Einstein metrics of cohomogeneity
one

Andrew S. Dancer*
Ian A. B. Strachan**

* % *
Department of Mathematics and Statistics Max-Planck-Institut fiir Mathematik
University of Newcastle Gottfried-Claren-Stralie 26
Newcastle-upon-Tyne NE1 7RU D-53225 Bonn

United Kingdom Germany

MPI / 93-87






1. Introduction.

In a recent paper [3] we classified Riemannian Kahler-Einstein metrics in real dimen-
sion four which were of Bianchi IX type, that is, which admitted an isometric action of
SU(2) with generically three-dimensional orbits. We found that there were two fami-
lies of such metrics which were complete and had negative Einstein constant. One of
these consisted of metrics admitting an isometric action of U(2) ; these metrics had
previously been studied by Gibbons and Pope and by Pedersen [5],[6]. The other
family, which consisted of triaxial metrics, h.ad as 1ts underlying topological manifold

the tangent bundle of S2.

In this note we explain how the latter family can be generalised to produce examples
of complete Einstein metrics with nonpositive Einstein constant on the tangent bundle
of S™ for any n greater than one. These metrics are of cohomogeneity one, that is,
they admit an action of a group of isometries whose generic orbit is of codimension
one. Some examples of cohomogeneity one Einstein metrics were produced by Bérard-
Bergery [1], by defining the metric on the orbits using a Riemannian submersion with
circle fibre over a Kahler-Einstein base. In the case we shall study the metrics on the

orbits are not obtained in this way.

2. Cohomogeneity one metrics.

Consider a metric g in real dimension 2n 4+ 2 admitting an isometric action of SO(n +
2) such that the isotropy group is generically SO(n). The metric is therefore of

cohomogeneity one.

We can put the metric in the form
g=dt* + g

where ¢ is the arclength parameter along a geodesic orthogonal to the group orbits,

and ¢, is a homogeneous metric on the orbits.
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Now, for any homogeneous space G/H we may identify the tangent space at a
point with an Ad H -invariant complement p for p in g. With this identification,
G-invariant metrics on (//H correspond precisely to Ad H-invariant, inner products

on p.

In our case we embed so(n) in so(n + 2) so that if X;; denotes the matrix (Ay)
with A;; =1, Aj; = —1 and all other entries zero, then {X; ;57 =n+1,n+42,1 <1< j}

spans a complement p for so(n) in so(n + 2).

Now p has the following decomposition into irreducible components under the ad-

joint action of SO(n):

p=p Dp Dp3
where p,, p; are standard n-dimensional representations spanned by {X;,41:1 <7<
n} and {X;.42:1 <7< n} respectively, and py is the trivial representation spanned
by Xog1,n42 -

We shall consider metrics with respect to which the above decomposition is orthog-

onal, and such that

G Kimt1, Ningr) = a(t)?6i

gt(Xf.ﬂ-l"% *X'k,n+2) = b(t)z&k

gt(-xn+1,n+2s Xﬂ+1.ﬂ+2) = C(t)z

We can express this more concisely by defining ¢; to be

7 (a0 (=B) Iy, ® HDA=B) bp, ® c((~B) I,

where 3 is the Killing form on so(n + 2) defined by B(X,Y) = (n —2)TrXY.
If a® = b% this metric is obtained using a Riemannian submersion with circle fibre

over the flag manifold SO(n + 2)/50(n) x SO(2) equipped with a Kahler-Einstein

metric. If «? and b? are not equal, however, ¢, does not arise in this way.
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Let us denote by Ric the Ricci tensor of the homogeneous metric ¢; and by Ric

the Ricci tensor of the metric ¢ = dt? + g,.

[t is convenient to introduce at this stage a new transverse coordinate ¢ defined by
dt = a™b"c d¢

We shall denote differentiation with respect to ¢ by a prime, and use H to denote

the vector field 3 = a b "¢ —15"(

The formulae of Bérard-Bergery 1] for the Ricci tensor of a metric of cohomogene-

ity one give

Ric( Xinpr, Xingr) = Hic(xi.n+hxi.n+1) a2n— 2ban2(
v

R?C( n+2; Xr. n+2) = R?‘C( tyt2;y - )\t ﬂ+2) agnbzn 2C2 (-5)

r e - ~' ;< c
RZC(An+1,n+2,)\n+1,n+2) = -R?-C(An+l,n+iy«)\n+l n+2) a.?ﬂbz’“- (Z)
Ric(X,-‘j, X,L;J) = 0ifq :,é k Ol'j ;é )
Rie(X;;,H) = 0

. 1 1 (¢ ¥ d\\ 1 &\’ a'\? W
Ric(H,H) = anbre (a”b"c (T:- + n? + H‘Z)) T gnpinge ((Z) Tt (Z) n (3

Using the standard formula for the Ricci tensor of a homogeneous space [2] we

can compute Ric and we find that the Einstein equations for the cohomogeneity one

metric ¢ become

al — (b — c*)? \
azn-zbznc2 ( ) 2h2c? +n—-1 = Aa ()
b b* — (* — a*)? ) )
a2nb2n 202 (3) Da2c2 +n—-1 = Ab (2)
1 c\' n{c* — (a* — b%)?) R
a?ﬂ.b2u (_) 2(123)2 = Ac (?)

vl
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1 1
a*b"c \a™b*c \ ¢

C,+nb+na, ’ ! E’ 2+ a_’2+ b—,z =A
a a?npinc? c " a " b o

where A is the Einstein constant.

If n =1 these equations are a presentation of the Einstein equations for a Bianchi

IX metric.

It can be verified by direct calculation that equations (1)-(4) hold in particular if

a, b, c satisfy the following three first-order equations

1

Lot 4 & - ®)
1

ST 4 o = b7) ©
-];'na""bn_lc (a2 FH - 2_A_a2b2) "
9 n

It is this reduction of the Einstein equations which we shall study. The metrics

arising from solutions of these equations are precisely those Einstein metrics with

respect to which the almost complex structure J defined by

is Kahler.

T (L s
J: )\i,n+1 - —“[;/\i,n+2

0 1
Ji— - zXn+1,n+2

T Ot

3. Complete metrics.

We shall now demonstrate the existence of solutions to (5)-(7) which give rise to com-

plete metrics. 1t will be convenient to introduce a new variable u defined by

du = (ab)*'d¢
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so the equations (5)-(7) become

1

a, = ga,(l;v2 +c? = a?) (8)

b, = éb(c2 +a® = b?) (9)
1 2A

Ch = —nc (a2 + b - — —agbz) (10)
2 n

The critical points of this system are precisely the points (0, K, 1), (K,0, K}, (K, K, 0)

where K € R .

Assumption

From now on we shall take A to be less than or equal to zero.

Subject to this assumption, the lincarisation of (8)-(10) about each critical point
(except the origin) has one negative, one positive and one zero eigenvalue. So cach of

these critical points has an unstable curve.

Let us consider an unstable curve of (I,0, K') where K is nonzero. This will be a

solution to (8)-(10) defined on a maximal interval (—oo, 7} for some 7 (n may be o).

It follows from (8)-(10) that if any one of @,b or ¢ is zero at a point in (—oc0,7),
then it is identically zero. It is clear that on the unstable curve none of «,b or ¢ is
identically zero, so none of them vanishes anywhere on (—oco,7). The metric and the
equations (8)-(10) are invariant under changes ol sign of «,b or ¢ so from now on we
can assume that a, b, ¢ are all positive on (—oo,7); in particular we can take K to be

posttive.

The metric is therefore delined on (—o0,7) and to show that it is complete we need

to study its behaviour as u tends to —oco and as u tends to 7.

Note that if « equals b at any point on the unstable curve then « is identically
equal to b, giving a contradiction. It follows that « is greater than b on the unstable
curve, and so (from (9)) b is strictly increasing. It also follows from (8),(9) that % is

strictly decreasing, and tends to some limit L > 1 as u tends to 1.



Lemma 3.1

On an unstable curve of (4,0, ) we have the inequalities

2
E<ad b - ﬂa"zf)2 (11)
n
and
a* < b + A (12)
Proof

Suppose that ¢? > a* + 0% — 22420 al uy. The equations (8),(10) imply that « is
increasing and c is decreasing at ug. Recall also that b is increasing. We deduce that
c? is greater than a? + % — %azlﬂ on (—oo,up), and that ¢ is bounded away from
a on (—oo,up). This contradicts the fact that (a,bd,c) tends to (K,0,K) as u tends
to —oo, so we have established inequality (11). The proof of inequality (12) is very

similar. O

We deduce from (8),(10) that «,c are increasing on (—oo,n). We remarked carlier

that b is strictly increasing on this interval.

Let us now study the behaviour of the metric as u tends to —co and as u tends

to 7.

As u tends to —oo

b o~ MeK's

K

)
12

for some constant A .

Choosing

R = MeN's



as a new coordinate, and using o; ; to denote a basis of one-forms dual to X ;, we find

that the metric is asymptotically

dR2 + R2(0'1 n+2 + g, n+2) + 1(2(0'1 1 ‘l’ g, n+l + Jn+l n+2)

as R tends to zero.

Now, 0% .o+ ...02 ., is the standard SO(n + 1)-invariant metric on S, while
OF g + - .J,":‘nﬂ + 0%, nea is the standard SO(n 4 2)-invariant metric on S™!.

Therefore we obtain a nonsingular metric by adding in an (n + 1)-sphere at R = 0.

In terms of the orbit type of the SO(n + 2) action, the isotropy group jumps at
R =0 from SO(n) to SO(n + 1), so an n-dimensional sphere collapses to a point
and the orbit at R = 0 is the (n + 1)-sphere SO(n + 2)/SO(n + 1) rather than
SO(n +2)/50(n). The orbit at R = 0 is called a generalised bolt in the terminology
of Gibbons, Page and Pope [4].

To examine the behaviour of the metric as u tends to # we introduce a new coor-
dinate r, defined by
1
r = 2(ab)?
It follows from (8),(9) that «b is increasing, so this is an allowable change of vari-
ables.

The metric i1s now

1 b
W=ldr® + 17'2 (%(0?,n+l + .- ‘Jrzl,n-}-l) + E(Uf,nw +.. -02,n+2) + Hfgfl-{-],n-{d) (13)

where W = ib
a

It follows from equations (8)-(10) that

b a (14)

dW N 2(n+ )W _ %‘l (a b) A
dr 7 r

Recall that the inequalities (11) and (12) show that a, b, ¢ are monotonic increasing

on (—o0,7n). Suppose that the limit g of b as u tends to 7 is finite. Since «/b is
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decreasing, and because of the estimate (11), we see that the limits A\, v of «,c at u =y
are also finite. If 5 = oo then (A, g, ¥) is a critical point, which leads to a contradiction
as A, qi, v are all positive. If 5 is finite, then we also obtain a contradiction because
(—oo,n) is by definition a maximal interval on which the solution exists. So we deduce

that &, and hence r, tends to infinity as u tends to 7.

Therefore we must study the asymptotics of the metric (13) as » tends to infinity.

It follows from (14) that

d

—_ (7'2"'"'21'1/) = Iprintt (E + b

2l =A .2n+3
dr ) '

b a
Solving for W, and recalling that § decreases monotonically on (—oco,7) to some
finite positive limit L, we see that W = O(r?) if A is negative and W is bounded if

A is zero. 1t follows that the geodesic distance [ VW =1dr to r = oo is infinite,

We have shown that the metric is complete. The underlying topological manifold is
the total space of a rank n 4+ 1 vector bundle £ over S™*!'. In fact the sphere bundle
of this vector bundle is the Stiefel manifold SO(n + 2)/50(n), so £ is in fact the
tangent bundle of S**! [7].

We summarise our results in the next theorem.
Theorem 3.2

The unstable curves of points (K, 0, K), where K is nonzero, give complete Finstein

metrics with nonpositive Einstetn constant on 7°57*!,

Remarks

(i)  One can also obtain complete metrics by considering the unstable curves of
(K,K,0) where n — AK? is a hall-integer. The condition on K is needed to ensure
that the metric can be completed by adding a generalised bolt. However, {or these
trajectories a is identically equal to b and the metrics on the SO(n + 2) orbits are
obtained by Riemannian submersions with circle fibres. The resulting cohomogeneity

one metrics are included in the examples of Bérard-Bergery [1],

(i1)  The metrics obtained from unstable curves of (0, K, K') are the same as those

in Theorem 3.2, because the equations (8)-(10) are symmetric in ¢ and b.
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(i)  Complete Ricci-flat Kahler metrics have been shown to exist on the tangent
bundles of spheres by M. Stenzel and also by Kobayashi [8],
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