n—1,

which proves the first assertion of Theorem 2.1 (a). The same arguments also shows
that the second part of Lemma 2.9 gives Theorem 2.1 (b).
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It remains to prove the second assertion of Theorem 2.2 (a). For this we need to
show that
ho.f(di) 2 hgj(di = 1) +n—1

ifdi<dy+--- +-d,-_1 — 1+ 1. We have seen that
ho.1(di — 1) = ho(d; - 1).
Since Jy4; = (F1,... , Fi)a, , it is easy to check that
ho.f(di) = dimp(J : I/J)a; = ho(d;) — 1.

Without restriction we may assume that X;,...,X,_;y+, forms a regular sequence
in B. Then B = B/(X,,...,Xn-i+1)B is a graded artinian Gorenstein ring with
S(E) =dy+ - +di1—i+1. If d; <dy+---+di—1 —1+1, we may further assume that
Qa1 € (X1,...,Xn—izy1)B. Since s(B) > d; — 1, the image of Qg,—; in B is not
contained in the socle of B. So we have Q4,181 € (Xa,... ,Xn_i+1)B. By the proof
for the first part of Lemma 2.9 this implies that dimg Q4,181 > dimg Qq,—1 + 71 — 2.
Since Qq,—1B1 C Qq;, we get

hQ(d,’) > hQ(d,‘ — 1) +n—1

so that hg.7(d;)+1 > hg.j(di —1)+n —1, as required. The proof of Theorem 2.1 is now
complete.

Proof of Corollary 2.2. All statements of Corollary 2.2 follow from Theorem 2.1 except
the second assertion of Corollary 2.2 (a). To prove this we follow the proof of the second
assertion of Theorem 2.1 (a). We need to show that

hQ(dn) > hQ(dn - 1)

if and only if there is a form of degree < dy+- - +d, -1 —n+1 in I which does not belong
to (Fi,...,Fnh_1), where @Q is now the ideal (J : I)/(F,...,Fn—y) of the ring B =
R/(Fy,...,Fa_1). Wehaveseen that hg(dn) > hg(da—1) if d, < dj+- - +dp_1—n+1.
In this case, F, is a form in I which does not belong to (Fi,...,F,_1). So we may
assume from the beginning that d, > d; +---4+dp_1 —n+1.

If ho(ds) > hg(d, — 1), then we have Qu,—1 # Bq,—1 so that hgg(d, —1) > 0.
Since R/J: I~ B/Q, we get hpy.;(dn —1) > 0. By Theorem 1.1 this implies

hR/“](d— dn + 1) > hR/I(d—dn + 1)

Therefore there exists a form in I;_4 41 which does not belong to Jy—_4,+1. Since
d—dy,+1=dy+- - +du_y =n+1<d,, we have Jy_g,4+1 = (F1,...,Fnz1). So
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we can find a form of degree dy + -+ + dp—1 —n + 1 in I which does not belong to
(F1,...,Fa_y).

Conversely, if there is a form of degree < d; + -+ +d—1 —n+ 1 in I which does
not belong to (Fy,...,Fr_1), then we can always find a form of degree d —d,, + 1 =
di + - +dy1 —n+1 in I which does not belong to (Fy,... ,F,—1). Similarly as
above, we can show that this implies hg(d,) > ho(dn — 1), as required.

3. Superabundance

Let X be a zero-dimensional schemein P". We know that hx(2) is strictly increasing
until it reaches the degree deg(X) of X, at which it stabilizes. The number wx(t) :=
deg(X) — hx(t) is called the superabundance of the linear system of hypersurfaces of
degree t passing through X. Also wx(t) = h!Sx(t), where Sy is the ideal sheaf of X,

The next result gives a formula relating the Hilbert function of a zero-dimensional
complete intersection X in P", that of a proper subschme Y of X, and the super-
abundance of the residual scheme Z of Y on X . This result extends to arbitrary =
a result proved by J.Harris in the case n = 2 (see [H2, Lemma] and [C, 3.2]). Recall
that if J is the defining ideal of X and I that of ¥ in S := k[Xy,... ,X,], then the
restdual scheme Z of ¥ on X is defined by the ideal J: I.

Proposition 3.1. Let X be a zero-dimensional scheme in P" which is the complete
intersection of n hypersurfaces of degree dy,...,d, and d: =31 di—n. Let Y bea

=1

proper subscheme of X and Z the residual scheme of Y on X . Then
wz(t)y =hx(d—t— 1) —hy(d —t— 1)

for very integer t such that 0 <t <d -~ 1.

Proof. 1t is well known that under our assumptions the defining ideals J, I and J: [
of X, Y, and Z are perfect ideals of codimension n such that

e(S/JT) =e(S/T)+e(S/(J : I)).

We may assume that Xy is a non-zerodivisor modulo I, J and J : I. Let ~ denote
reduction modulo Xy and let R = k[X,,...,X,]. By Theorem 1.1 we get

hpyi(t) = hpyi(t) + hpyan(d — 1)
for every 0 <i < d. On the other hand, we have

e(R/TT)=e(S)(J: I)) = e(S/J) — e(S/I) = e(R/J) — e(R/I) = e(R/(J : )).
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Since J: I C J: I, weget J:I=J:I Thisimplies for every t, 0<t<d—1,

d—t-1
hsya(d—t—1)—hg(d—t—=1)= Y [hg3() = hp/7(i)]

1=0

d—1-1

= Z hp/7r(d — 1)

1=0

d
= Z hp77(0) = hsp:n(d) — hsya.n(2).
j=t41

Since J C J : I, we have 0 < hR/—j:—f(s) < kg 5(s) = 0 for every s > d+1. This implies
hsia:n(d) = e(S/(J : I)) and the conclusion follows.

As a trivial application of Proposition 3.1 we get the following very general version of
the classical Cayley-Bacharach theorem, which says that every curve of degree a+b—3
in P? passing through ab — 1 of ab points of an intersection of two curves of degree a
and b has to pass the remaining point of the intersection. The possibility of extending
the classical Caley-Bacharach theorem to zero-dimensional subschemes of P" has been
already observed by Davis, Geramita, and Orecchia [DGO].

Theorem 3.2. Let X be a closed zero-dimensional subscheme of P"* which is the
complete intersection of n hypersurfaces of degrees dy,...,d,. Let d:= 3" di—n
and t an integer such that 0 <t < d—1. If Y is a proper subscheme of X such that the
residual scheme Z has wz(t) = 0, then every hypersurface of degree d —t — 1 passing
through Y has to contain X.

If Z is a set of points, then wgz(t) = 0 if and only if Z imposes |Z| independent
conditions on hypersurfaces of degree ¢. In particular, if |Z| = (":t), this means that
Z is not contained in any hypersurface of degree ¢. Hence Theorem 3.2 has the following
interesting consequence.

Corollary 3.3. Let X be aset of d; - - - d,, points of the intersection of n hypersurfaces
of degrees dy,...,d,. Let d:=%._, di —n and t an integer such that 0 <t <d—1.
If'Y is a subset of |X| — (":t) points of X such that the set of the remaining points
of X does not lie on any hypersurface of degree t, then every hypersurface of degree

d -t — 1 passing through Y has to contain X.

Theorem 3.2 (for points) and Corollary 3.3 have been proved recently by M.-A. Coppo
[C]. The classical Cayley-Bacharach theorem is the case n =2, t = 0 of Corollary 3.3.

Another application is the following result of J. Briancon which gives a condition for
a zero-dimensional scheme to be a complete intersection.
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Corollary 3.4. [B] Let X be a zero-dimensional scheme in P" which is the complete
intersection of n hypersurfaces of degree dy,...,d,. Let d:= > " di—n, and Y a
subscheme of X with wy(d—1)> 0, then ¥ = X.

Proof.. By Proposition 3.1 we have wz(0) = Hx(d — 1) — Hy(d — 1). This implies
(X =Y = Hy(0) = [X| -1— (Y] -wy(d - 1))

which gives Hz(0) =1 —wy(d—1) for Z = X \'Y. Thus we get Hz(0) = 0, hence
I{Z) = (1) which implies Z =0 and ¥ = X.

4. Number of generators

In this last section we apply our methods to bound the minimal number of generators
v(I) of a homogeneous ideal I of a polynomial ring R = k[X,..., X,].

Our idea is to combine Theorem 1.1 with a simple result of J. Sally [Sa] which
says that the minimal number of generators of any ideal in a one-dimensional Cohen-
Macaulay local (or homogeneous) ring A is bounded above by the multiplicity e(A4) of
A (cf. [G, Proposition 1.2]). For this we shall need the following easy lemma.

Lemma 4.1.. Let A be a graded ring. Then

max v(I) = max T(A/J).

Proof. For every homogeneous ideal I we let J to be the ideal A;I. Then we have
v(I) = dimi(I/J) S dimy(J - Ay [ T) = 7(A]J).
On the other hand for every homogeneous ideal J in A we have
T(AfT) =dimp(J : A/ J) S dim(J : ArJA(J 2 Ay)) =o(J 1 Ay).
Now the conclusion is immediate.

The main result of this section is a generalization of a classical theorem of Dubreil
[D, Theoreme II] which says that for any homogeneous ideal I of height 2 in k[X, X>],
v(I) <a+b— s+ 1, where a is the least degree of forms in I, b is the least number
such that I contains a regular sequence of two forms of degree a and b, and s is the

socle degree of k[X;,X,]/I.

Theorem 4.2 .. Let I be a height n homogeneous ideal of R = k[X1,...,X4,],
n > 2. Assume that there exists in I a regular sequence Fy,..., F, of forms of degrees
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dy > -+ > dn such that (F\,... ,F,_3) is a prime ideal. Let d =3 . di —n and s
be the socle degree of R/I. Then

v(I) < (d—s)nl:[d;-{—n.

Proof.. Let A= R/(F,... ,F,) and I =I/(F,,... ,F,). Then s(A) = d and
v(I) Sv(f)—{—n.

By Theorem 1.1 we get hy,j(d—s) = h 4,7(s) > 0. Hence there exists a form F' € Ry,
such that the image of F' in A is a non-zero element of 0 : I. We may write

v(I) = 7(4/0: 1) = 7(B/Q),

where B = R/(F,...,F,_2,F) and Q is the preimage of the ideal 0: I in B. Since
(F1,... ,Fy_2) is a prime ideal and F ¢ (Fy,...,Fy), the sequence Fy,...,F,_o, F
is regular, hence B is a one-dimensional Cohen-Macaulay ring. Using Lemma 4.1 and
Sally’s bound for the number of generators of ideals in B we get

n—2

r(B/Q) <e(B)=(d—s) [] d

=1
which gives the conclusion.

Note that Theorem 4.2 does not hold if we drop the assumption that (Fy,... , Fy,—2)
is a prime ideal. If d — s > d,,_,, one should use instead of Theorem 4.2 the following
trivial application of Sally’s bound.

Lemma 4.3. (cf. [G, Proposition 3.7]) Let I be an homogeneous ideal of R :=
k[X1,...,X,], n > 2. If there exists a regular sequence Fy,...,F,_y in I of degree
di,...,dn—1, then

n—1
v(I) < Hd,--{-n— 1.
=1
Proof. Let B=R/(Fy,...,Fo1) and Q = I/(F1,... ,Fa_1). Then v(I) <v(Q)+n—
1. Since e(B) = [[1-, di, from Sally’s bound we get v(Q) < [i, d;.

Note that for n = 2, Lemma 4.3 gives another classical result of Dubreil [Du, The-
oreme I] (see also [G] and [DGM]). Now we will use Lemma 4.3 to prove a modified
version of Theorem 4.1 which sometimes gives a better bound for v(I).
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Theorem 4.4. Let I be a height n homogeneous ideal of R := k[X;,...,X,], n> 2.
Assume that there exists in [ a regular sequence Fy,...,F, of forms of degrees d; >
.+« > dy such that (Fy,...,Fn_3) is a prime ideal. Let d = Y_!_, di —n and m be the
largest degree of the elements of a homogeneous minimal basis for I. Then

U(I)S(d—m)ri:‘[ di +n+ 1.

t=1

Proof. Consider the artinian Gorenstein ring A := R/J where J := (Fy,...,F,). If
m < d,, then

n—2 n—2
(d—m)Hd.'-i—n+1Z(d—dn)Hdi-kn-{-l
= n—1 ’=1n—2
= di-n)[[di+n+1
= n—2 = n—2 n—1
=2+ di—-n)[[di+ [[di+n-1
=1 =1 1=1
n—1
>J[di+n-1,

Therefore, if m < d,, the conclusion follows from Lemma 4.3.
Let m > d, and I = I/J. By Corollary 1.2 we have
heo:a, nj:n(d—=m)=hra f(m) > 0.

This means that we can find an element F' € Ry such that the image f of F' in A
belongs to 0: Ay I but f ¢ 0: 1. Using Corollary 1.2 we also get
() Lo +n=7(4/0: ) +n
<o((0:D): A)+n=0v(0: A1) +n
If m = d, then 0 : A;] = A and the conclusion follows. If m < d, then since
(F1,...,Fy_2) is a prime ideal which does not contain F', we get that Fy,..., Fr_y, F

form a regular sequence and the ring B := R/(F,...,Fu._2, F) is Gorenstein of dimen-
sion 1. Therefore

v(0: A D) <ov(0: A T/f)+1=v((J: R )/(J,F))+1

n—2
<o((J:RD/(F, ..., Face, F)) +1<(d—m) [] di +1,
=1
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where the last inequality follows again by the quoted Sally’s bound for the number of
generators of ideals in B. The proof of Theorem 4.4 is now complete.

In general we always have m < s + 1. Hence Theorem 4.4 give a better bound for
v(I) than Theorem 4.2 only if m = s + 1.

The following example shows that in Theorem 4.2 and Theorem 4.4 we can not delete
the assumption that (Fy,..., F,_2) is a prime ideal in R.

Ezample.. Let R = k[X,Y,Z] and I = (X2, XY? XZ% XYZ,Y3 Z%,Y?Z?). Then
dy=2,dy=8,d3=4,d=6, s=4,and m=35. But v(I) =7, while

(d=3s)d; +2—-1=(d—m)di +3+1=6.
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