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ON PAIRS OF LOCALLY FLAT 2-SPHERES IN SIMPLY
CONNECTED 4-MANIFOLDS

NIKOLAOS ASKITAS

ABSTRACT. We prove a necessary and sufficient condition for the representa-
tion of a pair of mutually orthogonal primitive classes by disjoint locally flat
spheres with nice complement. We show the necessity of the condition fol-
lowing V. Rochlin ({R]) and the sufficiency following the basic outline and ex-
tending ideas of Hambleton-Kreck and Lec-Wilczyiiski ({H-K], [L-W1], [L-W2].
The condition is an inequality which depends on homological data.

1. INTRODUCTION

We study the problem of representing a pair o, oy € Ha(X4) of 2-homology
classes in a simply connected 4-manifold X4 by disjoint topological locally fat
spheres. When «; 1 = 1,2 are disjointly representable by (smooth or locally flat)
spheres we draw immediately two conclusions: o g are representable by (smooth
or locally flat) spheres and «) - &g = 0. So we define:

Definition 1.1. If oy i = 1,2 are such that: @), o2, a; * as are (smoothly or
topologicaily) representable by spheres and oy - a9 = 0, then we say that they satisfy
the obvious (smooth or topological) conditions.

Assume that oy, € Ha(X?) are linearly independent and that they cannot
be completed into an integral basis because in this case our problem collapses
to a triviality. Associated to such a pair there is an integer d > 2 which can
be interpreted as the order of the torsion of Hy(X?)/ < aj,az =, and a pair
u = (uy,ug) of units (mod d) such that uyus = 1 mod d which are defined as
follows. Since each ¢; is primitive there exist duals a; (ie. ay- 012 = 1). Then
U = a'; - g mod d and similarly for uz. Our main theorem then is:

Theorem 1.2. Suppose m(X?) = 1. Let a; € Ho(X?%) i=1,2 be two primitive
classes which satisfy the obvious topological conditions. Then the following is a
necessary and sufficient condition for disjointly representing them by a simply
embedded pair of locally flat spheres:

2

4 4 _ = A2 LT T2
(1) ba(X%) 2 max lo(X*) = = ((d~ Dot +1(d = D)ad)| +2

where I = (o) - ap)l mod d and1 <1 <d-1.
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The organization of this paper is then as follows. In Section 1.2 we prove that
the obvious conditions suffice stably to produce a pair of disjoint spheres which is
simple (ie the fundamental group of the complement is abelian). In Section 1.3
we find a further obstruction. This obstruction assumes the form of the inequality
in theorem 1.2 above. Its proof involves looking at a certain branched cover! and
computing various homological data as in [R]. In Section 1.4 we formalize the
relationship between simple embeddings of spheres and cyclic group actions. In
Section 1.5 we study the ZG-module structure of the second homology group of a
manifold which supports a cyclic (G) group action with fixed point set two disjoint
topological spheres. In Section 1.6 we discuss the topological realization of such
modules. In Section 1.7 we show how to split hyperbolic summands from such
modules and in Section 1.8 we put together the proof of the main theorem. I would
like to thank my thesis advisor Allan Edmonds for his support, Darek Wilczyniski
for a usefull exchange of email messages regarding splittings of modules and Ian
Hambleton for his generous help in understanding part of his work which relates to
this paper and in resolving various issues that arose in relation to it.

2. STABLE EMBEDDINGS

In this section we prove that the (smooth or topological) obvious conditions suf-
fice stably to produce (smooth or topological) embeddings of spheres. Furthermore
the resulting embeddings can be made simple. Before we state the stable theorem
we list below a number of facts needed in its proof. This will allow for a more
efficient right-up of the proof.

FACT 1 Norman’s Trick: Let A be an embedded sphere in some 4-manifold,
B any surface and S a sphere embedded with trivial normal bundle such that SNB is
a singleton and SNA=§. Then by the Norman trick A#S can be taken in such a way
that (A#S)NB has one less element than ANB. Using parallel copies of S (as mmany as
the number n of points in ANB) and iterating the process we can take A#,S disjoint
from B. If AnB={z} :i=1,..,k}u{z; :i=1,...,!} and BNS={z~} then A#; ;S
can be taken disjoint from B and on homology we have[A#k11=nS]=[A]-+(k-1)[S].
So, if A-B=0 then k=l and hence [A#,S]=[A].

FACT 2 : ( [W2]) Let (X,A) be an integral lattice with a unimodular quadratic
form A. Then given that the signature o(A) and the rank r(X) satisfy |o(A)| <
7(X) — 4 the orthogonal group of A operates transitively on primitive elements of
a given square.

FACT 3: ( [W3]) If M? is indefinite then every automorphism of the quadratic
form of M3#52 x 52 is induced by an autodiffeomorphism of M4#S? x §2.

FACT 4: Up to stabilization the hypothesis of both facts 2 and 3 can be
satisfied.

FACT 5: Every primitive ordinary element of Ha(M4#5? x $?) (as in fact 3)
above is smoothly S2-representable.

FACT 6: The effect of surgering a 4-manifold along a nullhomotopic circle is
easily seen to be that of taking connected sum with a copy of $? x S? if the framing

IP. Gilmer in his thesis [G] proves, in the case d is a prime power, a similar inequality, as &
necessary condition, using different mecthods. The inequalitics are equivalent where they overlap
but his is more general in that it makes no simple embedding assumption. It is more restrictive
in that it needs d to be a prime power.
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is chosen properly. We have:
Ho(X%48% x §%) = Ho(X*) & H2(S5? x 5?)

We say that a homology class a; € Hy(X1) is stably S2- representable if there
is an embedding f : §2 — X44#,5% x §? for some s such that : Hy(f)(S?) =
a) ®0 € Ha(X?) @y Ha(S? x §?). Now here is a brief description of how surgery
on a circle has the effect mentioned above. Let T be a tubular neighborhood of
a circle embedded in X4. We delete it and we see that: 8(X? - T) = S! x 2.
We then glue back in D? x §2. Pick a D? x ¢ C D? x 5% cap it off with a disk
in the interior of X4 — T and then look at the wedge of two spheres: The latter
one (call the homology class it represents ;) and some p x S? C D? x S?(call its
homology class (). Take an open regular neighborhood of the wedge. Its closure
has boundary a three sphere and the tubular neighborhood is actually a punctured
5% x 82, Now let’s assume that we have an embedded surface F which represents a
given homology class, say v € Ha(X*). When doing surgery on a circle disjoint from
F the latter represents in general some homology class y® 8§ € Ho(X 4452 x §2) =
Hy(X?*) @ Hz(S? x §%). We would like to see what the extra summand is. The
surface F might only possibly have a non-zero algebraic intersection number with
the sphere representing ¢,. Then suppose that [F] = v & (k¢ + I(2). We have:
[F]-Cio= -G+ (kG +162) -G =L and 0 = [F]-Go = v-Go + (kC, +1Ca) - Co = k. So
we have [F] = v @ ([F] - (1)¢2. Now the possible intersection ([F] - ¢;) depends on
the choice of the capping-off disk in the interior of X* — T" mentioned above. If it
is chosen so as to have zero algebraic intersection number with F then F represents
YB 0 € Ho( X $#S5% x §2) = Ho(X*) @ Ha(S? x S?). Notice that the latter can
always be achieved by spinning ([F-K]) if the surgery circle is a push-off of a circle
on F. Also if the surgery circle is a Whitney circle consisting of two arcs on two
surfaces then both surfaces still represent the same homology class in the above
sense.

FACT 7: Let A = U;A; — X, be disjoint embeddings of surfaces. The com-

mutator subgroup of m(X* — A) can be stably surgered in such a way that the
embedded surfaces still represent the same homology classes in the sense of Fact 6
above. We need only show that given any nullhomologous circle § — X% — A one
can find a disk D < X4 with 8D = § such that [D] - [A;] = 0 for all i. The latter
will ensure that the spheres still represent the "same” homology classes. Here is
how we find D:
Let D — X* be some disk with 8D = 5. Since S is nullhomologous in X* — A4
the algebraic intersection number of D with each of A; is well defined because S
also bounds a surface embedded in X% — 4 hence the union of this surface and the
disk produce an immersed closed surface in X4. Let a be the homology classes this
surface represents. Let —A be an immersed sphere representing ~«. Trade D for
D' = D#(—A). Observe now that [D]- [A;] = 0. Modify the immersed D’ into an
embedded D" which maintains the property above using finger moves. This shows
as in Fact 6 that after doing surgery on S none of the [A4;]'s pick up any extra
summands.

Theorem 2.1. Let X* be a 1-connected, closed, compact, (smooth or topological)
4-manifold. Suppose a1, ag € Ho(X*) are primitive and they satisfy: ), 00,00
are smoothly (topologically) stably S%-representable and oy - ag = 0. Then oy, ag
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are stably (smoothly or topologically) disjointly 5%-representable. Furthermore the
fundamental group of the complement of the embeddings can be made abelian.

CASE I: o) + oy is characteristic.

Let Ay, A2 — X4 be smoothly embedded 2-spheres representing ay,a respectively.
Since ay - a2 = 0 we have: 4; N Ay = {gF : i = 1,..,k} where =¥ is + - signed.
Then we can find pairwise disjoint arcs b; on A from z] to z7. We then replace
two small disks on A4, around z; and z} for all i by the linking annuli of the arcs
b;, thus obtaining a surface A’l of genus k which is disjoint from As and such that
[A]] = [41] = 1. Then [A|#A2] = a; + oy is characteristic and S?-representable
and so by theorem 1 of [Ke-M]: a? = o(X?) +8KS(X*) (mmod 2) and therefore
by theorem 2 of [F-K]| we can stably surger A'#A; to a sphere. We can obviously
choose the surgery curves on (A'l #4,) ~ pt. So we have A'l surgered to A] a 2-
sphere such that [4;] = cy and A; N A2=0. We ensure [A]] = a1 by choosing the
cup-off disk (cf. Fact 6 above) appropriately. What makes such a choice possible
is that oy is primitive.

CASE II: & + o4 is ordinary.

subcase II(a): X* is even. (i.c. for all x € Ha(X*) xx € 22).

Let oy + ag = ¢, where q€ Z and v € Ha(X*) is primitive. Since a; + a is
ordinary and X* is even it follows that q is odd and « is ordinary. In some X} by
FACTS 1 and 2 we can think of -y as pu+v for some pair u,v € Hz(M}) of hyperbolic
elements. (i.e. v =v% =0 and u-v = 1). Since u is primitive (u - v = 1) and ordi-
nary (u-v = 1 # v? = 0 mod 2) by FACT 3 it is $2-representable in X}}. Let U— X}
be a an embedded sphere representing it. Let A1, Ay — X} be embedded 2-spheres
representing «; and ay respectively. We have u- (a1 + az) = ¢ odd and u? =0.
Since aj - as=0 just as in CASE I, 4, N Ay = {:rli :i=1,..,1}. Let a; (resp.b;)
be pairwise disjoint smooth curves on A; (resp. A;) with end-points :r:?:. Let
¢; = a; N b; denote the loops thus formed (Whitney circles}. Doing framed surgery
along curves nearby every ¢; has the effect of taking connected sums with l-many
copies of $? x $2. (since m{X*) = {1}, and also provides disks D; such that
D; N (AU Az) = ¢; (Whitney disks). For cach of these l-many pairs 2 of in-
tersections there are two obstructions to applying the Whitney trick in order to
eliminate them. One is the obstruction e; to extending the obvious normal vec-
torfield on ¢; to D; and the other is the algebraic intersection number of D; with
Ay U Ay If e; is even we can pass to: (X}, Di)#(S? x S2,5) where S— §? x §?
is a sphere: [S]=(-ei/2,1) € Hy(S® x S?) and get D} = D;#S with e, = 0 and
DiN(A;UA;z) = $. Now we can do the Whitney trick. In case some e; is odd
we can change the original disk so that the framing becomes even and there are no

intersections of the new disk with A; U A, as follows: Let D; = D;#U. Then ¢; =

e; (because U-U = 0) and d; =d; +U - (a; +a32) = d. Obviously d; = d'fl +d‘{h.

1
. . 'Al . A . -
Since d; is odd we can assume w.lo.g. that d; is even and d ;" is odd. Spin

+ rA . » A N
D; around ¢;, |d'; '|-many times on a; and |d’; “|-many times on b; so that we
" R " ' A + A A A
get: D; withe; =e; +d; +d; evenandd, =0andd;' =0. We have

i
now achieved that e; is cven but we did that at the expense of introducing in-
tersections of D; with possibly both A; and A;. Now stabilize once more into

(XﬂH,D:)#(Sz x §2,8% x *) to change D; to D; = D #5% x + with e, = ¢,
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and d; = d;. Then [+ x S22 = 0 and * x 82N D; = {pt}. So using the Norman
trick as in observation 1 we eliminate int(D; ) N (A; N Ag), by replacing A(, A3 by
At £ (x x S%) and Ay# + (* x §2), respectively where obviously [A,] = {4]] and
[Ag] = [A,). This completes subcase I1(a).

subcase II(b): X*is odd. (i.e. 3z € Ho(X?): 12 ¢ 2Z)

Since 8X? = @, its intersection form is unimodular. Since X?* is odd, by sta-
bilizing, it also becomes odd and indefinite. Hence it decomposes as a direct
sunm:d = @,(1) B, (—1). (See [Ki] pg. 25 Theorem 3.2 for a proof). So there

n
exists a basis v;,...,y, of Ha(X 1) such that:y; - vj = £6i;. Let o + oy = Z MiYi-

i=1
Since a) + oy is ordinary andX* is odd m; is even for some i. Now v; is primitive
(v2 = 1) and ordinary 7; - v;=0# v? = £1lmod 2 j # 1). So 7; is S%-representable
by Fact 3. Let C; — Xﬁ be a smoothly embedded sphere representing ;. Let
Ay, Ag, aibic, Diesdi = df‘ + df’ be as in subcase II{a). When e; is even we
proceed as before. Suppose for Dy,....Dy, , e1,...,em are all odd. Let C},...,C’}" be
parallel copies of C; any two of which intersect at a point which is common only
to those two. Replace D; by D;#C7 j=1,...,.m; where el_,- = g; £ 1 is now even
and d’ j = dj +m; = m; is even. Spin appropriately as before to get D" j with e ;

ffA ffA "
even and d '=0=d j ! j=1,...m. Now the disks D ; intersect pairwise at a
point. Use finger moves to climinate these points. (Each such point gives a pair of

intersection points of some of the disks with A; or As-we can choose-of opposite

llA IfA
sign. Butd ; " and d ji do not change. Now use the Norman trick as before. This
completes the proof of subcase II(b). That the spheres we get still represent the
same honiology classes is easy to see and we need only appeal to FACT 6. O

3. AN OBSTRUCTION

Let X4 be a l-connected, compact, orientable 4-manifold without boundary.
Let oy € Hp(X%) i=1,2 be two linearly independent homology classes which are
primitive. Suppose there exist topological embeddings A; — X? i=1,2 of disjoint
spheres such that [A;] = a;. Let v; — X* be their tubular neighborhoods and
v = Uy Let e; i=1,...,n be a basis of Ho(X?). Also let a'-lj j=1,...,n- 1 be a basis
of {a;}* € Ho(X*) i=1,2. Then we have:

Proposition 3.1. The group H,(X* —v) is cyclic of order d given in the following
three alternative ways:

d=  ged (af} “qvg) = ged (o:j'j ‘o) =
J€{l.yn—1} FE{1,.. =1}

3.2.
ng 1€ 0y -e _

Tor(H. _)(d1 < 1. Cvo >
1<kAl<n | @2 € Q2 € (Ha(X%)/ 1,0z - |

Furthermore the integers all -vg and o -a; are well defined modulo d and ,when
d>2, (o) - o)y - ay) =1 mod d.
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Proof: The proof easily follows by looking at the exact sequences below. We
only should point out that the generators of H;(X* — v) = Z; are the fiber circles
of the tubular neighborhoods of the spheres.

3.3. Hy(X' —v)— Hay(X* — 1)) — Ho(X* =10, X' —v) —= H(X* =)
3.4. Hz(X4 *U)’-’Hz(X“—Uz) —_— HQ(Xq —Uz,X4 —I/)—'*HI(X4—U)

3.5. HQ(X4 - I/)’—" H2(.X4) I Hg(.X“,X‘l - I/)

HI(X4 —l/)

3.6. Hy(v) Hy(XY) — Ho(X%,v)

Where one can easily see by excision, homotopy, Alexander duality and dual
universal coefficient theorem that Ho(X* ~vy, X1 —~v) = Homz(Ho(A2) - 2)=Z
and Ho(X? — 15, X4 — ) = Homz(Hy(A)) = Z) = Z and Ho( X4, X4 - v) =
Homgz(Ha(A)) ® Hy(As) — Z) = Z® 2. D

Now assume that m;(X% — ») is abelian. Corresponding to the isomorphisin
7 (X4 —v) — Z4 that sends the generator given by the fiber circle of vy to 1 € Zy,
(hence the one given by the fiber circle of vy to ay - @y € Zy), there is a d-fold
cover of X* — v which can then be extended in the usual linear manner to a d-
fold branched cover (M*,7) of X* branched along v such that m(Mp = M* —
7=1(v)) = 0 (M, is the universal cover of X* — v) and hence by Van-Kampen
7 {M*) = 0. Since both fiber circles are generators implies that the boundary Lens
spaces are covered by two Lens spaces. We can easily compute Ho(X*—v) = 2872,
H3(X% —v) = HY{(X" - v,0v) = Z, H3(My) = Z. Using the obvious equation of
Euler characteristics: x(Mp) = d»((X‘1 —v) = d(bs — 2) we can then easily compute
Hy(Mp) = Z4h2=2) g0 that Hy(M) = Z4b2=2+2, Letting w = % one then looks
at E, the w"-eigenspace of g, as it acts on Ho(M) @ C 0 <r < d—1 where g
is the generator of the Zz-action on M%. One easily checks then that the splitting
Hy(MYQC=Ey®E; ®..® E4_ is orthogonal. Hence one then gets:

a(M*, g% Zw o(E.), o(Eq)=a(X")
r=0
Then one solves:
1 - —-rs
G(Ef‘) = E Z - 1g )
By the G-signature theorem
2 2
4 ‘ 2,73 Q'—z‘ 9, UaTSs
o(M*,¢°) = dcsc(d)+dcsc(d)

where uq = 02 o mod d is a unit and 02 ag = 1. It then follows that (see p.
332 of [Kj):

o(Er) = |(X")——(3(d Aot +7(d - ))e3)l

where7 = (@)-ap)7 mod d and 1 < 7 < d—1. One also computes that rankz Ey = b,
and rankzE; = by —2fori=1..d - 1.
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Proposition 3.7. The following is a necessary condition for the representation of
two lneurly independent, primitive homology classes by a simple pair of topological
spheres:

2 S
4 4y - 2 ey = 2
3.8. by(X%) 2 lsl}lsﬂxd_llv(X )= pUld=J)ai +j{d - 7)ez)l +2

where § = (ay - a;)j modd, and 1 <j<d—-1

Proof: Condition 3.8 simply states that |o(E,)| < rankz(E,) O

The proposition below is an easy corollary of Freedman’s work and it can be
regarded as the base case (d=1) to our main theorem. This is the easy case where
necessary and sufficient conditions can he found. The rest of the paper should be
thought of as a way to make Freedman’s work apply in the more general setting
with arbitrary d.

Proposition 3.9. Let a; € Ho(X*) i =1,2 satisfy the obvious topological condi-
tions. Then a necessary and sufficient condition for their representation by a pair
of disjoint topological spheres with simply connected complement is the existence of
a; € Hy(X?4) i=1,2 such that: ;- oy = by

Proof: The obvious conditions suffice to solve the problem stably. The existence

of a; € Hy(X") i =1,2such that a;-a; = §;; implies d=1. Now apply Freedman’s
disk theorem (see for instance [F-Q] p. 85) with my = 0. O

4. GROUP ACTIONS

In the previous section we showed that given a pair of simply embedded spheres
which represent primitive, linearly independent elements on homology one can con-
struct a cover branched along the two spheres which then supports a cyclic group
action whose fixed point set is the two spheres. We wish here to formalize this
relationship. We show that our embedding problem can be translated in terins of
group actions. We need some terminology before we state the proposition.

Definition 4.1. 4 dyad D = (X% {A;, As}) consists of a I-connected, closed,
compact 4- manifold X? and disjointly embedded locally flat spheres A; — X*
i=1,2 representing primitive homology classes a; with w1 (X4 — Ay U Az) abelian.

Recall that associated to such a dyad there is an integer d given by 3.2 and a
pair u = (u;, ug), where u; = oy CQig, Ug = O - arz are multiplicative inverses mod
d. For this reason we will decorate a dyad by writing Dg,. On the other hand
for a semifree, locally linear, cyclic group action (Zg, M?) with M% = §; U S, two
disjoint spheres representing non trivial primitive homology classes, (G, v(S5;)) and
(G, v(S2)) are related by a pair @ = (uy,uz) of multiplicative inverses mod d. (i.e.
the choice of generator for which (G, v(S1)) is rotation by 4 turns (G, v{Sz2)) into
rotation by Z“—d"z etc). We call this the pair of units associated to the action.

We are now ready to state:
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Proposition 4.2. There is a one to one correspondence between tsomorphism classes
of dyads Dy ,, and isomorphism classes of semifree, locally linear, cyclic group ac-
tions (Za, M*) with 71(M?*) = 0, MY a pair of spheres representing non-trivial,
primitive homology classes with 71 (M* — M) = 0 and u as its associated pair of
units.

Proof: Starting with a dyad Dy, we already saw in the previous section how to
get the desired action. Going the other direction if (Z4, M%) is & cyclic group action
as in the statement of the theorem pass to the quotient to get the dyad. Notice
that the fact that both classes in Ho(X*) are primitive makes both fiber circles of
v(A1) and v(A;) generators and that induces two G-fixed spheres in M4, O

5. TuE Z[G]-MODULE STRUCTURE OF Ha(M*)

Let G = Z4 = m(X* - v), notation as in Section 3. We now wish to study the
ZG-module structures of Ho(My) and Ha(M), where M* is ramified cover of X4
branched along the core spheres of ¥ = v U va. (We assume from now on that
b2(X) > 3 because the representation problem is trivial for lower ranks) G acts on
My via deck transformations. We will show that stably Ho(Mg) &< m,g — 1 >,
where g is a generator of G and m is some non zero integer (stably isomorphic here
simply means that for some integers k,I Hy(My) ® ZG* X< m,g—-1> ©ZG'). We
will also show that Ho(M?) = Z @ Z @ F where F is a free ZG- module.

Let C. = C,(Mp) be a G-cellular chain complex. As in [Wil] the ZG-modules
of 2 and 3-cycles fit into the exact sequences:

5.1. Z, C. C, Co Z
5.2, Z;— C; O, C, — coker(83)

It is also easy to check that the following sequences are exact:
5.3. Zor— Ho(My) & Cy —— coker(d3)
5.4, Cir— 723 — H3(My)

The sequence ( 5.4) splits. (This is due to the fact that Cy is a free ZG-module
and projective modules over ZG are weakly injective (cf. [C-R| p. 778, 791). As in
[Wil] we use the "loop-suspension” notation to encode in a brief shorthand notation
the information contained in ( 5.1} and { 5.2). For a detailed explanation as well
as its origins see (W1]. From ( 5.1) we have Zy = Q3Z and from { 5.2) we have
coker(d3) = §%Z3. So ( 5.3) can now be written in the form:

5.5. Q32— Hy(My) & Co —= S?H3(M,)

But by virtue of the usual standard resolutions, 23(Z) is represented by I the
augmentation ideal of ZG and S?(H3(M,)) is represented by Z. So ( 5.5) now limits
the possibilities for the ZG-module Hz(Mp). We compute?:

Exty~(5°2,9°Z) = Emtlzl o2 = HYG,I) = 24

2References for all the standard material on homological algebra, cohomology of groups and
the like are (Rot], [B], [Ev], [H-S].
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Hence, by virtue of 5.5, there are at most d-many possibilities for Hyo(Mp) & Cs.
By the computation above we easily see that we only need to find representa-
tives of Exth(Z,I). The generator here is given by the standard resolution:

I ZG Z. More precisely all other resolutions are obtained by pick-
ing homomorphisms ¢ : I — I and then completing the diagram below:
I zZG Z
¢ [ 1z
I VA

Furthermore the modules that fit in the middle of such resolutions are obtained as
push-outs of:
I
¢ \
I

for some homomorphism ¢ : I — I. Hence they look like: I & ZG modulo
(¢(z),z) = € I. In a conversation with R. Swan he pointed out to me that a
complete set of these resolutions is given hy the split one and the ones obtained by
setting ¢ to be multiplication by m € Z — {0}. Let A,, denote these modules. We
will be simply writing A instead when there is no chance of confusion regarding m.
The modules can be written as the ideals of ZG generated by m and g-1. These are
easily seen to depend only on in mod d. All of these assertions are easy to check
and we leave the proofs as an exercise for the reader. We therefore have:

ZG

Proposition 5.6. The module Ho(M)y) is stably isomorphic to one of < m,g—1 >
m # 0.

We now begin dealing with the ZG-module structure of Hp(M*). We first prove:
Lemma 5.7. Ho(MY) 2 Z@® Z & P, for some ZG-module P.

Proof Let # : M?* — X% be the branch map. Let 7, be the map it induces
on second homology. Notice that there is a transfer map tr on homology going
the opposite direction such that the composition tr o 7, is multiplication by the
norm element N € ZG. There is a choice of dual o', (i.e. a)-a; = 1), such
that 8) = ) — ;% -, €< oy >+ is primitive. Let a; € Ha(M*) be such that
m.{a;) = ;. Recall that for a,b € Ho(M?), a- (Nb) = (Na)-b = 7.(a)-7.(b). More
generally tr(a) - tr(8) = da - 8. Then a; = tr(an’) is a G-fixed dual to a; (in fact
it can be represented by a G-invariant surface). Similarly if we let ,81 € Hy(X1?)
be a dual to 8, then b; = tT(ﬁl) is a G-fixed dual to b; = a; — a?a;. There is a
Z-splitting Ho(M?) =< a) » @ < a; L. Notice that there is a Z-subspace B
of < a; =1 such that < a; =+=< b; > ®B. Let b;, i = 2,..,s be a basis for
B. Substituting, for each i > 2, every b; by ¢; = b; — (b; - b, )b1 and letting C be
the Z-span of the ¢;’s we get a new Z-splitting Ho(M*) =< a; » & < b1 - &C
such that C L by, a;. Now the ZG-trivial summands are generated by al and b
whereas P = C. This is seen as follows. Notice that ay, by are both G-fixed. Also
< ap =1 is G-invariant hence al splits. Furthermore the existence of the G-fixed
dual bl easily implies that C is invariant as well. O
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We now prepare the ground for showing that the summand P in the lemma
above is projective. For that we only need to show that it is cohomologically trivial
(see for example [B], Ch. VI, S. 8).

It is casy to verify that H*(Z4, A) is a cyclic group of order ged(m,d) for all
i. To see this one first proves H(Zq, A} = H**'(Z3, A) for all i, by looking at the
long exact cohomology sequence obtained by hitting the defining resolution of A,,
with the functor H*(Zg, —). Then one simply computes odd or even cohomology.

To compute the even cohomology of A, just observe N <m,g—1 == mN and
<m,g—=1>%= (m/ged(m,d)) < N .

Let p be a divisor of d and h a generator for Z,. Then any ZG-module L can
be thought of as a ZZ,-module. This reduction module is usually denoted by Lz,.
We simply write L. It is easy to see that:

<m,g—1>p==<m,h—1> S_pypZ|Zy)
In our particular case (ZG with G abelian) we have
HY(Z4, L) = @paH'(Zpn, L)

the sumnmation taken over all primes p|d with p™ the maximum power of p dividing
d. So now let p be any such prime.
Hitting [»— A =<m,g— 1 »

Z with H*(Zpn, —), H*{(Z,, —) results in:

” pgcd (m,p"} .
Zged (m,py = H*(Zpn, Apn) Zpn Zpn = H Y (Zprn, Apn) = Zigea (in,pm)
res) l lresz J T€eS3 lrcs4

Zged (m.p) = Hz(Zp, Ap) Zp Zp H!{Zm Ap) = Zged (m.p)

a

Where resy, ress are projections and the lower middle horizontal map a is zero
or an isomorphism depending on whether p divides m or not. Furthermore if p™|m
then res;,resq are projections whereas if plm but ged (m,d) < p" then res; =0
and resq is a projection. We gather these observations into the following:

Lemma 5.8. The cohomology group H'(Zy4, A) is cyclic of order ged (m,d), for
i > 1. Moreover, for any prime p with n its mezimum power dividing d, if p|m but
ged (m, p") < p®, then the map HY(Zyn, Apn) — HY(Zy, Ap) given by restriction of
coefficients, is zero or surjective according as 1 is odd or even.

We now set out to compute H*(Zy, Ho(M*). Since

HY(Zg, Hy(M*) = @pa H(Zpn , Hy(M*)
where the direct sum is taken over all primes p such that p™ is the maximum

power dividing d, it suffices to compute all such H*(Z,n, Ho(M4). We hit the short
exact sequence

Hy(M* ~ v)r— Ho(M1)  —s Hy(M, M = v)

with H‘(Zp_n, =) H*(Zp, ). "This, taking into account that Edmonds’ results in
[Ed), imply H*(Z,, Ho(M*)) = H*(Z,,Z& Z), results in the following commutative
diagram with exact rows and vertical maps given by restriction:
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H¥(Zye, A) e HX(Zype, Ho(M)) — Zppe © Zypp—s HY( By, A) — o H¥(Zyr, Ho(M)

| | $ |

HYZ,, A) Z,® Z, — Z,® Z,, — H3(Z,, A)

A close inspection of this diagram easily yields:
Proposition 5.9. H¥(Zy, Ho(M")) = H(Z4,Z & Z)

Proof: It suffices to show H'(Zp, Ho(M*)) = H(Zyn,Z & Z) for any prime pd.
If p and m are relatively prime this is trivial since H*(Z,n, A) = H(Z,, A) = 0.
If p" divides m then H°%(Z,~, Hy(M)) = 0. This easily follows by examining the
right hand side of the diagram. Then by examining the top row alone and recalling
that kH*(Zy,*) = 0 we see that H*"(Zpn, Ho(M)) = Zyn @ Zy. Suppose now
that ged (m,p™) = p* with 1 <k <n —1. Then in the dingram above the far left-
hand side vertical map is zero whereas the far right hand side one is the projection.
Examining the right-hand side of the diagram again we get H°%(Z,., Hy(M)) = 0.
Now finish as before. O

Notice that now the cohomological triviality of P is evident and hence we have:

Proposition 5.10. Hy(M?*) is isomorphic to Z @ Z @ P with P projective.

Actually P is stably free as one can casily see and hence free as is always the
case for modules over ZG.

Theorem 5.11. Hy(M?) is of the form Z & Z @ Free.

Proof: We show that P is stably free. This is equivalent to showing that PQZG/N
is a stably free ZG/N-module (cf. [L-W1]). Tensoring:

Hz(u)'_'lﬁ(ﬂdd) _»HZ(Md,V)
with ZG /N results in:
Zdz—» ZdQEB(P@ZG/N)—p gcd(n;,d)@ZG/Nd(b2_2) 0

Since P ® ZG/N is Z-torsion free the latter clearly implies that: P® ZG/N =
(ZG/NYHb2=2) O

6. REALIZING 2-POINTED HERMITIAN FORMS

In Section 1.4 we gave a translation of our embedding problem in terms of group
actions with a certain fixed-point set. In Section 1.5 we identified the ZG-module
structure of the second homology of such actions. We wish here to examine closely
the relationship between the algebra arising in the two incarnations of the problem.
We recall some terminology. Let Dg, = (X*, {4}, A2}) be a dyad as in Section 1.4
and let (M*, Z4) be its corresponding group action. Let Aps HQ(M“) X Ho(M*%) —
Z be its intersection pairing. Define:

6.1. h(z,y) = > Au(z,9y)9 € ZG
g€G
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for all z,y € Ho(M*).

Then (Hy(M*), h) is a hermitian ZG-module with respect to the obvious invo-
lution of ZG. Since Apg is unimodular, h is easily scen to be non-singular (i.e. the
adjoint h* is bijective). We have seen in the previous section that for a suitable
choice of basis HQ(M“) > 7@ 27 &P with P ZG-free. For a suitable choice of basis
for Hy(XY) =% Z ® Z ® Py we have:

6.2. T, =1z8d® ((-) ®zc 2)

where 7, 1 Ho( M%) — Ho(X*) is induced by the projection map. By means of
geometric considerations we can easily see that:

6.3. )\M(:U, Ny) = /\('rr.(:c),m(y)), h(z,y) ®zc Z= )\(71'.(.’1:},71’,.(]]))

Remark 6.4. The discussion above can be carried through for the 2-pointed hermi-
tian form (Ha(M%), h,[MC]). Notice that the embedding of m.(Ho(M*), h, [M%])
in (Ha(X1), A {a1,a2}) completely determines (by 6.2) the latter up to isomor-

. 2
phism. Also notice that [M®] = {ay,az} and ay = (1,0;0), az = (), —2; N) €
Hy(MY=Z®ZoP.

One can check that after suitable choices of basis the commutative diagramn of
ZG-modules below

Hay(v(MCG))—— Ha(M) — Hy(M?, v(ME))

]

Ha(v) Hap(X4)

H2(X4: l’)

is generated by:

—upe2/d
N
z

u ﬂi 1]
1Z 2B(-B 20 Z) ( d 1ay/de( ) )

o o)
—nqay2/d 1 wialsd
o 1 1

where e = (—u;a?/d, N), by adding
(ZG)b2(XM)-3) 1. (Z2G)ba(X*)-3)

zZ8zG

(Z @ ZG)/e

Zz

ZeZ

Z® Zy

€ €

Z(b2(X")-3) Zba(X*)=3)

to the right-hand side square and,
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z—L.z

1] |1

Z—l"Z

to the left-hand side one.

We now turn to one of the central ingredient of the proof of our main theorem.
We need some definitions first. Let A = (Z® Z @& P, h,{z,y}) be a 2-pointed
hermitian module. Let H(ZG*) = (ZG*, @, ( (1) é ) +{0,0}) For two such mod-
ules A; we say that they are stably equivalent if for some s,r integers we have:
A H(ZG®) = A2® H(ZG®). A module A as above is said to be realizable (resp.
stably realizable) if there exists (M*, Z4) such that A = (Hao(M*), h, [MC]) (resp.
A® H(ZG?) = (Ho(MY), h,[MC])). We are now, in analogy to [L-W1], ready to
state:

Theorem 6.5. A 2-pointed module (Z®Z® P, h,{z,y}) is realizable iff it is stably
realizable.

The proof is easy, (one utilizes Freedman’s Disk theorem with m; = Zy) and it
is the same as in [L-W1]. One only needs to show that stably realizable implies
realizable. Suppose A = (Z & Z @ P, h, {z,y}) is stably realizable. This means that
for some positive integer s there exists a cyclic group action (M4, Z,) such that:
A® H(ZG*) = (Hy(M?*),h,[M®]). The s orthogonal ZG-hyperbolic summands
form a subspace of Hy(M — MS). Now apply ([F-Q], p. 85, Theorem 5.1A) to
M/G — M® /G with 7 (M/G — MS/G) = Z. So one gets that M/G is home-
omorphic to Y4#,5% x §2. Then (M4, G) is easily seen to be homeomorphic to
(Y4, G)#,(G x 8% x §2,G) where Y* is the d-fold branched cover of Y. The latter
homeomorphism then induces a diagonal ZG-isomorphisin on second homology.

7. SPLITTING 2-POINTED HERMITIAN FORMS

We present a splitting theorem about hermitian forms over ZG whose under-
lying module is of the form Z™ @ P with P a ZG- projective module. The proof
relies on [L-W2] as well as on [H-K] where a splitting theorem is proven when the
underlying module is projective. The authors in [H-K] (Remark 3.9) remark that
their proof can be adapted to work for modules of the kind we consider here. We
focus and follow [L-W2] arranging things as follows. A careful reading of the proof
of theorem 6.1 of [L-W2] reveals a proof of 7.9 below. (This statement over ZG/N
can be used to reorganize the proof of their theorem). It then allows us to state
theorem 7.21 (which includes their 6.1) under looscr, in principle, conditions (all of
them present in their proof however}. Although it is possible to state our theorem
in exact analogy to theirs, something which tailors it better for the topological
application, we prefer to restate things taking advantage of 7.9 thus making the
algebra, at least conceptually more approachable as well as achieving what seems
to be a more general purely algebraic statement. We do everything below without
mention of the two points since by Remark 6.4 the application of the results to the
2-pointed case is entirely obvious.
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We now present a few facts that arc either coutained in the literature or are
easy to see. Let M be a ZG-module. Define M¢ = {z € M : (g — 1)z = 0}
and MY = {z € M : Nz = 0} Notice the inclusions /M C M¥ and NM C M¢
with equality holding iff M is projective. Obviously A = M/M?" is a module ovér
Ao = ZG/I = Z and B = M/M® is a module over Ay = ZG/N. Both A and B are
easily seen to be Z-torsion free. Define C = M /(MY +M™); it is easily scen to be a
module over Ay = ZG/ < N,g—1 . Obviously Aq = Z;. For a projective module
P notice that P/PN = P/IP ~ P®z¢Z and P/PY = PINP = P®zc(ZG/N). If
M = Z"®P then: A = Z"QP/PN = Z"®(P®zcZ) B = P/P¢ = PRza(ZG/N),
C = P/(PY+ PN)~ P®zcy Zy. Asin [Sw]:

Z"®oP—B

b

A——C,

is both a pull-back as well as a push-out. As in [H-R] (Z" @ P, h) can be obtained
as a pull-back in this manner:

(M =2Z"®Ph)— (P, h)

|

(Z" @ Py, ho) — (Pu, ha),

where (P, 1) is a non-singular Aj-module, (Z™ @ Fy, ho) is a non-degenerate Ag-
module and (Py, ha) is a non- singular Ag-module. The following is then clear
categorically:

Lemma 7.1. Let P be a ZG-projective module and (Z™ @ P, h) be a non- singular
hermitian ZG-module. Suppose there exist splittings ¢g over Z, ¢ over Ay and an
isometry Yy satisfying 7.5 below:

7.2. b0 : (Z™® Po,he) = (2" @ Py, hy) ® H(Z?)
7.3, 1: (Pryhi) = (P Ry) @ H(AD),

7.4. Wa: (P, h)) ®a, Za = (P, hy/Py) @2 Z4,
7.5. (¢0/Fo) ®z Za = (a ® 1 (z;) o ($1 @4, Za)

Then there exist isometries T and T over Z satisfying 7.8 below:
7.6. T (Z"@®P R E(Z'OP h)P H(Z)
7.7. T (2" P R )Y®za Z = (Z™ @ Py, hy),

7.8. ¢ = (T ® lu(zn)o (1 ®z¢ Z)
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Let = H Z[Cn], Cn = cz'r"“i, be the usual maximal order in A;®zQ containing
1<n|d
A;. The involution on A; extends to the obvious involution on I'. The following is
a pullback diagram of rings with involutions

Ay —=T

J !

Al—“f‘

where KI = A ®z 2, T=r ®z 2, and Z = qu is the product of the g-adic
qld

mtegers Thus by letting (Plr, hir) = (P, h1) @, T (ﬁl,’ﬁl) = (P, )z Z and

(Pir, har) = (Pir, hur) ®2z Z,

(P1, k) — (Pir, har)

|

(Pr, ) — (Pir, bur)
is a pullback diagram of hermitian modules. Hence to split Aq- hyperbolics off
(P, ;) one needs to do so over I' and A; in a manner that makes their induced
splittings over T compatible. From the general ring-theoretic discussion in [L-W2]
we only quote what is minimally necessary for what follows to make sense. Since
Ay and Zy are semilocal rings, the natural projection induced by the augmentation
map: . .

Ay/radhy — Zg/radZ,

is a split surjection. That is there is an isomorphism of rings with involutions:

E/'Iadm = Zd/’."adzd x HFJ
3
with each F; being either a finite field with involution or a product of two fields
interchanged by the involution and F; # Fp, F; x F,. Also Zy/radZy = HFq is
qld
a product of prime fields with the trivial involution. Let A = Z; x HFj' As
J
explained in [L-W2] there exists a map of A;-modules
~ e~
#=9‘gnl tPr— Ay A
- e
given by  — hy(z,z) for all z € P,. A1 /A1, is 0 or Z3 according as d is odd or

even. Set K = kerp and let j : K — P] be the inclusion and hy the restriction
of h,\l to K. K is then just the maximal submodule of Pl on which hl is even
hermitian.

The following lemima can be extracted from the proof of theorem 6.1 of [L-W2]

Lemma 7.9. Let (Py, hy) be a non-singular hermitian module over A, = Z|G]/N.
Assume Py is a projective A,- module. Suppose that there exist isometries ¢gq, Pr
satisfying 7.12 below, where p: Py — Py ®p, Z4 :
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7.10. ba: (P, hy) ®n, Za 2 (Py, ha) ® H(ZS)
7.11. dr: (Pr hy) ®a, D2 (P, T) @ H(TF)
7.12. pHeg W H(ZM)) @z ZC K

Then there 15 a splitting of (K, hi) over A:
7.13. da: (K, hi) ®‘&~1 A%(I(A,hA)EBBH(Ak)

Furthermore if W is the preimage of qﬁ;l(BH(A")) vias K - K ®5 A and
hw = hg /W then (W, hy) has a unique quadratic refinement (W, [f]). In the case
d is even assume further that (W, [f]) ®5 F, (which is non-singular) has zero Arf
invartant. Then there exist ¥, 84 satisfying 7.16 below:

7.14. ¥ (Pryha) 2 (P, hy) @ H(AY)
7.15. B4 : (Pl h)) ®a, Za = (Py, ha)
7.16. ¢a = (a ® 1H(Z";)) o (Y ®a, Za)

Proof: We sketch a proof as cssentially contained in [L-W2] referring the reader
there for the details. We do nothing but adapt their proof suitably for our state-
ment. We quote from their proof. Assumption 7.10 induces a splitting:

¢’d : (ﬁl,ﬁl)@;ﬁ Zd = (Pdahd) @H(Zﬁ}

Assumption 7.11 provides a splitting over I'. Tensoring the latter over Z with A
one gets a splitting over I':

7.17.
(Er : (ﬁlr,ﬂlr) = (ﬁl’“ﬂ'“‘) @H(f")

Next one considers (ﬁl,ﬁl) As shown in [L-W2] it suffices to show that there
exists a hermitian Aj-module (P{, h'l) and a splitting

7.18. &: (Puhy) = (P, R)@BH(A,)
such that:

7.10. &“IBH(K:;C) ®5 Za = ¢; ' BH(Zk)
Assumption 7.12 implies that there exists an isometry over Zy:

7.20. i (K, hie) @ Za = (P, hy) ® BH(ZS)
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such that (7 ® Zd)r,bKlBH(Zd) ¢7'BH(Z%). K can be seen to be a Ar-free
module abstractly isomorphic to PA:-
Next one shows that there exists a splitting for (K, hg) S A.

$a: (K, hg) @5 A (Pa,ha) ® BH(AY)

This is done using 7.20 and the obvious isomnetry 7.17 over I Clearly (W, hw)® Iy
A = ¢poH(A*) in free and non-singular over A and hence so is (W, hys) over ;\j

—k
In fact (W, hyw) =2 H(A; ). To see this observe that since W C K the form hyy is
even hermitian so, by Corollary 5.2 of [L-\V2] (W, hw) has a Aj_ - quadratic

refinement (W, [f]) which is unique because Ai- = A, . It suffices to show

(W, If) = QH( AL ) By Wall’s hftmg lemma [W4], it suffices to show such an

isomorphism exists over A1 /T adAl If F' denotes one of F; or F; with ¢ > 3 then
F_=F" andso (W hy)®g F = H(F*) implies (W, [f] ®% F = QH(F”) In

the case F' = F» assumption 7.13 does the trick. Therefore (W, [f]) o QH(A1 ) as
desired.
Since the map U{(W,[f]) — U({(W,[f]) ®5 A) by [W4] Thm. 2, there exists a
splitting

ax (K. hi) = (K hye) ® BH(R)

such that:
—~— r\k - .
ax'BH(A, ) ®f A =¢3'BH(AF)

- -~ —k
Therefore (Py,, ha,) contains the based hyperbolic submodule jaz' BH(A, ). Hence
there is a splitting:
- ~ o~ ~ o~ —k
a: (P )= (P h)@BH(AL)
such that &~ 'BH(A;") = jax' BH(A, ) O

The following easily then follows from lemmas 7.1, 7.9 above:

Theorem 7.21. Let Z™ ® P be a hermitian ZG-module where P is ZG-projective.
Suppose over Z and I' there are splittings ¢y and ¢r satisfying 7.24 below:

7.22. b0 : (2" @ Po,ho) = (2™ ® Py, hy) ® H(Z?),
7.23. ¢[‘ . (Pl, h]) ®A1 r= (]:'r,hr) D H(Fs),
7.24. )@z ZCK

where J C (P, h1)®n, Za is the inverse image of 37" (H(Z3)) C (Po,he) ®z Z4
via the canonical isometry (P, h) ®a, Za = (Po, ho) ®z Z4 and ¢q is the induced
from 7.22 isometry (¢o/Po) ®z Za : (Po, ho) @2 Za = (Py, hy) ®z Za® H(Z2) Then
there i3 a splitting of (K, hx) over A:

7.25. ba: (K, hic)®g A= (Ka,ha) © BH(A)
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Furthermore if W is the preimage of ¢; (BH(A)) via K — K ®g A and

hw = hg /W then (W, hw) has a unique quadratic refinement (W, [f]). In the case
d is even assume further that (W, [f]) ® Fz, {which is non-singular) has zero Arf
invariant.

Then there emist isometries T, T satisfying 7.28 below:

7.26. T (ZP@P A2 (ZV P R ) ® H(ZGY)
7.27. T (2O P R Y®z¢ 22 (2" P, hy),
7.28. $o = (T ®luizm) o (T®Z)

Proof: The induced isometry ¢y together with assumptions 7.23 and 7.24 imply
7.25. This is easily seen using lemmma 7.9 above. The assumption over Fy implies
7.14, 7.15, 7.16. Assumptions 7.22 and 7.14 provide splittings over Z and A; which
via 7.16 are compatible over Z4;. Now apply 7.1. QED O

8. PROOF OF THE MAIN THEOREM

We are now ready to prove the main theorem. We will need the following lemma:

Lemma 8.1. Let z € Ho(M*). Then h(z,7) € ZG, iff m(x) - mu(z) =0 mod 2

and, when d is even, 5 = 12282 mod 2.

Proof: Recall that h(z,y) = ZAM(:n,gy)g € ZG for all z,y € Ho(M*) and
geG
that G acts on Ha(M?) as an isometry with respect to Ay, Hence An(z,gz) =
A (z,g7x). Therefore h(z,z) € ZGy iff Aps(z,97) = 0 (mod 2) for all g € G
such that g2 = 1. On the other hand: A(m.z,m.z) = Ap(z, N1) Z Amlz, gz)
gi=1

(mod 2). Hence A(m.z, m2) = Am(z,z) (mod 2) if d is odd, and A(m.x, m.z) =
Mar(z,T) + Apg(z, g%%z) (mod 2) if d is even, where g € G is a generator. This
easily finishes the proof if d is odd. For the case d is even notice that since the
action of G on M? is semifrce

M, [MO]) = Mg (2, g%%2)  (mod 2)

Hence A(m.z,7m.z) = Aar(z,g%%z) (mod 2). Observing that dAy(z, [MC]) =
Ay (z, NJMC]) = A(m.z, a1 + ) finishes the lema. O
For the convenience of the reader we restate the main theorem.

Theorem 8.2. Let a; € Ho(X?) i=1,2 be two primitive classes which satisfy all
the obvious conditions. Let d be as in 3.2. Then the following is a necessary
and sufficient condition for disjointly representing them by simple locally flat
embeddings of spheres:

4 4y _ 2 2 T T a2
8.3. ba(X1) > lsl&agt_Ja(X } - F(I(d - Dag +i{d - ))as)| +2

where [ = (ay - a'z)l mod dandl1<I1<d-1.

Proof: The necessity of the obvious conditions of course is trivial. The necessity
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of 8.3 is proven in theorem 3.7. We now turn to the sufficiency of the conditions.
Suppose that o; € Hp(X4) i=1,2 arc two primitive, linearly independent classes
which satisfy the obvious topological conditions as well as 8.3. (Recall that the
topological obvious conditions state that o, ap, o; & @5 are all individually topo-
logically S2-representable and that a; - a; = 0). As in section 1.2 use the obvious
conditions to solve the problem stably i.e. for some positive integer s there exists a
simply embedded pair of topological locally flat spheres A; — X, = X#,8% x §?
such that:
[Ai] = 0 ©0 € Hy(X,) = Hao(X) ®, Ho(S? x 5?)

with m) (X, ~v(A; U Ap)) = Zy4, d as calculated in 3.2. What follows is a process of
distabilizing so to speak. Let M, be the corresponding d-fold remified cover over X,
branched along the pair of embedded spheres. We use the notation of section 1.7.
Let (Z2@ P, h,{ay,az}) = (He(M,), hy, [ME]) where P is ZG- free (cf. section 1.5)
Then (Z% @ Py, ho, {a1 ® Z,a2 ® Z}) embeds in (Ha(X,}, A, {a1,@2}) in a fashion
described in section 1.6 and remark 6.4. Hence there exists a splitting over the
integers:

8.4. ¢0 : (ZQ@POahOs{al ®Z,a2®Z}) = (22 @P{;,h;},{al,ﬂz}) @H(Zs)a

where Z2 @ P, embeds in Hp(X) in the same fashion as Z2 @ Py in Ha(X,)
and Ny is the restriction of A on the image of that embedding. A splitting of
(Pl, hl,O) ®J\1 F,

8.5. ¢|‘ . (P],hl) DA, 'z (Pr,h,r‘) GBH(PS),

is obtained by means of 8.3. To see this observe that (E = Z2 & P,h)®z C
decomposes over CG into the orthogonal direct sum of (Ey, k) {(cf. section 1.3)
where E; is the subspacg of (22 @ P)®z C on which the generator of G = Z; acts
as multiplication by e &, (In section 1.3 E) were defined to be the cigenspace of
the I*" power of the generator of G). Let T' be the kernel of:

Hy(M) =20 P15 Z°® Py C Ho(X,) = Ho(X) ® 2% — Hy(X)

Lemma 8.1 above iinplies trivially that the restriction of h; on T is even hermitian.
One can check, using the latter, that (see 7.21):

U ez ZCK

as well as that the condition of theorem 7.21 over Iy when d is even is satisfied.
Hence by 7.21 there exist isometries:

8.6. T (Z"OP A= (Z O P h)® H(ZG?)
8.7. T (2O P W) ®z¢ Z=(ZM @ Py, hy),
such that:

8.8. do=(T ® lx(zny) o (T ® Z)
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As explained in section 1.6 this enables us to surger the ZG hyperbolic sum-
mands of Ha(M,) produced by 8.6 equivariantly thus producing (Ho(M), Z4) with
the corresponding 2-pointed hermitian form given by (Z2@P', k', {b1, by}). Passing
to (M/G, M€ /G) we get a manifold with a pair of simply embedded spheres. By
8.7 above and 6.4 the 2-pointed forms of (X4, 41, A;) and (M/G, M€ /G) are iso-
morphic. Since M/G and X obviously have the same Kirby- Sichemnann invariant
this isomorphism of 2-pointed forms can be realized by a homeomorphism. This
follows by Freedman and a correction in [C-H] (Every isometry of the intersection
form of a 4-manifold is realizable by a homeomorphism.} QED O

(Al

(B]
(C-H]

[C-R]
[Ed]

(Ev]
[F]

(F-K|
(F-Q]
(@l
[H-K]
[H-R]
(-]
[H-8]
[K]
[Ke-M]

IKi)
[L-W1]

[L-W2]
("]
[Rot]
fsw]

(wi]
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