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Abstract

It is known that Siegels theorem on integral points is effective for Galois
coverings of the projective line. In this paper we obtain a quantitative version
of this result, giving an explicit upper bound for the heights of S-integral K-
rational points in terms of the number field K, the set of places S and the
defining equation of the curve. QOur main tools are Baker’s theory of linear
forms in the logarithms and the quantitative Eisenstein theorem due to Schmidt,
Dwork and van der Poorten.

1 Introduction

1.1 The main result

Let C be a projective curve defined over a number field K and z € K(C) non-constant.
For any finite set S of places of K containing the set S, of archimedean places define
the set of S-integral points of the curve C (with respect to ) as follows:

C(z,K,S)={P e C(K):z(P) € Ok s},

where Ok s is the ring of S-integers of the field K. The classical theorem of Siegel
[31, 23] states that |C(z,K,S)| < oo as soon as the genus g(C) > 1. For curves of
genus 2 or more this is covered by a result of Faltings {18], who proved that |C(K)| <
oo when g(C) > 2, as was originally conjectured by Mordell.

Both the theorems of Siegel and Faltings are, in general, non-effective. However,
Siegel’s theorem is effective in some particular cases, for instance, for curves of genus
1 (Baker and Coates [5]). See [22, 29, 9] for quantitative improvements of the result
of Baker and Coates.

One more general case of effectivity of Siegel’s theorem is when z:C—P! is a
geomelrically Galois covering of the projective line (that is Q(C)/Q(z) is a Galois
extension, where Q is the argebraic closure of Q). This was proved by the author
[8, Sec. 7], and, independently, by Dvornicich and Zannier [15]. Partial results were
obtained by H. Kleiman [21, Cor. (3) of Th. 3] and Poulakis [27, Sec. 2].



In all cases the method of Gelfond-Baker [19, 2] was used, so far the single general
effective method in Diophantine analysis. In [35, 30, 9, 11] one can find further infor-
mation on the effective study of Diophantine equations by Baker’s method, including
extensive bibliography.

Here we obtain a quantitative version of the effective Siegel’s theorem for Galois
coverings. Introduce some notation. Given a projective vector @ = (qp: ... 1) €
P* (6), we denote by h(a) its absolute logarithmic heihgt (further height, we recall
the definition in Subsection 1.4). The height of a polynomial is the height of the
projective vector composed from its coeflitients. Also, we define the height function

he:C (Q) —R2% by b (P) = hpi(z(P)), where hAp: : P! (6) —R2% is the height on
P!.

Let y € K(C) be such that K(C) = K(z,y) and f(X,Y) € K[X,Y] a non-zero
separable polynomial such that f(z,y) = 0. (We use lowercase letters =, y, ... for
rational functions on C and uppercase letters X', Y, ... for indeterminants.) For
some flexibility, we do not assume f(z,Y’) to be the minimal polynomial of y over the
ring K|z]; in particular, it can be reducible.

Put
m=degy f(X,Y), n=degy f(X,Y), N =max(m,n,3), s=]|5|, (1)
d=dg =[K:Q], D =Dk — the absolute discriminant of K.

We denote by N = Mk :K—Q the norm map. The norm of a fractional ideal
is well-defined as a non-negative rational number. For any place v of the field K we
define AMv as the norm of the corresponding prime ideal if v is non-archimedean, and
put Mv = 1 if v is archimedean. Also, we denote by p(v) the underlying rational
prime (which is assumed to be oo for archimedean v), and put

o= { 10 S0 s) = magito). @)

Finally, throughout the paper the symbols O(...), € and > imply absolute effec-
tive constants.

Theorem 1.1 Suppose that g(C) > 1 and z:C—P! is a Galois covering. Then for
any P € C(z,K, S) we have

4Ny
he(P) < B(8)*™N (’D 1I Nv) exp (40031\12 (log(NS) + O(1)) + 600dN3 (A(f)} + O(N))) ,

veES
(3)
where

Ni = max (ns, 16n%m?, 256m3) , Ng = max (n'*, 10m2n) , N3 = max (mn7, 500m2n4) .

1.2 An application: the superelliptic Diophantine equation

The Diophantine equation

y" = F(z) (4)
is called superelliptic if the pair (n, F') satisfies the following “LeVeque condition”:
write F(z) = a(z — o) -+ (2 — o)™ with pairwise distinct ay,..., ag; then

2



k > 2 and the k-tuple ((n::"l) N (njlrk)) is not a permutation of (v, 1,...,1) or
(2,2,1,...,1). An equvalent condition: the (non-singular model of the) plain
curve (4) has positive genus.

As follows from Siegel’s theorem (see also [24]), the equation (4) has finitely many
S-integral solutions (z,y) in the field K. A. Baker [4] was the first to obtain an
effective bound for the size of the solutions. Though he considered only the case
K = Q and S = {o0}, and his condition on (n, F'} was stronger than stated above, it
was clear that his method, suitably modified, can be applied in the general situation.
Indeed, Baker’s result was sharpened and extended to arbitrary number fields and /or
S-integral solutions in {34, 36, 6, 26].

Recently P. Voutier obtained a new effective bound for the integral solutions of
(4), having considerably improved the previous results (in the case S = S.). He
proved that any solution (z,y) € Ok x K of (4) satisfies

numz 6

max (h(z) , h(y)) < o(N,d) (Dexp(dh(f))" " " (h(f) +logD + 1), (5)

the constant ¢(N,d) being effective. Here f(X,Y) = F(X) — Y™ and we use the

notation (1). (The reader should be warned that we express Voutier’s result in our

notation, which is different from his. He uses the relative exponetial height Hg(...)

(instead of the absolute logarithmic height A(...), as in the present paper), and his m
and n correspond to our n and m, respectively.)

Since the curve (4) has positive genus and 6(3;, 7/ F(z)) is a Galois extension

of Q(z), Theorem 1.1 is applicable to the superelliptic equation. Therefore we can
evaluate the quality of the estimate (3), looking at what it gives for the superelliptic
equation in comparison with the result of Voutier. For any solution (z,y) € Ok x K
we have

max (h(z), A(y)) < c(N,d)D*™ exp (B00dN3A(f)) .

which is better than (5) when n is suficiienly large.
Of course, the superelliptic equation is a very particular case of Theorem 1.1.
Thus, we obtain an asymptotically better result in a more general setting.

1.3 Ramification indices
We identify set-theoretically P! (Q) and Q U {co} in the obvious way. Tor any

a € QU {co} we denote by e; = ei(a),..., e, = eya)(a) the ramification indices of
the covering z: C—P! over the point a. Put
e = ged(er,...,€,). (6)

(Sometimes we write e,(z), when several coverings of the projective line are consid-
ered.)
Actually, we shall prove a more general result,.

Theorem 1.2 Suppose that
Y (-l >0 (7)
066

Then any P € C(z,K, S) satisfies (3).



When g > 1 and the covering is Galois, the relation (7) holds. Indeed, in this case
all ramification indices over a point « are equal to e,, and we write Hurwitz formula
as

% —2+2= Y T(ea—1).
aeQu{co} €a

Then

2g — 2
Z(l—e?)zl-}- 8 +el >1,
eeQ "
which is (7). Thus, Theorem 1.1 follows from Theorem 1.2.

1.4 Additional notation and conventions

For any place v of the field K (and any number field to occur) the corresponding
(multiplicative) valuation | .. .|, is normalized so that its restriction to Q is a standard
infinite or p-adic valuation. In addition, for a non-archimedean v we shall use an
additive valuation Ord, : K*—Z normalizing it so that 1 belongs to the image of Ord,.
In explicit terms Ord,(a) = d,logla|,/ long, where d, = d,(K) = [Kv:Qp(,,)] is
the local degree of v.

Recall the definition of the absolute logarithmic heght of a projective vector ¢ =

(ap: ... o) € P* (6)
e = 7' 3 ey (L)oo, )

the sum being over all places of the field L = Q (ag, .. ., o) (by the product formula,
it does not depend on the choice of the homogenious coordinates).

With an abuse of notation, for @ € Q we write A(a) instead of h(1:c). As
follows from the definition of the absolute logarithmic height, for any v € Z and
ay,..., o, a € Q we have

hlont - taw) < hen) 4o+ h(ar)+logh, )
har---ax) < h(a) 4+ (), (10)
h(e”) = |vlh(a). (11)

We write
F(X,Y) = go(X)Y™ + terms of lower degree in Y. (12)

Denote by R(X) the resultant of f(X,Y) and %(X,Y) with respect to Y and by
D(X) the discriminant of f(X,Y’) with respect to Y. Then we have

=
ks’
[

QO(X)D(X)’
(2n — D)m,
(2n —D)R(S
(2n — 2)m,
(20 — 2)h(J

)+ O(nlog N),

jo

¢}

[0

=

>
VAN VAN VAN VAN
/_\/-\/;\/—\/"\
\_./\_/\g‘/\_/\_/

) + O(nlog N),



as follows from the standard determinant representations of the resultant and dis-
criminant.
For o € Q put

Uy = Ordc,go(X), Ha = OrdaD(X)j fa(X: Y) = f(a + Xa Y): (18)

where Ord, is the order of vanishing at a. Then fo(X,Y) = f(X,Y), and we similarly
write u and g instead of ug and g, respectively. We have trivially

h(fa) < h(f) +mh(a) + O(log N). (19)
The relation (7) is false when m =1 or n = 1. Therefore we suppose further that
n,m>2. (20)

which, together with (9)—(17) and (19) will be frequently used in our estimates, mostly
without special referring.
We also need the following well-known fact (see, for example, [28, Lemma 3)).

Proposition 1.4.1 Let F(X) be a polynomial of degree p with algebraic coeflicients
and oy , ..., «, its roots counted with multiplicities. Then

h(an) + -+ h(e,) < h(F) + log(p + 1).

Warning The letter e is reserved here exclusively for ramification indices, being
never used for 2.718... (for the latter we write exp(1)).

1.5 Plan of the paper

In Section 2 we summarize neccessary properties of algebraic power series, including
the quantitative Eisenstein theorem due to Schmidt [28] and Dwork-van der Poor-
ten [17].

In Section 3 we prove that, given P € C(z,K, S) and « € K, the principal ideal
(z(P) — ) is “almost a e,-th power”. The qualitative part (Proposition 3.2) is self-
contained, while the quantitative part (how “almost”?) depends on the estimates of
Section 2.

Section 4 is a summary of the auxiliary material needed for the proof of Theo-
rem 1.2, in particular, Siegel’s construction of convenient units [32, 7, 9] and Baker’s
theory (38, 39].

In Section 5 we give a detailed proof of a particular case of Theorem 1.2. The
argument is based on the results obtained or quoted in Sections 3 and 4. In Section 6
we prove Theorem 1.2 in its full generality, reducing it to the result of Section 5.

Acknoledgements. 1 would like to thank P.M. Voutier for putting at my disposal
his paper [37]. I was inspired by his result and some of his ideas. In fact, it was he
who pointed me that some ideas from my own unpublished paper [10] can be used for
sharpening bounds for integral points.

This work was done during the author’s post-doctoral stage at the Max-Planck-
Institute fiir Mathematik. I am grateful to Prof. F. Hirzebruch and MPI fiir Mathe-
matik for their kind invitation and excellent working conditions.
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2 [Eisenstein theorem and further properties of
algebraic power series

2.1 Preliminaries

Let y = 2732 4, axz*/¢ be an algebraic power scries, where we alwayse assume ko > 0

and a_g, # 0 when ko > 0. Also, we suppose that y cannot be presented as a power
series in £'/¢ with ¢ < e.

Let y satisfy an algebraic equation f(z,y) = 0 with f(X,Y) € K(X,Y). We
use the notation m, n, u, y,, etc., introduced in Subsections 1.1 and 1.4. Clearly,
kofe <u < m.

Let L be the extension of K generated by all the coeffitients a; of the series y. It
is well-known that [L:K] <n.

Theorem 2.1 For any place v of the field K there exist real numbers A, , A, > 1
such that A, = A, =1 for all but finitely many v,

d' Y dylog A, < (2n—1)A(f) + O (n(n +log N)) , (21)

d'S d,log A, < h(f)+ O(logn), (22)

and for any place w|v of the field L we have
jaxl, < ALATFHE (k2 —ko). (23)

. dy log A!
Furthermore, for any non-archimedean place v we have Tg.%;u € 7 and

d' ) logNv < (2n — 1)A(f) + O(nlog N). (24)
Uiz

This theorem is a combination of results of Schmidt [28] and Dwork-van der Poorten
[17]. Formally, they considered only the case e = 1. Though the general case requires
no new ideas, it cannot be reduced to the case ¢ = 1 just by the substitution « = 5.
Therefore we include some detailes for the sake of completeness (see Subsections 2.2
and 2.3).

In Subsection 2.4 we obtain additional auxiliary properties of algebraic power
series.

2.2 Eisenstein theorem: the unramified case

In this subsection we assume that e = 1. Then y = Zf’:_ko arz®. We need one more
definition. Let F(X) be a polynomial with cocffitients in the number field K and
aip,..., a; its roots. For any place v of the field K fix a prolongation to K (e, ..., a:)
and put

oo(F)=min(l, |, ,..., |al,) .

Clearly, o,(F) does not depend on the fixed prolongation.
Recall that R(X) is the resultant of f(X,Y’) and g*){-(X, Y’} with respect to Y. We
write R(X) = Az***R*(X) where R*(0) = 1.
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Normalize the polynomial f(X,Y) = g(X)Y™ + ... so that g(X) = X*g5(X)
with g3(0) = 1. As usual, denote by |f], the maximum of |3|, over all the coeffitients
Bof f(X,Y).

Theorem 2.2 (Dwork—Robba-Schmidt—van der Poorten) For any valuation v
of the field K with put

o ] 2lfle, p(v) = oo,
a = A e )
2/Uv (Rt) ) p(v) o0,
A, = /o, (R*), n < p(v) < 0o, (26)
c(v,n)/oy(R*), p(v) <m,

where c(v,n) = np(v)Plvli-l . Then for any place w|v of the field L we have
lakl, < LA (k> —ko). (27)

We indicate the main steps of the proof. Until the end of this subsection we write
o, = o, (R"). Given a place w of the field L, denote by r,, the w-adic radius of
convergence of the series y = Y52 _, axz*.

The heart of the proof is the following

Lemma 2.2.1 If wjv with n < p(v) < oo then
Tw 2 Oy (28)

If wlv with p(v) < n then
ry 2 c(v,n) oy . (29)

For the case n < p(v) < oo see Schmidt {28]. (As indicated by Schmidt, the case
n < p(v) < oo is a direct consequence of a result of Dwork and Robba [16].)

The case p(v) < n is due to Dwork and van der Poorten [17]. Let a be a
root of R*(X) with the property |a|, = o,. Then by [17, Th. 3], the series § =
TRk aka ™ 2 = 52, Gra® converges for |z, < ¢(v,n), whence the result.

It should be mentioned that in [28, 17] only the case kg = 0 is treated. However,
the general case can be easily reduced to the case kg = 0. Indeed, put

-~ ~ k ~
y=a:k°y=2ak;c s Qi = Ak, -
k=0

Clearly, the radii r,, and 7, of w-adic convergence of respectively y and 7 are equal.
Further, § satisfies the equation f(z,7) = 0, where f(X,Y) = X%*nf (X X"“’Y)

Deﬁnmg R and R* for f as R and R* were defined for f, we see that 2* = R*. Thus,
=r, and &, = o,. This reduces the case of arbitrary kg > 0 to the case ky = 0.

Put 7, = min (0.,, Miny|y rw).

Lemma 2.2.2 The inequality (27) holds with

Au={ 2/Uua P(U)

Um. plo) <o (30)

and Al defined as in (25).



This is a result of Schmidt [28, Lemma 2]. Though he considers only the case kg = 0,
his argument plainly works for arbitrary ky > 0. Also, what he proves is exactly the

inequality (27), but he formulates his result in a slightly weaker form, with m instead
of u in (27).

Now Theorem 2.2 follows as a direct consequence of Lemmas 2.2.1 and 2.2.2.

2.3 Eisenstein theorem: the general case

Put .
) =f(x5Y), §= 3 act, (31)
k=—kp

so that f(m,ﬁ) = 0. Define R, R* and @ for f as R, R* and u were defined for f.
Then

-

B(X) = R*(X%), (32)
u = eu. (33)

As follows from (32), _
o, (RY) = o, (R)" . (34)

Now put

/oy (R*) ,n < p(v) < o0, (35)
e(v,n)*fo, (R), p(v) <n,
and define A/ as in (25) (provided f(X,Y) is normalized as described above). By (33),

(34) and Theorem 2.2, applied to the series §, we have (23). Further, Schmidt [28,
Lemma 5] showed that

{ 2oy (R) p(v) = oo,
A, =

d='> d,log(1/0,) £ (2n — 1JA(f) + O(nlog N). (36)
Therefore
d' S dylog A, < d7'Y d,log(1/o,) +nd™" D loge(v,n) -+ O(n)
v v p(v)<n
< (20 = 1)A(f) + O(n(n + log N)),
which is (21).

The inequality (22) is obvious and, as follows from (25), for any non-archimedean

place v the quotient %}%& is an integer. It remains to establish (24). In view of
(35), for a non-arcimedean v, the quotient %’:—" can be not an integer only in one

of the following cases:
(a) p(v) < m;

(b) there is a root o of R*(X) such that %ﬂ ¢ 7 for some place w of K(«)
lying above v.



We estimate separately d=' 3" log A'v over non-arcimedean v belonging to the cases
(a) and (b) above. For (a) the estimate is straightforward:

d™' Y logNv=> logp < n. (37)
(a) p<n
For (b), let oy, ..., @, be a maximal selection of roots of B*(X') pairwise non-conjugate
over K. Put v; = [K(;):K]. If w is a prolongation of v to K(«), then the denomi-
nator of the rational number d”l:;gjlgil is at most ;. Therefore
d7 Y logNv <Y vik(ai)
(b) i=1

< A(R") 4 log (1 + deg R*)
< (2n—1)A(f) + O(nlog N),

where the second inequality is by Proposition 1.4.1. Together with (37) this proves
(24). Theorem 2.1 is proved.

Remark 2.3.1 Given a polynomial f(X,Y), separable in Y, there exist n (= degy f)
distinct power series y; = 182 _4 ;) aixz®/% such that f(z,y) = 0. As follows from
definitions (35) and (25), the values of A, and A/ depend only on the polynomial
f(X,Y) and are common for all the series y;. This observation will not help us to
improve the final result, but will simplify our notation in Section 3.

2.4 Field generated by the coefficients, etc.

Let K; be the subfield of constants of the field Xy = K((z))(y). We begin with the
following standard fact.

Proposition 2.4.1 The field L is an extension of K, of degree at most e.

Proof Since X1 C L =1L ((a:lfe)), the field K; is a subfield of L. It remains to
prove that [L: K] <e.

Using Hensel’s lemma, one can easily show that Ky = K, ((:’i'"‘"’)), where T = ax
with o € K. Hence y = Z?:—ko biz*/¢ with b € K,. Therefore L C K, (a”’). The
proof is complete.

Put

p eft
= | < v o

where |v] is the maximal integer not exceeding v € R.

Lemma 2.4.2 The field L is generated over K by a_y, , ..., a,. The relative discrim-
inant Dy, /K satisfies

d™'log N ('DL/K) < 2 (Znu (e + wv) + 1/2) h(f)+
0 (nu (n+uv)(n+log N) + vlog 1/) , (39)

where v = [L:K].



- Proof Put
Lo=K(aok,...,as), Lo=Lo((z"¥)), 6=[L:Lo]=[C:Lo].  (40)

Clearly, Lo(y) = £. Let o(Y) = @oY? + ... be a minimal polynomial of y over the

ring R = Lg [[:cl/c]] (at least one of its coeffitients is invertible in R). By the Gauss
Lemma, the polynomial

Nz ((Y)) € K[[z]] (V)

divides f(z,Y ) ¥1)in the ring K [[z]] (V).
Denote by A(z) the discriminant of ¢(Y). Then

Neork(znd () | D)) (41)
in the ring K [[z]]. Obviously,
Ord;A(z) > §(6—1)(k+1)/e.
Comparing Ord, of the both sides of (41), we obtain
e[Lo:K]é(6—1)(s+1)/e < [L:K,]p. (42)

Since § = [L: Lo), we can rewrite (42) as

5—~1§[K1'U:K]/(rc+1)<l.

Thus, § = 1. This proves the first assertion. (See [13, Lemma 3] for a similar result.)
For the second assertion we need a result of Silverman [33, Th. 2].

Proposition 2.4.3 (Silverman) Let o = (ap: ... :a)) € P* (Q), and (K(a) :
K] = v. Then

d'log N (’DK(Q)/K) < 20(v = Dh(a) + viogrv. (43)

In our case @ = (l:a_g,:...:a.). We obtain an upper estimate for h(a) from
Theorem 2.1:

h(a)

[A

h{f)+ ((217, - DA(f)+0 (n (n—l—logN))) (u+x/e)
(2?1 (%+u> + 1) h(f)+ 0O (n(n + log N) (f—j +u)) .

IA

Together with (43) this gives the desired estimate for the relative discriminant. The
lemma is proved.

Recall that y cannot be written as a power series in z!/* with ¢’ < e. Hence for any
prime qle there exists k& # 0mod g such that ax # 0. Denote by k(g) the minimal
among such k.
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Lemma 2.4.4 For any prime gle we have

k(q) < wf(q-1)-1. (44)
Proof It is very similar to the proof of the fist part of Lemma 2.4.2, with the field
Lo replaced by £, = L ((:t:l/")), where € = ¢/q.
Clearly, £1(y) = L. Let (YY) = woY?+... be a minimal polynomial of y over the
ring R=L [[:1:'/"”. Then
Neyyie (p(Y)) (2, V)5
in the ring K [[z]] (V).
Denote by A(x) the discriminant of ¢(Y). Then
Nty K (A (@) lD(m)[L:Kx] (45)
in the ring K [[z]]. Since
Ord;A(z) 2 ¢(q — 1) (k(q) + 1)/e,

we have
et [L:K]q(g—1)(k(q) +1)/e < [L: Ky, (46)
which yields (44) at once.

3 Study of a fixed «

In this section we consider only non-archimedean places, unless the contrary is stated
explicitly.
Until the end of this section we fix « € K and P € C(z, K, S). Recall that

e = gcd(er,. .., €,), (47)

where €, ,..., e,'are the ramification indices of the covering z: C—P" over the point
a. We say that a (non-archimedean) place v is reguler if e,|Ord, (z(P) — @), and
irreqular otherwise.

In this section we prove

Lemma 3.1 We have

d' Y log Mv <120 (i + nua) (h (f) -+ mh(a) + O(n + log N)) (48)

v Is irregular,
vgS

If e, = 1, the lemma is trivial. Therefore we may suppose that e, > 2. In this
case all the ramification indices ey ,..., e, over « are greater or equal to 2, whence
p < n/2. Consequently

o2 (1= 1) 4+ (e, = 1) =n—p > n/2, (49)

which will be used in our estimates.
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Let

[ee)

yi= 3. aglz—a)% (1<i<)) (50)
k=—ho (i)

be the Puiseaux expansions of y at «. Actually, for any ¢ we have €; equivalent

expansions
oG

yii= > anllf(z —a)*®  (0<j<e—1), (51)
=k (i)

where &; is a fixed primitive root of unity of degree e;. We have

ei—1

f(2,Y) = go(z HH - Yij)

i=1 ;=0

We denote by L; the field generated by all the coeffitients a;; of the series y;. Put
v; = [L;:K]. Further, for any prime gle; let ki(q) be the minimal k£ % 0mod g such
that a; # 0. By Theorem 2.1 together with Remark 2.3.1, for any (archimedean and
non-archimedean) place v of the field K there exist A,, A, > 1 such that

|ai], < A, AL (52)

and satisfying (21), (22) and (24) with A(f), v and g replaced by 2 (fa), v and g,
respectively.
Let M be a finite set of non-archimedean places of the field K defined as follows:

M=M|UM2UM3U1\44UM5,

where
M, = {vp()<nl,
M: = {v:lof, <1},
Ms = {v:vis ramified in one of the fields L;,..., L,} ,
My, = {v: a;ki(q)L < 1forsomei€ {i,..., p} and prime q|e;} ,
Ms = {v:A,A,>1}.

Proposition 3.2 Any v ¢ SUM is regular.

In view of this proposition, Lemma 3.1 is a direct consequence of the following
estimates (we put E; = d7' 3 em, log Nv):

5 < n, (53)
Z, < h(e), (54)
¥y < 2 (e + uan) (h (fo) + O(n + log N)) , (55)
La < 4n® (pa + ualogy ) (R (Jfa) + O(n +log N)) | (36)
S5 < An(h(fa)+O0(n +logN)) | (57)

Here (53) and (54) are obvious. It remains to cstablish (55)-(57) and to prove
Proposition 3.2.

12



Proof of (55) We may suppose that for some r < s the fields L;,..., L, are
pairwise non-conjugate over K and any L; is conjugate to one of Ly, ..., L,. Then

V£+'°'+Vr5n,

which yields
:/?-i—--o-l-ur2 5112.

We estimate the relative discriminant Dy, ;x by Lemma 2.4.2:

d'log NDryx < 2(2n04 (o + wari) + v2) h (fa) +

9] (nu,- (tta + uati) (n + log N) + v; log l/,-) .

Using (58) and (59), we obtain

d_l Z log./V (DL./K)
i=1
< 2 (2n2 (o + uan) + 712) h{fa)+
0 (n2 (fta +uan) (n+log N) +n logn) :

X3

INA

which proves (55) (recall that u, > n/2 > 1).

(58)

(59)

Proof of (56) Let M)(7,q) be the set of all non-archimedean places w of the field
L; such that |a,~k;(q)|w < 1, and My(%, ¢) the set of all points K below Mj(1, ¢). Then

M, = U U Ma(i, q) .

=1qle
By Lemma 2.4.4 we have k;(g) < e;pta/vi. Using Theorem 2.1, we obtain

E;(i1q) = [dL.’]Hl E lOgN‘L;(w)

weM} (i\q)
< h (aike(Q))
< h(fa)+ (@n=Dh(fa) + O (a(n +log N))) (ua + ki(g)/e:)
< 4n(ta+ pa/vi) (B (fa) + O(n +log N))

(we again use p, = n/2). Further,

Ya(i, q) ' 3T logNu

UEMq(i.Q)
< Uizfl(ia Q)
< dn(viug + pa) (h (fa) + O(n +log N)) .

There are at most log, e; distinct prime divisors of e;. Since

logyer + -+ +logye, < ert-oote

<
vilog,er + -+ logee, < (v -+ )log,n < nlog,n,

13



we have

£ < S E)

1=1 ge;

< 4n(ugnlog,n + pan) (h (fa) + O(n + log N)) ,
which is (56).
Proof of (67) We write M5 = M{ U M{, where M{ consists of those v € My for

which %ﬂﬁ € Z, and M{ = M\ M;. In accordance with this partition of the setMs,

we write L5 = E; 4 5. Recall that %i—,%’“ is always in Z.
The sum Zf is estimated using (21):

o < d! Z d, (log Ay + log A))
vEMY
< 4 d, (log Ay + log A7)

< 2n (h(fa) + O(n + log N)) .
The sum Y is estimated using (24):
Y < 2nh(fs)+ O (log N) .
This proves (57).
The proof of Proposition 3.2 is based on the following almost trivial fact.

Proposition 3.3 Let K be a local field of characteristic 0, with residue field of char-
acteristic p. Let  be a primitive element of I{ andn € K. For any e € Z not divisible
by p and for any choice of the root n'/®, the ramification index of K (771/") over K Is

e/ ged (e, Ordx (7).

Proof Write n = 778, where 7 = Ord,(7) and 0 is a unit of K. Fix a root #'/°.

Since p is not a divisor of e, the field K (01/’) is unramified over K. Replacing K by

K (91/‘) and 7 by 7 (0’/")—1, we may suppose that n = 77.

Put ¢’ = e/ged (e,7) and 7’ = 7/ gcd (e, 7) Then /¢ = (71'1/‘3')?’ for some choice
of the root 7'/¢'. Therefore K (n1/e> CK (WI/"'). On the other side, ged (¢/,7') = 1,
therefore exists a € Z such that r'a = 1mode’. Then K (n'/c) oK ((771/3)“) =
K (/). Thus, K (3"/¢) = K (n'/%'), the latter field being a totally ramified exten-

sion of K of degree €. The proposition is proved.

Proof of Proposition 3.2 Put 2o = 2(P) — o and fix v ¢ MU S. Then 7 =
Ord, (z¢) > 0, because v € Mo U S. If 7 = 0 then there is nothing to prove. Thus,
assume that 7 > 0. Fix a prolongation of v to Q. Then all the series

o0

wi(P) = Z aix (:B(I,/C‘)k (1<i<s)
k=—Fko (i)

14



converge in v-metric, because |zo|, < 1 and v € Ms. For some ¢ and some choice of
the root .’EO/ " we have y;(P) = y(P). Fix this 7 and this choice of the root until the
end of the proof, and omit the index 2 in the further reasoning.

Since v € M3, it is not ramified in the field L = L;.

Denote by K, and L, the completions with respect to (the fixed prolongation of)
v. If e = e; divides 7, the proof is finished. Therefore we may suppose that e does
not divide 7, that is ¢’ = ¢/ gcd(e, 7) > 1.

Let ¢ be a prime divisor of €’. Then ¢ does not divide 7/ = e/ ged(e, 7). Put

e i @ (Ié/c)k
k=k(q)

Since v € My U M;, we have

Ordy(w) = Ord, (( uc)uq)) _ m'k(q)

el

(there is a unique prolongation of Ord, to the algebraic closure of L,).
On the other hand

k(g)-1

w= Z ak( 1/) Giu 3=Lu($(l}/g“)a

k=—kp

where €” = e/q. Since v € M, we may apply Proposition 3.3. It implies that the
ramication index of L, over L, is e”/gcd (¢”,7) = €'/q. Therefore Ord,(w) is q/¢’
times an integer (recall that L, is unramified over K,). Thus, ¢ divides the product
7'k(q) — a contradiction. The proposition is proved, which completes the prooof of
Lemma 3.1.

4 Auxiliary material

4.1 Siegel’s construction of convenient units of number
fields

Propositions 4.1.1 and 4.1.3 of this subsection go back to Siegel’s famous paper [32].

Let S = (vp,...,v,s-1) be a finite set of places of the number field K and 7y, ..., 7,1
a fundamental system of S-units. The S-regulator R(S) = Rk(S) is, by definition,
the absolute value of the determinant of the matrix

[dv.' log |77j|w]|g,',j53_1 . (60)

It is well-defined and equal to the usual regulator R = Rk when S = S.,.

Proposition 4.1.1 There exists a fundemental system of S-units 1y ,..., n,-1 satis-
fying
h(nl) e h(ns—l) S 23 zdl JR(S) H (61)
R (m)- k() < sPTICTIR(S), (62)
€)™ < h(m) < S*TECTIR(S). (63)
15



Here h*(n) = max(1, h(n)) and { = 1201 (ﬁ%)a with d’ = max(d, 3). Furthermore,

let [a;;)1<ij<s—1 be the matrix inverse to (60). Then
Ia,'j| SSZ"_QC (J <i,7 ‘SS‘-l). (64)

Proof See Bugeaud and Gydry {7, Lemma 1]. Note that the left-hand inequality in
(63) is the well-known result of Dobrowolski [14].

Corollary 4.1.2 Suppose that

by
n=mnney,

where ny , ..., n,-1 are from Proposition 4.1.1 and B = max(|bi|,..., |bs—1|). Then
h(n) < s®7ICTPR(S)B, (65)
B < s™Ch(n). (66)

Proof Straightforward from (63) and (64).

s=1

Proposition 4.1.3 For any a € K there exists an S-unit n = 73’ ---ni’_] such that
B = an™! satisfies

d™' Y dylog|Bl.) < s*TICTER(S).

vES
v#vp
Proof Putn =n%-.-n2*7', where b; is the nearest integer to 0; = 21 aijdy; log |y,

Then B = an~! satisfies

s—1

d7' Y dyflog|Blu) = d7' Y dy |30 (0i = b)) log Inil.

vES vES =1
vsvg v
s—1
< &S (6 - bild, liog Il
i=1 v€S
s—~1
< 2d)7' 0N dy [log [nils|
1=1 vES

him) + -+ + h(ns-1)
S2a—lca—2 R(S) ,

(A

as desired.

Let h = hk be the class number of the field K. (The letter £ will denote the class
number only in the remaining part of this subsection, and nowhere more in this paper.
Therefore there is no danger of confusing it with h used for heights.) The following
result was obtained independently by Bugeaud and Gyéry [7, Lemma 3] and by the
author [9, Proposition 1.4.8]. (See Pethé [25] and Hajdu [20] for similar results.)

Lemma 4.1.4 Assume that S O So,. Then

R(S)<hR J] logNv.
vES\So
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Corollary 4.1.5 Suppose that K # Q. Then

R(S) < d™*V/D(log D)*' [ logNv < DO (H N'v)om : (67)

vES\Seo vES

Proof The first inequality follows from Siegel’s estimate hR < d~%v/D(log D)*!
(see [32, Satz 1]). Further, note that logD < ¢, D% and logNv < ¢, (Nv)*0,
where ¢; , ¢z, ... are absolute effective constants. Also, log A'v < (Mv)?0! as soon as
Nv > c;, and there exist at most cyd non-archimedean places v with MNv < ¢;. We
obtain

0.01
(log D)*' ] logNv<ch (’D 11 Nv)

vES\Seo vES

with ¢ = ;7. Since cfd~% <« 1, this proves the second inequality.

4.2 One more estimate for the relative discriminant

In Subsection 2.4 we quoted Silverman’s estimate for the relative discriminant in terms
of generating elements. Below we obtain an estimate of a different type, in terms of
ramified places. The results of this subsection are certainly not new, but we did not
find a suitable reference.

Let L/K be a finite extension of number fields. In this subsection v (respectively
w) is always a non-archimedean point of the field K (respectively L). We denote by
e(w) = eryk(w), the relative ramification index, and by f(w) = fi/k(w) the relative
degree of the residue fields. For any v, the function |...|, is well-defined on the set of
fractionl ideals of K, as well as on the set of fractionl ideals of the v-adic completion
K,. In particular, Proposition 4.5 (ii) in [12, Ch. 1] can be written as

(68)

v

S
wiv

We begin with a local estimate.

Proposition 4.2.1 Suppose that w|v. Then

— log |DL,/k. |, < (—e(w)logle(w)], + (e(w) — 1) d; log Nv) f(w).  (69)

Proof Replacing K, by its unramified closure in L,,, we may assume that f(w) = 1.
Let IT be a primitive element of L,,. Then g(II) = 0, where g(X) = a. X¢+a._1 X' +
...+ ag € K,[X] is a polynomial of degree e = e(w) with a. = 1,

la;l, < 1 (1<i<e—1),

|aol,
For 1 <1 < 7 < e we have
jiadl?| # [ja; 17|
Hence
l9'(M], = roax ia 1| > fert!|

17



Therefore ¢ = N, /k,(g'(I1)) satisfies

elv 2 lels - 7157,

where m = N1,,/k,(I1) is a primitive element of K,. Since Dk, divides ¢, we have

—log |DL.,,/K..

v

< —loglel,
< —eloglel, — (e — 1) log|7|,
—elog le|, + (e — 1)d; 'log N,

as desired.

Remark 4.2.2 It is well-known that (69) turns to equality when |e], = 1.

Proposition 4.2.3 Put v = [L:K]|. Then

d'log N (DL/K) <(v-1)d! > log Nv+ 1P logv.

v is ramified in L

Proof By (68) and (69)

—log IDL/KL < (d;l long) > (e(w) — 1) f(w) = > e(w) f(w) log |e(w)],

why wlv

< (v—1)d;' logNv —viog|v!|, .
Hence

log N (Dpjx) = S dy(—log |DL/KL)

v is ramified in L

< (v-1) > log Mv + dvlogu!,

v is ramified in L

which completes the proof.

4.3 Baker’s theory

We summarize necessary facts from Baker’s theory of linear forms in the logarithms
in the following proposition.

Proposition 4.3.1 (Waldschmidt, Yu) Let K be a number field of degree d and
ao,..., o, non-zero elements of K. Also, let v be a place of K and 0 < ¢ < 1.
Suppose that

0< ‘aga'{‘ b — 1|v <exp(—eB), (70)

where by ,..., b, € Z and B = max(b;,..., b, 3). Then
B < cofr, d)e ™" p(v)**%h* (ao) - - h* (o )(log h') log (e 1') (71)
where h*(...) is defined as in Proposition 4.1.1, k' = max (h{c),..., h(a,), 3) and

¢(r,d) = exp (3rlog(rd) + O(r + log d)). (In the archimedean case the multiple log '
can be skipped.) :
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Proof The archmedean case is due to Waldschmidt [38]. Define the parameters in
[38, p. 215] as follows:

n=r4+1, A;=exp(h*(a;)) (0<i<7),
E =exp(l), f=exp(-1), Zog=T+3log(r+1)+logd.

Applying Corollary 10.2 from [38] in this set-up, we obtain

eB <c(r,d)h* () - k() log (3 + %) ;

which yields (71) (without the multiple log ~') after obvious calculations.
The non-archmedean case is due to Yu [39]. Define the parameters in [39, p. 241-
242) as follows:

€y

n=r+1, 6=min(1,210gp

) y  hi=2h"(a)logp (0<i<r),
where e, is the ramification index of v over Q (in particular, e, < d). In this set-up
the third displayed formula on [39, p. 242} would turn to

ce, B
log p

< e(r, d)p) "k (an) - A (e )(log B') log (€7 i'p)

which yields (71) at once.

5 The main argument
In this section we suppose that one of the following conditions holds:
(A) There exist distinct e, 3 € Q such that e, and ¢ have a common divisor € > 3.

B [ here exist diStiﬂCt [a% e SllCh tha.t €n,y € a.ncl € ha,ve a CoImiInon diViSOI‘
s My 8 ol
e> 2.

Put
ve = [K(a): K], kKo =n%(tta + nue) (h (f)+ mh(e) + O(n + log N)) ,

and define v, vy, kg, K similarly. Also, put

T

eValp in the case (A),

evgmax(vy , vy) in the case (B),

| detvapp in the case (A), _
6 = { de*vqavgr, in the case (B), © = 5T (log(Ns) + O(1)) -
Theorem 5.1 Suppose that either (A) or (B) holds. Then for any P € C(z, K, S)
we have

217
he(P) < 3(S)? ('D II NU) exp (1300 + ed (22v,vp(ko + £g) + 15v40a(Ky + Kg)))
vES
(72)
where in the case (A) the terms v, and k. should be replaced by v, and &,.
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Proof In a few words, the proof is organized as follows. For a given P € C(z, K, 5)
we construct algebraic numbers ¢ and ¢’ with the following three properties:

(1) the heights of ¢ and ¢’ are of the same magnitude as h,(P);

(i1} each of ¢ and ¢’ is “almost an S-unit” (an S-unit times an algebraic number of

bounded height);

(ii1) for some place vy the ratio /¢’ (slightly modified) is “very close to 17 with
respect to the vg-metric.

Using (ii), (ili) and Baker’s theory, we estimate the heights of ¢ and ¢’. In view of
(i), this would give a bound for h,(P).

1 The choice of vg

Fix P € C(z, K, S) and put zo = z(P). We have

he(P)=d™! Z d, log |zol, ,
vES

whence

hz(P) = h(xo) < slog|zol,, (73)

for some vy € S. Prolong somehow vy to Q and fix this prolongation until the end of
the proof.
We put

(A),
max ([etluy » [Blus » 17l » 1) in the case (B),

(

(
- { max (h(a), h(3), 1) in the case (A),
max (h{a), h(B), h(y), 1) in the case (B)

- { max (|alvy 5 [Blu s 1) in the case
.y =

2 Construction of ¢ and field L

When |zq|,, < 10eoo then (73) implies an upper bound for £;(£) much better
than (72). Hence we may suppose that |$0|vo > 10eoy, whence the series 1 +

k .
Py ('f) (—@-) converges in vp-metric, and its sum, denoted by /22=3, satisfies

zo—f

eSlL‘o—Cl'.'

&?o—ﬂ

edy
-1

(74)

w  |Tol '

Fix a primitive e-th root of unity ¢ (in paricular £ = —1 in the case (B)) and put

o — &

CCQ—,B,

If {zo|,, > ce®0f, where c is a sufficiently large absolute effective constant, then ¢ # 0
and

0=ty

L=K(a,8,60), ¢=(z—B)0-1).

(6 = D" (m0— )¢ ~ 1|, <« Paulzoly’ < laol " (75)
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as follows immedeately from (74) and the trivial estimate [§ — 1],, > 7.
It is worth mentioning that

ﬂP=(\°/$0—CY—\E/$o—ﬁ) (76)
when the roots /zo — @ and /zo — § are appropriately defined.

3 Estimating h(¢) and Dy,

We have either

h(p) < h(zo) < eh(p) (77)
or h{zg) K e (?L + e), which is much better than (72). Indeed, by the definition of ¢
we have h(p) € h(zo) + h + e whence either hA(zo) < h 4 e or h(p) < h(zg). Further,
rewrite (76) as t5+ f —a = ({/(,_o' + to)e, where tg = /zo — 8. Thus, g is a root of a
polynomial of degree e — 1 and height O(A(y) + h + €). By Proposition 1.4.1 we have
h(to) < k() +h+ e, whence h(zo) < eh(lo) +h < e (h(go) +h+ e). Ifh(p) > h+e

then h(zq) < eh(yp), and if h(p) < k + e then we have h(zp) < e (E + e).
We also have to estimate the absolute discriminant Dy,. By Proposition 2.4.3

d—llogN(DK(a)/K) < WAh(a) 4 valogry < 2Wake, (78)
(dva) ™ log Nk (o) (Dk(apy/K() S 23h(B) +vploguy < 2upmg.  (79)

Indeed, po > n/2, as we have seen in Section 3, and on the other hand pyv, <
deg D(X) < (2n — 2)m. Therefore v, < 4m, whence v h(e) + log va < k. This
proves (78); in the same manner one obtains (79). .
Further, if a non-archimedean place v of the field Ly = K(a, §) is ramified in L
then either p(v) < n, or e does not divide one of the numbers Ord,(zo — @) and

Ord,(zo — B8). By Lemma 3.1
£(a) = df, > log N1,v < 12ex, ,

vgS and e does not
divide Ordy{rg=a)

and similarly one defines and estimates (). Denote by Sy the set of places of Lg
above 5. Then

di; log M1, (DL/LD) < (e-— l)dE; > log Np,v + eloge

v is ramified in L

e (di; Y log Np,v + E(a) + E(ﬁ)) + e*loge

IA

vESy

< e (d_l Z log Nv + 12k, + 12&5) X
veS

Finally
Dy

IA

DN (Dk(ayk) Vo) (PLo/k(@) Mo (PLyLo)

(D (H NU) exp (14d(xq + mﬁ)))%ug . (80)

veES

A
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4 ¢ is almost a unit

For any place v of the field L put

oy = max(l, |a|,, |Bl.) , oy =|a—8l..

Let Sy be the set of places of L above S. Then s, := |5;| < sevyvg and for any v € S)
we have

050, < loly < 0y

Indeed, |¢|, < o, by (76). Further, we have @ pe—y = (§ — @)%, where @ =
(zg — B)(€¥6 — 1)°. Since ¢ = o and for any k we have |pi|, < ,, we obtain

olo 2 250,
Let m1,..., 75,1 be a fundamental system of Si-units of the field L constructed
in Proposition 4.1.1. Then

h*(m) -+ h*(ne,-1) < sv1R(S1). (81)

By Proposition 4.1.3 there exists a unit = 7' - - 775:‘_1' such that

dit 37 d,(L) |log |9]u] < sT1R(S1),

vES,
v#vg

where ¥ = ¢n~!. We shall show that i has a bounded heght.
Obviously, |¢l, = |¢|, for any v € Sy. Therefore

h() = (2dn)7 (L) lloglp.|
< ' Y D) logll

vFv
< dp' Y du(L) log [ihlu] +dp' D du(L) [log ]|
T )

< SR(S) + b Celloge, + log o)

& SMR(S)) + eh. (82)
In addition, estimate R(S;). Corollary 4.1.5 and (80) yield

evavp

R(S:) < (DD.SI (H Nv) ' exp (7.2d(na + 55))) . (83)

vES

5 Construction of ¢’ and L'

In the case (A) let & be a primitive e-th root of unity distinct from ¢ (here we use
the assumption e > 3). In the case (B) put £ = —1. Put

0= ’Vc s—p In the case (A), L = { K(a, 8, 8) inthe case (A),
£ 2=% in the case (B), " | K(v,8,0) in the case (B),



where the root f/%ﬁ{—'ﬁ’- is defined as the sum of the series 1 4+ 3772, (',’CB) (%)k

Defining in the obvious manner ¢', ¥’, %', etc., we refere to the analogues of (75)—(83)
as (75')—(83'). For example, in the case (B)

DL < (D (1‘[ NU) exp (14d (k. + nﬂ)))wm . (80")

vES

and in the case (A) &, and v, should be replaced here (and everywhere below) by .
and v,.

6 Estimating B

Put B = max (3, byyoooy by, 0,0, b:"l-l)‘ We shall see that either h(zo) can be
estimated much better than in (72) or

h(mo) S C]R(Sl)B, (84)
B S C]lOg|.’L‘0|w, (85)

where ¢; = exp(6.70). Indeed, h(p) < h(¥)+h(n)+0(1), where h(n) < s*'* R(S,)B
by Corollary 4.1.2. Combmlng this with (77) and (82), we obtain A(zo) < ¢; B(S))B+

eth. We may assume ¢, R(S;)B > e*h (otherwise it would be h(zq) <« e®h, better
than (72)). Therefore h(xo) < ¢ R(S))B.

Remark 5.2 Here and below we may write < instead of € because the implicit
constant is absorbed by the O(1)-term of ©.

Further, by Corollary 4.1.2
max (by, ..., by,_1) € s¥'1h(n) < s¥1 (h(p) + h(¥) + O(1)) ,

and similarly for max (b;,...,¥,_,). Combining this with (73), (82), (82'), (77)

and (77'), we obtain B < ¢, (log l:1:0|,,0 +¢3), where ¢ = h+ ¢, (R(S)) + R(S})). If
log |To|s, < c2 then B < ¢;log |Zol|w, as desired. If log |zo|w, = ¢z then h(zo) < sco;
using (83) and (83'), we estimate h(zq) better than in (72).

7 Use of Baker’s theory

In the sequel we can assume the inequality ¢/’ # (€ — 1)°/(€’ — 1)°. Indeed, the
equality /¢’ = (£—1)¢/(§ —1)° is a non-trivial algebraic relation involving o, which
yields an estimate for h,(P) much better than (72).

Put o = ( ) ¥ Using (75) and (85), we obtain

T _1\¢
0< K€ ) o 1' = [pon()™ 1| < laolg}’* < exp(~i'B).  (86)
vo

§-1) ¢
Put r = s; + s — 2 < 2sevg(vy + vy) and write 0y, ,..., 5, and by, ,..., b, instead of
Ny 77:,1_1 and =b),..., — b’s.l_l, respectively. Then

0< |noﬂi"'--nf’ =1 < exp(—¢i'B),

Yo
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Qo ms--sm) :Q] < § KN,
h*(no) < R+ O(eh),
h*(m)---h*(m) < ER(S)R(S)),
h' = max (h(m),..., h(n,),3) < akR.

where h*(...) is defined in Proposition 4.1.1 and R = max(R(S,), R(S}), 3). By
Proposition 4.3.1

B clﬁ(uo)‘s'o'sh‘ (mo)h*(m) - - -h*(n,) (log h') log(e ) exp (3rlog (rd) + O(r + log §))

P(S)*=0% (R+T) R(S1) (S) (log? FE) exp (1230) .

IA A

By (84), (83) and (83')

h(zo) < B(S) 0% (E+h) R(S)?R(S]) (log? ) exp (1300)

2.17
< p(S)° (D 1I Nv) exp (1300 + ed (22vqup (Ko + Kg) + 150408(Ky + Kg))) -
vES

Theorem 5.1 is proved.

6 Proof of Theorem 1.2

The relation (7) implies that one of the following conditions holds:
(a) there exist a, 8 € Q such that e, > 3 and eg > 2;
(b) there exist a, 8, v € Q such that e, = eg = e, = 2.
We can split (a) into three subcases:
(al) there exist o, § € Q such that e, = eg > 3;
(a2) there exist a, # € K such that e, > 3 and eg > 2;
(a3) there exist a € K and 3 € Q such that [K(8): K] <2 and e, > 3, eg = 2.

Indeed, suppose that o« € K and o) = a, aa,..., @, are the conjugates ol « over K.
Then we redefine 8, putting 8 = a3, and obtain the case (al). In a similar manner
the case ‘

BeK, e>3

can be reduced to (al), and the case
K(B):K] >3, eg=2

can be reduced to (b).
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6.1 Cases (al) and (b)

Let oy = @, ag,..., oy, be the conjugates of o over K. All them are roots of D(X)
of order p,. Therefore

2mn,
m.

Valta < deg D(X)
<

<
deg go(X) <

(87)

Vallg

Since g, > n/2, as we have seen in Section 3, we obtain v, < 4m. (We have
already used this in the previous section.) Similarly, vg, vy < 4m. Furthermore,

h(ar) = ... = h(a,, ). Hence, by Proposition 1.4.1
Vaptah(@) < h(D) +log(2mn) < 2nh(f) + O(nlog N),
vatah(a) < h(go)+log(m+1) < A(f)+O(log N). (88)
Combining (87)—(88), we obtain
Vatkia < 6n°m (R(f) + O(n +log N)) . (89)

In the same manner one estimates vgkg and v,x,. Hence
Vap(Ke + K5) < 4m(Vaka + vgrg) < 48n°m? (h(f) + O(n + log N)) , (90)

and similarly one estimates vyv5(ky + kg). Further,

T < 16m’n, (91)

16dm?n? in the case (A), 5

6 < { 256dm®  in the case (B), (92)

© < 16m?ns(log(Ns)+ 0O(1)). (93)

Substituting the estimates (90)-(93) to (72), we obtain
2.1n 16m?
hI(P) < (ﬁ(s)dmax(nQ,Sm) (D H N‘U) exp (13091)) ) (94)
vES

where £ = snlog(Ns) + O(sn) + 3dn*(h(f) + O(n + log N)). As one can easily see,
(94) is better than (3). This completes the proof in the cases (al) and (b).
6.2 Case (a2)

Put ¢ = eg and t = /z ~ (. Let C —?)~C' be the covering corresponding to the
embedding Q(C) = Q(C)(t). The curve C is defined over K and K(C) = K(y,1).
We have f(t,y) = 0, where f(T,Y) = f(8 -+ T¢Y). In particular,

mo=degy f=me, fi:=degy[=n, h(f)<h(f)+mh(B).

The coverings C4C35Pand C 5 P! have the [ollowing two properties.
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(i) For any FeCz,K,S5)and P € ¢!(P) there exists an extension K of K
such that [K : K] < e and

Dy < (’D (1‘[ Nv) exp (72dn®m (h(f) + O(n + log N))))C . (95)

vES
P e C1,K,¥9), (96)

where § is the set of places of K above S.

G=va—f, B=t&, &=elz)

where { is a primitive é-th root of unity. Then e;(t) and e5(t) are divisible by
€.

Proof of (i) We have (96) with K = K (f/m(P) — f3) for an appropriate definition
of the root. By Proposition 4.2.3, Lemma 3.1 and (89).

(i) Put

d‘llogN(DR) < ed’! > log Nv+eloge

v 18 ramified in K

< ed X+ D+ > logNv+eloge

vES  p(v)<e vgS and e does not
divide Ordy (2( P} —a}

< e (d_l > log N + 12&0)

veES

< e (d_l > log Nv + 72n°m (h(f) + O(n + log N))) ,
vES

which yields (95). _

Proof of (ii) Below divisor means divisor on C. We have i* — v = z — «, where

v = a—f. Write the principal divisor (t¢ — v) as the difference of two positive divisors
with disjoint supports:

(=7 == 7)o = (¢ = Ve -

Then (¢ — ), = (¢ — «)o, the latter divisor being divisible by €. (We say that a
divisor D is divisible by an integer [ if D = ID' for some divisor 1)’.) On the other
hand,

("= 7)o =(t— @)+ (t— &)+ -+ (t—&'a)_. (97)

Since the divisor in the left-hand side of (97) is divisible by € and the divisors in the
right-hand side have pairwise disjoint supports, each of the latter is divisible by €. In
particular, € divides ez(t) and ej(t), as desired.

We have

R e (h(a) + A(B) + O(1))

) - 4e~'n(h(f) + O(log N)),
[K(3):K|

€,

ot
I IA
IAIA
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and similarly one estimates h (E) and v Also,

~——~—

i; = evgry < €%,

6 = dﬁ?ggﬁﬁ S deaé'z ,

§ = l§| < se,

& := 5T (log (N3) +0(1)) < 3se%(log(NS)+O(1)) .

Furthermore, defining iz, fiz, ﬁg and ;'IE in the obvious manner, one easily finds that

ﬁ;,;:ﬂg:’ua, ﬁ;z.ﬁﬁzﬂﬂ (98)

The rest of the argument splits into two cases: eg > 3 and eg = 2. In the first
case we may suppose that

Po + nuq < pg + nug, (99)
interchanging « and 3 if necessary. Defining in the obvious manner Kz and using (87),
(88) and (99), we obtain

K~

;= oyt (g +7dg) (h (F) + 7k(&) + O + log N))
< 1 (o + o) (1 (S) +m (h(a) + 2h(8)) + O(N)) (100)
< nm @rh(f) + (o + nua) h(e) + 2 (g + mug) () + O(nN)) - (101)
< 120®m (h(f) + O(N)) . (102)

In the similar way one defines and estimates EE. By Theorem 5.1

ho(P) < e(he(P) +h(8)+0(1))

_ 21T
P (5)6 (Dﬁ HNRU) exp (130(:) + 37§dﬁ§;§5(§g + RE))

<

veES »
< (ﬁ(s)d?pﬁ-l (HNv)?'"exp(z;oong))” (103)
< (o) (TA)" exp (a000)) " (104)

with 0, = slog(NS) + O(s) + 1.5dn°m (h(f) + O(N)). This is better than (3).
Now suppose that e = eg = 2. Then we cannot assume (99) anymore. Instead, we
shall use the estimates

Pa +nus <3mn, h(a), h(B) < 4h(f) + O(log N},

which can be deduced from (87), (88) and (49).
We still have (100), but instead of (101) we obtain

Kz < 40n°m (mh(f) +O(n+mlog N)) :
Therefore instead of (103) we have
ho(P) < (ﬁ(S)“?Dﬁ-' (T M) exp (39993))c i
8n
< (ﬁ(S)d"’Dz-‘ (LI Vo) exp (39993)) (105)
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with 03 = slog(NS) + O(s) + 4dn°m (mh(f) + O(n +mlog N)) Again we obtain
an estimate better than (3).

6.3 Case (a3)
We have

Di(s) < D exp(2d(h(B) + O(1)) < D* exp(8d(h(f) + O(1)).

Applying (105) with the field K(3) instead of K, we obtain

16n

ho(P) < (ﬁ(S)d"DZ‘I (HJVU)B'I exp (400Q3)) ,

again better than (3).

Theorem 1.2 is proved.
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