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Abstract

A Del Pezzo surface X over C is cither a projective plane P2 or a
quadric @ or a blow up of ¢, £ < 9, generic points in P?. Let F bec a
topological vector bundle on X with rk F =7, ¢,(F) = ¢, ¢2(F) = ¢
and hence with the discriminant

1 r—1,
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In this paper we show that sufficient conditions for the existence of
an Hermite-Einstein metric in F can be obtained via an inequality on
the discriminant of 7. Namely if b,(X) < 3 then

Ar2>1
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is the sufficient condition and if 4 < b,(X) < 7 then the condition

(be — 1)(b2 — 2)
2

is sufficient for the cxistence of an Hermite-Einstein metric in F.

Ar > , where by = b,(X),

1 Introduction

We consider vector bundles on a 2-dimensional compact complex manifold
X which is a Del Pezzo surface. Del Pezzo surfaces are algebraic and their
classification over C is well known. A Del Pezzo surface X over C is either
a projective plane P? or a quadric @ or a blow up ¢ generic points in P?
where t <9 .

The question of the existence of an Hermite-Einstein metric in a topo-
logical vector bundle F over X that we are dealing with can too be re-
formulated as algebraic. By the famous Kobayashi-Hitchin correspondence
theorem ([LT]) the existence of such a metric in F is equivalent to the exis-
tence of a stable algebraic vector bundle structure in F, or to the existence
of an algebraic stable vector bundle F' such that its rank and Chern classes
coincide with those of F.

We will deal with the question in the latter form and whence our task
is to determine weither it is a stable bundle F' among algebraic bundles on
X with given rank r and Chern classes ¢, ¢; ( with given Chern datum
in the terminology of [R2]). We consider here the stability defined by the
anticanonical embedding.

We need to mention that as the stability considerations presume that
there is chosen an embedding of X in a projective space so in order to define
an Hermite-Einstein metric in a vector bundle one has to choose a metric on
a base X first. Given a projective embedding one can induce the metric from
the Fubini-Study metric of the projectic space and exactly this procedure is
used in the Kobayashi-Hitchin correspondence.

The question about stable bundles with given Chern data has been solved
completely for X = P? in a seminal paper [DL]. Under additional condition
A # 1/2 it was also solved for X = @ a quadric surface in [R1, R2] and for
X = PZ_ (ablow up of one point) in [R2].

It was established in [R2] that in order to obtain a stable vector bundle
with a required topological invariants on a Del Pezzo surface it is sufficient to
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construct an exceptional system with a certain set of properties. We follow
this approach here. The study of the properties of exceptional systems on X
will be the main content of this paper.!

Let us fix some notations. As usual PicX is the Picard group of line
bundles which is the same as the Neron-Severi group for a Del Pezzo surface.
The first Chern class provide an isomorphism

¢ : PicX = Cl X c HA(X, Z)

of Pic X onto the subgroup of algebric classes in H2(X, Z). The latter sub-
group is also identified with the divisor class group by means of Poincare
duality. The intersection pairing for divisors corresponds to the multiplica-
tion of cohomology classes as soon as we identify H'(X, Z) with Z. This
identification also permit us to treat the second Chern classes as integer
numbers.

By Ky we denote the canonical class of X that means the divisor class of
the canonical line bundle on X which is the same as the bundle of complex
holomorphic differential 2-forms of X.

We keep also the following notations from [R2]:

Myx=2ZxClX x Z,

ME=NxClXxZ.
x(4, B) =Y (-1)'dimExt'(A, B),

rp =1{F) = 1kF,
_ alF) ,
IIF—T(F) EC])&@Q,

Va,B = Vp — V4,

p(F) =v(F) - (-Kx),

1. 1
pr=p(F) = (5612 —Cz) (F) € §Z,

'The author would like to express his gratitude to Max-Planck-Institute for the stim-
ulating atmosphere and gospitality.



_ 1 r—1 ,
br= (=l - 2=ad)) (P)
An element ¢ = (r, ¢y, ¢p) € My is said to be the Chern datum for a vector
bundle or for an algebraic coherent sheaf F when r = rk(F), ¢ = (F)
with the corresponding notation:

¢ = (r,c1,¢) = Chd(F).

It is convenient to consider the Chern data set My as an abelian group in a
way that

This results for a Del Pezzo surface in an isomorphism
MX e KO(X)

where Kqo(X) is the Grothendieck group for algebraic coherent sheaves on X
It is important to mention that the functions », g, p, m, A and x depend
only on Chern data of sheaves which are their arguments so we consider
those functions as functions on My or on Ko(X') when it is convenient.

The Riemann-Roch theorem adjusted for sheaves on a Del Pezzo surface
states that:

x(A,B) = rA'rB+%(—K,\»)(rAc1 (B)—7pci(A))+mpp+rppa—~ci{A)-c1(B). (1)

If i #£ 0, g # 0 then this can be rewritten:

- - K
X(A, B) = TATB (UA’B (VAéB X) -+ 1- AA - AB) . (2)

Let us denote by p = (—Kx)/2 and rewrite it once more:

2

2
X(A’B):rArB (@r&_%-}-l—d,{—ﬁg). (3)

The Serry duality theorem for sheaves on a smooth surface can be stated
here in a form ([DL]):

Ext'(A4, B) = Ext* (B, A® Kx).
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We often use it in this form through the text.

Let us remind definitions and properties of cxceptional sheaves on X ([G],

[KO], [R1], [R3]).

Definition 1.1 A sheaf E' is called exceptional if Hom(E, E) = k and
Ezt'(E,E) =0 fori>0.

Thus x(E, F) =1 and it implies that

1 1 : .
Agp = 3 (1 - W) in particular 0 < Ap < 1/2.

Let Exy denotes the set of Chern data for exceptional vector bundles
(locally free exceptional sheaves) on X. Clearly Exy C M%.

It is well known that if ¢ € M} and A(c) < 1/2 then a stable vector bundle
F with Chd(F) = c exists if and only if ¢ € Exy.

For ¢ € M} with A(c) > 1/2 a more complicated necessary condition for
the existence of a stable F, Chd(F) = ¢, is known ([DL], [R1], [R2]). It
was called DL-condition in [R1]. We remind it below adding the condition
A > 1/2 because the case when A = 1/2 is more subtle and we do not
consider it here.

Definition 1.2 An clement ¢ € M} is said to satisfy DL-condition if:

1. x(c,e) <0 for any e € Ezx such that r(e) < r(c) and
4(e) > o) 2 ple) - KF (@)
2. Ae) >
Proposition 1.3 If A{c) > 1 then DL-condition is valid for c.

Proof. By the Riemann-Roch theorem (3)

U )2 R
'rcl're x(c,e) = (”—QP)— - _ﬂz_ +1=A(c)— Ale). (5)



It is possible to write v, = ap+ A where A - p = 0. This implies

1 Ki

Voo p = 5(plc) = ple) = ap® = a —=.

On the other hand (4) shows that
0 < pfc) — ple) < K%.

Hence 0 < a < 2 or la — 1} < 1. Now A? < 0 by the Hodge index theorem
and thus
(Ve — p)r=(a—12p*+ X < (a—1)p* < p

This permit us to conclude that

1

Tele

x(c,e) < %i—%j—f-l—é.(c)—-ﬁ(e) < —~Afe) 0.0

It was shown that DL-condition is also sufficient when X = P? ([DL]),
X = @ ([R1)], [R2)), or X = P%,_ ([R2]). We have to mention that the
results of these papers are formulated as conditions for the existence of a
stable sheaf but the proofs permit one to conclude that if > 1 then it exists
not only a stable sheaf but a stable vector bundle for the same Chern datum.

If r = 1 then the situation is different. The only rank 1 vector bundles are
line bundles and their discriminants are equal to 0. For rank 1 and a positive
discriminant one can have a stable sheaf but not a stable vector bundle.

Thus we have got a corollary.

Corollary 1.4 Suppose that X = PZ%,Q or P‘;f1> and that the metric on
X 13 induced by the anticanonical embedding. Let F be a topological vector
bundle on X. If rkF > 1 and Ax > 1 then there exists an Hermite-FEinstein
metric in F.

Here is the main result of the paper.

Theorem 1.1 Let X be a complex surface which is made by blowing up t,
2 <t < 6, generic points in P? and let it be provided with a metric induced



by the anticanonical projective embedding. Suppose F is a topological vector
bundle on X with rkF > 1 and

Then it exists an Hermite-Finstein metric in F.

Clearly one can reformulate the restrictions on the type on Del Pezzo surfaces
in the theorem and the corollary as incqualities on the second Betti number
ba(X). Tt is ba(X) < 2 for the corollary and 3 < b,(X) < 7 for the theorem.
Of course t = bo{ X} — 1.

The proof of the theorem depends on the results from [R2] that connect
the existence of stable sheaves with the construction of exceptional systems
on X satisfing certain properties. We will start the next section with the
reminding of the definitions and the propertics.

2 Exceptional systems

Definition 2.1 The system of sheaves Ey, ..., E,, is called exceptional sys-
tem if the sheaves E; are exceptional and for any 1 < § and all ¢

EIth(Ej, E,) =0

An exceptional system on X is called complete if its image in the Grothendieck
group Ko(X) provides a Z-base for the group.

Let us denote by I the ordered set [0, ..., m] of the indices of the system
in question.

The papers [KO], [R3] are good references for results on exceptional sys-
tems on Del Pezzo surfaces. In particular for our surface X an exceptional
system Ey, ..., E,, is complete if and only if m =1 + 2.

Given an element ¢ € Ko(X) we can write

c= Z 4 [Ea] (6)

icl
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One can express the coordinates n; with the help of a ”dual exceptional
system” where we have to distinguish between the left and right duals and
permit for "the signs {¢;} to appear in the picture”.

Definition 2.2 The ezceptional system E] ..., Ej is called left dual to the
system Fy, ..., E, if

X(E;, E;) = &€ (7)
where g; = +1, —1. Then the coordinates {n;} in (6) are given by the formula:

n; =€ X(Efz C)

It is known ([G], [KO]) that for an exceptional systemn on a Del Pezzo surface
the left dual system always exits and it is uniquelly defined together with its
signs by the initial system.

Let us fix the notations Ly, ..., L, for the divisors that are preimages of
the blown up points and the notation H for the divisor class which is equal
to the preimage of a gencric line in P2

Elements Ly, ..., L;, H constitute a Z-base for Cl X and their intersection
numbers are as follows:

H'H=1, H'L2=0’
Li-Li=-1, Li-L;=0.

As usual we denote by O(D) a line bundle with the first Chern class (or
a divisor class) D.

Lemma 2.3 The system
Eo=0, E,=0(Ly), ..., E,=0(L), Eppmy = O(H), E,, = O(2H) (8)
where m =t + 2, is a complete exceptional system on X.
We leave it to the reader to prove the lemma.
We would like to find the left dual for this system. Let O(n)., denote
the sheaf which is trivial outside L; and coincides with a line bundle O(n) on
L;. Also let us fix the notation T'(D) for the preimage onto X of the tangent

vector bundle on P? twisted by a line bundle on X with the first Chern class
D.



Lemma 2.4 The system
O(2H), T(H), Oy,, ..., O, OBH =Y L) (9)
is the left dual system to (8) and the corresponding signs are
Em =41, em1=-1, 6, =41, ..., = +1, gy = +1.

We would like also leave this as an exercise to the reader. Let us mention
that the paper [G] contains the general rule for constructing the dual systems
on Del Pezzo surfaces.

Suppose it is given an clement ¢ € M}, According to Theorem 7.1 from
[R2] in order to get a stable vector bundle F' with Chd(F') = ¢ we have to
fix an expression of —Kx as a sum of lines

- Kx =ZPS (10)

and to find a complete exceptional system Ey,..., E,, of vector bundles to-
gether with the decomposition of its indices in two subsets [ = I~ U I
satisfying the following properties.

Gls sheaves Hom(E;, E;) for i € I~ and j € I are generated by global
sections.

Hm Ext?(E;, E;) =0 fori < j and g # 0.

R1 Ext'(E;, E;(—P)) = 0 fori € I~ and j € I'* and for any line P = P,
from (10).

R2 Ext*(E;, E;(—P)) = 0 for either 4,5 € /~ or i,j € I'* and for any line
P = P; from (10).

Iq The coordinates €; x(E!,c) of care > 0fori€ IT and <0forze I™.

Then F can be constructed via an exact sequence:

0— 6}9 |Tld fﬂ —EL} GE) hlilfi‘-——+ F—0

iel- ielt



where @ has to be a generic morphism of the bundles (and this way one can
get a versal family for such F).

We know that for surfaces under consideration —Kx =3H -3, Ly
and H, H — Ly, H — Ly — Ly, are lines. As ¢ < 6 in our case so we can
choose the decomposition (10) using only the lines of the above mentioned
type. Let us fix one for the following.

Now we are ready to start the proof of Theorem 1.1.

Proof of Theorem 1.1. What we are to do is to provide for any element ¢
from the theorem an exceptional system and sets /™, I~ such that the above
conditions are satisfied. Let us mention that the first four conditions Gls ,
Hm, R1, and R2 do not depend on ¢ so it is practical to check them first.

Proposition 2.5 For any divisor D the system Ey(D), ..., En(D), where
Ey, ..., E, is defined by (8), satisfies Gls , Hm, R1, and R2 for the cases:

(a): I-={0,1,...,t}, IT={m—1, m};
(b): I-={0,1,...,t, m—1}, It ={m}.
Proof. Because of equalities

Hom(A(D), B(D)) = Hom(A, B),

Ext?(A(D), B(D)) = Ext‘(A, B) (11)

nothing depends on D and we can suppose that D = 0.
The condition Gls is obviously valid and the rest depends on computa-
tions of cohomologies. It is well known that for vector bundles:

Ext?(A, B) = H/(X, A" ® B)
hence for Hm we are to check that sheaves
0, O(L;), O(H), O(2H), O(H — L;), O(2H — L;)

have trivial higher cohomologies. Similarly in order to check R1 one needs
to prove triviality of 1-cohomologies for line bundles

O(H — P), O(2H - P), O(H — L; — P), O(2H — L; - P),

10



and the triviality of 2-cohomologies for sheaves

O(Ll - P): O(_Li - P)’
O(H - P), O(—H - P),
OH-L;,—P), O(-H+L;-P)

have to be proved for R2.

The task is relatively easy as these are the cohomololies of line bundles.
We leave it to the reader to make the computations with the help of the
following lemmas.

Lemma 2.6 (a). Let A = (—pH+Y a;L;) and p > 0 then H*(X, O(A)) = 0.
(b). Let B= (—p'H + ¥ a;L;) and p’ < 2 then H*(X, O(B)) = 0.

Lemma 2.7 Let L = L;.
(a). f A-L >0 and H'(X, O(A)) =0 then

H'(X, O(A+ L)) = 0.
(b). If B- L <0 and H'(X, O(B)) =0 then
HY(X, OB~ L))=0.

(c). If B-L =0, H(X, O(B)) = 0, and the restriction induces an epimor-
phism HY(X, O(B)) — H'(L, O) then

H'(X, O(B - L)) = 0.

Proof of the lemmas. Lemma 2.6.(a) follows from the fact that H has no
fixed components and the intersection

(-pH+ a;L;)-H=—p

is negative. Lemma 2.6.(b) follows from Lemma 2.6.(a) and the Serre duality.
All the statements of Lemma 2.7 are consequences of the long exact se-
quence of cohomologies for the restriction exact sequence of shehaves

0—O(-L) — 0 —0,—0

tensored either by O(A + L) or by O(B). O

More difficult is the proving of the last property Iq. It will be done
through the nest section.
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3 Geometry of inequalities

We have to prove the statement Iq for the system that is the shift by D of
the one defined by (8). Clearly the left dual system to Fy(D), ..., E,(D) is
also the shift by D of the dual to the initial system (one can easily conclude
this from (11} ).

Hence we need to prove that given ¢ from the theoremn one can find D
such that

e x(EUD), ) = & x(E},e(~D)) > 0 for i € I,

(12)
& X(B{(D),c) = e x(El,c(-D)) <0forie I,

where {E}, } and {e;} are defined in Lemma 2.4 and the sets I™, I~ are either
(a) or (b} from Proposition 2.5.

The difference between (a) and (b) cases amounts to a move of an index
m — 1 from I to I~ thus to a change of the one of the inequalities to the
opposite. Because we have to unite the solutions of these sets of inequalities,
we can combine them instead as the following:

eix(Ei(D),c) =eix(El,c(—=D)) >0 fori=m,
(13)
eiX(Ei(D),¢) = eix(Ej,c(-D)) <0 fori=t, ..., 1,0
The changing ¢ for ¢(—D) influences neither rank nor discriminant but
only v(c — D) = v(c) — D. It convenient for us to use (r,»,A) as a coordi-

nates in M. This way we identify M} with a subset in Z x (C1X ® Q) x Q.
Also we make it more explicit by means of the following isomorphism:

ZxCX®Q)xQ =ZxQ™"' xQ

where v € C1X ® Q is mapped to (z,y1, ..., #) such that
v=gH —yL - -yl
Let us mention first that
1
r(Op,) =0, ¢;(0,) = L;, p(Or,) = 3

The Riemann-Roch theorem (1),(3) and Lemma 2.4 permit us to write in-
equalities (13} in the following form.

12



Lemma 3.1 Letv(c)-D—-p=(c+2)H -y, — - —y, Ly and

8(c) = 2(A(c) + "2—2 ) =2a() - 122

4
Then the inequalities (18) are the same as
-yl — .=y 26(c)
=550, ..., ~gp—3 <0 (14)
(-1 - -12~-...—(m-1)% <éc

This is just a straight computation with the Riemann-Roch formalas.

Let us denote the sct of solutions for (14) in Q! by S. Of course it
depends on § = §(c) as well as the inequalities do. Now to finish with the
proof of the theorem it is sufficient to establish the following proposition.

Proposition 3.2 If A(c) satisfies the conditions of Theorem 1.1 then
S+ Zt+l — Qt-H-

Obviously it is sufficient to prove the same substituting for S a subset in the
solution set S, or a subset in an integer shift of S, or a union of such subsets.
Proof of the proposition. The crucial is the following lemma.

Lemma 3.3 Let (a1,b)) be the positive solution of the equations:

22 — ty? =6
{ (-1 —tly—1) =9 1)
and (ag, by) be the solution with ay > 0 of the equations:
w2 —ty? =94
{ y+z =0 (16)
Suppose a set M in Q"' is defined by the incqualities:
{bop—ap <yi—z <b —ay wherei=1,...,t}, (17)

andu=(1,1,...,1) € Q"*'. Then

McC S+Zu = U (S +nu).
ned
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Proof of the lemma. Let us use the notations
ng(ao,bo,...,bo), Slz((Ll,b],...,bl).

Clearly points sg, (51 — u), sp + u, s; belong to the boundary of S. We can
say even more. Let By and B; be the regions on the boubdary of S defined
as follows:

Bo=S({z*—vi—... -y =0t {-1/2<u < (- 1)},
Bi=SA{(z -1’2 ~(mn-10°—-... = (-1 =68 {+1/2< % < h}.
We see that

S()EBU S]EB],

By belongs to the lower part and B; to the upper part of the boundary of S,
and they differ on ”a shift by «":

Bo 4+ u = Bl.
The set in between {By + [0,1] u} belongs to S. Hence we conclude that
By+Qu C S+ Zu.

But, as M is a parallelotop with the opposite vertices sg, s; by (17), it is not
difficult to check, and we leave it to the reader, that

So we have got the lemma. O

Now all what we need is to evaluate ” the size of M” as it states the lemma
below.

Lemma 3.4 If (by —ay) — (by — ag) > 1 then M + ZH = Q.

It follows immidiately from (17).

The lemma below gives us the estimation that finishes the proofs of the
proposition and the theorem.
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Lemma 3.5 (by —a1) — (bo — ao) > 1 if and only if A(c) > t(t —1)/2.

Proof of the lemma. The defining equations (15) for (a;, b) are equivalent

to:
a?—th? =46
(18)

tbl—-al :t—:;-l'

The second equation in (18) can be rewritten as

t—1 1

Let a) = 2+ 1/2, then by = 2/t + 1/2 and we get an equation for z:

(z+1)2—t(i+1)2—5
2 t 2/

Simplifying we come to:

where A = A(c). So we have

t
z:,/t—_—i\/ﬁ. (19)

One the other hand it follows from (16) that

1 1
=4/2A + - bo = —=
Qp +4: 0 2

As a result we have got

t—1 1/ ¢ 1 / 1
(bl—al)—(bo—ag)=——t— mV2A+§+ 2A+E

The desired inequality

%+\/2A+%—\/(t;1) V2A > 1

15



is equivalent to

\/2A+izé+\/(t_tl) V2A.

Taking the second power of the both sides and we derive the equivalent

inequality
1 —
Z2A > ﬁf(tt—l) VZA.

But this is nothing but

1t - 1)

.0
2

Az

4 Remarks

There are other exceptional systems that satisfy conditions Gls , Hm,
R1, R2 . For each of them one can find some subsct of ¢ in M} that satisfy
Iq. But it is difficult to understand what a sct in M% would be obtained as
a whole.

It is natural to conjecture that just DL-condition is sufficient for any Del
Pezzo surface, or, at least, that A > 1 is sufficient.

There are known results about existence of stable sheaves or, in other
words, about non-emptiness of moduli spaces, for some other surfaces. As
soon as we know, they could be reformulated as A > a but the number a on
the right hand side usually depends on something more than just the surface.
What special about Del Pezzo is that here the right hand side constant is
the same for any rank F.

For the opposite question of emptiness of the moduli space there is a
uniform sufficient condition for any surface. It is A < 0 the well known
Bogomolov inequality.
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