CATEGORICAL \mathfrak{sl}_2 ACTIONS

ANTHONY LICATA

1. INTRODUCTION

1.1. Actions of \mathfrak{sl}_2 on categories. A action of \mathfrak{sl}_2 on a finite-dimensional \mathbb{C} -vector space V consists of a direct sum decomposition $V = \oplus V(\lambda)$ into weight spaces, together with linear maps

$$e(\lambda): V(\lambda - 1) \to V(\lambda + 1)$$
 and $f(\lambda): V(\lambda + 1) \to V(\lambda - 1)$

satisfying the condition

(1)
$$e(\lambda - 1)f(\lambda - 1) - f(\lambda + 1)e(\lambda + 1) = \lambda I_{V(\lambda)}$$

Such an action automatically integrates to the group SL_2 . In particular, the reflection element

$$t = \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix} \in SL_2$$

acts on V, inducing an isomorphism $V(-\lambda) \to V(\lambda)$.

A first pass at a categorification of this structure involves replacing vector spaces with categories and linear maps with functors. Thus, a naïve categorification of a finite dimensional \mathfrak{sl}_2 module consists of a sequence of categories $\mathcal{D}(\lambda)$, together with functors

$$\mathsf{E}(\lambda): \mathcal{D}(\lambda-1) \to \mathcal{D}(\lambda+1) \text{ and } \mathsf{F}(\lambda): \mathcal{D}(\lambda+1) \to \mathcal{D}(\lambda-1)$$

between them. These functors should satisfy a categorical version of (1) above,

(2)
$$\mathsf{E}(\lambda-1)\circ\mathsf{F}(\lambda-1)\cong\mathsf{I}_{\mathcal{D}(\lambda)}^{\oplus\lambda}\oplus\mathsf{F}(\lambda+1)\circ\mathsf{E}(\lambda+1),\quad\text{for }\lambda\geq0,$$

and an analogous condition when $\lambda \leq 0$. The sense in which this is naïve is that ideally there should be specified natural transformations which induce the isomorphisms (2).

2. Chuang-Rouquier's definition of \mathfrak{sl}_2 -categorification

In order to get a good theory of \mathfrak{sl}_2 -categorification, we need to define the algebraic structure arising from natural transformations between various compositions of the functors E and F. The first such definition, due to Joe Chuang and Raphael Rouquier [CR], is given below. (In the definition, as well as in some later parts of the abstract, we will omit the λ from the notation, writing E and F instead of $E(\lambda)$ and $F(\lambda)$.

Definition 2.1. An \mathfrak{sl}_2 categorification consists of a finite length abelian category \mathcal{A} , together with exact functors $\mathsf{E}, \mathsf{F} : \mathcal{A} \to \mathcal{A}$ such that:

- (i) E is a left and right adjoint to F;
- (ii) The action of [E] and [F] on $V = K_{\mathbb{C}}(\mathcal{A})$ induces a locally finite action of \mathfrak{sl}_2 ;

(iii) We have a decomposition $\mathcal{A} = \bigoplus_{\lambda \in \mathbb{Z}} \mathcal{A}_{\lambda}$ such that $K_{\mathbb{C}}(\mathcal{A}_{\lambda}) = V_{\lambda}$ is a weight space of V.

We also require natural transformations $X : \mathsf{E} \to \mathsf{E}$ and $T : \mathsf{EE} \to \mathsf{EE}$ such that

- (i) $T^2 = I_{EE};$
- (ii) $(TI_{\mathsf{E}}) \circ (I_{\mathsf{E}}T) \circ (TI_{\mathsf{E}}) = (I_{\mathsf{E}}T) \circ (TI_{\mathsf{E}}) \circ (I_{\mathsf{E}}T)$ in End(E^3);
- (iii) $T \circ (\mathbf{I}_E X) = (X \mathbf{I}_E) \circ T \mathbf{I}_{EE};$
- (iv) $X_M \in \text{End}(\mathsf{E}M)$ is nilpotent for all objects $M \in \mathcal{A}$.

ANTHONY LICATA

It follows that endomorphisms X and T induce an action of the degenerate affine Hecke algebra of GL_n on \mathbb{E}^n (and, by adjunction, on \mathbb{F}^n .) As a consequence of the definition, Chuang-Rouquier prove that the functor \mathbb{E}^n is isomorphic to the direct sum of n! copies of a single functor $\mathbb{E}^{(n)}$. Similarly, by adjunction, the functor \mathbb{F}^n is isomorphic to n! copies of a single functor $\mathbb{F}^{(n)}$. Thus $\mathbb{E}^{(n)}$ and $\mathbb{F}^{(n)}$ naturally categorify the divided powers $e^{(n)} = \frac{e^n}{n!}$ and $f^{(n)} = \frac{f^n}{n!}$. Chuang-Rouquier then define a complex $\Theta(\lambda)$ of functors, which they call the Rickard complex. The terms of the Rickard complex are

$$\Theta(\lambda)_d = \mathsf{E}^{(\lambda+d)}\mathsf{F}^{(d)}$$

and the differential $\delta: \Theta(\lambda)_d \to \Theta(\lambda)_{d-1}$ is built from the adjunction morphism $\mathsf{EF} \to \mathsf{I}$, see [CR].

Theorem 2.2. (Chuang-Rouquier) The functor $\Theta(\lambda)$ defines an equivalence of categories

$$\Theta(\lambda): D^b(\mathcal{A}_{-\lambda}) \simeq D^b(\mathcal{A}_{\lambda}).$$

Futhermore, Chuang and Rouquier construct an explicit \mathfrak{sl}_2 categorification using direct summands of induction and restriction functors between symmetric groups. As a corollary of the above theorem, they are then able to prove Broue's abelian defect conjecture for symmetric groups.

3. Geometric examples of \mathfrak{sl}_2 categorification

There are geometric examples of categorical \mathfrak{sl}_2 actions which do not quite satisfy the hypotheses in the Chuang-Rouquier definition above, essentially because the underlying weight space categories are not abelian (though they are triangulated) and the degenerate affine Hecke algebra does not act naturally on E^n (though the *nil affine Hecke algebra* does.) In these cases, the Chuang-Rouquier definition must be modified slightly.

3.1. Categorical \mathfrak{sl}_2 actions. We begin by giving a modified definition of \mathfrak{sl}_2 categorification which was introduced in joint work with Sabin Cautis and Joel Kamnitzer [CKL1],[CKL2],[CKL3]. Then we will discuss the basic geometric example, which involves cotangent bundles to Grassmanians. Let \Bbbk be a field. We denote by \mathbb{P}^r the projective space of lines in an *r*-dimensional \mathbb{C} vector space, by $\mathbb{G}(r_1, r_1 + r_2)$) the Grassmanian of r_1 -planes in $r_1 + r_2$ space, and by $H^*(\mathbb{G}(r_1, r_1 + r_2))$ the singular cohomology of the Grassmanian, with it's grading shifted to be symmetric about 0.

A categorical \mathfrak{sl}_2 action consists of the following data:

- A sequence of k-linear, \mathbb{Z} -graded, additive categories $\mathcal{D}(-N), \ldots, \mathcal{D}(N)$ which are idempotent complete. "Graded" means that each category $\mathcal{D}(\lambda)$ has a shift functor $\langle \cdot \rangle$ which is an equivalence.
- Functors

$$\mathsf{E}^{(r)}(\lambda): \mathcal{D}(\lambda-r) \to \mathcal{D}(\lambda+r) \text{ and } \mathsf{F}^{(r)}(\lambda): \mathcal{D}(\lambda+r) \to \mathcal{D}(\lambda-r)$$

for $r \geq 0$ and $\lambda \in \mathbb{Z}$.

• Morphisms

$$\eta: \mathbf{I} \to \mathsf{F}^{(r)}(\lambda) \mathsf{E}^{(r)}(\lambda) \langle r\lambda \rangle \text{ and } \eta: \mathbf{I} \to \mathsf{E}^{(r)}(\lambda) \mathsf{F}^{(r)}(\lambda) \langle -r\lambda \rangle$$
$$\varepsilon: \mathsf{F}^{(r)}(\lambda) \mathsf{E}^{(r)}(\lambda) \to \mathbf{I} \langle r\lambda \rangle \text{ and } \varepsilon: \mathsf{E}^{(r)}(\lambda) \mathsf{F}^{(r)}(\lambda) \to \mathbf{I} \langle -r\lambda \rangle.$$

• Morphisms

 $\iota:\mathsf{E}^{(r+1)}(\lambda)\langle r\rangle\to\mathsf{E}(\lambda+r)\mathsf{E}^{(r)}(\lambda-1)\text{ and }\pi:\mathsf{E}(\lambda+r)\mathsf{E}^{(r)}(\lambda-1)\to\mathsf{E}^{(r+1)}(\lambda)\langle -r\rangle.$

• Morphisms

$$K(\lambda) : \mathsf{E}(\lambda)\langle -1 \rangle \to \mathsf{E}(\lambda)\langle 1 \rangle \text{ and } T(\lambda) : \mathsf{E}(\lambda+1)\mathsf{E}(\lambda-1)\langle 1 \rangle \to \mathsf{E}(\lambda+1)\mathsf{E}(\lambda-1)\langle -1 \rangle.$$

On this data we impose the following additional conditions:

• The morphisms η and ε are units and co-units of adjunctions

(i)
$$\mathsf{E}^{(r)}(\lambda)_R = \mathsf{F}^{(r)}(\lambda)\langle r\lambda \rangle$$
 for $r \ge 0$
(ii) $\mathsf{E}^{(r)}(\lambda)_L = \mathsf{F}^{(r)}(\lambda)\langle -r\lambda \rangle$ for $r \ge 0$

• E's compose as

$$\mathsf{E}^{(r_2)}(\lambda + r_1)\mathsf{E}^{(r_1)}(\lambda - r_2) \cong \mathsf{E}^{(r_1 + r_2)}(\lambda) \otimes_{\Bbbk} H^*(\mathbb{G}(r_1, r_1 + r_2))$$

For example,

$$\mathsf{E}(\lambda+1)\mathsf{E}(\lambda-1)\cong\mathsf{E}^{(2)}(\lambda)\langle-1\rangle\oplus\mathsf{E}^{(2)}(\lambda)\langle1\rangle.$$

(By adjointness the F's compose similarly.) In the case $r_1 = r$ and $r_2 = 1$ we also require that the maps

$$\oplus_{i=0}^{r} (X(\lambda+r)^{i}I) \circ \iota \langle -2i \rangle : \mathsf{E}^{(r+1)}(\lambda) \otimes_{\Bbbk} H^{\star}(\mathbb{P}^{r}) \to \mathsf{E}(\lambda+r)\mathsf{E}^{(r)}(\lambda-1)$$

and

$$\mathbb{B}_{i=0}^{r} \pi \langle 2i \rangle \circ (X(\lambda+r)^{i}I) : \mathsf{E}(\lambda+r)\mathsf{E}^{(r)}(\lambda-1) \to \mathsf{E}^{(r+1)}(\lambda) \otimes_{\mathbb{K}} H^{\star}(\mathbb{P}^{r})$$

are isomorphisms. We also have the analogous condition when $r_1 = 1$ and $r_2 = r$. • If $\lambda \leq 0$ then

$$\mathsf{F}(\lambda+1)\mathsf{E}(\lambda+1) \cong \mathsf{E}(\lambda-1)\mathsf{F}(\lambda-1) \oplus \mathrm{I} \otimes_{\Bbbk} H^{\star}(\mathbb{P}^{-\lambda-1}).$$

The isomorphism is induced by

$$\sigma + \sum_{j=0}^{-\lambda-1} (IX(\lambda+1)^j) \circ \eta : \mathsf{E}(\lambda-1)\mathsf{F}(\lambda-1) \oplus \mathrm{I} \otimes_{\Bbbk} H^{\star}(\mathbb{P}^{-\lambda-1}) \xrightarrow{\sim} \mathsf{F}(\lambda+1)\mathsf{E}(\lambda+1)$$

where σ is the composition of maps

$$\begin{split} \mathsf{E}(\lambda-1)\mathsf{F}(\lambda-1) & \xrightarrow{\eta II} \quad \mathsf{F}(\lambda+1)\mathsf{E}(\lambda+1)\mathsf{E}(\lambda-1)\mathsf{F}(\lambda-1)\langle\lambda+1\rangle \\ & \xrightarrow{IT(\lambda)\mathrm{I}} \quad \mathsf{F}(\lambda+1)\mathsf{E}(\lambda+1)\mathsf{E}(\lambda-1)\mathsf{F}(\lambda-1)\langle\lambda-1\rangle \\ & \xrightarrow{II\epsilon} \quad \mathsf{F}(\lambda+1)\mathsf{E}(\lambda+1). \end{split}$$

Similarly, if $\lambda \geq 0$, then

$$\mathsf{E}(\lambda-1)\mathsf{F}(\lambda-1) \cong \mathsf{F}(\lambda+1)\mathsf{E}(\lambda+1) \oplus \mathrm{I} \otimes_{\Bbbk} H^{\star}(\mathbb{P}^{\lambda-1}),$$

with the isomorphism induced as above.

- The X's and T's satisfy the nil affine Hecke relations:
 - (i) $T(\lambda)^2 = 0$
 - (ii) $(IT(\lambda 1)) \circ (T(\lambda + 1)I) \circ (IT(\lambda 1)) = (T(\lambda + 1)I) \circ (IT(\lambda 1)) \circ (T(\lambda + 1)I)$ as endomorphisms of $\mathsf{E}(\lambda 2)\mathsf{E}(\lambda)\mathsf{E}(\lambda + 2)$.
 - (iii) $(X(\lambda+1)I) \circ T(\lambda) T(\lambda) \circ (IX(\lambda-1)) = I = -(IX(\lambda-1)) \circ T(\lambda) + T(\lambda) \circ (X(\lambda+1))$ as endomorphisms of $\mathsf{E}(\lambda-1)\mathsf{E}(\lambda+1)$.
- For $r \ge 0$, we have $\operatorname{Hom}(\mathsf{E}^{(r)}(\lambda), \mathsf{E}^{(r)}(\lambda)\langle i \rangle) = 0$ if i < 0 and $\operatorname{End}(\mathsf{E}^{(r)}(\lambda)) = \Bbbk \cdot I$.

Given a categorical \mathfrak{sl}_2 action, for each $\lambda \geq 0$ we may construct the Rickard complex [CKL2]

$$\Theta_*: \mathcal{D}(\lambda) \to \mathcal{D}(-\lambda).$$

The terms in the complex are

$$\Theta_s = \mathsf{F}^{(\lambda+s)}(s)\mathsf{E}^{(s)}(\lambda+s)\langle -s\rangle,$$

where $s = 0, \ldots, (N - \lambda)/2$. The differential $d_s : \Theta_s \to \Theta_{s-1}$ is given by the composition of maps $\mathsf{F}^{(\lambda+s)}\mathsf{E}^{(s)}\langle -s \rangle \xrightarrow{\iota\iota} \mathsf{F}^{(\lambda+s-1)}\mathsf{FEE}^{(s-1)}\langle -(\lambda+s-1)-(s-1)-s \rangle \xrightarrow{\varepsilon} \mathsf{F}^{(\lambda+s-1)}\mathsf{E}^{(s-1)}\langle -s+1 \rangle$.

Then we have the following theorem, proved in [CKL2].

Theorem 3.1. Suppose the underlying weight space categories $\mathcal{D}(\lambda)$ are triangulated. Then complex Θ_* has a unique convolution T , and $\mathsf{T} : \mathcal{D}(-\lambda) \longrightarrow \mathcal{D}(\lambda)$ is an equivalence of triangulated categories.

3.2. A Geometric Example. The basic example of a categorical \mathfrak{sl}_2 action comes from Grassmanian geometry, and we refer to [CKL2] for complete details.

Fix N > 0. For our weight spaces we will take the derived category of coherent sheaves on the cotangent bundle to the Grassmannian $T^*\mathbb{G}(k, N)$. We use shorthand $Y(\lambda) = T^*\mathbb{G}(k, N)$, where $k = (N - \lambda)/2$. These spaces have a particularly nice geometric description,

$$T^{*}\mathbb{G}(k,N) \cong \{(X,V) : X \in \operatorname{End}(\mathbb{C}^{N}), 0 \subset V \subset \mathbb{C}^{N}, \dim(V) = k \text{ and } \mathbb{C}^{N} \xrightarrow{X} V \xrightarrow{X} 0\},\$$

where $\operatorname{End}(\mathbb{C}^N)$ denotes the space of complex $N \times N$ matrices. (The notation $\mathbb{C}^N \xrightarrow{X} V \xrightarrow{X} 0$ means that $X(\mathbb{C}^n) \subset V$ and that X(V) = 0.) Forgetting X corresponds to the projection $T^*\mathbb{G}(k, N) \to \mathbb{G}(k, N)$ while forgetting V gives a resolution of the variety

$$\{X \in \operatorname{End}(\mathbb{C}^N) : X^2 = 0 \text{ and } \operatorname{rank}(X) \le \min(k, N - k)\}.$$

On $T^*\mathbb{G}(k, N)$ we have the tautological rank k vector bundle V as well as the quotient \mathbb{C}^N/V .

To describe the kernels ${\mathcal E}$ and ${\mathcal F}$ we will need the correspondences

$$W^r(\lambda) \subset T^* \mathbb{G}(k+r/2,N) \times T^* \mathbb{G}(k-r/2,N)$$

defined by

$$W^{r}(\lambda) := \{ (X, V, V') : X \in \operatorname{End}(\mathbb{C}^{N}), \dim(V) = k + \frac{r}{2}, \dim(V') = k - \frac{r}{2}, \\ 0 \subset V' \subset V \subset \mathbb{C}^{N}, \ \mathbb{C}^{N} \xrightarrow{X} V' \text{ ,and } V \xrightarrow{X} 0 \}.$$

(Here, as before, λ and k are related by the equation $k = (N - \lambda)/2$).

There are two natural projections $\pi_1 : (X, V, V') \mapsto (X, V)$ and $\pi_2 : (X, V, V') \mapsto (X, V')$ from $W^r(\lambda)$ to $Y(\lambda - r)$ and $Y(\lambda + r)$ respectively. Together they give us an embedding

$$(\pi_1, \pi_2): W^r(\lambda) \subset Y(\lambda - r) \times Y(\lambda + r).$$

On $W^r(\lambda)$ we have two natural tautological bundles, namely $V := \pi_1^*(V)$ and $V' := \pi_2^*(V)$, where the prime on the V' indicates that the vector bundle is the pullback of the tautological bundle by the second projection. We also have natural inclusions

$$0 \subset V' \subset V \subset \mathbb{C}^N \cong \mathcal{O}_{W^r(\lambda)}^{\oplus N}$$

We now define the kernel $\mathcal{E}^{(r)}(\lambda) \in D(Y(\lambda - r) \times Y(\lambda + r))$ by

$$\mathcal{E}^{(r)}(\lambda) := \mathcal{O}_{W^r(\lambda)} \otimes \det(\mathbb{C}^N/V')^{-r} \det(V)^r \{\frac{r(N-\lambda-r)}{2}\}.$$

Similarly, the kernel $\mathcal{F}^{(r)}(\lambda) \in D(Y(\lambda + r) \times Y(\lambda - r))$ is defined by

$$\mathcal{F}^{(r)}(\lambda) := \mathcal{O}_{W^r(\lambda)} \otimes \det(V'/V)^{\lambda} \{ \frac{r(N+\lambda-r)}{2} \}.$$

These kernels define functors (Fourier-Mukai transforms) $\mathsf{E}^{(k)}$ and $\mathsf{F}^{(k)}$, and in [CKL2] we define natural transformations which enhance these functors to a full categorical \mathfrak{sl}_2 action.

As a result, we may define the Rickard complex Θ . Convolution with this complex gives new equivalences of triangulated categories between categories corresponding to opposite \mathfrak{sl}_2 weight spaces.

Corollary 3.2. [CKL3] The complex Θ defines an equivalence between derived categories of coherent sheaves of cotangent bundles to dual Grassmanians

$$\Theta: D(T^*(G(k,N)) \simeq D(T^*(G(N-k,N))).$$

CATEGORICAL \mathfrak{sl}_2 ACTIONS

4. Further Developements

The notion of \mathfrak{sl}_2 -categorification goes back at least to the paper [BFK], which inspired much of the subsequent work on algebraic aspects of categorification. After the seminal contribution [CR], which contains several algebraic examples of \mathfrak{sl}_2 categorifications, various geometric aspects of categorical \mathfrak{sl}_2 representation theory were developed in [CKL1], [CKL2], [CKL3].

On the other hand, it is quite natural to categorify the entire quantized enveloping algebra $U_q(\mathfrak{sl}_2)$, rather than just the finite dimensional representations. This has been accomplished by Rouquier [R], and by Lauda [L]. Moreover, the entire story can be generalized and repeated, with the lead actor \mathfrak{sl}_2 replaced by an arbitrary symmetrizable Kac-Moody Lie algebra \mathfrak{g} . This is the subject of the significant work of Khovanov-Lauda [KL] and, independently, Rouquier [R].

References

- $[BFK] J. Bernstein, I. Frenkel, and M. Khovanov, A categorification of the Temperley-Lieb algebra and Schur quotients of <math>U(sl_2)$ via projective and Zuckerman functors, *Selecta Math.* (5) (1999), 199–241; math.QA/0002087.
- [CR] J. Chuang and R. Rouquier, Derived equivalences for symmetric groups and \$1₂-categorification, Ann. of Math. 167 (2008), no. 1, 245–298; math.RT/0407205.
- [CKL1] S. Cautis, J. Kamnitzer and A. Licata, Categorical geometric skew Howe duality, to appear.
- [CKL2] S. Cautis, J. Kamnitzer and A. Licata, Derived equivalences for cotangent bundles of Grassmannians via categorical \mathfrak{sl}_2 actions, to appear.
- $[{\rm CKL3}] {\rm ~S.~Cautis,~J.~Kamnitzer~and~A.~Licata,~Coherent~Sheaves~and~Categorical~\mathfrak{sl}_2~Actions,~to~appear.}$
- [KL] M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups I, II, and III; math.QA/0803.4121, math.QA/0804.2080, and math.QA/0807.3250.
- [L] A. Lauda, A categorification of quantum sl₂, arXiv:0803.3652v2.
- [R] R. Rouquier, 2-Kac-Moody algebras; math.RT/0812.5023.