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1. Introduction.

In arecent paper [3] we classifieel Rielnannian Kä,hler-Einstein 111etrics in real dinlen­

sion four which were of Bianchi IX type, that is, which adlllittecl an isollletric action of

SU(2) with gencrically three-dilnensional orbits. \'\Te found that there were two falni­

lies of such luetrics which were cOlnpletc anel had negative Einstein COl1stant. One of

these consisted of 11lctrics aclnlitting an iSOlnetric action of U(2) j these mctrics had

prcviously been stuelied by Gibbons and Pope anel by Peclersen [5] ,[6]. The othe!'

faluily, which consisted of triaxial llletrics, had as its underlying topological 11lanifold

the tangent bundle of 8 2
.

In this note we explain how the latter [alnily can be generalised to produce exanlples

of cOlllplete Einstein llletrics with nonpositive Einstein constant on the tangcnt bundlc

of 8 n for any n greater than one. These lnetrics are of cohOlnogeneity one, that is,

they aelmit an action of a group of iSOIl1etries whose generic orqit is of coelilnension

one. SOllle exalnples of cohOll1ogencity one Einstein I11ctrics were produccd by Berard­

Bergery [1], by defining the Inetric on the orbits using a Rielllannian sublllersion with

circle fihre over a Kä hler- Einstein base. In the case we shall study the 11letrics on the

orbits are not obtained in this way.

2. Cohomogeneity one metries.

Consider a Illetric 9 in real dinlension 2n + 2 adnlitting an iS0111etrie action of 80(n +
2) such that thc isotropy group is generically 80(n). The lnetric is therefol'c of

Coholllogeneity one.

\Ve ean put the 111etrie in the form

9 = dt 2 + gt

where t is the arclength para.nleter along a geodesie orthogonal to thc group orbits,

anel 9t is a hOlllogeneous Inetric on the orbi ts.
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Now, for any honlogcneous space GIH wc lTIay idcntify thc tangent space at a

point with an Ad H -invariant complclnent P for 1) in g. \Vith this identification,

G-invariant l11Ctl'ics on GIH correspond prcciscly to Ael H -invariant inner pl'oclucts

on p.

In our case we eInbed so(n) in so(n +2) so that if ):i,j denotes the Inatrix (Akl)

with A ij = 1, A ji = -} anel all other entries zero, then {Xi,j; j = n+} ,11.+ 2, 1 :::; i < j}

spans a cOmplell1ent P for 50(n) in 50(11. + 2).

Now P has the following decOInposition iuto irreducible cornponents under thc ac1­

joint action of 80(n) :

where PI, P2 are standard n -dill1ensional representations spanneel by {'){i,n+l : I ::; i :;

n} and {~)(i,n+2 : } ::; i :; n} respectively, anel P3 is thc trivial rep1'esentation spanneel

hy X n+ 1,n+2.

V/e shall consider Illctrics with respcct to which thc above elceomposition is orthog­

onal, and such that

V\Te ean express this Illore coneisely by defining gt to be

\vhe1'e 13 is the Killing form on 80(n + 2) elefined by BC){, Y) = (11. - 2)T1'XY.

If a2 = b2 this metrie is obtained using a RieIllannian subrnersion with circle fihre

ove1' the flag Inanifold 80(11. + 2)1SO(11.) x 30(2) equippeel with a K ähler- Einstein

Inetric. If a2 anel b2 are not equal, however, 9t eloes not arise in this way.
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Let us denote by R'ie the Ricci tensor of the hOIllogeneous llletric 9t anel by ,Rie

the Ricci tensor of the Inetric 9 = dt 2 + 9t.

lt is convenicnt to introducc at this stage a. new transverse coordinate (" elefined by

\,Ve shall denote differentiation with respect to (" by a prillle, and use H. to denote

the vector fidd J!.... = a-nb-ne-1i!....
8t 8(·

The forn1ttlac of Berard-Bergery [1] for the Ricci tensor of a Illetric of Cohoillogene­

ity one give

Ric{Xi,n+! , Xi,n+l)

Ric{ ~X"i,n+2, X i ,n+2)

Ric{Xi,j, Xk,l)

Ric( Xi,j, H)

=

=

=

( ( )) ' (( ) 2 () 2 () 2)
1 1 c' b' a' 1 c' a' bl

Ric{H,H) = --- -- -+12-+11.- - - + Tl. - +n -
anbnc (e~bnc c b Cl a2nb2nc2 c a b

Using the standard fOrIllUla for the Ricci tensor of a hOlllogeneolls space [2] we

ca.n compute R~c ancI we find that the Einstein eqllations for the COh0I11ogeneity Olle

nletric 9 become

CL')' a4
- ([,2 - c2)2 Aa2 (I)

a2n-2b2nc2
- + +11.-1
a 2b2c 2

1 C')' b
4 - (c

2 - (
2

)2 Ab2 (2)- - + +n-1
a2nb2n-2c2 b . 2a2c 2

1 (CI)' + n(c4 _(a2 _[,2)2)
Ac2 (3)

(l 2nb2n C 2a 2b 2
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1 ( 1 ( c' b' a') ),- -- -- -+n-+n-
anbnc anbnc c b CL

where 1\ is the Einstein constant.

=1\

(4-)

Ir n = 1 these equa.tions are a prcsentation of thc Einstein equations for a Bianchi

IX Inetric.

It can be verified by direct calculation thatequations (1 )-(4) hold in particlilar if

a, b, c satisfy the following thrce first-order equations

a'

b'

C'

(5)

(6)

(7)

It is this rechlction of the Einstein equations which we shall stlldy. The Illctrics

arising [rain solutions of these equatiolls are precisely those Einstein llletrics with

respect to which the ahnost cOlllplex structure J defined by

J fJ IX'
: fJt -4 ~ n+l,n+2

is Kähler.

3. Complete metries.

\~lC shall now deinollstrate the existence of solutions to (5)-(7) which givc rise to C0111­

pletc metrics. lt will be convenient to introduce CL Ilew variable u dcfined by
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so the equations (5)-(7) becolne

1
(Lu 2a (b

2 + c
2

- a
2

) (8)

1
b11. = -b(c2 + a2 _ {)2) (9)

2
1 (2 2 2 211 22) (10)Cu = -nc a + b - c - -(t b
2 1~

The critica.l points of this systenl a.re precisely the points (0, /(, 1(), (1{, 0, ](), (1{, 1\', 0)

where J( E IR .

Assunlption

FrOlTI now on we shall take A to be less than or equal to zero.

Subject to th1S aSSllll1ption, the lincarisation of (8)-(10) about each critica.1 point

(cxcept the origin) has one negative, one positive anel one zero eigenvalue. So each of

these critical points has an unstable curvc.

Let us consider an unstable Cllrve of (){, 0, }() where f( is non:%ero. This will be a

solution 1;0 (8)-(10) defined Oll a InaximaJ interval (-00,1]) for S0111C 1] (1] lllay bc (0).

It follows froln (8)-(10) that if any one of (t, b 01' C is zero at a point in (-00,1]) 1

then it is ielentica1ly zero. lt is elear that on the llnstable Cllrve none of Cl, b 01' C is

identlcally zero, so nonc of t.hen1 vanishes anywherc on (-00,1]). Thc 111et.ric anel t.lIe

equations (8)-(10) are invariant under changes of sign of (t, b 01' C so frolll now Oll we

can assullle tha,t a, b, c a,re aU positive Oll (-00,1]) j in particuliu we can take ]( to be

positive.

Thc lnetric is therefore defined on (-00,1]) anel 1;0 show that it is c0l11plete wc neecl

to study its behavioul' as 1.1 tcnds to -00 anel as 1l tends to 1].

Note that if a equals b at any point on thc ul1stablc curve then a is identically

equal ta b, giving a contradiction. It follows that a i8 grcater than b on thc unstablc

curve, anel so (froll1 (9)) b is strictly increasing. It also follows fron1 (8),(9) that ~ is

strictly decreasing, and tcnds to sorne lilnit L ~ I as 1l tends ta 1/.
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Lenll11a 3.1

On an unstable curve of (1{, 0, J{) wc have the illequalities

(11 )

anel

(.1.2)

Proof

Suppose that c2 > ([2 + b2 - 2;a2lJ2 at 'Uo. The equations (8),(10) inlply that (l is

increasing anel c is decreasing at 'Uo. Recall also that b is increasing. Wc dcducc that

c2is grcater than a2 + b2 - 2: a2lJ2 on (-CX),1LO) l anel that c is bounded away froln

a on (-CX), 'Uo). This contradicts the fact that (a, b, c) tcncls to (J{, 0, }{) as 1L tends

to -CX), so we have establishecl inequality (11). Thc proof of inequality (12) is very

siInilar. 0

We deduce [roIll (8),(10) that (l, C are incrcasing on (-CX),17). VVe reillarked earlier

that b is strictly increasing on this intcrval.

Let us now study thc bchaviour of thc Illctric as 'u tends to -CX) anel as u tcnels

to 17.

As 'U tends ta -CX)

a "V J(

c '" J{

for SOlne canstant 111.

Choosing
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as a new coordinate, and using O'i,i to denote a basis of one-fornls dual to Xi,i' we find

that the 111etri c is asYITI ptoticaJly

as R tends to zero.

Now, 0";,n+2 + ... 0"~,n+2 is the standard 80(n + 1) -invariant I11etric on 8 a
, whi le

2 2 2 'tl j I· I 80( 2)' .' t ' " 8 n+10'1,n+1 + .. 'O"n,n+l + O"n+l,n+2 IS le Sloanc alc n + -lnval1an Inetr lC on ,

Therefore we obtain a nonsingular 111etric by adding in an (n + 1) -sphere at R = O.

In terlllS of thc orbit type of thc 80(n + 2) action, thc isotropy group jUll1PS at

J~ = 0 fron1 80(n) to 80(n + 1), so an n-din1cnsional spherc collapses to a point

anel the orbit at R = 0 is the (11. + 1)-sphere 80(n + 2)/80( 11. + 1) rather than

80(11 + 2)/80(n). The orbit a.t R = 0 is callcd a gcneraliscd bolt. in thc tenninology

of Gibbons, Page and Pope [4],

Ta exan1ine thc behaviour of thc 111ctric as u tends to 17 we introducc a new COOI"­

dinate 1', defined by

l' = 2(ab)t

lt follows [1'0111 (8),(9) that ab is increasing, so this is an allowable changc of vari­

ables,

'fhe lllctric is now

lAI-lI 2 l'2(a( 2 2) b( 2 2) u/2 )
'. (r + 4'1 b O"I,n+1 +.. 'O"n,n+1 + ~ 0"1,n+2 + ' ,'O"n,n+2 + n O"n+1,n+2

where HI = ~,

lt follows frOiTI equations (8)-(10) that

dHI + 2(11. + l)HI = 2n (~ + ~) _ A1'
d1' l' l' b a

(13)

(14)

Rccall that the incqua1ities (11) anel (12) show tha.t a, b, c are lTIonotonic incrcasing

on (-00,17), Suppose that the lilllit Il of b as n tcnds to 17 is finite. Since alb is
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decreasing, anel because of the esti Inate (11), we sec that the li rnits A, 11 of (l, c at u = "li

are also finite. lf 11 = 00 then (A, Il, 11 ) is a critical point, which leads to a cOlltl'adiction

as A, Jl, v a.re all positive. rr 71 is finite, then we also obtain a contradiction because

(-00,77) is by definition a Inaxima.1 interval on which the solution cxists. So wc eleduce

that b, and hence 1', tcnds to infinity as u tends to 17.

Therefore we nHlst stuely the asyn1ptotic5 of the Illctric (13) as T tends to infinity.

It fo11ow5 fronl (14) that

.:!..- (7,2n+2 I/V) = 2nr2n+1 (~ + ~) _ Al,2n+3
d1' b a

Sohring for l'l!, anel reca11ing that ~ decreases tnonotonica.lly on (-00,17) to S0111e

finite positive lin1it L, we sec that Hf = 0(7,2) if A is negative anel 1-11 is boundeel if

A i5 zero. lt [0110w8 that the geodesic distance Joo vvll-1 d1' to l' = 00 is infinite.

We have 8hown that thc mctric is cOlllpletc. The unclerlying topologicaJ I11anifold is

thc total space of a rank n + 1 vectol' bundle E over sn+!. In fact the sphere bundle

of this vector bUlldle is the Stiefel I11anifold SO(n + 2) / SO(n), so E is in fact thc

tangent bundlc of sn+ 1 [7].

\Ve SU1111narise our re8ults in the next theorell1.

Theorem 3.2

The unstable curves of points (/(,0, J(), where J( is nonzero, givc c0l11plcte Einstein

Inetrie5 with nonpositive Einstein constant on Tsn+l.

Renlarks

(i) One ean also obtain cornplete Inctrics by considering the unstahle curves of

(J(, J(, 0) where n - AJ(2 is a, ha.Ir-integer. The eondition on !( is nceeled to cnsurc

that the I11etric ean be cOInpleteel by adding a genel'alised bolt. I-Iowever, [01' these

trajectories a is identically eqllal to b anel the I11etrics on the 50(11. + 2) orbits are

obtained by RieI11fl,nnian sllbI11ersions with circle fibres. The resulting Coholllogencity

one nletrics are included in thc exaI11ples of Berard-Bergery [1],

(ii) The 111etrics obtained froll1 unstable curve8 of (0, J(, Ir..") are tbc satne as those

in Theorel11 3.2, bccause the eqllations (8)-(10) are sYl11n1etric in a allel b.
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(ii) COinplete Ricci-flat K ä.hler lnetrics have been shown to exist on the ta.ngent

bundles of sphcres by M. Stenzel and also by Kobayashi [8],
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