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METRICAL SHELLINGS OF SIMPLICIAL COMPLEXES

Rudolf Scharlau

1. Introduction

A theorem of L. Solomon and J. Tits [5] states that a Tits building is
homologicalli a wedge of spheres, that is, it has non—trivial homology
only in dimension zero and the highest dimension. This result enabled
Solomon to recognize the Steinberg charaéter of a finite group with a
BN-pair as the character of a homology representation. On the other
hand, there exists a quite elaborate theory of so~called Cohen Macauly
complexes. A simplicial complex is called Cohen Macauly if the star
(or link) of every simplex, including the whole complex, is homologi-
cally a wedge of spheres. A basic theorem of G. Reisner relates this
property to the Cohen Macauly property of a certain ring associated
with the complex. An important combinatorial tool in this theory is the
notion of shellability. This is a property of complexes which easily
implies the Cohen Macauly property, on the homological as well as on
tﬁe ring theoretic side. The reader may consult [1] and {2] for
further information.

In the paper [1], A. Bjbrmer introduces the notion of shellability into
the theory of buildings. He shows that a building is shellable and thus
reproves the Solomon-Tits theorem.

The main purpose of this note is to point out that the proof only depends
on a metrical property of the complex, namely the existence of certain
"projection maps”" from the set of all chambers (maximal simplices) onto
the set of chambers containing a fixed simplex. For buildings, the pro-
jections can be found in [6], 3.19.

After I had completed this note, A. Bj8rner has kindly informed me of a
new version of his paper [1]. Following a suggestion of J. Tits he gives
a proof for the shellability of buildings which is very similar to the
proof given below. Both proofs only use the projection maps and nothing
more about buildings. It should be pointed out that also the Solomon-
Tits result only relies on the projection maps.
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A. Dress has given a3 new approach to the projection maps [4] which was
imspired by a wore recent paper [7] of Tits. The spirit of this work

of Tits is to reformmlate and generalize a large part of the “abstract
theory” of buildings without using the notion of an apartement. As an
intermediate step in his proof, Dress uses a certain "exchange con-
dition™ for numbered comwplexes (in fact, for “chamber systems") which
generalizes the well known [3] exchange condition for Coxeter groups.
This conditiom is easily shown to be true for buildings (using the
criterion of [7], not using apartements). In a second step it is showm
that the exchange property implies the existence of the projection maps.

Comparing BjSrner's statement to the more general statements in sections
2 and 3 below, the following question naturally arises: Do there exist
many complexes with the exchange property or with projection maps which
are not buildings? There are two answers.

The answer is no for complexes which are "homogeneous" in the sense that
the diameter of the star of a simplex of codimension 2 only depends on
the "type" (see below) of that simplex. This homogeneity holds for buil-
dings, more generally for complexes of type M for some Coxeter matrix
M (cf. [7]), and for complexes admitting a chamber transitive auto-
morphism group. We shall ‘st;ow in a subsequent paper that a homogenous

complex with projection maps actually is a building.

In general, the answer to the above question is yes. Firstly, there

exist non homogeneous complexes satisfying'the exchange property. Secondly,
in/ the general case the existence of projections does not imply the
exchange property.

It is known, for example from the theory of tilings or tesselations,
that also complexes with a lower degree of homogeneity than buildings
deserve attention from a geometrical point of view., They can even be
clagsified in certain cases. Because of the importance of the exchange
condition and the projection maps in the theory of buildings, it seems
reasonable to formulate the existence of projection maps as a geometric
axiom of its own,

Apart from presenting still another proof of the Tits-Solomon theorem,



-3 -

this note is .intended to be a contribution towards characterizing the

class of complexes with projection maps also in the non homogeneous case.

2. The result

We recall some standard definitions (See e..g. [3], Chap. IV, Exercises
No. 15, 20). A numbered complex is a simplicial complex A together
with a function "type" from the vertex set of A to a set I such

that the restriction of type to every chamber (maximal simplex) is
bijective. (The elements of I should be viewed as names or colors

of the vertices.) The map type induces a morphism of complexes,

also called type, from A to the power set P(I) of I . We set
cotype A = I~type A , A€ A .

For i € 1 , two chambers C,C' are i-adjacent if cotype (CNC') =i .
We write Cli C' if C=C' or C,C' are i-adjacent. A gallery of
length m is a sequence (Co,...,Cm,il,...,im) such that cv—léy c
for v=1,,..,m . (Usually, a gallery is defined just as a sequence
(co,...,cm) such that cv—l iva .for all v and some i = iv .
However, we do not asgsume that C Ac holds for at most one i , and
if ¢ i.c' i‘c » 1 # 3 we have to regard (C,C';i) as different from
(C,C';j).) A set of chambers is called connected if any two of its
elements can be joined by a gallery inside that set. We assume A to
be strongly connected, i. e., for every simplex A € A (including A = @),
the set C(A) of chambers containing A ,

C(A) = {C | C a chamber, C D A}

is connected. A gallery (C,...,D;...) is called a geodesic if it
has smallest possible length among all galleries from C to D .
This length d(C,D) is called the distance between C and D .

The crucial condition for our purposes is the following.

Exchange condition. Let (co"“!cm;il""’im) be a geodesic and D

a chamber, i € I such that cm&-n » C o #D . If (C,..eiCpyDiiyyeensip,i)
is not a geodesic, then there exists a gallery of the form
(C;,...,C;_l,i‘,...,iv,...,in) (iv omitted) such that C; =C,»

cl

i
m—l~cll°



If A is the Coxeter complex of a Coxeter group W , the set of

chlnbe;s is identified with W , we can assume Co = | , furthermore

we necessarily have c;rl = D , because D is the only chamber i-adjacent
to cn . These facts imply that for A a Coxeter complex, the above
condition is equivalent to the usual exchange condition for the corres-
ponding Coxeter group (cf. [3], Chap. IV, Exer. No. 16 a)-d)).

The exchange property has important implications about the sets C(A)
of chambers containing a fixed simplex A .

Firstly, any C(A) 1is convex, i. e. c, € C(A) for any two elements
C,D € C(A) and any geodesic (CO'C,Cl,...,Cm-D;iI,...,im) , and all v .
Por buildings, this is [6], 3.14.

Secondly, the sets C(A) have the following property.

Gate property. Given a chamber E and a simplex A , let C be a
chamber such that

C € C(A) , d(E,C) < d(E,D) for all D € C(a) .

Then d(E,D) = d(B,C) + d(C,D) for all D € C(A) . (In particular,
C is unique. It is called by Tits the projection of E onto A .)

For buildings, this is [6], 3.19.6 , in the general case, it is
[4), § 5, Satz 8.

Finally we recall the notion of shellability (cf. [1], 1.1 and 4.14).
A shelling of A is a well ordering < of its set of chambers such
that the complex
PC)n U P(C')

c'<C

C'sC
is pure of codimension 1 (in P(C)) for all chambers C . Here P(C)
denotes the power set of C , i. e. the complex consisting of all
simplices contained in C . A subcomplex I <« P(C) is pure of codimension
1 if it is the union of P(C~{x}), where x ranges over certain ver-
tices of C . If R denotes the simplex consisting of these vertices
then T consists exactly of those simplices contained in C that
do not contain R . This remark leads to the folleing criterion (see
{1), Proposition 1.2 and Remark 4.14).



Lemma., A well ordering < of the set C of chambers of A is a
shelling if and only if there exists a map

R:C~+A
such that
(o) R(C)cC for all CE€C

i) a= U {A€a|R(C)cAcC)
cec -7

(ii) R(C) =D = C<D .
For the proof of the "if"-part, one shows that (0),(i),(ii) implies

U PC')= U {A€a]|RC)YcAcC'}:
c'<c ' c'<C -7

for all chambers (., Notice that the union in (i) is necessarily disjoint
by (ii). The map R 1is uniquely determined by < .

Now we are ready to state and easily prove our result.

Propogition. A strongly connected numbered complex which satisfies
the exchange condition is shellable,

Proof: Fix a chamber E and consider the following relation on
the set of chambers C

d(E,D) = 4(E,C) + d(Cc,D) , C,DEC.

Is is readily checked that this is a partial ordering, i. e. transitive and
antisymmetric. In fact, this holds for any metric space (C,d) and
EEC. '

Choose a well ordering < on {(C € C | d(E,C) = m} , for all natural
m
numbers m. Define a relation < on all of C by
C<D :w d(E,C) < d(E,D)
or d(E,C) = d(E,D) =: m
and C <D,
m

Then < is a well ordering and extends the above partial ordering.



Claim: Any well ordering < of ( such that d(E,D) = d(E,C) + d(C,D)
implies’ C <D is a shelling of A . The corresponding map R : C =+ A
(see the lemma) is 3iven by

R(C) = face of C of cotype J(C) ,
where J(C) := {i € I | d(E,C) < d(E,D) for all DEC such that C 3 D}

We first show that for fixed C we have
d(E,D) = d(E,C) + d(Cc,D) for all D € C(R(C)) .

By the gate property of C(R(C)) , there exists C' € C(R(C)) having
this property. We have to show C' = C ., Suppose C' # C and choose a
geodesic (C' =D ,...,D _,,D =C; iyseesi )The convexity of C(R(C))
implies that Dv D R(C) for all v, i. e. i“ € J(C) for all v .

In particular, for D = Dm-l we have

d(E,D) = 4(g,C') + d(c',D)
= d(E,C') + d4(c',C) - 1
= d(E,C) - 1,

and C&p » 1 € J(C) . This contradicts the definition of J(C) .

We have just shown that property (ii) of the above lemma holds.

For the proof of (i), let A € A be given. Choose C € C(A) such

that d(E,C) < d(E,D) for all chambers D.E €(A) . In particular,
d(E,C) < d(E,D) for all D such that - C ip » 1 € cotype A, This means
cotype Ac J(C) , i. e., R(C) cA .

3., A remark about the notion of shellability

In the preceeding proof, the particular choice of the well ordering

of C was of no importance. Only the map R and a certain partial
ordering of C had to be constructed explicitly. Inspection of
Bjdrner's lemma above shoﬁs that this is a general fact about shellings.
We shall now explicate this remark.

In condition (o) and (i), only the map R occurs and not the ordering
of C . If in addition to such an R a partial ordering < (or any
relation on () satisfying (ii) is given, then any extension of < to
a well ordering also satisfies (ii) and therefore is a shelling. Thus
we are led to the following alternative definition.



Definition. A shelling of A is amap R : C + A together with a
partial ordering < of C such that (o), (i) and (ii) above hold and
such that < admits an. extension to a well ordering. Amap R : C + 4

resp. a partial ordering of C occuring in a shelling is called a

shelling operator resp. a shelling order.

Note that R is uniquely determined by < . This holds in the well
ordered case, as was remarked above, and the general case immediately
follows.

Conversely, given a shelling operator R , there exists a smallest partial
ordering (obviously unique) < such that (R,<) is a shelling. Of

R R
course, < is the tramnsitive relation generated by the relation
R
"CcR(),C,D €EC" , i. e., C <D if and only if there exist
R

co = c,cl,...,cm-n in C such that R(cv-l) scv for all v =1,,..,m,

Amap R : C~+ A is a shelling operator if and only if it satisfies (o),
(i) and

(ii') The relation "C < R(D)" on C can be extended to a well ordering.

In particular, the transitive relation < generated by "C < R(D)"
R
must be antisymmetric, i. e. a partial ordering. Of course, not every

partial ordering can be extended to a well ordering. The following
criterion was pointed out to the author by A. Dress.

A partial ordering on a set X can be extended to a well ordering if
and only if every nonempty subset Y of X contains a. least one
minimal element y , that is 2 €Y , z <y implies z =y .

We propose the name partial well ordering for such a partial ordering.
Note that the “only if"-part is trivial,

The criterion is fulfilled in particular if there exists amap e : X+ N
(or any well ordered set instead of N) such that x <y, x *y implies
e(x) < e(y) . This was the case in the above proposition, with e(C) = d(E,C).



We now can formulate a proposition which includes the above proposition and
also a converse statement. We call A metrically shellable if for any
chamber E the partial ordering given by d(E,D) = d(E,C) + d(C,D) ,

C,D €C, is a shelling order.

Proposition'. A strongly connected numbered complex A is metrically shellable
if and only if all C(A) , A € A have the gate property.

Proof: The proof of the above proposition only used the gate property

and the convexity of the sets C(A) . Now it is immediately checked that

the former implies the latter. Thus; the "if"-part is already proved.

For the converse, let A €A and E € C be given. Consider the shelling
operator R = RE of the shelling order "d(E,D) = d(E,C) + d4(C,D)".

By property (i), there exists C € C such that R(C) € A c C . Property (ii)
says that d(E,D) = d(B,C) + d4(C,D) holds for all D € C(R(C)) , in
particular, for all D € C(A) . Thus C is the projection of E onto A
vhose existence was to be shown.
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