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ABSTRACT. The aim of this paper is to describe the topology of
the leaves of a homogeneous foliation on C

2 with isolated singu-
larity and reduced tangent cone. This description leads to a com-
plete topological classification of translation surfaces associated
to a polygonal billiard.
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1. INTRODUCTION

Let P ⊂ R2 be a polygon and Q(P ) the set of its vertices. Through
this article we consider polygons without vertices P := P \ Q(P ).
Let S(P ) denote the translation real surface arising by unfolding bil-
liard trajectories inside P . In general, there exist a ”non dicritical”
holomorphic homogeneous foliation F = F(P ) on C2 whose generic
leaves are isomorphic, as translation surfaces, to the surface S(P ) [7].
Before precising what genericity and generality mean, (see §2 and
§4 respectively) we recall what is known about the topology of the
orientable surface S(P ):

Lemma 1. [4] Let the angles of P be πmi/ni, i = 1, . . . , k, where mi and
ni are coprime, and N be the last common multiple of ni’s. Then

genus S(P ) = 1 +
N

2

(
k − 2 − Σ

1

ni

)

In this article we give complete topological description of the ori-
entable surfaces S(P ) when the angles of P are not necessarily ratio-
nal. We achieve this by prooving the following

Theorem 1. Let F be an homogeneous holomorphic foliation on C2 with
isolated singularity and reduced tangent cone. Then, every non singular
leaf which is not a separatrix is homeomorphic to either:

(1) C \ Z[i], endowed with the standart topology.
(2) S \ E, where S is a compact RIEMANN surface and E ⊂ S is a

finite set of points.
1
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(3) M\E ′, whereM is the LOCH NESS monster, i.e. the plane to which
we stick a countable set of handles, and E ′ ⊆ M is a countable and
discrete set of points.

(4) M , the LOCH NESS monster.

The foregoing theorem completes a result presented in [7]. From
the same reference, we deduce that any translation surface S(P ) is
homeomorphic to either (2), (3) or (4). It is relevant to remark that,
up to punctures, all the topological surfaces in our list are contained
in the milestone

Theorem 2. [3] Let G be an orientable dimension 2 lamination on an arbi-
trary compact space. Then, if G has no compact leaf, a non countable set of
its leaves are diffeomorphic to either:

(1) The plane R2,
(2) The LOCH NESS monster,
(3) The cylinder R × S1,
(4) JACOB’S STAIR, i.e. the cylinder to which we stick a countable set

of handles in both directions,
(5) CANTOR’S TREE, i.e. the sphere S2 to which we remove a CANTOR

set,
(6) CANTOR’S FLORID TREE, i.e., a CANTOR’S TREE to which we

stick a countable number of handles in all directions.

2. GENERALITIES

In this section we precise our language and notation. A holo-
morphic foliation on C2 is said to be homogeneous if it is invariant
under the natural action of the homothetic transformation group
{Tk(z1, z2) := k(z1, z2) | k ∈ C∗}. In this article we consider ho-
mogeneous holomorphic foliations on C2 with isolated singularity
and having ν + 1, ν ≥ 2, complex lines through the singularity as
leaves. We suppose that this set of invariant lines, usually called the
tangent cone of the foliation, is given by the zeros of the irreducible
polynomial Pν+1 =

∏ν+1
j=1(z2 − ajz1), aj ∈ C, ai 6= aj , ∀i, j, and set

a = (a1, . . . , aν+1). From [2], this foliation is given by the holomor-
phic 1-form

(1)
ωa,λ

Pν+1

=
ν+1∑

j=1

λj
d(z2 − ajz1)

z2 − ajz1
,

where λ = (λ1, . . . , λν+1) is a point of the affine hyperplane
{(λ1, . . . , λν+1) ∈ Cn |

∑ν+1
j=1 λj = K, λj 6= 0 ∀j} and K ∈ Z \ 0

is an arbitrary normalization constant whose choice does not affect



HOMOGENEOUS FOLIATIONS: TOPOLOGY OF LEAVES AND BILLIARDS 3

the foliation defined by (1). We denote this foliation Fa,λ. We remark
that

(2) Fa,λ(z1, z2) =
ν+1∏

j=1

(z2 − ajz1)
λj

is a first integral for Fa,λ. This expression is usually multivaluated.
Let ∼λ be the equivalence relation induced by the Z3 action on C∗

defined by ((n1, n2, n3), z) −→ e2πiΣjnjλjz. The connected compo-
nents of the fibers Fa,λ : C2 −→ C∗/ ∼λ are the leaves of Fa,λ in
the complement of the tangent cone. Abusing notation we will write
Fa,λ(z1, z2) = k, k ∈ C/ ∼λ, for such a fiber. A straightfoward com-
putation shows that if k, k′ ∈ C∗, the homothecy Tk/k′ defines a dif-
feomorphism between Fa,λ(z1, z2) = k and Fa,λ(z1, z2) = k′. In par-
ticular, each leaf in Fa,λ is invariant by any homothecy T

e
2πi

P

j njλj ,
nj ∈ Z, ∀j.

We will call generic leaf any leave in the complement of the tangent
cone of Fa,λ. We denote it by L ∈ Fa,λ. The foliation Fa,λ presents,
up to diffeomorphism, three kinds of leaves: a (singular) point, C∗

(separatrices) and a generic leaf L.

3. PROOF, THEOREM 1

The topological type of the generic leaf of Fa,λ depends only in
the parameters λ1, . . . , λν+1. Indeed, let’s consider F̃a,λ, the exten-
sion of the foliation Fa,λ to HIRZEBRUCH’S first surface. This com-

plex ruled surface, which we denote C̃P(2), is obtained by blow-
ing up the origin of the affine chart C = {(z1, z2)} of CP(2). A leaf
in F̃a,λ is called generic if it comes from a generic leaf in Fa,λ. Let

π : C̃P(2) −→ P1(C) be the natural projection onto the exceptional
divisor. For each j = 1, . . . , ν + 1, we denote as well aj the intersec-
tion of the complex line z2 = ajz1 with the exceptional divisor. Let
Ba := P1(C) \ {a1, . . . , aν+1}. We remark that F̃a,λ is transversal to
the fibration defined by π on Ba. Furthermore, for every generic leaf
L ∈ F̃a,λ, the restriction π| : L −→ Ba is a covering. The monodromy
of this covering is given by the image in Diff(C, 0) of the holonomy
representation of F̃a,λ with respect to the fibration defined by π on
Ba. This holonomy representation can be explicitly calculated: let
{γj}

ν+1
j=1 be generators for π1(Ba, ∗), having index δj

i with respect to
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each aj , j = 1, . . . , ν+1, and such that γi∩γj = ∗ whenever i 6= j. The
holonomy representation morphism hol : π1(Ba, ∗) −→ Diff(C, 0)

of F̃a,λ is given by:

(3) hol(γj) = z  e2πiλj/Kz.

This is clear from (2). In particular, the monodromy action of the
covering π| is abelian.

Definition 1. We will say that the set λ = (λ1, . . . , λν+1) is:
• Not rational, when λj ∈ C∗ \ Q for all j = 1, . . . , ν + 1.
• Semi-rational, when there exists a pair i 6= j such that λi ∈ C∗\Q

and λj ∈ Q.
• Rational, when λj ∈ Q for all j = 1, . . . , ν + 1.

Definition 2. [6] A real surface S is of infinite genus if there is no
bounded subset S ′ such that S \ S ′ is of genus zero.

Following [Ibid], the ideal boundary of a real surface S (not necessar-
ily compact) is a nested triple of topological spaces B ′′(S) ⊂ B′(S) ⊂
B(S). This triple codes the topological type of the surface, that is:

Theorem 3 (Kerékjártó). [Ibid] Let S and Ŝ be two separable real surfaces
of the same genus and orientability class. Then S and Ŝ are homeomorphic
if and only if their ideal boundaries (considered as triples of spaces) are
topologically equivalent.

The topological spaces B ′(S) and B′′(S) are the not planar and not
orientable parts of the whole ideal boundary B(S). In the context of
this article, B′′(L) = ∅, for the generic leaf of the foliation Fa,λ is
oriented by its natural complex structure. Up to homeomorphism,
the LOCH NESS monster is the only infinite genus real surface whose
ideal boundary is just a point.

Lemma 2. If λ is not rational, then the generic leaf L ∈ Fa,λ is homeomor-
phic to a LOCH NESS monster.

Proof. First we claim that, for every compact K ⊂ L there exists
a compact subset K ⊂ K ′ ⊂ L such that L \ K ′ is connected by
arcs. From the definition of boundary component, this implies that
the ideal boundary of L is just a point. Indeed, let t0 ∈ P1(C) \
{a1, . . . , aν+1, ∗}. Let C1, . . . , Cν+1 be line segments joining aj to t0 for
every j = 1, . . . , ν + 1 and such that Ci ∩ Cj = t0, whenever i 6= j.
Without loss of generality, we suppose as well that the cardinality of
Ci ∩ γj is given by KRONECKER’s delta δij . The open set

(4) U := P1(C) \ ∪ν+1
j=1Cj
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is simply connected. Let P1(C) ' S2 be the standard identification
of the complex proyective line with RIEMANN’s sphere and S2 ↪→ R3

a fixed smooth embeding. Then, the restriction of the standard met-
ric to the image of this embeding induces a complete metric on the
exceptional divisor that we denote δ. For every positive real number
τ < infi6=j,i,j=1,...ν+1δ(ai, aj), the complement in U of the set ∪ν+1

j=1{t ∈
P1(C) | δ(t, aj) < τ} is closed and simply connected. We denote
this set by Uτ .

For every point ξ in a fiber π−1
| (t), t 6= a1, . . . , aν+1, t0, let Uτ,ξ be the

lifting of Uτ to the leaf L satisfying Uτ,ξ ∩ ξ = ξ. We define Kτ, ξ to be
the closure of Uτ,ξ in L. This set is compact in L.

Let

(5) τ(K) :=
1

2
infj=1,...,ν+1δ(π(K), aj).

SinceK is compact, there exists a finite set of points P = {p1, . . . , ps} ⊂
Ba such that

(6) K ⊂ K ′ := ∪ξ∈K∩π−1

|
(P )Kτ(K),ξ.

The set K ∩ π−1
| (P ) is finite and therefore K ′ is compact. We claim

that, for every positive real number
τ < infi6=j,i,j=1,...,ν+1δ(ai, aj) and finite subset
Z ⊂ π−1

| (t), t 6= a1, . . . , aν+1, t0, the set L \ ∪ξ∈ZKτ,ξ is arcwise con-
nected. This implies that L \K ′ is arcwise connected as well.

Indeed, for every point η in a fiber π−1
| (t), t 6= a1, . . . , aν+1, t0, let

Uη be the lifting of U (4) satisfying Uη ∩ η = η. We denote Uη the
closure in L of Uη. Clearly, L = ∪η∈π−1

|
(t) Uη . Consider two disctint

points q ∈ Uη and q′ ∈ Uη′ . If η = η′ and ∪ξ∈ZKτ,ξ ∩ U η has empty
interior, then the points q and q′ can be joined by an arc in L. When
η 6= η′, the point q can be joined by an arc to a point q̃ such that
π(q̃) ∩ π(Kτ,ξ) = ∅. Without loss of generality, we assume that π(q̃) is
contained in a small neighborhood in exceptional divisor of a point
ai, for some i = 1, . . . , ν + 1. Let be γ(q̃) be a simple loop passing
through π(q̃) and contained in this small neighborhood. There exist
a lift of γ(q̃) to the generic leaf L joining q̃ to a point q̂ ∈ Uη′′ such that
∪ξ∈ZKτ,ξ ∩ Uη′′ has empty interior. This is true since λi ∈ C∗ \ Q, for
all i, and therefore the cyclic subgroup {hol(γi)

n}n∈Z of Diff(C, 0)
is torsion-free. Proceeding analogously, the point q′ can be joined by
an arc to a point q̂′ ∈ Uη′′ . This leads to the previous case in which
η = η′. We conclude that a path between the points q 6= q′ always
exist.
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Lemma 3. If there exist a pair i 6= j, 1 ≤ i, j ≤ ν + 1, such that
γi, γj and γiγj are not contained in hol−1(IdC) (3), then L has genus dif-
ferent from zero.

Proof, lemma 3. Let m ∈ π1(Ba, ∗) and m̃ be a lifting of this loop to
the generic leaf L via de projection π−1

| . We denote by Um ⊂ L the
analytic continuation of this lifting to the simply connected domain
U (4). Let [γi, γj] := γiγjγ

−1
i γ−1

j and consider the following cases:
(1) γiγ

−1
j ∈ hol−1(IdC). Then U[γi,γj ] is homeomorphic to a torus

minus a disc.
(2) γiγ

−1
j /∈ hol−1(IdC). Then U[γi,γj ] is homeomorphic to the an-

nular domain {z ∈ C | 1 <| z |< 2}. The domain U[γ−1

i ,γj ][γi,γj ]

is homeomorphic to torus minus a disc, for the conditions
γ2

i ∈ hol−1(IdC) and γ2
j ∈ hol−1(IdC) are mutually exclu-

sive. �

Such a pair of generators γi, γj always exists whenever λj ∈ C∗ \ Q,
for all j. Suppose the opposite, that is, for every i 6= j, 1 ≤ i, j ≤ ν+1,
we have γiγj ∈ hol−1(IdC). Then, for every such a pair, λi+λj = qij ∈
Z. Since

∑ν+1
j=1 λj ∈ Z, such integral relations imply that λj0 ∈ Z, for

some 1 ≤ j0 ≤ ν + 1, which is a contradiction.
Whenever a pair {λi, λj} satisfying the hypothesis of lemma 3 co-

exists with λk ∈ C∗ \ Q, k not necessarily different form i or j, the
action of the free-torsion group {hol(γk)

n}n∈Z on the fibers of the cov-
ering π| : L −→ Ba generates a countable family of handles. In par-
ticular, every generic leaf L ∈ Fa,λ, for which λ is not rational, has
infinite genus. This concludes the proof of lemma 2. �

Semi-rational case, the set E’. Without loss of generality we assume
that λ = (λ1, . . . , λs, λs+1, . . . , λν+1), where λj ∈ Q for 1 ≤ j ≤ s and

λj ∈ C∗ \ Q for s + 1 ≤ j. In the chart z2 = tz1 of C̃P(2), the first
integral (2) has the form Fa,λ(z1, t) := zK

1

∏ν+1
j=1(t−aj)

λj . Let i ≤ s and
λi = pi

qi
∈ Q. Then, any generic leaf L ∈ F̃a,λ, is given by a connected

component of

(7) zK
1 (t− ai)

pi/qi

∏

j 6=i

(t− aj)
λj = z0,

where z0 ∈ C∗ is constant. For t ∼ ai,
∏

j 6=i(t− aj)
λj is a unity. Then,

up to a coordinate change, the generic leaf L defined by (7) is given,
in a neighborhood t ∼ ai, by a countable set of algebraic branches of
the form

(8) zK
1 (t− ai)

pi/qi = constant.
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For every such a branch, we compactify the abstract surface L by
adding the points corresponding to the limit t→ ai in (8). We denote
L topological surface obtained from this local compactification pro-
cess when the index i varies in {1, . . . , s}. We define E ′ := L \ L.

For example, if λ is rational, then L is a compact orientable sur-
face whose genus can be calculated from (3) using the RIEMANN-
HURWITZ formula. For instance, if λ ∈ {( 1

3
, 1

3
, 1

3
), (1

2
, 1

4
, 1

4
), (1

2
, 1

3
, 1

6
)},

then L is homeomorphic to the standard torus S1 × S1.

Lemma 4. If λ is semi-rational, then the ideal boundary of L is just a point.

Proof. As before, we claim that every compact subset K ⊂ L can be
covered by a compact subset K ′ ⊂ L such that L\K ′ is connected by
arcs. In deed, for positive real number τ < infi6=j,i,j=s+1,...ν+1δ(ai, aj),
we define Vτ to be the complement in U of the set ∪ν+1

j=s+1{t ∈ P1(C) |
δ(t, aj) < τ}. As in the proof of lemma 2, we define Vτ,ξ to be the
lifting of Vτ to a point ξ in a generic fiber of π|.

We consider τ(K) as in (5), but taking the infimum over the set
j = s + 1, . . . , ν + 1. To define K ′ it is sufficient to consider a the
closure in L of a set

(9) ∪ξ∈ZVτ,ξ,

where Z ⊂ π−1
| (t), t 6= a1, . . . , aν+1, t0, is a ”sufficiently large” fi-

nite subset. The rest of the proof is analog to the proof of lemma
2. Indeed, considering different cases, any two points q 6= q ′ in
L can be joined by an arc, for the action of any free-torsion group
{hol(γj)

n}n∈Z, j = s + 1, . . . , ν + 1, on the covering π| : L −→ Ba

permits to scape to any of compact subsets K ′ in L previously con-
structed. �

Corollary 1. Let λ be a semi-rational. Then, the ideal boundary of the
generic leaf L ∈ Fa,λ is homeomorphic to 0 ∪ {1/n}n∈N ⊂ C endowed
with the subspace topology.

If two coordinates λi, λj of a semi-rational point λ meet the hy-
pothesis of lemma 3, then the ideal boundary of the generic leaf
of Fa,λ presents a distinguished point B ′(L), corresponding to 0 in
terms of the preceding corollary, representing the not planar end of
L. In such a case, L is homeomorphic to the LOCH NESS monster
punctured in a countable set of points. In a semi-rational point λ,
such two coordinates always exist in the complement of the set:

(10) λj ∈ Z, ∀j ≤ s and λj + λk ∈ KZ, ∀s+ 1 ≤ j, k.
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Lemma 5. If a semirational point λ = (λ1, . . . , λs, λs+1, . . . , λν+1) satis-
fies (10), then the generic leaf of Fa,λ is homeomorphic to a LOCH NESS
monster puntured in a countable set of points.

Proof. First we prove the lemma in the illustrative case ν = 2. We
assume that (a1, a2, a3) = (0, 1,∞). Let W := P1(C)\ ([∞, 0]∪ [1,∞]).
From condition λ1+λ2+λ3 = K, we deduce that it is sufficient to con-
sider the action of the holonomy generators z  e2πiλj/Kz, j = 2, 3 to
reconstruc the generic leaf L from W . We identify W with figure 1

1−

0 1

W

0−

0+

1+

Figure 1.

Then, the generic leaf L is homeomorphic to

W

1 1 1

0 0 0

1+ 1+ 1+ 1+1− 1− 1− 1−

0+ 0− 0+ 0+ 0+0− 0− 0−

W W W W

Figure 2.

which clearly shows that L is homeomorphic to C \ Z[i]. When ν
takes values greater than 2 but ν − s remains equal to 2, a new dis-
crete set of punctures appears in the leaf L, for the image on every
generator γj, j ≤ s, in Diff(C, 0) is trivial.

We remark that, if ν − s > 1, there is no semirational point λ sat-
isfying (10). Indeed, in such a case set λj = pj − λs+1, pj ∈ Z, for all
s+ 1 < j. Then

∑ν+1
j=1 = K becomes

(1 − (ν − s))λs+1 = K ′,

for a certain K ′ ∈ Z. This is a contradiction, for λ is semirational. �

4. APPLICATIONS TO POLYGONAL BILLIARDS

Let λ1π, . . . , λν+1π be the angles of the non degenerated ν + 1-side
polygon P , ν ≥ 2. That is, 0 < λj < 2, for all j = 1, . . . , ν + 1 and∑ν+1

j=1 λj = ν − 1. Let n̂ := (n1, . . . , nν+1) ∈ Zν+1 and ψ(n̂) :=
∑ν+1

j=1 njλj . We define G := ψ−1(Z) and ψ̃(g) := e
2πi
ν−1

φ(g), for every
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g ∈ G. Then G̃ := ψ̃(G) is a subgroup of Gν−1 := {z ∈ C | zν−1 = 1}.
Polygons for which G̃ = {1} are called reasonable. For example, all
triangles are reasonable. Rectangles are not reasonable. This nomen-
clature comes from the same reference as the following

Theorem 4. [7] Let P be a reasonable polygon. Then, there exist a ∈
Cν+1 such that the translation surface S(P ) and the generic leaf of Fa,λ are
isomorphic as translation surfaces.

The determination of the parameter a ∈ Cν+1 is a
SCHWARZ-CHRISTOFFEL parameter problem [3]. Above, the trans-
lation surface structure of a leaf L ∈ Fa,λ is defined by the restriction
of a holomorphic vector field in C2 generating Ker(ωa,λ(p)), for ev-
ery p ∈ C2. The action:

(11) C2 × G̃ 3 ((z1, z2), g̃) g̃(z1, z2)

has no fixed points except for the origin. It leaves invariant each
connected component in the ”fibers” of the first integral Fa,λ. We
denote C2

λ the quotient of C2 \{z1 = z2 = 0} by the preceding action.
Let πλ : C2 −→ C2

λ be the natural projection. Then, {πλ(L) | L ∈

Fa,λ} is a non singular foliation on C2
λ. We denote it F̂a,λ. The image

by πλ of a generic leaf in Fa,λ is called generic as well.

Theorem 5. [7] Let P be a not reasonable. Then, there exist a ∈ Cν+1

such that the translation surface S(P ) and the generic leaf of the foliation
F̂a,λ are isomorphic as translation surfaces.

Here the translation surface structure any generic leaf in F̂a,λ is in-
herited from any generic leaf in Fa,λ contained in its preimage via the
projection πλ. By definition, if L ∈ Fa,λ is generic, then πλ |L is a finite
covering. The monodromy group of this covering is isomorphic to
G̃.

Corollary 2. Let P be a non degenerated polygon of angles λ1π, . . . λν+1π
without vertices.

(1) If λ is algebraic, then S(P ) is homeomorphic to a compact RIE-
MANN surface punctured in a finite set of points.

(2) If λ is semi-rational, then S(P ) is homeomorphic to a LOCH NESS
monster punctured in a countable set of points.

(3) If λ is not rational, then S(P ) is homeomorphic to a LOCH NESS
monster.

Certanly, since we are dealing with non-degenerated polygons,
there is no λ in this case satisfying the conditions (10). For (2)-(3)
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above, it is sufficient to remark that, if M is a LOCH NESS monster
and M −→ N is a covering map whose fibers are finite, then N is
also a LOCH NESS monster.
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