A Vanishing Theorem for Intersection Homology with Twisted Coefficients of Toric Varieties

David Yavin

e-mail address:
yavin@eurydice.mpim-bonn.mpg.de

Max-Planck-Institut für Mathematik
Gottfried-Claren-StraBe 26
D-5300 Bonn 3

Germany

A Vanishing Theorem for Intersection Homology With Twisted Coefficients of Toric Varieties

David Yavin

November 29, 1991

Abstract

We prove that $I H^{\tilde{\zeta}}(\mathbf{X} ; \mathcal{L})=\{0\}$ for any toric variety \mathbf{X}, any perversity \bar{p} and any local system \mathcal{L} which is strongly non-trivial with respect to the cone complex Σ which defines \mathbf{X}. The class of strongly non-trivial local systems includes all non-trivial 1-dimensional local systems. We use a topological definition of \mathbf{X} due to R. MacPherson ([Mac2]) and prove the theorem by reducing to an analogous local statement on each of the elements of a certain (closed) covering $\left\{\mathbf{X}_{\sigma}\right\}_{\sigma \in \Sigma}$ of \mathbf{X}.

1 Introduction

The study of the intersection homology groups $I H^{\tilde{s}}(\mathbf{X} ; \mathcal{L})$ where \mathbf{X} is a toric variety and \mathcal{L} is a 1 -dimensional local system, is of interest beyond the realm of toric varieties. For the trivial local system $\mathcal{L}=\mathbf{Q}_{\mathbf{X}}$, the ranks of the middle perversity groups $I H_{i}^{\text {m }}(\mathbf{X} ; \mathbf{Q x})$ have been computed and were found to be combinatorial invariants of the underlying polytope. This led to the definition of the generalized h-vectors for general convex polytopes ($[\mathrm{St}]$). On the other hand, in their study of generalized hypergeometric functions, Gelfand, Kapranov and Zelevinsky have shown that the irreducible \mathcal{D}-modules on a toric variety \mathbf{X} are in $1-1$ correspondence with the middle perversity intersection homology sheaves $I C C^{\bar{m}}(\overline{\mathbf{S}} ; \mathcal{L})$, where $\overline{\mathbf{S}}$ is the closure of a stratum of \mathbf{X} (and hence also a toric variety) and \mathcal{L} is an irreducible local system on \mathbf{S} ([GKZ],[Mac1]). Over C, all irreducible local system are 1 -dimensional.

In this paper we prove that under certain conditions on a local system for intersection homology on a toric variety \mathbf{X}, the groups $I H_{i}^{\bar{p}}(\mathbf{X} ; \mathcal{L})$ all vanish. In prticular, these conditions are satisfied by any non-trivial 1 dimensional local system.

We use a topological definition of \mathbf{X} which, in ignoring the additional algebraic structure, uses only elementary topological constructions and properties of the underlying cone complex. We define a filtration of \mathbf{X} and use spectral sequence arguments to reduce the general theorem to an analogous local theorem on certain subspaces $\mathbf{X}_{\boldsymbol{\sigma}} \subset \mathbf{X}$ which are in 1-1 correspondence with the cones σ of the underlying cone complex.

2 Definitions

A cone complex (a.k.a. complete fan) Σ in \mathbf{R}^{n} is a decomposition of \mathbf{R}^{n} into a finite number of closed, convex, rational polyhedral cones, each with apex 0 , such that any face of a cone $\sigma \in \Sigma$ is itself in Σ and such that the intersection of any two cones is a common face of both.

Let Σ be a cone complex in \mathbf{R}^{n}. Let \mathbf{D} denote the unit ball in \mathbf{R}^{n} and let S be its boundary. S is decomposed into polyhedral cells by intersecting with the positive dimensional cones of Σ. Define the dual cell complex $\mathcal{P}=\mathcal{P}_{\Sigma}$ to be the n-dimensional polyhedral cell complex whose ($n-1$)-skeleton is the dual cell-block decomposition of S and whose unique (open) n-cell is the interior of \mathbf{D}. The cells of \mathcal{P} are dually paired with the cones of Σ. We denote by $\hat{\sigma} \in \mathcal{P}$ the cell dual to a cone $\sigma \in \Sigma$.
Note: This explicit construction of \mathcal{P} is given only for convenience in the proof of the main theorem. In general, any realization of the abstract cellcomplex whose face lattice is dual to that of Σ would yield an isomorphic toric variety.
For every cone $\sigma \in \Sigma$ set $\mathcal{P}_{\sigma}=\mathcal{P} \cap \sigma$ and $\mathcal{P}_{\partial \sigma}=\cup_{\tau \subset \sigma} \mathcal{P}_{\tau}$. For each $0 \leq k \leq n$ set $\mathcal{P}^{k}=U_{\operatorname{dim} \sigma \leq k} \mathcal{P}_{\sigma}$.

Definition 2.1 Let $T^{n}=\mathbf{R}^{n} / Z^{n}$ denote the n-torus. Define the toric variety $\mathbf{X}=\mathbf{X}_{\Sigma}$ to be $\mathcal{P} \times \mathcal{T}^{n} / \sim$, where $(x, \tau) \sim\left(x^{\prime}, \tau^{\prime}\right)$ if and only if $x^{\prime}=x \in$ relint $\hat{\sigma}$ for some $\sigma \in \Sigma$ and there exist liftings $t, t^{\prime} \in \mathbf{R}^{n}$ of τ and τ^{\prime} such that $t-t^{\prime} \in \operatorname{span} \sigma$. Thus if $x \in$ relint $\hat{\sigma}$, then since span σ is a rational subspace of \mathbf{R}^{n}, the torus $\{x\} \times \mathcal{T}^{n}$ is collapsed in \mathbf{X} to a torus of dimension $n-\operatorname{dim} \sigma=\operatorname{dim} \hat{\sigma}$. There is an obvious projection $\pi: \mathbf{X} \rightarrow \mathcal{P}$.
\mathbf{X} has a natural stratification

$$
\mathbf{X}_{0} \subset \mathbf{X}_{2} \subset \ldots \subset \mathbf{X}_{2(n-1)} \subset \mathbf{X}_{2 n}=\mathbf{X}
$$

where for each $k, \mathrm{X}_{2 k}$ is the inverse image under π of the k-skeleton of \mathcal{P}. The "non-singular" (open) stratum $\mathbf{X} \backslash \mathbf{X}_{2 n-2}$ is equal to int $(\mathbf{D}) \times \mathcal{T}^{n}$ and hence is homeomorphic to $\left(\mathrm{C}^{*}\right)^{n}$. Fix once and for all a base point $c \in X \backslash \mathbf{X}_{2 n-2}$.

Deffition 2.2 A k-dimensional local system for intersection homology on a stratified pseudomanifold consists of a local system on the non-singular stratum. In particular, a local system for intersection homology on \mathbf{X} consists of a bundle over ($\left.\mathrm{C}^{*}\right)^{n}$ whose fibre V is a k-dimensional vector space over a field \mathbf{F} (usually C or Q). Equivalently, it consists of a vector space \mathbf{V} and a representation of $\mathbf{Z}^{n}=\pi_{1}\left(\mathbf{X} \backslash \mathbf{X}_{2 n-2}, c\right)$ into $\operatorname{Aut}(\mathbf{V})$. Let \mathbf{V}_{x} denote the fiber of \mathcal{L} over a point $x \in \mathbf{X}$. Any $z \in \mathbf{Z}^{n}$ determines a monodromy $T_{z} \in \operatorname{Aut}\left(\mathbf{V}_{c}\right)$. We will use the same notation for a local system and for its restriction to a subspace whenever the context is clear.

Definition 2.3 Let Σ be a cone complex in \mathbf{R}^{n} and let $\sigma \in \Sigma$ be a k dimensional cone. Let \mathcal{L} be a local system for intersection homology on the associated toric variety $\mathbf{X}=\mathbf{X}_{\mathbf{\Sigma}}$. An ordered basis $B=\left\{z_{1}, \ldots, z_{n}\right\}$ of \mathbf{Z}^{n} is a σ-basis if $z_{i} \in \operatorname{span} \sigma$ for $1 \leq i \leq k$ (thus $\left\{z_{1}, \ldots, z_{k}\right\}$ form a basis of $\mathbf{Z}^{n} \cap \operatorname{span} \sigma$). We say that \mathcal{L} is strongly non-trivial with respect to σ if every $\tau \subseteq \sigma$ admits a τ-basis $\left\{z_{1}, \ldots, z_{n}\right\}$ of \mathbf{Z}^{n} such that $T_{z_{i}}-I: \mathrm{V}_{c} \rightarrow \mathrm{~V}_{c}$ is invertible for some $1 \leq i \leq n . \mathcal{L}$ is strongly non-trivial (with respect to Σ) if every $\tau \in \Sigma$ admits such a basis.

Remark 2.4 Any non-trivial 1-dimensional local system for intersection homology on \mathbf{X} is strongly non-trivial.
Proof: For any $\sigma \in \Sigma$ choose a basis of $\mathbf{Z}^{n} \cap$ span σ and complete it to a basis of \mathbf{Z}^{n}. Since \mathcal{L} is non-trivial and 1-dimensional, one of the monodromies corresponding to this basis is equal to multiplication by some constant $d \neq 1$, whence multiplication by $d-1$ is invertible.

The main result of this paper is
Theorem 2.5 Let Σ be a cone complex in \mathbf{R}^{n} and let \mathbf{X} be the associated toric variety. Let \mathcal{L} be a local system for intersection homology on \mathbf{X} which is strongly non-trivial with respect to Σ. Then for any perversity \bar{p} and for all $0 \leq i \leq 2 n, I H_{i}^{戸}(\mathbf{X} ; \mathcal{L})=0$.

To prove theorem 2.5 we define a filtration of \mathbf{X} and show that in the corresponding spectral sequence the E^{1} term vanishes. First, we need the following lemma.

Lemma 2.6 Let (Y, y) be a stratified pseudomanifold where y is some fixed point in the non-singular stratum and let $\left(\mathbf{S}^{1}, s\right)$ be the circle with base point s. Let \mathcal{L} be a local system for intersection homology on $\mathbf{S}^{1} \times \mathbf{Y}$ and let \mathcal{L}^{\prime} be its restriction to $\{s\} \times \mathbf{Y}$.
Let $\mathbf{V}_{(s, y)}$ be the fiber of \mathcal{L} over the point (s, y) and let $\Phi_{y}: \mathbf{V}_{(s, y)} \rightarrow \mathbf{V}_{(e, y)}$ be the monodromy associated to one of the generators of $\pi_{1}\left(S^{1} \times\{y\},(s, y)\right)$. Then the groups $I H_{i}^{\beta}\left(\mathbf{S}^{1} \times \mathbf{Y} ; \mathcal{L}\right)$ all vanish if either
(i) $I H_{i}^{\bar{p}}\left(\{s\} \times \mathrm{Y} ; \mathcal{L}^{\prime}\right)=0 \forall i$, or
(ii) $\Phi_{\nu}-I: \mathrm{V}_{(s, y)} \rightarrow \mathrm{V}_{(s, y)}$ is invertible.

The proof of lemma 2.6 is deferred to section 4 where we first present the formal definitions and some essential lemmas concerning local systems for intersection homology in the category of piecewise linear geometric chains.

Corollary 2.7 If in addition \mathbf{Y}^{\prime} is a $P L$-subspace of \mathbf{Y} and either $I H_{i}^{\bar{p}}(\{s\} \times$ $\left.\mathbf{Y},\{s\} \times \mathbf{Y}^{\prime} ; \mathcal{L}^{\prime}\right)=0 \forall i$ or $\Phi_{y}-I$ is invertible, then $\forall i, I H_{i}^{\boldsymbol{\beta}}\left(\mathbf{S}^{1} \times \mathbf{Y}, \mathbf{S}^{1} \times\right.$ $\left.\mathbf{Y}^{\prime} ; \mathcal{L}\right)=0$.
Proof: This follows from lemma 2.6 and the long exact sequence of the pair $\left(\mathbf{S}^{1} \times \mathbf{Y}, \mathbf{S}^{1} \times \mathbf{Y}^{\prime}\right)$.

Definition 2.8 The filtration of \mathbf{X}. For each $\sigma \in \Sigma$ set $\mathbf{X}_{\sigma}=\pi^{-1}\left(\mathcal{P}_{\sigma}\right)$ and $\mathrm{X}_{\partial \sigma}=\pi^{-1}\left(\mathcal{P}_{\partial \sigma}\right)$. For each $0 \leq k \leq n$ set $\mathrm{X}^{k}=\pi^{-1}\left(\mathcal{P}^{k}\right)=$ $U_{\operatorname{dim} \sigma=k} \mathbf{X}_{\sigma}$. This defines a filtration of \mathbf{X} by closed subspaces

$$
\mathcal{T}^{n}=\mathbf{X}^{0} \subset \mathbf{X}^{1} \subset \ldots \subset \mathbf{X}^{n}=\mathbf{X}
$$

The essence of the proof of theorem 2.5 stems from the following

Lemma 2.9 Properties of the filtration:

For any k-dimensional cones $\sigma, \tau \in \Sigma$,
(i) $\mathbf{X}_{\sigma} \cap \mathbf{X}_{\tau} \subseteq \mathbf{X}^{k-1}$.
(ii) $\mathrm{X}_{\sigma} \cap \mathbf{X}^{k-1}=\mathrm{X}_{8 \sigma}$.
(iii) If $k=n$ then $\mathbf{X}_{\sigma}=c\left(\mathrm{X}_{\partial \sigma}\right)$ (here $c(Y)$ denotes the topological cone on Y , stratified by the cones on the strata of Y along with the apex of the cone as the unique 0 -stratum).
($i v$) If $k<n$ then there is an ($n-1$)-dimensional cone complex Σ^{\prime} with $\sigma \in \Sigma^{\prime}$ such that for the associated toric variety $\mathbf{X}^{\prime}, \mathbf{X}_{\sigma}=\mathbf{S}^{1} \times \mathbf{X}^{\prime}{ }_{\sigma}$ and $\mathbf{X}_{\partial \sigma}=\mathbf{S}^{1} \times \mathbf{X}^{\prime}{ }_{\partial \sigma}$.

Proof: (i) and (ii) are immediate while (iii) is easy. Proof of (iv): Let $\left\{z_{1}, \ldots, z_{n}\right\}$ be a σ-basis for \mathbf{Z}^{n}. We make the identifications:

$$
\begin{align*}
\mathbf{Z}^{n-1} & =\bigoplus_{i=1}^{n-1} \mathbf{Z}_{i}, \text { and } \tag{1}\\
\mathbf{R}^{n-1} & =\bigoplus_{i=1}^{n-1} \mathbf{R} z_{i} \tag{2}
\end{align*}
$$

Also for each $1 \leq i \leq n$ let τ_{i} be the image of $\mathbf{R} z_{i}$ in \mathcal{T}^{n}, and identify

$$
\begin{equation*}
T^{n-1}=\tau_{1} \times \ldots \times \tau_{n-1} \text { and } T^{n}=T^{n-1} \times \tau_{n} \tag{3}
\end{equation*}
$$

Complete σ arbitrarily to a cone complex Σ^{\prime} in \mathbf{R}^{n-1} and denote by \mathcal{P}^{\prime} the dual cell complex and by \mathbf{X}^{\prime} the associated toric variety. Then $\mathcal{P}_{\sigma}^{\prime}=\mathcal{P}_{\sigma}$, and $\mathbf{X}_{\sigma}^{\prime}$ is obtained from $\mathcal{P}_{\sigma}^{\prime} \times \mathcal{T}^{n-1}$ by collapsing certain subtori of T^{n-1} over the faces of \mathcal{P}^{\prime} which $\mathcal{P}_{\sigma}^{\prime}$ meets. On the other hand, \mathbf{X}_{σ} is obtained from $\mathcal{P}_{\sigma} \times \mathcal{T}^{n}=\mathcal{P}_{\sigma}^{\prime} \times \mathcal{T}^{n-1} \times \tau_{n}$ by collapsing the same subtori of \mathcal{T}^{n-1} over the same points of \mathcal{P}. It follows that $\mathbf{X}_{\sigma}=\mathbf{X}_{\sigma}^{\prime} \times \tau_{n}$, and hence also that $\mathbf{X}_{\partial \sigma}=\mathbf{X}_{\partial \sigma}^{\prime} \times \tau_{\mathrm{n}}$.
Note that the sets \mathbf{X}_{σ} are, topologically, strong deformation retracts of the affine toric varieties $\mathbf{X}_{\boldsymbol{\delta}}$ defined in [Da].
The following corollary follows from (i) and (ii) above :
Corollary 2.10 For each $0 \leq k \leq n$ and for any perversity \bar{p},

$$
\begin{equation*}
I H_{*}^{\bar{p}}\left(\mathrm{X}^{k}, \mathrm{X}^{k-1} ; \mathcal{L}\right)=\bigoplus_{\substack{\sigma \in \mathcal{L} \\ \operatorname{dim} \sigma=k}} I H_{*}^{\tilde{p}}\left(\mathbf{X}_{\sigma}, \mathbf{X}_{\partial \sigma} ; \mathcal{L}\right) \tag{4}
\end{equation*}
$$

Therfore, to prove theorem 2.5 it suffices to show that each of the terms on the right hand side of (4) is trivial. This follows from

Lemma 2.11 Let Σ be a cone complex in \mathbf{R}^{n}, X the associated toric variety, \bar{p} a perversity and \mathcal{L} a local system for intersection homology on \mathbf{X} which is strongly non-trivial with respect to a cone $\sigma \in \Sigma$. Then $I H_{i}^{\bar{p}}\left(\mathbf{X}_{\sigma}, \mathbf{X}_{\partial \sigma} ; \mathcal{L}\right)=$ $0 \forall i$.

Proof: The proof is by induction on n.
There is only one cone complex Σ in \mathbf{R}^{1}. It has a unique 0 -cone σ_{0} and two 1 -cones σ_{1} and σ_{2}. Let $T: \mathrm{V} \rightarrow \mathbf{V}$ be the monodromy corresponding to one of the generators of \mathbf{Z}. The strong non-triviality of \mathcal{L} with respect to any one of the cones of Σ is equivalent to the invertability of $T-I$. Now $\mathbf{X}_{\sigma_{0}}=\mathbf{S}^{1}$ whence $I H_{*}\left(\mathbf{X}_{\sigma_{0}} ; \mathcal{L}\right)=H_{*}\left(\mathbf{S}^{1} ; \mathcal{L}\right)$, and it can easily be seen that $H_{0}\left(\mathbf{S}^{1} ; \mathcal{L}\right)=\operatorname{coker}(T-I)$ and $H_{1}\left(\mathbf{S}^{1} ; \mathcal{L}\right)=\operatorname{ker}(T-I)$, both of which are trivial. Now, since $\mathbf{X}_{\sigma_{1}}=c\left(\mathbf{X}_{\sigma_{0}}\right)$ (by (iii) above), it follows from [Bo, p. 29, Prop. 3.1] that $I H^{\bar{p}}\left(\mathbf{X}_{\sigma_{1}}, \mathbf{X}_{\sigma_{1}} ; \mathcal{L}\right)=I H^{\bar{p}}\left(\mathbf{X}_{\sigma_{1}}, \mathbf{X}_{\sigma_{0}} ; \mathcal{L}\right)=\{0\}$, and similarly for σ_{2}.

Now let Σ be a cone complex in $\mathbf{R}^{\boldsymbol{n}}$ with \mathbf{X} the associated toric variety and let $\sigma \in \Sigma$ with $\operatorname{dim} \sigma=k<n$.
Case 1: there exists a σ-basis $\left\{z_{1}, \ldots, z_{n}\right\}$ of \mathbf{Z}^{n} with $T_{z_{j}}-I$ invertible for some $j>k$. Then we may assume that $j=n$. Use this basis to obtain the decompositions (1), (2) and (3) and write ($\left.\mathbf{X}_{\sigma}, \mathbf{X}_{\partial \sigma}\right)=\mathbf{S}^{1} \times\left(\mathbf{X}_{\sigma}^{\prime}, \mathbf{X}_{\partial \sigma}^{\prime}\right)$ accordingly. Then condition (ii) of lemma 2.6 is satisfied and the assertion follows from corollary 2.7.
Case 2: for any σ-basis $\left\{z_{1}, \ldots, z_{n}\right\}$ of \mathbf{Z}^{n}, if $T_{z_{i}}-I$ invertible for some i then $i \leq k$ (and consequently $z_{i} \in \operatorname{span} \sigma$). Let $\left\{z_{1}, \ldots, z_{n}\right\}$ be any σ-basis of \mathbf{Z}^{n} and write ($\left.\mathbf{X}_{\sigma}, \mathbf{X}_{\partial \sigma}\right)=\mathbf{S}^{1} \times\left(\mathbf{X}_{\sigma}^{\prime}, \mathbf{X}_{\partial \sigma}^{\prime}\right)$ accordingly as in part (iv) of lemma 2.9. Then the restricted local system $\mathcal{L}^{\prime}=\mathcal{L} \mid \mathbf{X}^{\prime}$ is strongly non-trivial with respect to σ (considered as a cone in Σ^{\prime}). Thus by the inductive hypothesis, $I H_{*}^{\tilde{p}}\left(\mathbf{X}_{\sigma}^{\prime}, \mathbf{X}_{\partial \sigma}^{\prime} ; \mathcal{L}^{\prime}\right)=\{0\}$ so that part (i) of lemma 2.6 is satisfied, and once again our assertion follows from corollary 2.7.

Finally, suppose $\operatorname{dim} \sigma=n$. Then by (iii) above, $\mathbf{X}_{\sigma}=c\left(\mathbf{X}_{\partial \sigma}\right)$. By its construction, the filtration of \mathbf{X} restricts to $\mathbf{X}_{\partial \sigma}$ so that corollary 2.10 holds for the restricted spectral sequence namely for each $1 \leq i \leq n-1$,

$$
\begin{equation*}
I H_{:}^{\bar{p}}\left(\mathrm{X}^{i} \cap \mathbf{X}_{\partial \sigma}, \mathrm{X}^{i-1} \cap \mathbf{X}_{\partial \sigma} ; \mathcal{L}\right)=\bigoplus_{\substack{\tau \subset \theta \sigma \\ \operatorname{dim} \tau=i}} I H_{*}^{\bar{p}}\left(\mathbf{X}_{\tau}, \mathbf{X}_{\partial r} ; \mathcal{L}\right) . \tag{5}
\end{equation*}
$$

However since \mathcal{L} is strongly non-trivial with respect to σ, it is in particular strongly non-trivial with respect to any cone $\tau \subset \partial \sigma$ and hence it follows from the previous step that all of the terms on the right hand side of (5) vanish whence $I H_{*}^{\tilde{p}}\left(\mathbf{X}_{\partial \sigma} ; \mathcal{L}\right)=\{0\}$. Thus once again it follows by $[$ Bo, p . 29, Prop. 3.1] that $I H_{i}^{\tilde{p}}\left(\mathbf{X}_{\sigma}, \mathbf{X}_{\partial \sigma} ; \mathcal{L}\right)=0, \forall i$.

3 A counter example for general local systems

In general, the intersection homology with twisted coefficients of a toric variety \mathbf{X} is not trivial. Consider the toric variety $\mathbf{X} \cong S^{2}$ associated to the unique cone complex Σ in \mathbf{R}^{1}. Let $c \in \mathbf{X} \backslash \mathbf{X}_{0} \cong \mathbf{C}^{*}$ be a base point. Let \mathcal{L} be a k-dimensional local system for intersection homology on \mathbf{X} with fiber \mathbf{V} such that the monodromy $T \in \operatorname{Aut}\left(\mathrm{~V}_{c}\right)$ associated to one of the generators of $\pi_{1}\left(\mathbf{X} \backslash \mathbf{X}_{0}, c\right)$ satisfies $0<\operatorname{rank}(T-I)<k$. One easily computes : $I H_{2}^{(0)}(\mathbf{X} ; \mathcal{L})=\operatorname{ker}(T-I)$ and $I H_{0}^{(0)}(\mathbf{X} ; \mathcal{L})=\operatorname{coker}(T-I)$, neither of which is $\{0\}$.

One can construct examples in any (even) dimension, for example using the Küneth theorem ([CGL]) and the previous example and noting that any product of 2 -spheres $S^{2} \times \cdots \times S^{2}$ is a toric variety.

4 Local Systems and Intersection Homology

A thorough treatment of local systems for intersection homology in the various categories in which intersection homology is defined can be found in [Mac1]. We repeat here the essential definitions in the category of piecewise linear geometric chains.

4.1 Geometric Chains

Definition 4.1 Geometric Prechains.

Let \mathbf{M} be a manifold and \mathcal{L} a local system on \mathbf{M}, i.e. a vector bundle over M whose fiber V_{x} over any point $x \in \mathrm{M}$ is isomorphic to some (fixed) finite dimensional vector space \mathbf{V} over a field \mathbf{F} (usually \mathbf{Q} or \mathbf{C}). A degree-k piecewise linear geometric prechain C in M with coefficients in \mathcal{L} consists of the following data:

1. A piecewise linear subspace $S \subseteq \mathrm{M}$ called the presupport of C.
2. A Whitney stratification $S=\bigcup S_{\alpha}$ of S such that each stratum is a piecewise linear subspace of M and such that S is the closure of the union of the k-dimensional strata.
3. For each k-dimensional stratum S_{α}, a multiplicity map $c_{\alpha}:\left.\bar{S}_{\alpha} \rightarrow \mathcal{L}\right|_{S_{\alpha}}$, where \tilde{S}_{α} denotes the orientation double cover of S_{α}. This map is required to satisfy the following property : If \mathcal{O}_{m} and \mathcal{O}_{m}^{\prime} are the two orientations of S_{α} over some point m, then $c_{\alpha}\left(\mathcal{O}_{m}\right)=-c_{\alpha}\left(\mathcal{O}_{m}^{\prime}\right)$ in V_{m}.

There is an equivalence relation on prechains under which two prechains are identified if their respective images are equal under some common refinement of stratifications (see [Mac1]). We thus define :

Definition 4.2 Geometric Chains. A piecewise linear geometric k-chain is an equivalence class of prechains. The complex of piecewise linear geometric chains is denoted $C_{*}(\mathrm{M} ; \mathcal{L})$.

4.2 The product with \mathbf{S}^{1}

Let \mathbf{Y} be a stratified pseudomanifold and let y_{0} be a point in the nonsingular stratum. Let S^{1} be the 1 -sphere which we regard as the quotient of the interval $[0,1]$ modulo the relation $0 \sim 1$, oriented accordingly. Then $S^{1} \times Y$ is a stratified pseudomanifold whose i-dimensional strata are the products of S^{1} with the ($i-1$)-strata of \mathbf{Y}. We represent points in $\mathbf{S}^{1} \times \mathbf{Y}$ by pairs (s, y) with $0 \leq s<1$ and $y \in \mathbf{Y}$.

Let \mathcal{L} be a local system for intersection homology on $\mathbf{S}^{1} \times \mathbf{Y}$ and let \mathcal{L}^{\prime} and $\mathcal{L}^{\prime \prime}$ denote its respective restrictions to $\{0\} \times \mathbf{Y}$ and $\mathbf{S}^{1} \times\left\{y_{0}\right\}$.

Definition 4.3 Define a map $\times \mathbf{S}^{1}: C_{k}\left(\{s\} \times \mathbf{Y} ; \mathcal{L}^{\prime}\right) \rightarrow C_{k+1}\left(\mathbf{S}^{1} \times \mathbf{Y} ; \mathcal{L}\right)$ as follows. Let $\xi \in C_{k}\left(\{s\} \times \mathbf{Y} ; \mathcal{L}^{\prime}\right)$ be represented by a prechain C. Denote by $\mathbf{S}^{1} \times C$ the prechain in $\mathbf{S}^{1} \times \mathbf{Y}$ whose support is $\mathbf{S}^{1} \times \operatorname{supp}(C)$ and whose strata are the respective products of $\{0\}$ and of $S^{1} \backslash\{0\}$ with the strata of C. The multiplicities are defined as follows:
Let (s, y) be a point in the $(k+1)$-stratum ($\left.\mathbf{S}^{1} \backslash\{0\}\right) \times S_{\alpha}$, and let c_{α} : $\left.\tilde{S}_{\alpha} \rightarrow \mathcal{L}^{\prime}\right|_{S_{a}}$ be the multiplicity map on S_{α}. The path in $\mathbf{S}^{1} \times \mathbf{Y}$ defined by $t \mapsto(s t, y)(0 \leq t \leq 1)$ defines an isomorphism $\Phi_{(s, y)}: \mathrm{V}_{(0, y)} \rightarrow \mathrm{V}_{(s, y)}$. Define the multiplicity map \bar{c}_{α} on $\left(\mathrm{S}^{1} \backslash\{0\}\right) \times S_{\alpha}$ by

$$
\bar{c}_{\alpha}(s, y)=\Phi_{(s, y)^{\circ}} c_{\alpha}(0, y) .
$$

The multiplicity maps c_{α} on the strata S_{α} are unchanged. The geometric chain $\times \mathbf{S}^{1}(\xi)$ which we will henceforth denote by $\mathbf{S}^{1} \times \xi$, is defined to be the equivalence class of prechains represented by $\mathbf{S}^{1} \times C$.

The boundary of $\mathrm{S}^{1} \times \xi$

For any $y \in \mathrm{Y}$ let $\Phi_{y}: \mathrm{V}_{\mathbf{y}} \xlongequal{\cong} \mathrm{V}_{y}$ be the monodromy corresponding to the path which goes around $\mathrm{S}^{1} \times\{y\}$ once in the positive direction. Let ξ be a
k-chain in $\{0\} \times \mathbf{Y}$ and let C be a representative prechain with multiplicity map c_{α} on each k-stratum S_{α}. Denote by $(\Phi-I) \xi$ the chain in $\{0\} \times \mathbf{Y}$ represented by the prechain C^{\prime} whose support and stratification are the same as those of C, and whose multiplicity maps c_{α}^{\prime} are given by

$$
c_{\alpha}^{\prime}(0, y)=\left(\Phi_{y}-I\right) \circ c_{\alpha}(0, y)=\Phi_{y} \circ c_{\alpha}(0, y)-c_{\alpha}(0, y)
$$

The boundary of $S^{1} \times \xi$ is given by:

$$
\partial\left(\mathbf{S}^{1} \times \xi\right)=(\Phi-I) \xi-\mathbf{S}^{1} \times \partial \xi
$$

In the proof of lemma 2.6 we will also make use of the chain $(\Phi-I)^{-1} \xi$ which is defined whenever ($\Phi_{y}-I$) is invertible for some (equivalently every) $y \in \mathbf{Y}$. It is represented by the prechain $C^{\prime \prime}$ whose support and stratification are the same as those of C, and whose multiplicity maps are

$$
c^{\prime \prime}(0, y)=\left(\Phi_{y}-I\right)^{-1}{ }_{\circ} c_{\alpha}(0, y)
$$

Remark 4.4 If \mathcal{L} is 1 -dimensional then there is some constant $d \in \mathcal{F}$ such that the monodromies Φ_{ν} are all equal to multiplication by d and hence

$$
\partial\left(\mathbf{S}^{1} \times \xi\right)=(d-1) \xi-\mathbf{S}^{1} \times \partial \xi
$$

Note that if $\mathcal{L}^{\prime \prime}$ is non-trivial then $d \neq 1$.

Lemma 4.5 The map $\times S^{1}$ induces an isomorphism on intersection homology

$$
I H_{*}^{\bar{p}}\left(\{s\} \times \mathrm{Y} ; \mathcal{L}^{\prime}\right) \rightarrow I H_{*+1}^{\bar{p}}\left(\mathrm{~S}^{1} \times \mathrm{Y},\{s\} \times \mathrm{Y} ; \mathcal{L}\right)
$$

for any perversity \bar{p}.

Proof: The proof is virtually identical to [Bo, p. 25, Prop. 2.1], using the canonical isomorphism $I H_{*}^{\vec{\beta}}\left(\mathbf{S}^{1} \times \mathbf{Y},\{s\} \times \mathbf{Y}\right) \cong I H_{*}^{\bar{p}}(\mathbf{R} \times \mathbf{Y})$. The introduction of a local system poses no additional problem.

Corollary 4.6 Let $I D_{*}^{\bar{p}}\left(\mathbf{S}^{1} \times \mathrm{Y} ; \mathcal{L}\right) \subset I C_{*}^{\bar{p}}\left(\mathbf{S}^{1} \times \mathrm{Y} ; \mathcal{L}\right)$ be the subcomplex whose $k^{\underline{t h}}$ chain group is generated by the chains $\xi_{k} \in I C_{k}^{\bar{p}}\left(\{s\} \times Y ; \mathcal{L}^{\prime}\right)$ and $\left\{\mathbf{S}^{1} \times \xi_{k-1} \mid \xi_{k-1} \in I C_{k-1}^{\vec{p}}\left(\{s\} \times \mathbf{Y} ; \mathcal{L}^{\prime}\right)\right\}$. Then the inclusion $i: I D_{*}\left(\mathbf{S}^{1} \times\right.$ $\mathbf{Y} ; \mathcal{L}) \hookrightarrow I C_{*}\left(\mathbf{S}^{1} \times \mathbf{Y} ; \mathcal{L}\right)$ induces an isomorphism on homology.

Proof: Consider the two-step filtration $\{s\} \times \mathbf{Y} \subset \mathbf{S}^{1} \times \mathbf{Y}$ and the corresponding filtrations of the chain complexes :

$$
\begin{equation*}
I C_{*}^{\bar{p}}\left(\{s\} \times \mathbf{Y} ; \mathcal{L}^{\prime}\right) \subset I C_{*}^{\bar{p}}\left(\mathbf{S}^{1} \times \mathbf{Y} ; \mathcal{L}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
I C_{*}^{\mp}\left(\{s\} \times \mathbf{Y} ; \mathcal{L}^{\prime}\right) \subset I D_{*}^{\tilde{p}}\left(\mathbf{S}^{1} \times \mathbf{Y} ; \mathcal{L}\right) \tag{7}
\end{equation*}
$$

It follows from lemma 4.5 that the inclusion i induces an isomorphism on the E^{1} terms of the associated spectral sequences.

4.3 The proof of lemma 2.6

(i) If $I H_{*}^{\tilde{p}}\left(\{s\} \times \mathbf{Y} ; \mathcal{L}^{\prime}\right)=\{0\}$ then by lemma 4.5 , the E^{1} term vanishes in the spectral sequence associated to the filtered complex (6).
(ii) Now suppose that $\Phi_{y}-I$ is invertible. By corollary 4.6, any class in $I H_{k}^{\vec{p}}\left(\mathrm{~S}^{1} \times \mathrm{Y} ; \mathcal{L}\right)$ is represented by a cycle of the form

$$
\psi=\xi_{k}+S^{1} \times \xi_{k-1}
$$

with $\xi_{k} \in I C_{k}^{\tilde{\beta}}\left(\{s\} \times \mathbf{Y} ; \mathcal{L}^{\prime}\right)$ and $\xi_{k-1} \in I C_{k-1}^{\beta}\left(\{s\} \times \mathbf{Y} ; \mathcal{L}^{\prime}\right)$. We show that this cycle is a boundary. Since

$$
\partial \psi=\partial \xi_{k}+(\Phi-I) \xi_{k-1}-\mathbf{S}^{1} \times \partial \xi_{k-1}=0
$$

we have in particular that $\partial \xi_{k}=-(\Phi-I) \xi_{k-1}$ and $\partial \xi_{k-1}=0$.
Now consider the $(k+1)$-chain

$$
\tilde{\psi}=\mathbf{S}^{1} \times(\Phi-I)^{-1} \xi_{k} .
$$

Its boundary is given by

$$
\partial \tilde{\psi}=(\Phi-I)(\Phi-I)^{-1} \xi_{k}-\mathrm{S}^{1} \times(\Phi-I)^{-1} \partial \xi_{k}=\xi_{k}+\mathrm{S}^{1} \times \xi_{k-1} .
$$

References

[Bo] A. Borel et. al., Intersection Cohomology, Progress in Mathematics, Vol. 50 (1984), Birkhauser Press.
[CGL] D. Cohen, M. Goresky and J. Lizhen, On the Künneth formula for intersection cohomology, Trans. Am. Math. Soc., to appear.
[Da] V.I. Danilov, The geometry of toric varieties, Russian Math. Surveys, 33 (1978), 97 -154. Translated from Uspekhi Math. Nauk., 33 (1978), 85-134.
[De] M. Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. (4)3 (1970), 507-588. MR 44 \# 1672.
[GKZ] I.M. Gelfand, M.M. Kapranov and A.V. Zelevinsky, Generalized Euler Integrals and A-Hypergeometric Functions, MSI - Technical Report '90-66, October 1990.
[KKM] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal Embeddings I, Lecture Notes in Math. 339 (1973).
[Mac1] R. MacPherson, Intersection Homology and Perverse Sheaves, AMS Colloquium Lectures, San Fransisco, January 1991. (To appear).
[Mac2] R. MacPherson, private communication.
[St] R. Stanley, Generalized H-vectors, intersection homology of toric varieties, and related results, Studies in Pure Math., 11 (1987) 187 213.

