THE ZETA-DETERMINANTS OF DIRAC LAPLACIANS WITH BOUNDARY
CONDITIONS ON THE SMOOTH, SELF-ADJOINT GRASSMANNIAN

YOONWEON LEE

Department of Mathematics
Inha University
Incheon, 402-751, Korea

ABSTRACT. In this paper we describe the difference of log of two zeta-determinants of Dirac Laplacians
subject to the Dirichlet boundary condition and a boundary condition on the smooth, self-adjoint
Grassmannian Gr’ (D) on a compact manifold with boundary. Using this result we extend the result
of Scott and Wojciechowski ([SW], [S2]) about the quotient of two zeta-determinants of Dirac Laplacians
with boundary conditions on Gr}_ (D). We apply these results to the BFK-gluing formula to obtain the
gluing formula for the zeta-determinants of Dirac Laplacians with respect to boundary conditions on
Gri (D). We next discuss the zeta-determinants of Dirac Laplacians subject to the Dirichlet or APS
boundary condition on a finite cylinder and finally discuss the relative zeta-determinant on a manifold
with cylindrical end when the APS boundary condition is imposed.

§1. Introduction and results

The zeta-determinants of Laplacians subject to the Dirichlet boundary condition have been
studied by many authors in different contexts. For instance, Burghelea, Friedlander and Kappeler
([BFK]) proved the gluing formula for the zeta-determinants of Laplacians on a closed manifold
with respect to the Dirichlet boundary condition. The relative zeta-determinant of Laplacians on a
manifold with cylindrical end was described by P. Loya, J. Park ([LP1]) and J. Miiller, W. Miiller
(IMM]) independently when the Dirichlet boundary condition is imposed on the cylinder part.
One way of extending these results to the cases of other boundary conditions is to compare the
zeta-determinants of Laplacians subject to the Dirichlet boundary condition with the ones subject
to given boundary conditions.

In this paper we first describe the difference of log of two zeta-determinants of Dirac Laplacians
subject to the Dirichlet boundary condition and a boundary condition on the smooth, self-adjoint
Grassmannian G} (D) on a compact manifold with boundary. Using this result we extend the
result of S. Scott and K. Wojciechowski ([SW], [S2]) about the quotient of two zeta-determinants
of Dirac Laplacians subject to boundary conditions P;, P on Gri (D). We next apply these
results to the BFK-gluing formula to obtain the gluing formula for the zeta-determinants of Dirac
Laplacians with respect to boundary conditions on Grl (D). In fact, P. Loya and J. Park ([LP3],
[LP4]) have already obtained the same result but their method is different from the one that we
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present here. Moreover, it is an advantage of this approach to be able to see the relation between
the result of this paper and the BFK-gluing formula. Obviously, the Atiyah-Patodi-Singer (APS)
boundary condition belongs to this class and we discuss the zeta-determinants of Dirac Laplacians
subject to the Dirichlet or APS boundary condition on a finite cylinder and finally discuss the
relative zeta-determinant on a manifold with cylindrical end when the APS boundary condition is
imposed, which extends the result of [MM] (or [LP1]).

Now we introduce the basic settings. Let (M, g) be a compact oriented m-dimensional Riemann-
ian manifold (m > 1) with boundary Y and E — M be a Clifford module bundle. Choose a collar
neighborhood N of Y which is diffeomorphic to [0,1) x Y. We assume that the metric g is a product
one on N and the bundle F has the product structure on N, which means that E|y = p*Ely,
where p : [0,1) X Y — Y is the canonical projection. Suppose that D), is a compatible Dirac
operator acting on smooth sections of E. We assume that Dy, has the following form on N

Dy = G(0, + B),

where G : E|y — Ely is a bundle automorphism, 9, is the inward normal derivative to Y on N
and B is a Dirac operator on Y. We further assume that G and B are independent of the normal
coordinate u and satisfy

G* = -G, G? =1, B* =B, GB = —BG,
dim (ker(G —i)NkerB) = dim (ker(G + i) NkerB). (1.1)
Then we have, on N, the Dirac Laplacian
D3, = -0 + B2
We next introduce the boundary conditions on Y. The Dirichlet boundary condition on Y is

defined by the restriction map o : C°(M) — C*°(Y),v0(¢) = é|y, and the realization D%/L,m is
defined to be the operator D3, with the following domain

Dom(D3;,,) = {¢ € C¥(E)| ¢ly =0}

Then Djzw’,y0 is an invertible operator by the unique continuation property of Dy (¢f. [B]).

The APS boundary condition ITs. (or I1.) is defined to be the orthogonal projection to the space
spanned by positive (or negative) eigensections of B. If ker B # {0}, we need an extra condition to
obtain a self-adjoint operator, say, a unitary involution on kerB anticommuting with G. Suppose
that o : kerB — kerB is a unitary operator satisfying

oG = —(Go, 02 = Idperp.
We put ot = HET" and denote by Il ,—, Il ,+
1 1
H<,a‘ :H<+§(I_O—)|kerBa H>,a+ :H>+§(I+O—)|kerB~

Then the realizations Dyn_ _ and D%/I,HQK are defined by Dj; and D3, with the following

domains
Dom (Dani_,~) = {6 € C(B) | Tl o (d]y) = 0},
Dom (D3_ ) = {6€ C=(E) [Tl o= (6ly) = 0, Ty (0 + B)6)ly =0},
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Dpyn_ ., and D3, . are defined similarly.
o > e

As a generalization of the APS boundary condition we introduce the self-adjoint Grassmannian
Gr*(D), which is the set of all orthogonal pseudodifferential projections P such that

—GPG =1d— P, P —1Ils is a classical pseudodifferential operator of order — 1.
As a dense subset of Gr* (D), we define Gri (D) by
Gri (D) ={P € Gr*(D) | P —1IIs is a smoothing operator }.

Then Wojciechowski ([W]) showed that np,(s) and (pz (s) for P € Gri (D) have regular values at
s = 0. Clearly, ITs. , belongs to G, (D). The Calderdn projector € is defined to be the orthogonal
projection from L?(Ely) onto {¢|y | Da(¢) = 0}, the Cauchy data space. Then € is known to be
an element of G775, (D) by S. Scott ([S1]) and G. Grubb ([Gr]). The realization D3, p is defined to

be the operator D3, with the following domain.

Dom (D3, p) = {¢p € C®(M) | Py¢p =0, (I—P)y(d,+B)p=0}.

The purpose of this paper is to describe the relative zeta-determinant log DetD%L p—log DetD%/[’ o
and discuss some of its applications including the gluing formula for the zeta-determinants of Dirac
Laplacians.
To describe the main result we define @ : C*(Y) — C*°(Y) as follows. For f € C>°(Y) there
exists a unique section ¢ € C*°(M) satisfying D3,¢ =0, ¢|y = f. Then we define
Q(f) = =(0ud)ly- (1.2)

The Green formula shows that () — B is a non-negative operator and ker(Q—B) = Im€, the Cauchy
data space (Lemma 2.3). We regard (I — P) (Q — B) (I — P) as an operator on I'm (I — P), i.e.,

(I-P)(Q-B)I—-P):C*Y)NIm(I—P)—C®Y)nIm(I—P).

Since @ — |B| ([L3]) and P — IIs are smoothing operators, (I — P) (Q — B) (I — P) differs from
2I1.|B| by a smoothing operator and hence the zeta-determinant of (I — P)(Q — B) (I — P) is
well-defined. It is not difficult to show that ker (I — P)(Q — B)(I — P) = {¢|y | ¥ € kerDu,p}
(Lemma 2.3). Let {h1,he, - ,he} be an orthonormal basis for ker (I — P)(Q — B) (I — P)),
q = dimkerDys p. Then there exist ¥1,12,- - , 14 such that

Duypthi =0,  ily = h,.

We define a ¢ x ¢ positive definite Hermitian matrix Vs p by

Vi, = (vij),  vij = (Yi, Yj)m- (1.3)

If 8 is an invertible elliptic operator of order > 0 with discrete spectrum {\; | j =1,2,3,---},
we define the zeta function (gp(s) = 3_5 cspec(y) A, * and the zeta-determinant Det by e=$x ),
If B has a non-trivial kernel, we define the modified zeta-determinant Det*J3 by

Det™P := Det(P + prierg)-
Similarly, if « is a trace class operator, we define the modified Fredholm determinant by
detr, (I + ) = detpr(I + a + prier(r+a))-

Equivalently, Det*J and det?.,.(I + «) are the determinants of P and I + o when restricted to the
orthogonal complement of ker§3 and ker(I + «), respectively.

Then the following is the main result of this paper.
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Theorem 1.1. Suppose that M is a compact Riemannian manifold with boundary Y having the
product structure near the boundary and Dy is a compatible Dirac operator which has the form
(1.1) near the boundary. Then for P € Gri (D) and the Dirichlet boundary condition vy on'Y,
we have the following equality.

log Det* D3 p —log DetD3, ., = logdetVyy p +log Det* (I — P)(Q — B)(I — P)),

where (I — P)(Q — B)(I — P)) is considered to be an operator defined on Im(I — P).

Remark : (1) We take the negative real axis as a branch cut for logarithm.

(2) If we parametrize the collar neighborhood N by (—1, 0] xY with the boundary {0} xY and write
the Dirac operator Dy; on N by Dy = G(9,, + B) with 9, the outward unit normal derivative,
Q(f) is defined by

Q(f) == (0ud)ly, where D3;¢=0 and ¢|y = f. (1.4)
Then (Q + B) is a non-negative operator and in this case Theorem 1.1 can be written as follows.
log Det* D3y ;_p —log DetD3, . = logdetVay j—p + log Det* (P(Q + B)P). (1.5)

(3) Even if the boundary of M consists of two components Y and Z, Theorem 1.1 still holds as
far as M has the product structures near ¥ and a boundary condition 8 is imposed on Z so that
D%/[}%ﬁo is an invertible operator. For example, if 98 is the Dirichlet boundary condition on Z, both

D3 p and D3, o are invertible operators. In this case, Q is defined as follows. For f € C>(Y),
choose ¢ € C°°(M) such that D%,;¢ = 0, ¢|z = 0 and ¢|y = f. Then Q(f) := —(0u¢)|y. Since
the term log detVys p does not appear in this case, Theorem 1.1 can be written by

log DetD3; g5 p —log DetD3; g . = log Det (I — P)(Q — B)(I — P)). (1.6)

Since G is a bundle automorphism with G2 = —1, the restriction E|y splits into +i-eigenspaces
Ei, say, Ely = Eff @ Ey and the Dirac operator Dy, can be written by

i 0 0 B~
pu=(o %) (o (o %))
where B : C®(EL) — C®(EF) and (B*)" = BF. Then there exists the unitary operator

K : L2(Y, E{) — L%(Y, Ey) satisfying Im€ = graph(K). For P € GrZ (D), there exists a unitary
operator T : L2(Y, E") — L?(Y, Ey’) such that

ImP = graph(T), T =K + a smoothing operator. (1.7)

As the first application of Theorem 1.1 we extend the result of S. Scott and K. Wojciechowski
([SW], [S1]) as follows.

Theorem 1.2. Suppose that P is a pseudodifferential projection in Gri (D). Then :

Det*Dﬁ/[’P

1
— MP _ (GetVay p)? - et [ = (T +T71K) ) |2.
Deipis = Vi) it (5 (147711 )|
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We next apply Theorem 1.1 and 1.2 to the BFK-gluing formula for the zeta-determinants of
Dirac Laplacians. Let (]Tj ,g) be a closed Riemannian manifold and Y be a hypersurface of M
such that M — Y has two components. We denote by M;, My the closure of each component.
We choose a collar neighborhood of Y which is diffeomorphic to (—1,1) x Y and assume that g is
a product metric on N. Let E — M be a Clifford module bundle having the product structure
on N and D be a compatible Dirac operator acting on smooth sections of E which has the form,
on N, D = G(8, + B) satisfying (1.1) as before. We denote by Dy, Dy, the restrictions of D
to My, My and by 4 the Dirichlet boundary condition on Y. Suppose that {h1,he, -+, hq} is

an orthonormal basis for (kerﬁ) ly := {®|y | D® = 0}, where ¢ = dimkerD. Then there exist
®p,--, Py in kerD with ®,ly = h;. We define a positive definite Hermitian matrix Ay by

AO = (aij), where Qi = <(I)1, (I)j>ﬂ (18)
The BFK-gluing formula can be stated as follows (¢f. [BFK], [L3]).

log Det*D? — log DetD]QV[LW — log DetD%@m =
—log2 - ((p2(0) + 1) + log detAg + log Det*(Q1 + Q2), (1.9)

where | = dimkerB and 1 is defined by (1.4), Q2 by (1.2). Theorem 1.1 and 1.2 together with
(1.9) lead to the following result, which is the main mativation for Theorem 1.1.

Theorem 1.3. Let €1, € be Calderon projectors for Dy, , Dar, and Py, Py be orthogonal pseu-
dodifferential projections belonging to Gri (Duy), Gri (Da), respectively. Suppose that for
i =12, K;, T, : L*(Y,E}) — L*(Y,Ey) are unitary maps such that graph(K;) = Im€&; and
graph(T;) = ImP;. Then the following equalities hold.

(1) log Det* D? — log DetD%/Il’Q —log DeL‘Dsz%Q2 =

1
—log2 - (¢p=(0) +1) + 2logdetAg + 2log|det}s, <§ (I- KllKQ)) |.

(2) log Det*D? — log Det*D%/Il,p1 —log Det*D3y, p, = — log2- ((p2(0) +1) +2 logdetAg
2

2
* 1 - * 1 _
_ 2;10gd€tVM¢,P¢ + 2log |det T, (5 (I - K; 1K2)) | — 2;10g|detm <§ (I+T, 1Ki)) .

Remark : The result of Theorem 1.3 was obtained earlier by P. Loya and J. Park in [LP3] (or
[LP4]) in a different way.

Note that there exists a unitary map T,+ : C®(Ey) — CO%(Ey) satisfying (1.7) so that
Im (H>7g+) = graph (Ty+) and Im (H<7(,_) = graph (—=T,+). In this case Theorem 1.1 and 1.3
can be written as follows.
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Corollary 1.4. Under the same notations as in Theorem 1.3 the following equalities hold.
(1) log Det*D%/[hH L —log DetD3y, ., =logdetVag, m_  +log Det* (I o+ (Q1 + | B])ITs o+).

(2) log Det*Dﬁhn . —log DetD3y, ., =logdetVa, i, +log Det*(Ilc ;- (Q2 + |B]) o).
(3) log Det*D? —log Det* D3y, yy_ _ —log Det* D3y, , = — log2- ((p2(0) +1)
1

+

+ 2logdetAg —2 (logdetVMl7n< - tlogdetVa, ) + 2log |det, <§ (I-K; 1K2)> |

— 2log |det, (% (I- Tg—jKl)) | — 2log |det},. <; (I+1T Kz)) |

In general, the operator @)1 or Q2 (with the same notation as in Theorem 1.3) is not easy
to describe except in a cylinder case. If M is a cylinder, Corollary 1.4 can be reduced to a
much simpler form. We denote N, := [0,7] X Y and impose the Dirichlet boundary condition
Y0 on Yy := {0} x Y. We denote by (=07 + B*)n,, o1 ._ (=92 + B?)N,., 70.,) the Dirac
Laplacian subject to the Dirichlet bundary condition on Y, and . ,- onY, := {r} xY (the
Dirichlet boundary condition 9,7, on Yy, ¥;.). One can check easily that (—92 + B?)n, . o,y and
(=02 + B?) No,ry0.1I_ ,— are invertible operators and hence the kernels are trivial. Moreover, one
can show by direct computation (cf. [L4]) that @ can be expressed by

1 2|Ble~ "Il
Qu = _Prrers + |B| + ﬁpr(m’sw (1.10)

Then the first and second assertations of Corollary 1.4 can be stated in this case as follows, which
was obtained in [L4] and [L5].

Corollary 1.5. Suppose that | := dimkerB and No, := [0,7] x Y. Then :

log Det(—02 + Bz)Noﬂ,,yanr — log Det(—0?% + B2)N0,T,y0m,
log Det(—92 + B*)n, .1 —log Det(—0; + B*)Ny., o7

>, ot
L L, L, gy e TIBI
— —5 . Ogr =+ 5 Og2 . <32 (0) + Z OgDet B + 5 Ogd@tFr I + mpr(kerB)L .

We next consider the Dirac Laplacian (—02 + Bz)No,T,H> _+.a1_ — on Ny, with the bound-

ary conditions Il .+ on Yy and Il ,- on Y,, where o and 7 are unitary involutions on kerB
anticommuting with G. Then it is not difficult to see that

ker(—02 + B*) N, ={feCc®Y)|fe(Imt NImao™)}. (1.11)

>,T+7 o~

We also introduce the boundary condition (8u—|— |B]) on Y, and denote by (—=02+B?)n, . 0.(0u+1B])
the Dirac Laplacian subject to the Dirichlet condition vy on Yy and (9, + |B|) on Y;, i.e.

Dom (=03 + B®) Ny , 0. (0.+18))) = {0 € C(Nost) | ¢lv, =0, ((0u +1B))¢) |y, = 0}.

Then (=92 + B?) N, ~o,(0u+|B]) is an invertible operator. To describe the next result we introduce
a constant o as follows. We first consider the asymptotic expansion of the heat kernel of B2. As

t—0t,
_tBZ > _nzfl_,’_
re ~ Ebjt B
i=0
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This series shows that (gz(s) is analytic at s = —% if dimY =m — 1 is even. However, if dimY is
odd, {pz(s) has a simple pole at s = —%. We define a1 by

(B2 (_%)a if dimY is even
a1 =

L (s-Cp2(s— 1)) s=0 + ﬁ(10g2— 1)-bm, if dimY is odd.

(1.12)
Then we have the following result.

Theorem 1.6. Suppose that | = dimkerB and ky = dim (Im o™ NIm 7). Then :

(1) lOg Det*(—ai‘f'Bz)No,r,H — Oé1'7"|'2k+ 10g7"—|—10g2-(CB2 (0)+l)+10g|d€t* (U —;— 7-) |a

>l -

where det* (”—JZFT) = det (”JQFT + prkeT(HT)).

(2) log Det(—0; + B*)ny , 0. (0,+1B)) = 017 +1og 2 - (Cp2(0) +1).

Remark :  The first equality in Theorem 1.6 was proved first by P. Loya and J. Park in [LP2].

Finally, we are going to apply Corollary 1.4 to the relative zeta-determinant on a manifold
with cylindrical end studied by J. Miiller, W. Miiller in [MM] and P. Loya, J. Park in [LP1]. Let
M o = My Uy [0,00) x Y and Ny o = [0,00) x Y. We denote by Dy, . the extension of Dy, to
M o and by (=02 + B?)n, ., the Dirac Laplacian on N« subject to the Dirichlet boundary
condition on {0} x Y. Let u; be the smallest positive eigenvalue of B. Then the scattering theory
for a Dirac operator on a manifold with cylindrical end ([Gu], [M1]) shows that Dy, . determines
a regular one-parameter family of unitary operators C'(\), called on-shell scattering operators, with
A € R, |\ < p1, which act on kerB and satisfy

CNC(=N) =1, CNG=GC\).

They showed independently in [MM] and [LP1] that for I = dimkerB,

log Det (D3, _, (=02 + B*)xy .0 ) — log Det(D3, ) =
—log2 - ((p2(0) + 1) + log Det*(Q1 + |B|) — logdetA;, (1.13)

where A; is a positive definite Hermitian matrix defined as follows. Let {1, -, %4} be an or-
thonormal basis of the space of L2-solutions of Dy, _ on My o and {f1,-- -, f%} be an orthonormal
basis of ImC(0)", the space of the limiting values of the extended L2-solutions of Dy, ... We put
Vg4; = 2E(f;,0) for 1 < j < L, where $E(f;,0) is the extended L2-solution of Dy, . on M
whose limiting value is f; (see [M1] or [MM] for notations and definitions). Then we define

L l
Ay = (aij), where a;; = (Ysly,¥ily)y, 1<4,j<¢+ 3 (1.14)

Setting ¢’ + é = ¢, we define another ¢ x ¢ positive definite Hermitian matrix V as follows. We
denote by 1; o the limiting value of 1 and 1; o = 0 if 9; is an L%-solution. We also define ;12 by

i on M
o {2 .
Vi —Yio  on Ny

Then we define
V = (Uij)1<ij<gs  Where i = (¥i0, 0500y + (Vi 2,05, 02) My o -

Applying Corollary 1.4 to (1.13), we have the following result.
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Theorem 1.7.

log Det (Djzwl’m, (=02 + Bz)NO,OO,H%#) — log Det(D%/Il,HQU_)

- i T
= —log2-(¢p2(0) +1) — 2logdetA; + logdetV — logdet (I +L

—C) ., I-C(0)
=0 )

2
* 1 —1 * 1 —1
—2logdetVi, u_ + 2log|dety, 3 (I — K;'Ty) | | — 2log |det}, 5 (I—-K;'T,+) )|,
where  graph(Ty) = ImIls o)+, graph(T,+) =Imll, 5+ and C'(0) = LC(N)|r=0 -
Remark : Lemma 5.1 in §5 shows that the left hand side of the above equality does not depend
on the choice of a unitary involution 7 anticommuting with G.
§2. The Proof of Theorem 1.1

In this section we are going to prove Theorem 1.1 by using the method used in [BFK], [C] and
[F]. Let P be an orthogonal pseudodifferential projection in Gr’_ (D) and v be a positive integer
> 2=l with m = dimM. Then for t > 0 both (D3, p + )~ and (D3, +1)™" are trace class
operators. Taking the derivative v times with respect to ¢,

dl/
< {log Det (D3sp +t) —log Det (D3, +1)}
du71 2 —1 2 —1
= TT{W((DM’ID—FZ?) — (D3, +1) )} (2.1)

We introduce the Poisson operator for the Dirichlet condition P, (t) : C*°(Y) — C°°(M), which
is characterized as follows. For any f € C>*(Y),

(D%/[ + t) PVD (t)f =0, ’YOPVD (t)f = f (22)
Then we have . . .
(Dirp+t) — (Diqy +1) = Pyu(t)y (Dirp +1t) (2.3)
Combining (2.1) with (2.3) leads to
— {1og Det (D3 p +t) —log Det (D3, +1)}
du 1
dufl
ZT’"{W(%(DMPH I )}
dufl
zzw{&;j(u P)yo (D3 p+1t)” PW(XI—PD}. (2.4)

According to the method suggested in [F], we define Q(¢t) : C*(Y) — C*°(Y) by

Q(t) = —700u Py, (1),
8



and define Rp(t) : C°(Y) — C>*(Y) by
Rp(t) = (I = P)(Q(t) = B)(I = P) + P|B|P + pr(kersnimp)-

Then Rp(t) is a positive definite, essentially self-adjoint elliptic operator. Taking the derivative of
Rp(t) with respect to ¢, we have

%Rp(t) = — (I - P)y0d, <%P% (t)) (I-P). (2.5)

Lemma 2.1.
d

1
—P
dt

’Yo(t) = (DJ2\4,'yo + t)_ P’Yo(t)‘
Proof :  Taking the derivative in (2.2) with respect to ¢, we have

d d
(D12W+t) %PVD(t):_P’Yo(t)a WO%PVD(t):Oﬂ

which implies the result. [
Since (I — P)yo(dy + B)(D% +t)~! = 0, the equation (2.5) and Lemma 2.1 lead to

& Rp(t) = (1~ Pryodu (Do, +1) " P01 — P)

1= Py @+ B) (Dirp+8) ' = (Dirs, +8) ) Py = P)

Y0 (Bu + B) Py ()70 (D3 p +1) " Py ()(I — P)

Y0 B - Poo(t) + B) (I = P)yo (Digp +1) ' Py(t)(I — P)

~Q(t) + B) (I = Pyyo (D3 p +1) " Py ()(I — P)

= Rp(t)(I = P)yo (D3 p +1) ' Py ()T - P), (2.6)

I 1

1
1

P
P
P

——(-P)
——(-P)
— (- P)
——(-P)

(

(

which shows that
Rp(1)™ S Rp(t) = (I = PYo (D +1)” Py P) (2.7)

Combining (2.4) with (2.7), we have

d” dl/—l
o {log Det (D3, p +t) —log Det (D3, +t)} =Tr {W (Rp(t)_lRp(t))}
4 log DetRp(t). (2.8)

dtv

Since P—1IIs and Q(¢) — v/ B2 + t are smoothing operators ([L3]), the zeta-determinant of (P|B|P)
and (I — P) (Q(t) — B) (I — P)) are well-defined and hence

log DetRp(t) = log Det (I — P) (Q(t) — B) (I — P)) + log Det* (P|B|P).
This observation and (2.8) lead to the following result.
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Theorem 2.2. For some real numbers ag, a1, ,a,—1, the following equality holds.

log Det (D3 p +t) —log Det (D3, +1) =
v—1
> a; + logDet ((I—P)(Q(t) — B) (I — P)) +log Det* (P|B|P),
§=0
where ((I — P) (Q(t) — B) (I — P)) and P|B|P are considered as operators defined on Im(I — P)
and ImP, respectively.

We next discuss the constant ag appearing in Theorem 2.2. It was shown in the Appendix
of [BFK] that log Det (D%/LP +1), log Det (DJ2\4,'yo +t) and log Det (I — P) (Q(t) — B) (I — P))
have asymptotic expansions as ¢t — oo and coefficients are determined by the symbols of op-
erators. Moreover, it is a well-known fact that the zero coefficients of the asymptotic expan-
sions of log Det (D3, p +t), log Det (D3, +1) are zeros (cf. [V] or Proposition 2.7 in [L2]).
Hence, —ayg is, in fact, the sum of log Det* (P|B|P) and the zero coefficient of the asymptotic
expansion of log Det ((I — P) (Q(t) — B) (I — P)). Since P —1IIs and Q(t) — v/ B? + t are smooth-
ing operators ([L3]), log Det ((I — P) (Q(t) — B) (I — P)) has the same asymptotic expansion as
log Det (Il (VB? 4+t — B) I1.). It was shown in Section 3 of [L4] that the zero coefficient of the
asymptotic expansion, as t — oo, of log Det (\/ B2 +t+ |B|) is zero and hence we conclude that

ag + log Det* (P|B|P) = 0.

Therefore, Theorem 2.2 together with this observation lead to the following equality.

v—1
log Det (D3 p +t) —log Det (D3, +t) = > _ajt! +log Det ((I — P)(Q(t) — B) (I - P)).
j=1

(2.9)

Finally, we are going to discuss the behavior of (2.9) as t — 0. We denote by ¢ = dimkerDsz’P.
Since Djzw’,y0 is an invertible operator, we have

log Det (D%Lw +1t) =log DetD%V[ﬁO + o(t),

2.10
log Det (D%/Lp +t) = q-logt+log Det* D3, p + o(t). (2.10)

The following lemma shows the relation between kerD3; p and ker (I — P)(Q — B) (I — P)).

Lemma 2.3. (1) ker (Q — B) = {¢|y | Dm¢ =0} = Im€&, and hence (Q — B) maps Im (I — €)
onto Im (I — €).

(2) ker(I-P)(Q—B)(I—-P))=ker(Q—-B)NIm(I—P)={dly | ¢ € kerDpy p}, and
dimker (I — P)(Q — B) (I — P)) = dimkerDy,p.

Proof: The second assertion follows from the first assertion and the unique continuation property
of Dy If ¢ € C°°(M) satisfies Dy = 0, Q(dly) = — (0u®) |y = B(d]y), and hence ¢|y €
ker (Q — B). Conversely, suppose that f € ker (Q — B). We choose the unique section ¢ € C*°(M)
so that

D3¢ =0, ¢ly =/

By the Green Theorem (¢f. Lemma 3.1 in [CLM])),

0= (D3¢, d)m = (D, Do) + (Dui @)y, Goly )y

= (Dmo, Dug)ar + (=Q(f) + Bf, f)y,
10



which implies that Dps¢ = 0 and hence f € I'm €. Since (Q — B) is self-adjoint, it maps Im (I — €)
onto itself. O

Now let us denote the eigenvalues of (I — P) (Q(¢t) — B) (I — P) on Im(I — P) by
0 < milt) < o < Kylt) < Rgpalt) < oo
and the corresponding orthonormal eigensections by

hl(t)v T hq(t)v thrl(t)v
Then for 1 < j <gq,
lim Rj (t) = 0, lim hj (t) = hj,

t—0 t—0

where {h1, ha,--- , hy} is an orthonormal basis of ker ((I — P) (Q — B) (I — P)). This leads to
log Det (I - P)(Q(t) = B) (I = P)) =
log k1(t) - -+ ke(t) + logDet* (I — P)(Q—B) (I —P)) + o(t). (2.11)

The second assertion in Lemma 2.3 shows that each h; can be extended to a global section ; €
C*°(M) such that

Duyppj =0, ily = hy. (2.12)

The next result shows the behavior of x;(t) as ¢ — 0 and for its proof we follow the proof of
Theorem B in [L1].

Lemma 2.4.

. i(t . o
%LI)%K:]T():<¢ja¢]>Ma and <¢1)¢]>M:O fO’I” Z#ja ISZaJSqa

and hence
logk1(t) -+ ke(t) = qlogt + logdet ((1i, ;) ) + o(t).

roof : ince (I — k(1)) = hi(t) an — k) = hr for 1 < k < g, we have
Proof :  Si (I — P)(hg(t)) = hg(t) and (I — P)(hg) = hy f k h

rj(t) (hy (@), i)y = (I = P)(Q(t) — B) (I = P)) h;(t), he)y
= (((Q(#) = B)) h;(t), hy)y- (2.13)

Let 9;(t) be the smooth section on M such that

(D3 +6)w;(t) =0, ¢ty = hy(2).

Using the Green formula and (2.12), we have

0 = (DY +1t) (i (1), Yrdar = t (i (t), Yudnr + (D3pb;(t), Yidu
=t (Y1), Vi) + (Dmvoj(t), Dutbe)nr + /Y(DMibj(t)ly, G|y ) dvol(Y)
=t (Y;(t), Vi) + (((Ou+ B);i(®) Iy, hi)y
and hence

(Q) = B)hy(t), hi)y = t {(t), Yr)nr- (2.14)
11



The equations (2.13) and (2.14) show that
k() (hi (), hi)y = t (¥;(t), Yu)m- (2.15)

Since lim; 0 v;(t)]y = v¥;|y, the unique continuation property of Djys implies lim; .o v;(t) = ¥;.
Since (hj, hi)y = 0;k, the result follows. O

Lemma 2.4 with (2.9), (2.10) and (2.11) imply Theorem 1.1.
§3. The Proof of Theorem 1.2 and 1.3

In this section we are going to prove Theorem 1.2 and 1.3. Note that Im€ = graph(K) and
Im (I — &) = graph(—K). Since (I — K) is a map from C>®(Y, Ey") onto Im (I — &), Lemma
2.3 shows that (I — €) (Q — B) (I — €) has the same spectrum as (I — K)~ ' (Q — B) (I — K) and
hence

log Det (I — €) (Q — B) (I — €)) = log Det ((1 ~ KN Q-B)(UI - K)) . (3.1)
We note again Im(I — P) = graph(—T) and define U, L by
U = Im (I — P) (1 Im€ = ker(I — P)(Q — B)(I - P) = {¢ly | Dar.p = 0},
L=I-T)"'(U)=U+K)"'(U)={zeL*E))|Tz=—Kz}. (3.2)
We also denote by I'm (I — P)" and L*(FEy")* the orthogonal complements of U, L so that
Im(I—P)=Im(I-P)"®U, L*(E})=L*E})" ®L.
Then it is not difficult to see that

ker(I + K~'T)=L, and (I+ K‘lT)|L2(E¢)*  LA(BY)* — LA(By)*

1 _
is invertible. For simplicity, we write ((I + K‘lT)|L2(E¢)*) by (I+K~'T) " and define

U:LAEy)*@L—Im(I-P)*eU by
U =20-T)I+K'T)™* Priapsy- + (L= Tpry
= (I[-K)-I+K){I+T'K)" (I—T—lK))prL2(E¢)*+(I—T)prL.

Then we have the following commutative diagram.

(I=P)(Q-B)(I-P)

Im(I-P)"aU

«JT l@*l (3.3)

—17 _ _
L2(E¢)*@L v~ (I-P)(Q—B)(I-P)¥

Using the first assertion of Lemma 2.3 and the following identity

(I-K) = %(HT)(I—T*K) + %(I—T)(IJFT*K),
12



we have
(I -P)Q-B)(I-P)+pry)¥ =

%(1 + K'Y +T'K)I - K)" Q- B)(I — K)prpaipsy- +pre. (3.4)

Hence, (3.2) and (3.4) lead to
log Det* (I — P)(Q — B)(I — P)) = log Det (I — P)(Q — B)(I — P) + pry)

=log Det G(I + K 'TYI+T'K)I-K)"'(Q—-B)(I-K) Prra(es)- +prL)
=log Det G(I + K 'TYI+T'K)I - K) Q- B)(I - K) -l—p?"L)
=log Det G(I + K 'TYI+T'K)+prp(I - K)"Y(Q - B)™*(I - K)) (I-K)""(Q-B)I-K))

=logdet p, G(I + K'Y +T'K) +prp(I - K)"'(Q—-B)'(I - K)prL>
+log Det (I — K)~'(Q — B)(I — K))
~log |det}T%(I LT+ logdet (pro(I— K)N(Q — B)™ (I - K)pry)
+log Det (I — €)(Q — B)(I — Q). (3.5)

Lemma 3.1.
det (pro(I — K)""(Q - B)'(I - K)prL) = detVar,p,
where Vg p is a ¢ X ¢ matriz defined in (1.3).

Proof : Since (I —K):L — GU =1Im(I —&)NImP is an isomorphism (cf. (3.2)), we have
det (pr(I = K)""(Q - B)"'(I = K)prr) = det (prau(Q — B) 'prau) -
Let {h1,- -+, hq} be an orthonormal basis for U. Then {Gh,--- ,Gh,} is an orthonormal basis for
GU. Suppose that (Q — B)"'Gh; = f; and choose ¢; such that D%,;¢;, = 0 and ¢;|y = fi. Using
the Green formula, we have
0 = (D36, ¢y = (Dnidiy Dardi)ar + (Dardily, Gobjily )y

= (Dumdi, Dudj)m + (0w + B)dily, fi)y = (Dmdi, Dudj)m +{((=Q + B)fi, fi)y,
which shows that

((Q — B)™'Ghi, Ghj)y = (fi, (Q —B)f;)y =((Q — B)fi, fj)y = (Dmoi, Dnoj)m.
We note that

Dy (Dygi) =0, (Dméi)ly = G(Ou + B)dily = G(—Q + B) fi = ~GGh; = hy,

which completes the proof of the lemma. [
Theorem 1.2 follows from Theorem 1.1, (3.5) and Lemma 3.1.

Next, we are going to prove Theorem 1.3 by using the similar method. Theorem 1.1 and (1.9)
lead to the following equality.

log Det*D? — log DetD3,, , —log DetD3; . = —log2- (Cp2(0) + 1) + log detAg +
log Det™ (Q1 + Q2) —log Det (I —€1) (Q1+ B) (I — 1)) —log Det (I —€3) (Q2— B) (I —C3)).

(3.6)

The following lemma can be checked by the same way as Lemma 2.3.
13



Lemma 3.2.

ker (Q1 + B) = {¢|y | Da, ¢ = 0} = Im€y,  ker (Qz2 — B) = {¢|y | Dyt = 0} = Im€s,
ker(Q1 + Q2) = Im&; N Im€, = {¢ly | Dy = 0}.

Lemma 3.2 implies that
C*®(Ely) =ker(Q1+Q2)®(Im (I —&)+Im (I —¢&)),

where dim (Im (I — &) N Im (I —&,)) = dim ker (Q1 + Q2) = dim kerD = q. The following
lemma is straightforward.

Lemma 3.3.

I-K;'K I+ K;'K
I—Klz(I+K2)+l+(I—K2)+1.
I - K 'K I+ K 'K
I—ng(HKl)flM(I—Kl)fl?

Using Lemma 3.2 and Lemma 3.3, for z € C°(Y, E;) we have

(Q1+Q2) (I —Ky)x
=@ +B)(I-Ki)z+(Q2—B)(I - K1)z
I—I—K;lle

=I-&)(@1+B)I-&)([ K)o+ (I -¢&)(Q2— B)(I-¢) (I - K2) 5

Similarly,

(Q1+Q2) (I —Ka)y
—1
=(I-&)(@Q1+B)(I-&) (- Ky) USRS

5 y+ (I — &) (Q2—B) (I — &) (I — K2)y.

Recall A‘ghat ker (Q1 + Q2) = {(I + K1)z | K1z = Koz} and denote it by H. We now define sub-
space Hy of Im (I — &) ® Im (I — &3) by

Hy ={(I-K)z, I-Ky)z|Kx=FKoyx}, H_ ={I-K)x, —(I—Ky)z|Kz=Ky},

and consider the following diagram.

Im(I—Cl)EBIm(I—Q:Q) E— Im(I—Qil)EBIm(I—Q:Q)

q,l lq, (3.7)

(Im(I—€)+Im(I-C)@H. —2 ImI—¢)+Im(I—¢))aH.,

14



where @, @ and R are defined as follows.

(I — Ky)z, (I —Ka)y) = ((I - Kz + - K2y, prg (I - Kz, (I — Kz)y)) ,

Q(a,b) = ((Qu+Q2) (a), prg_ RO (a,b)),

fi- & Si(l K= (=g )
I+K; K, 1 Prg yr TP
Ga(l — ko) e K k) ch
(% ) I S R
0 &2/ \ (1 k)t Koy ) 7 i

where 61 = (I =€) (Q1+ B) (I —€;) and 63 = (I — &3) (Q2 — B) (I — €3). Then all maps are
invertible and the diagram (3.7) commutes. Hence,

log DetQ = log Det* (Q1 + Q2) = log Det (I — €1) (Q1 + B) (I — &)
+ log Det (I —€3) (Q2 — B) (I — &3) +logdetp, (a+ 3), (3.8)

where

- I (I - K) 25 e (1 - ) g S,
(I—K2)%(I—K1)fl I ’

We note that H = Im¢&; N ImC&y implies GH = Im (I — &) NIm (I — &) and hence
Im(I—¢)@&Im(I—C)=(Im(I—¢)eGH)®(Im(I—-¢)cGH) & H, & H_.
Since a maps (H_)* onto (H_)* and alg, =2Id|g,,
log det g, (o + 3) = qlog 2 + log det o, (a|@?=1(1m(1_¢i)egm) + log det (prﬁ_ 6)

1 —1
= qlog?2 +log|det}, | = (I — K{ 'K>) ) |* + logdet  prg S 0,1 g ).
2 N0 G /39

where ¢ = dimf{Br = dimkerD. Let {h1, -+ ,hg} be an orthonormal basis of Im&; N Im&,.
Then {Ghi,---,Ghg} is an orthonormal basis for Im (I —&1) N Im (I — &;) and this gives an

orthonormal basis {%(Ghl, ~Ghy), -, 55(Ghy, —th)} for H_. We note that

1 1 i 1 Gh; 1 _ —
(i (5 20) (%) J5 (%) = 365 0neon - es'on. v
which shows that

1
log det (prﬁ_ (66 60_1 ) prﬁ_) = —qlog2 +logdet (preu (67" + &5 ") pram) . (3.10)
2
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Lemma 3.4.
det (prou ((Qu+B) ™" +(Q2 = B) ™) pron) = detAs,

where Ag is a g X q¢ matriz defined in (1.8).

Proof :  Suppose that {Ghi,---,Ghy} is an orthonormal basis for Im (I —€y) N Im (I — &)
and denote (Q1 + B)"'Gh; = fi, (Q2 — B)"'Gh; = g;. We choose ¢1,---,p, € C(M),
U1, ,1Pg € C°(Ms) such that

D3 ¢i =0, Di =0, ¢ily ="fi, ily =g
Using the Green formula,

0= (D3s, b6 05)as, = (Dasy bis Dar, i), — (Dar @)l (Goy)ly )y
= (D, ¢i, Dary &) vy, — (((Ou + B)oi)ly, fi)y
= (D1, ¢i, Dar, ) ar, — ((Q1 + B) fi, fi)y-

As the same way as in Lemma 3.1,

(@1 + B)"'Ghi,Ghj)y = (fi,(Q1+ B)fj)y = ((Q1+ B)fi, fi)y

= (D, ¢i, Dry &)y = (—Daay iy =D, &), -
(3.11)

Note that
D, (=Dar, ¢i) =0, (=D, di)ly = —G(0u + B)gily = —G(Q1 + B) fi = —GGh; = h;. (3.12)

As the same way,
<(Q2 _B)_lGhiaGhj>Y = <DM2’lr/)iaDM2¢j>M27 (313)

where
D, (Do, i) =0,  (Dan,ti)ly = G(0u + B)ily = G(=Q2 + B)gi = —GGh; = h;.  (3.14)

Setting
®; = (=D, ¢i) Uy (D),

Lemma 3.2 with (3.12) and (3.14) shows that ®; is a smooth section and belongs to kerD. Hence,
(3.11) and (3.13) show that

((Q1 4 B)"'Ghs,Ghj)y + ((Q2 — B)'Ghi, Ghy)y = (®;,9,) 47,

which completes the proof of the lemma. [
Theorem 1.3 is obtained by the above lemma with (3.6), (3.8), (3.9) and (3.10).

§4. The Proof of Theorem 1.6

In this section we are going to prove Theorem 1.6. To prove the first assertion of Theorem 1.6
we begin with the following fact

ker(—02 + B*)n,.,.11 u_,. ={fecyY)[felmr nIm otl. (4.1)
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By Corollary 1.5 we have

log Det*(—0? + BQ)NDJ,,H>YT+7H<YU, — log Det(—8 + B*)Ny .01
= log Det*(—02 + BQ)NOYT,H>’T+,H<YU_ — log Det(—0; + B*)n, .1
+ log Det(—0? + B2)N0,7,7H>YT+,W — log Det(—92 + B*)ny., o,
= log Det*(—0; + B*)n,.n_ . n_, _ — logDet(—0; + B*)n, i

ot

>, 7t >,

DO |~

1 1 1 —riBI
logr + =log2-(p2(0) + ~logDet*B? + —logdetp, I+67pr(kerB)L .
2 4 2 eT‘BI — 67T|B‘ (4 2)

To eatablish the analogous formula as Corollary 1.5 for log Det*(—02 + BQ)NM,H> N

log Det(—02 + B2)N017,,H> 7> We consider, as in the proof of Theorem 1.1,

log Det (—02 + B* + ) — log Det (—02 + B* + 1)

No I, 4 I No I, 4vr

To define the operator Ry (t) : C*(Y,) — C>°(Y;) corresponding to Rp(t) in Theorem 1.1,

we introduce the Poisson operator P, (t) : C*(Y;) — C°°(Ny,) associated with the boundary
condition II, -+ on Yy, which is characterized as follows.

(=07 + B>+ t)Peyi(t) =0, 3 Peyi(t) = Idy,,
I ~+50Peyi(t) = 0, e 7-70(0u + B)Peyi(t) = 0.

We define the operator Qeyi(t) : C°(Y,) — C(Y;) by Qeyi(t) = ¥r0uPeyi(t) and finally define

Reyi(t) = s o+ Qeyi ()]s o+ + [B| + 0~
= H>,a+ (Qcyl(t) + |B|)H>7U+ + |B|H< +o .

Then (Is o+ (Qeyi(t) + |B|) s 5+ ) is described as follows, which can be checked by direct com-
putation.

Lemma 4.1. Suppose that Bf = \f and @cyl(t) = (ILs o+ (Qeyi(t) + |B|) s 4+ ).

(1) If A > 0,

~ 2V/A2 ;- t e TVATHE
— /2
Qcyl(t)f—< SRR A, v Sy e R
(2)Ifx=0and f€ImotNIm7~,

N Vi (erﬂ—e‘rﬂ)
ST R S — AT

(3) Ifx=0and f € ImotNn(ImotNnIm7)*+,

Gt — \/f(e“/’?—e*“ﬂ)f—i—o 4/t I+ol—-7I+40 f
eyt N erVt 4 e-rvit 2 e2rVt _g=2rvt 2 2 2 ’
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Proof : (1) is straightforward. If Bf =0 and f € Im o™, P, (t)(f) is given by

RS T Y £ ] el ) FES S R T
(D) = g W =G o W

Taking the derivative of Py (t)(f)(u,y) with respect to u at u = r gives (2) and (3). O

Corollary 4.2.

IOy ot (Qeyi(t) + [B)) s o+ = Iy 5+ (\/ B2 +t+ |B|) II. ,+ + a smoothing operator.

Proceeding as in the proof of Theorem 1.1, we obtain the following result.

Lemma 4.3.

log Det (—02 + B* + t) —log Det (=07 + B*> +1)

No,, Iy 4 11— (O | S

v—1

= a;t/ +log Det (T, o+ (Qeyi(t) + | B)IIs 5+ ) + log Det*(|B[TI).
j=0

Using the same argument as in the proof of Theorem 1.1, it is not difficult to see that the zero
coefficients of the asymptotic expansions, as t — oo, of log Det (—92 + B? + t)
log Det (—02 + B2 +1) No I and log Det (I1s 5+ (Qeyi(t) + |B])IIs ,+) are zero, which im-
yrotds o+

plies that ag + log Det*(|B|Il<) = 0. We next discuss the behavior of each term in Lemma 4.3 as
t — 0. We denote M = Im o™ N (Im ot NIm17)*,

ND’T7H>1T+ ’H<,07 ’

l

ky =dim (ImotNIm7") and §—k+:dim9ﬁ.

The equality (4.1) and the invertibility of (=82 + B?)n, .11 imply that

>, rt sYr

log Det (—02 + B* + )y m_ = kylogt+log Det* (—0; + B?)

>, 7T o H>,T+’H<,0_ (4 3)
2 2 _ 2 2 :
log Det (07 + B* + t)n>’ =log Det (-0, + B )H>,T+ +o(t).

YT

Simple computation shows that, as t — 0,

e

4Vt
].Og e’r\/z n e*’r\/z = logr + logt + O(t) and ].Og (m) = — logr + O(t) s
which lead to
. 2|Ble 715l
log Det (H>,g+ (Qcyl(t) + |B|)H>,g+) = IOg Det 2|B| —+ m H>
11 1 1
+ ky(logr +logt) + log det <— —;U ;T —;—J> lon + o(t)
T
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1 1 e~ TIBl l
= 5 log D@t*(2|B|) —+ 5 10gd€tFr <I + mp’r(km«B)L) + (2]€+ — 5) logr =+ k+ 10gt

I+ol+717I+0
2 2 2

+ log det ( ) low + o(t).  (4.4)

Letting ¢ — 0, Lemma 4.3 together with (4.3) and (4.4) imply that

log Det* (—02 + B?) —log Det (—02 + B?)

1 *
NO‘T’H>,T+7H<,U* N0,7~,H>,T+ﬂ’r = 5 1OgD€t (2|B|)

l 1 e~ "IBl I+ocl+717I+0
+ (2ky — 2)logr + —logdetp, | I + BT = o B P (kerB): | log det |-

Lemma 4.4.

I+ol+717I+0 W fO+T
det( 5 5 5 )|gm—|d€t< 5 >|,

where det* (”;T) = det (”TJ” +kaer%)-

Proof : If we denote X* = ( Im o* N Im 77F), we have

I I I
det( +ol+7l+0

I—o I+ocl+17l+0
5 5 5 >|9ﬁ:d€t<T+pT2++ )

2 2 2

Since detG =1 and G o pry+ = pry- o G, we have

I-— I+ol+7I I-— I+ol+7I
d€t<TJ+pTZ++ +ol+T +J)=d€t<G(To+prz++ +ol+T +o>>

2 2 2 2 2 2

I [—ol—71- I [—ol—71-
:det<(¥+prz+ -z J)G>=det<¥+prz+ 7z J).

2 2 2 2 2 2

Therefore, we have

I—o I+ocl+7I+0 2
<det(—2 + prs+ + 5 5 5 >)

I+ol+7171+0 I+
2 2 2 2

o+T 2
= det <p7“z+ + pry- + < 5 ) )
2 2
+ * +
= det <prker(g+7) + <0 : 7-) ) — (det <U : T>) .

Since the determinant of an operator that we want to compute is positive, the result follows. [

g
+pre- +

I—o I—cl—-—717I-0
= det T+pr2+—|—

2 2 2

Since log Det(2|B|) = log2 - (p2(0) + 5 log Det* B2, (4.5) leads to the following result.
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Theorem 4.5.

log Det* (-0, + B?) - —log Det (-0 + B?)

NO‘T’H>,T+7 <,07 N0,7‘:H>,T+:7r

= (2ky — é)log r+

1 1 ‘oo Lfo+T 1 e "IBl
510g2-C32(0)+110gDet B*+log |det ( 5 )|+§10gd€tFr <I+ 1Bl — g—riB| Pl (kerB)* | -

Corollary 4.6.

log Det* (—02 + B?) —log Det (—02 + B?)

Nop, IIg 4 I~ No,r,v0,7r

= (2ky — 1) logr+

log 2+ (12 (0) +  log Det* B2 + log det” { Z5T) |+ log dety (14—
og -CBQ( )+§ og et + Og| et T |+ og et pr +mpT(kerB)L .

It is a well-known fact (¢f. [LP1] or [MM)]) that
1
log Det(—92 4+ B*) Ny, yoe = - log2+1-logr +aq -7 — 5 log Det* B

+ log detFr(I - 672T|B‘pr(ker3)i)a (46)

where oy is the constant defined in (1.12). For any positive real number p, we note that

—2rp e "k
(l—e )(1+7em_ew):1.
Corollary 4.6 and (4.6) with this observation lead to

log Det* (-0 + B?) - = a1 -r+2kylogr+log2- ((p2(0)+1) + log |det* (UT—H> [,

NO,""H>,7—+1 <,07

which completes the proof of the first equality in Theorem 1.6.

To prove the second equality, we play the same game with (—02 + B2 + ) No., v0,(0u+|B]) and
(=02 + B* + t)Ny., yo,7,- We define Ry, 45 (t) : C°(Y;) — C>°(Y;) corresponding to Rp(t) in
Theorem 1.1 as follows.

Ro,+18)(t) = 7 (0u + |B|) Py, (t) = Qu1(t) + | BJ,
where P, (t) is the Poisson operator defined on Y, characterized as follows.
(=05 + B2+ )P, (1) =0, 0Py, (1) =0, %Py () = Id.
Then proceeding as in the proof of Theorem 1.1, we have the following equality.
log Det(—02 + B* 4+ t) N, 70, (0u+|B]) — 108 Det(—=02 + B> + )Ny, vo.1r

v—1

= Z a;t! +log Det(Qu(t) + |B|).
§=0
In the above equality, ag = 0 because the zero coefficients of the asymptotic expansions of
log Det(—02 + B + t)xy , o, (0,+15))+ 108 Det(~02 + B2 + t)n, 0.y, and log Det(Q: (1) + |B)),
as t — oo, are zero. Moreover, (—02 + B?) N, . 10.(0u+1B))s (=02 + B?)No., 0, and (Q1 + |B|) are
invertible operators, which yields the following equality.
log Det(—02 + B, , o (0418)) — 108 Det(~02 + B*)Ny  rpr, = log Det(Q: + |B)).

—riB|
Since Q1 = 1prier + |B| + %pr(kaV (¢f. (1.10)), we have the following result, from

which the second equality of Theorem 1.6 follows by (4.6).
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Theorem 4.7.
log Det(—0y, + B*) Ny, yo,(0,+15]) — 108 Det(=0; + B) Ny , 70,7, =

1 « eiTIB‘
—1-logr+log2- (g2 (0) + 5 log Det B? 4+ log det g, (I+ mpT(kerB)J_> .

§5. The Proof of Theorem 1.7

In this section, we are going to prove Theorem 1.7. For simplicity, we denote (—9% + B?)n, __ o,
(=02 + B*)No.o, 111 BY Do vy Aooi_ ., respectively. Then the equation (1.13) imply that

log Det (Djz\/[hoo;Aoo,H> T+) — log Det* (Dﬁa,n 7) = —log2-(¢p2(0) +1) — logdetA;+

+ log Det (Aooﬁo, A<>07H>,T+) + log Det*(Q1 + |B|) + log DetD3, o — log Det” (D12v11,n< 07) .
151)

We now compute the relative zeta-determinant log Det (Aoo,'yo,Aoo,H> a +). The relative zeta-
function ((s, AOONO,AOO,H%#) is defined by

(s, Aoo o Do,
/ 51 /N —tAoo 0 (t, (u,y), (u,y)) — —tAm,H>,T+ (t, (u,y), (u7y))) dvol(y)dudt

and log Det (Aoo7'yoaAoo,H> T+) = —%|S:0C(57AOOWD,AOO,H> T+). It is a well-known fact (cf.

[APS] or [BW]) that the heat kernel e~*A0 (¢, (u,y), (v, z)) and ¢ BT ot (t, (u,), (v, 2)) are
given as follows.

—tA e [ _wew? _ (ut0)?
N D T L)

1j €Spec(B)

2
—tAs, eHit [ _wew?  _uiw?
U EID DIt P b P S RS

0<p;€Spec(B)

{es e b wen )

1 (u—v)2 <u+v>
+ —qe - ®
(g; Vit { }(M S w%; \/47r

2
e Hit (u—v)? (ut)? _ u+v
+ ——qe T Fe & — pjet i erfe + 1 Vt) 3 G, (y)2Gw;(2),
) (B){ Tm:{ } 14 f(2\/5 1iVt) ¢ Goj(y)@Ge;(z)

0<pj€Spec

9y

where By; = pjp; and erfe(z) is the error function defined by erfe(z) = % [= e~t’dt. Then
direct computation shows that

Ty (et — Aoy = L DS el i)

>0
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According to [M2] we split (s, Ao ye, Aco,r1_ ) into two parts.

C(Sa A()O,’yo b AOO’H>,T+ ) - Cl (57 Aoo,’yga AOO’H>,T+) + CQ(Sa A()O,’yo b AOO’H>,T+ )7

where .
A A _ 1 SflT 7tA0°1,m _ *tAoo,H> —+ d
<1(57 00,701 °°1H>,T+) - —F(S) ) t rie e ) t,
N R e P
CQ(Sv 00,70 oo,H>’T+) F(S) ) rie e , .
For Res > 0,
l 1 1 1 1 TI'(s+32)
Aoy Ao S 2! N 2
Cl(sa ;Y09 ,H>,T+) 4 F(S ¥ 1) ) P(S ¥ 1) Mgoerfc(:uﬂ) 4ﬁ P(S + 1) CBQ (S)
J
1 1 /Oo 1 2
+ = 72 pje”Hidt. (5.2
Var T(s+1) H;O 1 J (5.2)
For Res < 0,
l 1 1 1
Aoo 7Aoo = - - ;
CQ(S? sY0 ;H>,T+) 41—\(5 _|_ 1) + 2F(S + 1) Z erfc(ﬂj)

w; >0
1 1 = et —tu3 g
TURTGAD ), e it (59

Since the last terms in (5.2) and (5.3) are entire functions, they give the meromorphic continuations
of (1 (s, AOONO,AOO,H> T+) and (a(s, AOONO,AOO,H> T+) to the whole complex plane, having regular
values at s = 0. Therefore, we have

B 1 T(s+1)
C(SvAoo,voaAoo,H>,+) = —m ﬁ CB2(8).

Since I'"(3) = —/7(v + 2log2) (¢f. p. 15 in [MOS]) for v = —I"(1) the Euler constant, we have
the following result.

Lemma 5.1.

1 1
log Det (AOONO,AOO,H%#) =-3 log2-(p2(0) — 1 log Det* B?.

The above lemma together with (5.1) leads to the following equality.
1
log Det (Djzwl’m, (—02 + B2)N0,m,n> T+) —log Det(D%/Il7H< ) = —logdetA; — 1 log Det* B
3
—log?2- (§§32 (0) + 1) + log Det*(Q1 + | B|) + log DetD3,, . — log Det* (DJ2\41,H< 0_) . (5.4)

Next, we are going to analyze the term log Det*(Q1 + |B|). Let Lo s, ., Lgf]’f/hm be the spaces

of all L?- and extended L2-solutions of Dy, . on M o. Then it is not difficult to show (¢f. [L3]
or [L4]) that

ker (Q1 + |B|) = {¢|y |6 (LZ,MW n L;f]@m)} = Im€; N ImIT, ¢+ (5.5)
22



Using (5.5) we decompose L?(Y, E|y) by
L*(Y,Ely) =ker Q1+ |B])® (Im(I — &) + Im (I — 115 c(0)+)) , (5.6)

where dim (Im (I — &) NIm (I =105 cy+)) = dim ker (Q1 + |B|). Let K1, Ty : L*(EY) —
L? (Ey) be unitary maps whose graphs are I'm €y, Im Il ¢ o)+, respectively. We now consider
(Q1+|B| + prime(o)-) rather than (Q1 + |B|). Using Lemma 3.3,

(Ql + [B| +p7"ImC(O)*) (I-K)rx=(I-¢&)Q+B)(I—-¢)I—-K)z

I+ To_lle

+ (I =M c)+) (1Bl = B+ prime)-) (I =1s c)+) (I — To) 5

I+ KT
Q1+ 1Bl 4 primc-) (= To)y = (I~ €) (Qu + B) (I~ €2) (I — Ky) 1=

+ (I - H>,C(0)+) (|B| - B +p7’[mc(0)—) (I — H>,c(0)+) (I — To)y
Recall that ker (Q1 + |B|) = ker (Q1 + |B| + primc)-) = {(I + K1)z | K1z = Tox} and we de-
note it by H. We now define a subspace H_ of Im (I-¢)adIm (I - H>)c(0)+) by

H_={(I-K)x,—(I - K2z | K1z = Koz},

and consider the following diagram.

Im (I — &)@ Im (I —1s co)+) e Im (I — &) & Im (I — 1L, c(0)+)

»| |0

(Im (I = &)+ Im (I =Ty ¢+ )) @ H. —2— (Im (I — €1) + Im (I =T o)) & H_,

(5.7)
where @, @ and R are defined as follows.
®((I = Kz, (I -Toy) = ((I—K1)$+ (I =To)y, prg_((I — K1)z, (I—To)y)) ,

Qa,b) = ((Qu+1Bl+primew-) (@), prg. RO (a,b)),

_ 1+ 1, .
Sy S1(I-Kq1)—3+—(I-Tp)
R = 1 2 Prim yL +DPra
<62<1—To>”02 (1K) s ) A
1+K 1T .
I I-K 1 I—T¢
= (601 602) I+T 'K ( J : ( » +p7af1,’
(I-To) —%—(I-K1)~" I

where &1 = (I - Q:l) (Ql + B) (I — Q:l), Gy = H<,C(O)— (|B| - B —|—p7’[mc(0)—) H<,C(O)—- Then
all maps are invertible and the diagram (5.7) commutes. As the same way as in Section 2, we have

log DetQ = log Det* (Q1+ Bl + prime(o)-)

I—K{'T,
=log Det ((I — &) (Q1 + B) (I — €1)) +log Det™ (2| B|Il<) + qlog 2 + log |det” <+0> |2
— qlog2 + logdet (prau ((Q1 + B)"'+(|B|-B +p7‘1mC(0)_)71) prem)
1 1 I - K{'T,
=log DetD3, ¢, — log DetD%/Ih,YO + 5 log2 - (p=(0) + 1 log Det* B? + log |det* (flo) |2

+logdet (pram (@1 + B) ™" + (1Bl = B+ primc)-)" ") prou) , (5.8)
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where g = dimker (Q1 + |B|).
We next discuss the relation between log Det* (Ql +|B| + pr;mc(o)_) and log Det* (Q1 + |B|).
Since ker(Q1 + |B|) = ker(Q1 + |B| + primc(o)-), we have
log Det* (Q1 + |B| + primc(o)-) = log Det (Q1 + | B| + primc(o)- + Preer(@+1B)))
=log Det (Q1 + |B| + prrer(@.+8))) + logdet g, (I + (Q1 + | B +p?‘ker(QIHBD)_lpszC(O)—)
=log Det (Q1 + | B| +p7"ker(Q1+\B|))

-1
+ logdet (I + PP ime)- (Q1 + Bl + prier@i+181) pTImC(O)*) :
It was shown in Lemma 5.2 of [L6] that

-1 I-C(0 i
priers (Q1 + |Bl + pro + primeo)+) T() = 50’(0)

1—C(0)
2 b)

where L is the space of restriction of L2-solutions of Dyy, _ to Y, i.e. L = (Lo )|y and
C'(0) = ,%\C(A)h:o- Using this result, it is not difficult to show that

1—C(0)
2

-1 I—-C(0)

I—C(0 I—C(0
(Q1 + Bl + prierq,+18)) = © ©

2 )

i /
2 2 2 ')
which leads to the following lemma.

Lemma 5.2.

i [ —C(0 I1-C(0
log Det* (Q1 + |B| + primc(o)-) = log Det* (Q1 + | B|) + log det (I + % ( )C"(O) ( )) .

Finally, we are going to analyze the last term in the last equality of (5.8). Let {hi,---,hq}
be an orthonormal basis for Im &, N Im Il c(gy+. Then {Ghy,---,Ghy} is an orthonormal basis

for Im (I — &) N Im Il ¢y~ Let p1,--+,p, be elements in (L27M1,oo + L5%y, oo) such that

©ily = hi. Then as the same way as in Lemma 3.1 and 3.4, we can show that

((Q1 + B)"'Ghi, Ghj)y = (@ilaes @5lm ) - (5.9)

We denote by ;o the limiting value of ¢; and ¢; o = 0 if ¢; is an L2-solution. We define ©; 12 by
(1.15). Then using the same argument as in Lemma 3.1, we can show that

(1Bl = B+ prime()-) " Ghi, Ghj)y = (@i0, 95,00y + (#i.12[Nowos 95,02 No.co) Nowor  (5.10)
where Ny o := [0,00) x Y. Hence, (5.9) and (5.10) imply that

(((Q1+B)™ "+ (IB| = B+ primc)-)"") Ghi, Ghj)y = (@i 0, 05,0)y + (i.12,05.12) My

=1, (5].].)
where we denote 20 = (w;;). On the other hand, let {41, -+, 9y} be an orthonormal basis for
L%-solutions of Dy, _ and {f1,--- 7fé} be an orthonormal basis for Im C(0)*, where ¢’ + % =q.

We put ¢ 4; = 2E(f;,0) (1 <4 < L), where 2E(f;,0) is the extended L*-solution of Dy, .. whose
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limiting value is f;. Then ; = Zg—:l cijp; for some ¢;; € C and we define a matric C' = (¢;5).
Note that

q q
bily =D ciypsly = cighy
j=1 j=1

Setting A1 = ((Vsly, ¥jly)v),<; j<,» We have

A =CC".

We denote by ;o the limiting value of v; and define 1); ;> by the same way as (1.15). Then we

have

V= ((¥i0,¥j0)y + <1/)i,L2,¢j7L2>M1,m)1gi7j§q = cwer,

which shows that

logdet (prau (Q1+ B)™' + (IBl = B+ prime-)"") pram) = —logdetAr + log detV. (5.12)

Theorem 1.7 follows from (5.4), (5.8), (5.12), Lemma 5.2 and Theorem 1.2.
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