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Abstract 

For every convex synunetr ic compact body KX in JRn a 

linear map ux ' det Ux = 1, is constructed. Then, for 

every two such bodies and Ky I an inverse form of 

the classical Brunn-Minkowski inequality for volumes is 

true up to a numberical constant C for the bodies uXKx 

and u K and also for their polars. The result is applied y y 

to study normed linear spaces. 

Let X = (JRn , II' II) be a normed space and K ( II • " ) (also 

K(X) or just K) be its unit ball. We also equip X with 

a euclidean norm (JR
n , I· I) and, as consequence, with the 

inner product (x,y) such that (x,x) = Ix12. Let D(l ·1) 

be an ellipsoid in JRn which is the unit ball of the norm 

I . I. We denote 

tween X and 

n dx = d(X,i2 ) 

in and 
2 

the Banach-Mazur distance be-

d(K/D(I·I» = inf {ab: a-1Ixl~ Ilxll~ blxl for xE JRn }. 

The dual norm II· II * is naturally defined by IIxll* =sup{t(x,y)!: 

II yll $ 1} • Then K ( II • \I *) = K 0 is the polar body of K with 

respect to the inner product defined by I-I. Throughout the 

paper, we use the same letters c,C for different numerical 

constants. 
A. The main results of this note are the following ones: 

Theorem 1 : a) There exists a numerical constant C such 

that for every convex compact symmetric bodies Kx and K y 

mn n Rn det u = 1 , in there exists a linear map u:JR ~ I 

such that for every E > 0 
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and the same inequality is also true for the polar bodies 

(uK)O KO and KO y , X Y • 

b) In the case of (the euclidean ball) we have 

a slight improvement in the above inequality: for some 

numberical sequence Ct + 1 (n ->- co) 
n 

[Vol (UK
X 

+ (0)] 1 In $ C[Vol K ] 1 In + Ct dVol OJ 1 In 
X n 

and the same inequality is satisfied for the polar body (UKxt-. 

Corollary 2. There exists a numberical constant C> 0 

such that every finite dimensional normed space X = (En I II • II) 

has an euclidean structure (~n, I· I) such that 

Vol Conv (K (X) U D) ~ Cn Vol D 

and 

Vol Conv (K (X*) U O) ~ en Vol 0 I 

where D- = {x E :Rn : I xl $ 1 } • 

Proof. Using Theorem 1 I we may assume that 

[Vol(K(X} + £D.)]1/n$C([Vol K(X)]1/n + £(Vol D)1/n) and 

similarly for K(X)O = K(X*).By a proportional normalization 

of D we may also assume that Vol K(X) = Vol O. Then, by 

Santalo.inequality [s3 I Vol K(X*) :£ Vol D. Take now e: = 1 

and note that Conv (K (X) U D) c K (X) + O. 
o 



-3-

By [M,], Theorem 4.1., Corollary 2 implies 

Theorem 3. Let X = (lRl) II -II ) be a normed space 

with a euclidean structrue from Corollary 2. Then for every 

A <, there exists a set A 

subspaces of lR n of a 

of (An)-dimensional 

normalized Haar measure (say, 

I.l. (A) ii: 1 - 4 -n) and for every E E: A there exists a subspace 

F:E cF c mn , such that the Banach -Mazur distance dE of 

1~ An] from E, equipped with the quotient norm (F, II ·Il)! EJ.I 

where E.L:::; {x E F ,x .L E}, is at most 

dE ~ f ( 1! (1 -.A)), 

where f (t) depends on t:> 0 only. and not on n. 

Remark 1. The above theorem is a probabilistic version 

of the "quotient of a subspace" theorem proved before (see 

[M21,[M3]). However, we would like to emphasize that the 

construction of the euclidean norm in the Theorem 3 heavily 

uses the previous version (non-probabilistic)of this theorem. 

Remark 2. Using Corollary 2 also all other statements 

of Theorem 4.1.from [M1] are now applicable for every finite 

dimensional normed space. 

Remark 3. Direct use of Theorem 4.1 from [M1] gives 

for a function f (t) an exponential estimate f (t) ~ ct. 

Using more delicate tools, it can be shown that f has only 
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polynomial growth, say f (t) ;;i C t 2 • 

B. Construction of a special ellipsoid related to a given 

convex symmetric compact bod:t K C JRn We need 

additional notations. Let U.· (JRn I I· I (n II II -;... 1R , • ) be 

a linear map from a euclidean space. We use the t-norm of 

u defined by t(u) = m(Is lIuxll 2d l!(x» 1/2 where S is 

the euclidean unit sphere and I! is the normalized rotation 

invariant measure on S. If u is invertable then the dual 

operator norm t*(u- 1 ) is defined (we consider, following 

Pietsch [Pi], the trace duality). 

For a given euclidean structure (m
n 

I I • I) we intro­

duce a transformation qs of a convex symmetric body Kcmn 

def ined by two subspaces F c: E C mn. Then 

where PF is the orthogonal projection on F. We say that 

qs operates from lRn on F and dim qs = dim F. Similarly 

if n X = (lR ,II -11,1,1) is a normed space with a' euclidean 

structure defined by a norm 1·1 , then qsX is the norm 

space with the unit ball qsK{X) (i.e. q~X is a quotient 

of a subspace of X). We use also the dual operation qs 

which is a restriction on a subspace F of the orthogonal 

projection on a subspace E, FeE (i.e. sqX is a subspace 

of a quotient space of X). 
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eanstruction. We start with ~-euc1idean structure on 

X = (]Rn I II . II) ,i.e. with such euclidean norm I - I that 

the identity map u:(:u{l,I.I) -?- (]Rn ,Il · II ) satisfies 

!(u)!*(u-1, = n. (It was introduce in [F.T.] using [LD. 

Then d(K(X),D(I·I» :;0 n. It is known ([M
2

] and (M
3

] ; see 

a short proof a~so in [B.M], Lemma 4.6) that there exists 

qs-operation on a subspace E", c: ]Rn 
n
2 ~(Um E'" = n_, ~n[1'- c/(log dX;) ]) such that 

n 1 

( 1 ) d(qsK(X),O(E"" ,1.1» ~C(log(dx + ,»5:£ C(10g(n+1»5 . 
n 1 

Let qsK(X) be the unit ball of the space X 1 = (E:"" I II· 11 1), n, 
Take an !-euc1idean structure 

satisfies 

t- I in Xl ' i.e. a map 

!(U1)!*(U-~) = n1 , and restrict 

it on a subspace E c: X" dim n 1 
E = n l ~ >..n, n 1 

where 

d 1 = d(K(X 1' ,O(E
n1

, I"'» ~ C(l - >..)-3/2d log 
X1 

(combine 

Lemma 6.1. from [F.T.] with Proposition 2.5. from [M
3

] i 

(1->..)-1= the same reasons are used in [M41, section 4). Choose 

== c(log(d~, + 1)}2 and use the estimate (1) on dX ' We obtain 
A 1 

d
1 

SC(log(dX + 1»9. Combining this estimate with (1) we see 

that on the subspace 

(2) d(D(l o l),O(I'1 1» 
14 

~ C(log(dx + 1)} 

We correct at this point our euclidean norm I • I 

substitute it on a euclidean norm II I 0 I I 11 such 

I I I • I I 1'1 El. = I • 'I El. and III . 11111 E = I • 111 E n 1 n1 n 1 n 1 

and 

that 
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Clearly it may be done in the way that in lRn we have 

d (D ( I I I • I I I 1 ) , D ( I • I }) ~ C(log(d + 1» 14 
X 

as in (2). Therefore d(K(X),D(III'111
1

)} :£ C n(log(dx + 1})14. 

Note now that leu) and t*(u- 1) are ideal operator norms 

and so l(u,I E } t*(u-,'I E ) ~ n1:£ n. Therefore, we 
n1 u 1 n 

again may use [M2 ) and [M
3

] 1to find a qs-operation on a 

n 
subspace E..... C JR , dim En 

n2 2 

n 1 (1 - C/ (log log (dx + 1» 2) and, as in (1), 

d (q s K (E ), D (E'" , III . III » ~ C ( log d 1 ) 5 $ C ( log log (d + 1}) 5 • 
n 1 n 2 · 1 J{ 

We continue such procedure t = ten) times where t is 

the smallest number such that t-iterated logarithm 

log •.• log n = log (t) n $ 2. Let III· 11.1 = III • III t be an euclidean 
l_1( __ J 

t 

norm constructed on the last step. Then d(D(III·III) ,D(I-I» ~ 

:iI C{i~1lo9(i)n)14 d~f f(n) , ,and d(K(X)/D{III'III»~cn'f(n) ~ 

S c n 2 • 

The main property of the constructed euclidean norm III· III 

in X = (JRn I II· II ) is the following one: 

in the space X = (:Rn , /I • II, III • III ) tnere exist a partial 

flag of subspaces R n = E :,:) E :,:) ••• :,:) E and a sequence of 
nO n1 nt 

of qs-operations <p. I i = 1,2, ••• , t 1 from E 
1 n i - 1 

such that 
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i) d(K.,D(E ,1I1·1I1)} ~ C(log(i)n)9 , for i = 1,2, ••• ,t, 
~ n i 

K. ::: ~iK. 1C: E and KO::: K(X) is the unit ball of 
~ ~- n i 

where 

Xi C is a numerical constant; 

ii) dimensions ni' i ::: 1,2, ... ,t(n), depend on n only 

and for numerical constants and 

n-i_1 [1 - c1') 2] 
... (log ~ n) ni - 1 [1 - c

2
(.) 2

1J' 
(log ~ n) 

i = 1 ,2, ••• , t (n) ::: t, nO ::: nand t (n) is the first integer 

such that the t-iterated logarithm log(t)n ~ 2. 

Using technique from [B.M.] (see section 4.g) we may 

also state: 

iii) there exist numerical constants c and C such that 

(
Vol K. . 1/n < (VOl Kj ')1/ni < (VOl K \ 1 In 

c Vol DCIII.III» "" Vol DCE ,II/-III} =C Vol D(IIl'III~ 
n i 

for all i = 1 / 2, ••• ,t and the same inequalities are satis-

fied for the dual bodies and K? with respect to the 
~ 

euclidean norm 111-/11. Moreover, constants c and C can 

be taken as 1 - s(n) and 1 + sen) where s(n) ~ 0 if 

n ......... (lO. 

C. Plan of the Eroof of Theorem 1. To prove Theorem 1 we 

choose u such that the constructed above ellipsoids for 
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u~ and Ky are proportional and their partial flags of 

subspaces (see the property i) co~ncide (use the property 

ii». We apply now qs-operations l!) • to pass from the 
'1 

convex bodies u~ + EKyl uKx and Ky to the bodies 

(uKX); + E(K ). I (uKx )' and (K ). where we denote ... . y 1 1 Y 1 

(A). = <p. «A). 1) as in i). (Note that 
1 1 1-

(uK + EK ). is 
X Y 1 

different from (UKx)i + £(Ky)i)' The Property i) and a 

technique from [B.M.] (Section 4b) allow us to show that, 

on the i-th step, the ni-th root of the ratio of volumes 

of these bodies to the volume of the ni-dimensional 

unit ball D ( III • III) will not change much (as in the property 

iii». Then, after t steps, we come to the bodies, C-isomor-

phic to euclidean balls (in III· III-norm) of some radii. In this 

case the inequality is trivial. 

I thank N. Tomczak-Jaegermann for several discussions. 
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