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INDUCED REPRESENTATIONS
OF DOUBLE AFFINE HECKE ALGEBRAS
AND APPLICATIONS

IVAN CHEREDNIKT

In this paper we apply the main results about the structure of double affine
Hecke algebras from [C1,C2] (see [CG) for the proofs) to its induced representations.
The technique is based on rather standard facts from the theory of affine Weyl
groups and the matrix Demazure - Lusztig operators from [C3] There are close
connections with the Macdonald theory [M1,M2] and the approach from [H,0].

As an application, we establish the difference counterpart of Theorem 4.6 from
[C5] (the isomorphism between matrix Calogero-Sutherland eigenvalue problems
and affine Knizhnik-Zamolodchikov equations generalizing the main theorem from
[Ma]). Its scalar version (announced in [C1]) gives the equivalence of the generalized
Macdonald eigenvalue problems and the corresponding quantum (difference) affine
KZ equations. The latter are directly related to the Smirnov- Frenkel- Reshetikhin
equations.

This paper was written this summer during my stay at Max Plank Institute fiir
Mathematik, University College of Swansea, and ETH at Zirich. I'd like to thank
F.Hirtzebruch, D.Evans, and G.Felder for kind invitations, and my colleagues at
these institutes for hospitality. 1 am also grateful to M.Kashiwara for valuable
advice.

1. Affine root systems. ‘

Let R = {a} C R™ be a root system of type A4, B, ..., F, G with respect to a eu-
clidean form (z,2') on R™ 3 2, z'. We fix the set . of positive roots (R_ = —~I,.),
the corresponding simple roots «,, ..., ,,, and their dual counterparts a,, ..., a,,,a; =
aY, where aV = 2a/(a, ). The fundamental weights gy, ..., 3, and the dual fun-

damental weights by, ..., b,, are determined from the relations (8;, a;) = 6] = (ai, b;)
for the Kronecker delta. We will also introduce the lattices

Q=0i-120; C P = 8,20, A=8j-,20; C B = ®;.,2b;,

and Q4,l4, AL, By for Zy = {m € Z,£m > 0} instead of Z. (In the standard
notations, B = PV, Py = P+t 3; = w; etc.) Later on,

Vo = (,@), i = Vo, YR = {Va, € R},
po = (1/2) Y a = Y B for a€Ry. (1.1)

T Purtially supported by NSF grunt number DMS 9301114 and UNC Research Counsel grant.



Induced representations 2

The vectors & = [a,k] € R* x R ¢ R"*! for @ € R,k € Z form the affine

root system RR* O R ( z € R™ are identified with [2,0]). We add o 4 [-6.1] to

the simple roots for the mazimal root & € I}. The corresponding set IS of positive
roots coincides with It U {[a, k], € R,k > 0}.

We will use the Dynkin diagram T’ and its affine completion I'* with {a;,0 <
j < n} as the vertices (m;; = 2,3,4,6 if o; and «; are joined by 0,1,23 laces
respectively). The set of the indices of the images of ay by all the automorphisms
of I'* will be denoted by O (O = {0} for Eg, Fy,G2). Let O* =r € O,r #0.

Without going into detail, we mention that (8V,a) < 1 for § # o € Ry. More
precigely, 6 = Y, 3;, where my > 2. The multiplicity (b, ) of the roots «, in
arbitrary & € R, is also not more than 1 for » € 0*, (b,,0) =1 (see {B,C4]).

Given & = [, k] € R*, b€ B, let

sa(2) = z2—-(z,aV)a, V(2) = [o.(—=(2,b) for 7=z, € R (12)

The affine Weyl group W* is the span < s5 >. It is generated by the simple
reflections s; = 3,,,0 < j < n, and can be represented as the semi-direct product
Wix A of its subgroups W =< s, € Ry > and A’ = {a’,a € A}, where

o' = 8a8[01] = S[-aSa for a=a’.

The eztended Weyl group W generated by W and B’ (instead of A’) is iso-

morphic to WX B':

(wb)([2,¢])) = [w(2),{ —(z,b)] for weW,beB. (1.3)

DEFINITION 1.1.
i) Givenb, € By, let
Wh, = wo'w{," eWwW, m, = bfi_(wb+)_1 € Wb wi=wy,.,m=m,. (14)
where wy (respectively, w{ ) is the longest element in W (respectively, in Wy,
generated by s; preserving by ) relative to the set of generators {s;} for i > 0.
ii) If b is arbitrary then there exist unique elements w € W, by € B, such that
b=w(by) and (a,by) #0 if (—a) € Ry 3 w(a). We set

wy = wp,wt, m = W, . (1.5)

0
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We will discuss general properties of {ws, 7} later. Now we only note that the
elements m,.,7 € O, leave I'® invariant and form a group denoted by II, which is
isomorphic to B/A by the natural projection {b, = m,.}. As to {w,}, they preserve
the set {—6,a;,i > 0}. The relations 7 .(ay) = ar = (w,)"}(—6) distinguish the
indices 7 € O*. These elements are important because (due to [B,V]):

Wb = IxW?®, where m.s;m ' = s; if m() = a;. (1.6)

To go further we need the notion of length and its geometric interpretation.
Given v € vy, 7 € O*, @ € W*?, and a reduced decomposition @ = sj,...85, §;,
with respect to {s;,0 < j <n}, wecall ! = I(@) the length of % = 7, € W and
introduce the sets
’\(ﬁj) = {dl =y, & = Sjl(ajz)! & = 351852 (a.?'a)%'“.* &' = 1’]_13:)'1 (ajr)}!

M (@) = {&™, v(@E@™) = v(d,) =v} for v(ek) Y v, 1<m<l (17)

One has: 1 =) I, where I, = [, (1) = |\, ()| denotes the corresponding number
of elements.

To see that these sets do not depend on the choice of the reduced decomposition
we will use the following (affine) action of W on z € R™:

(wb')(z) = w(b+z), we W.be B,
sa{2) = z—((z,0) + k)oY, &= (o, k] € R*, (1.8)
and the affine Weyl chamber:

C® = () La,» La={z € R, (z,0)+k >0}. (19)
3=0

PROPOSITION 1.2.
() = {aeR* w7HC) ¢ La, v(a) = v}
= {a e R® 1,(wsz) <l,(0)}. (1.9)

As to the latter condition, a direct calculation shows that
Z( 1&3&{1}...8&{},} ) > l( 138&{1}...8&{P+1} ), if
a{q} ame I>m>my>.. > my > Mpt1 2 L. (1.10)
Vice versa, an arbitrary sequence of positive roots @{1}, &{2},... satisfying the
consequent conditions (1.10) for p = 0,1, ... can be obtained by the above construc-
tion (i.e. belongs to A (W) and corresponds to a certain reduced decomposition of

w). We will not use this fact and only mention that it results from the following
rather standard proposition.
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PROPOSITION 1.3. (see e.g. [C4], Proposition 1.4).
Each of the following conditions for =,y € WP is equivalent to the relation

L(zy) = L(z) + L(y):

a) A(zy) = M) Uy~ (Au(2), ) y7 (u(2)) € R
e) M(y) € Au(zy), d) v~ (Au(2)) C A (zy). (1.11)

Now everything is prepared to motivate the construction of {m}.

THEOREM 1.4.
i) In the above notations,

AW ={&,a€ Ry, (b,a) >k >0} U{a,a € R_,(ba) >k >0}, (1.12)
Aty ={& —(b,@) > k >0}, where &=[a,k]€ R}, b€ B. (1.13)

ii) If % € YW (i.e. w(0) =b) then & = myw for w € W such that l(w) =
I(m) + l(w) . Given b € B, this property (valid for any w taking 0 to b)
determines m, uniquely.

Proof. Formula (1.12) is verified directly (see Proposition 1.6, b) from [C4]). By
the way, it gives the useful formulas (cf. [L1], 1.4) :

L@®) = Z |(b,a)|, where || = abs. value,a € Ry, v, =v € vg,
L(b) = 2(b,p,), when b€ B,. . (1.14)
One can follow the same proposition ( assertion a) ) to check that
/\(wb;) = {Cl! = m,(b+,a) > 0} for b+ (S B+. (115)

It proves (1.13) for By due to Proposition 1.3, a) and the relation A(:~!) =
—w({A(w)) (resulting from Proposition 1.2).

Let b = w(by) for positive by and w € W. We can multiply w on the right
by elements preserving by (i.e. belonging to W;_). If the length of w is the least
possible, then A(w) does not contain roots & € Ry orthogonal to by (Proposition
1.2) and w is defined uniquely. This condition is from Definition 1.1, ii).

Setting b = ww for w € W, where 7 € W has the least possible length (),
we are going to calculate A(w) and A(m™!).

The set A() containes only roots é& = [, k] with & > 0. Otherwise we could find
in this set a root from R, and apply the second formula from (1.9) to reduce w by the
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corresponding reflection from W. Hence, w™(A(m)) C RS and the decomposition
b = 7w satisfies condition (1.11). Moreover, w~}{A(7)) contains all the elements
from A(b) with k > 0 (since w € W - wuse (1.11) again). It is enough to calculate
A(w) because A(b) is already known. We will arrive at the same formula (1.15) (but
now for w and b € B). Applying (1.11) after the passage to —b, we obtain precisely
(1.13) for A(w~1).

Let us calculate A(wy) and A(w,!). Thanks to formula (1.15) for b, and the
properties of w (see above) we have the embedding A(w) C AMws, ). Hence the
decomposition wy, = wpw satisfies conditions (1.11) and

Aws) = w(A(wsy ) \ A(w)) = w(Mws, ) N 124
=w({a€ R,(a,bs) >0})NRy = {@ € Ry, (a,0) >0,}.

Here one can use Proposition 1.3 with the relation A(w) = {@ € Ry, w(a) € R_}

resulting directly from (1.9). We see that (abstact) w defined above and w; from

(1.5) coincide (they have the same A-sets). It gives the coincidence of 7 and m,

formula (1.13), and statement ii). As for the latter, if w(0) = b, then @ = myw’, v’ €

W. However we know that !(mw') = l(m,) + [(w') for any w' € W. O
We set

cXbbrc for bceB if b-ce A;, (1.16)

and use <, > respectively if b # c. Given b € B, let by = w] L(b) € B, for w, from
Definition 1.1. The sets

a¥ (b) < {g € B,w(c) <Xb; for any w e W},
aq (b) = {c € B,w(c) < by for any w & W} (1.17)

are W-invariant {(which is evident) and convex. The latter means that if ¢,¢* =
c+ra¥ € oV(b)(€ a) (b)) for « € R,7 € Zy, then

{e, c+aY,..,c+{r—1aY, ¢} Cav(d)(C ay(b)). (1.18)

Really, w(c+r'aV) for 0 < 7' < r is always between w(c),w(c*) for any w with

respect to the ordering ‘<’ and therefore belongs to*(1.17) because w(c),w(c*) do.

For the sake of completeness, we will check another well known property of

a¥(b). It contains the orbit W (b). If w(b) < by and l(ws,) > l(w) for a € Ry,

then w(a) € Ry and wsq(bs) = w(by — (by,a)aY) < bi. Hence we can argue by
induction.
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PROPOSITION 1.5.

i) Given i € WP & € A(®), let b = ©(0), W, = Wsa,bs = W.{0). Then b, € a¥(b).
Ifbe By and b, # b, then b, € o/ (b).

ii) In the above hypotheses, £() > £(b) if by # b, and

0(i0.) < &) if b. £ b, where €)= €)% i(m,). (1.19)
iii) Let W, = 85(p}---3a{1}W ,where we take any sequence (1.10) for w~" (instead of
W) such that €(s5(1)10) < €(w). Then £(id.) < (@) and W.{(0) # b.
Proof. One has: A(w™') C {& = [, k] € 1%, —(b,a) = k > 0} (use (1.9)).
Hence, -

by = s5(b) = b — ((b,a) + k)

is between b and s,(b) with respect to the odering ‘=’. If b € B (i.e. b =1b,) and
by # b, then @« € R_,k > 0, and b < ba < s,(b). It completes i). Assertions ii) and
ili) follow directly from the definitions of m, and £( ). ) 0O

2. Double affine Hecke algebras.

Let us fix § € C* which is not a root of unity and {g, € C*, v € vg}. The
notations are from Sec.l. We denote the least common order of the elements of II
by m (m =2 for Do, otherwise m = |II|) and set

A =06, ga= Qua) 4 = Ga; where a € R*,0<j <n. (2.1)

Let us put formally z; = exp(3:), zp = exp(8) = [[1n, 28 for B =31, kifi,

and introduce the algebra C[z] = C[zg] of polynomials in- terms of z'. We will
also use

Xz = [[xfem* it f=18.K], =) ki€l mkeZ (2.2)

=1 i=1

where {X;} are independent variables which act in C[z] naturally:
de sink o
X3(p(z)) = zpp(x), where z4 = z30™F p(x) € Clz). (2.3)

The elements w € W* act in C[z], C[X] = C[X] by the formulas:

w
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In particular (we will use this in the sequel):
d
m(zg) = ru:n(ﬁ)é’"(ﬁ'b") for a,- = 7 ay), T € O, (2.5)

DEFINITION 2.1. (see [C1,C2))
The double affine Hecke algebra $j is generated by the elements T;, 0 < j < n},
pairwise commutative {Xg, B € I}, and the group II, satisfying the following
relations (depending on é.q) : '
(0) (T; —q;)(Ti+4q;7') = 0,0 < j <y
(i) T.T;T;... = T;T;Ty.... my; factors on each side;
(i) m,Timyt = Ty if 7o(ag) = ay;
(iii) T; XgT: = XgX;'_l if (Boa;)=1,1<i<n;
(iv) Ty ' XpTy ! = Xep = XpXg'A if (8,6Y) =1
(v) T:Xg = XgT; if (B,a;) =0, where ap = 0V;
(vi) 1 Xpn7t = Xu ) = X r1g0"C P, reOn.

0O
Given w € We,r € O, the product
4 i !
- tef T, H T;.. where W = H si L= U(w), (2.6)
k=1 A=1

does not depend on the choice of the reduced decomposition (because {T'} satisfy
the same “braid” relations as {s} do). Moreover,

T:Ts = Tia whenever [(ib) =U(d) + () for o, € WP, (2.7)

which follows from (2.6) and relations (ii). In particular, we arrive at the pairwise
commutative operators (use (2.7) and (1.14)):

Y, = [[Y* if b= kb€ B. where ¥; 2 Ty, (2.8)
Toi=l =1
PRrRoOPOSITION 2.2.
TSI = YWYt if (boay) =1,

Proof(cf. [L1], 2.7). We will deduce these relations from (i)-(ii). It sufices to
check that

T7YWYIT =YY L TY; = YT, for 1<i#j<n (2.10)
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Applying (1.15) to b = s;(b;) = b; — a;, we see that I(}) = Eaelh [(by, s:(@))| =
I(b}) — 2, since s;(a) € Ry for a € Ry \ {a;}. Hence formula (2.7) works for
the triple decomposition b: = s;bs;. If j # 4, then a; ¢ A(b}) (see (1.12)) and
[(b;s;) = I(b;) + 1. Now we only have to use the commutativity of b; and s;. 0O

Let Hy be the affine Hecke algebra generated over C by {T;,1 < i < n} and
pairwise commutative {Y;} satisfying relations (o,i) from Definition 2.1 (for 1 <
1,5 < n) and (2.10). Because § is not a root of unity we can identify Hy with the
corresponding subalgebra of $3. It results from Theorem 2.3, [C6], which gives that
an arbitrary element H € 5, can be uniquely represented as follows:

H= Y hYTu= Y hyTs, (2.11)
bEB ,weW weW?

where hy 4, by belong to C{X] (are Laurent polynomials in {X,..., X,,}).

In particular, we have another description of Hy. It is generated by T;,0 < 5 <n
and II with the defining relations (o-ii).

Let us fix a finite dimensional representation V of Hy:

C:Hy — Endc(V). (2.12)

The matriz Demazure-Lusztig operators (see [C3])

T; = ((Ty)s; + (-7 (Xa; =) Hs5—1), 0< 5 <m, (2.13)

act in the space V[z] of polynomials in {zg} with the coefficients from V. They
generalize the scalar operators from [KL, KK, C1]. In particular,

Ty =¢(To)so + (a0 — g ) (AX = 1) sy — 1),
where sy(X;) = Xt.X;(ﬁ.‘,aV)A(ﬂ;,GV)_

It is worth mentioning that W acts only on {z} commuting with the action of
((Hy) on the coefficients (from V).

THEOREM 2.3.
The map ((T;) = Ty, (Xp) = Xp (see (2.3)), {(m,) = ((m,)7, (see (2.5)) can be
uniquely extended to a faithful homomorphism ¢ (depending on {§ € C* 5 q})
from $) to the algebra of linear endomorphisms of Vz]. The resulting module
coincides with the induced (=universal) $) -module V generated by V with the
action of Hy via (2.12).
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Proof. The decomposition from (2.11) identifies V with V{z]. Given H € $,8 €
P, and v €V, the induced action is as follows:

H(zg) s S0 by, (@)((YiTw)(v), where
beB,weW

HXg= Y ki (X)VT,. (2.14)
beB,weW

In particular, {Xg} and II operate naturally (see (2.3), (2.5)). As to the formulas
for the action of {T}}, the coincidence with (2.13) was checked in [C3] (Theorem
2.1) when j > 0. The reasoning for Ty is the same.

The induced representation is faithful. To see this we may extend C[X] to the
field C(X) of rational functions of Xz replacing $ by

5 = BuewsC(X)Ty = BuewsC(X)Py, where

O, =T+ (g —¢; ) Xay = 1)7, 0<j <, &y, =7, T €O,

®sp = O30y whenever [(910) = U(D) + (). 9,10 € WP (2.15)
This algebra acts in V(z) = V @ C(z) ( formulas (2.14) remain the same). The

elements ®y are well-defined and (see [C3], Proposition 1.2) satisfy the following
relations:

(I’.,.;,Xﬁ = Xﬁ‘,(ﬂ)q}"‘u, b € B. (2‘16)

If the induced action of H = 3,y ha(X)®y is zero, then (use (2.14-16)) the
same holds true for &3 with Ay # 0. However @ are invertible in § . 0
Thanks to formulas (2.15) we can introduce the set ¢y, € WY, such that

bow = Ga0(Pg) if LDD) = 1(D) + 1), where d( ) = ()07t (2.17)
sy = C(T5) + (45~ 4 )Xoy, =1)7H 0<j S0y ¢, = ((my),7 € O. (2.18)

Arbitrary element H % ((H), H € %, has the unique representation

~

H = z gbwb'w, where gy € (EndcV)(X). (2.19)
beB,weW

PPROPOSITION 2.4,
i) Givenb€ B and W = mw,w € W,

To = dmmTo+ D gow biw, (2.20)
b, weW
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summed over b, € oY (b) such that £(b') > £(b.).
ii) Ifbe€ B_, then m, = b' and

Yo = ¢ub' 4+ D go.wbiw, b#b.€oV(b), (2.21)
b, weW

where we omit the condition €(b') > £(b),) because it is valid for any b # b, €
oV (b) (Theorem 1.4).

Proof. Following [C4], let
Fi(@) = (T +(ga—gz)(Xa—1)" 1 -55), @€ R*,0<j <n. (222)

Given a reduced decomposition @ = myw = 7,85, - -+ 85, where [ =1(),7 € O,

- . d N -/ PR

T = Faro Y ((m)F;, (6(1) F (6(2)) - Fy(G() for

a(l) = meej, , &(2) = 785, (a,), @(3) = 785,85, (). .. . (2.23)
These roots constitute the set A(10~!) (see (1.7)). The set {Fy;} satisfies the cocycle
relations from (2.17). We may assume here that m, = 7.5, -+ s;,, £=1(m). If the
terms with 85 from Fa» such that p < £ are omitted, then the resulting product
coincides with the leading term of (2.20) (compare (2.18) and (2.22)). Any other
terms contribute to to the elements gy, b, w with b}, # b (see Proposition 1.5).

Let us consider now b € B_. Since Y, = T:bl,, we have to inverse the product
T_y = (=0')Gj,(&(1)) - G, (@(L))m; " for b = mysj, - 5.

r

Gi(@) = (T + (qa — a3 NXT' = 1) 1 —sa), L=1(b), (2.24)
and use that

Gila) = ((T))+(qa— gz ) ((Xa = D)7+ (X7 = 1)71sa).  (2.29)
Ignoring the terms with {s}, we arrive at (2.21). O

3. Difference operators. The algebra of W-invariant elements in the C[Y]
is denoted by C[Y]". We will use that C[Y]" is the center of Hy. The same of
course holds for C[X]" and Hx. This property is due to Bernstein (see e.g. [L1],
(c3)).

Let {¢y ]} be the set obeying (2.17) for any ¥, (regardless of the lengths) and
normalized as follows:

Ps; = (g+ (g5 — qfl)(Xaj - 1)-1)_19531-\ P, = ((mr). (3.1)
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We introduce the corresponding action of W® on 2 € V(z) = V® C(z) and § €
Endc(V(z)):

¥ (2) o wa(2), W*(9) wf oG ot (3.2)
Let Wy C W), = {@%, @ € W}, V[z]"* be the subspace of Wy-invariants. The

Wx-invariance of 2 means that Ti(3) = ;¢ for 1< i< n, because

Ty = gsf + (-G )(Xa, =)7F =1, 0<5<n. (33)

¥ 3

Given arbitrary element H € Hy, its (-image can be uniquely represented in
the form :

H = Z gb:wb"w#. where gy € (EndcV)(X). (3.4)
wEW, bEB

The rational functions gs ., are regular at the points

o df__f (X]. = .. = X" = 0)\ D'qdéf (X]_ =.,.. = Xﬂ. = OO)

Indeed, {(Xa — 1)~} (from (2.11) etc.) are well-defined at these points either for
positive or for negative & € IR%,
Let us introduce the difference Harish-Chandra homomorphism:

x( 3 gabe?) = 3 guu(OW. (35)
w,b

weW,beB

PROPOSITION 3.1.

x(Vs) = (V) be B. (3.6)

Proof. Let us start with b € B_. It follows from formula (2.21), that the y-value
of the leading term of Y, gives exactly (3.5). Really, a« € R, for all X[';fk] in the
formula for ¢y (see (2.23)). Hence

x(¢y) = C(m T3t - Tih) = ((YZ)) = ((Vs)

for a reduced decomposition b’ = m,s; ---s;,. Any other g, , (corresponding to
b # b) will contain at least one factor (X,
is zero.

[ﬂlk] — 1)~ for positive a. Its value at ¢
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The case of positive b formally follows from this consideration, since Y, = Y7,
The direct reasoning is not difficult as well. One has (see (3.3) and (2.17)):

X(bm T Twy) = X(Porb' (Guyws) ™ Hq“‘“*)— ((Yp)b'

(here we will meet & = [a, k] only with @ € R_). Any other terms contribute to
the coefficients gy, » with b, # b and come from the.s-pa.rts of the products (cf.
(1.10)):

F(&{1})-- F(a{p})t', where @{1} =a&(m;),... 1<m <..<my, <L

Moreover, m; < ¢, which gives the factor (X4 x) — D=t for @{1} = [@.k).a € R_.
Its value at § is 0.

Turning to arbitrary b € B, let b = by + b_, where by € By. Then (see (2.8)),
Y, =Y, Y,_, and we can use the relations (obtained above)

9b..w(0)=0 for be By, we W, b, #b,

to complete the proof. O
Given any element A = 35 i 1ep 9pwb'w?, where g, € (EndcV)(X), set

Acd®™ S gt Ly = Hrea HESH. (3.7)

weW.,be B

We note that {Ly} act in V[z], because to erase {w#} means to replace each T
by g; (see (3.3)). The restrictions of Ly and H on V{z]"* and their x-values (see
Proposition 3.1) coincide.

THEOREM 3.3.
Let us denote the algebra generated by {T;,1 < i < n} by H. The reduction
map L is an algebraic homomorphism on the centralizer ST of Hin $. Given
H ¢ ", Ly is Wy-invariant (i.e w#*Ly(w#)™! = Ly for all w € W) and
preserves V[z]¥#*. Operators Ly for H € HY commute with the operators
{Lp_. Fe C[Y]W}

Proof. The reduction procedure is trivial exactly on the left ideal in EndcV(z)
generated by the elements {T, —q;, 1 <1 < n}. The multiplication on the right by H
leaves this ideal invariant.. Hence (Aff Vred = Apealy for any A from (3.7). More-
over, we see that w#(H)peq(w#) ™! = (W# H(W#) ™) es = (W# H)pea = w? Ly =
Ly (cf. [C5), Theorem 2.4). The commutativity of Ly with {Lr} for H € H¥ is
clear because {F} are central in Hy. |
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PROPOSITION 3.4.
Given b € By, let Iy = 32, cww, Yu(s), where W, is the stabilizer of b in W.
Then

N ¥ Lp, = [No}+ Z gv. b, where b, € oy (b),

V= > I X wie) ~ 05 Pu(—tryw(=b)". (3.8)

weW/W, GEA(D) Xu(a) —1

Ifre O* thenoy(b) =¢ and Ny, = [N,

Proof. The term with —b’ in the operator I’, can come only from Y_,, which
follows from (2.20) and (2.21). The Wy-invariance of Ny = (I%)yea gives that

Nil= S wH(du(-b),

weW/W?

q'Xw G _q‘;l
w#(¢(-b')) = H aX (Cj) 1 Pu(—b')-
HEA(b) w(&)

O

This theorem generalizes Theorem A.3. from [C4] (the construction of Macdon-

ald’s operators for A4,, via affine Hecke algebras). The operators N, coincide with

the operators corresponding to (the minuscule wheights) {b,.} from [M2] when ( is
the following character:

a(T;) = q;, o(m,) =1, where 0<j<n, reO. (3.9)

The construction holds when the reduction procedure is defined for {p w € W},
multiplied by any cocycle on W with the values in the centralizer of {(Hy). It will
be used in the next section.

Without going into detail we demonstrate some other properties of the operators
under consideration. Let us introduce the shift operator by the formula G = X -1,
where

X = H (ané/Z _qng‘;—lﬂ), Y= H (q;lY;/z — Qa 1/2)-
a€ERy, aER;

There will be no X!/2,Y/2 in the final formulas. Elements X, Y belong to
C[X], C[Y] respectively. The following proposition in the scalar case is from [CG].
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PPROPOSITION 3.5. .
The operator G < G,.a preserves V[z)"* and is Wg-invariant. Moreover,
Ny(g6™/%) G(q) = G(q) Ny(q) for b € B, where we write N,(q) and so on to
show the dependence on g = {q, }.

O
Let

Y=p.f=Xy for BoyelP if y—-pPEQ4.

This ordering is dual to (1.16). The cone corresponding to # € I’ (the counterpart
of V(b)) will be denoted by o(3). The proof of the next statement repeats the
proof of Proposition 3.6 from [CG).

PROPOSITION 3.6.
Operators {H,H € Hy} preserve the space ®,¢,(g) V4 for arbitrary € I,

a

4. AQKZ and the isomorphism. Let us extend the action of C[X] and
W? (see (2.3), (2.4)) from Cfz] to the algebra C{z} of meromorphic functions of
T1,...,Tn. Let ¥ € (EndcV){z} Y BndcV C{z} be a solution of the affine
quantum KZ equation (AQKZ):

()#(¥) = ¥ where b€ B. (4.1)

This system of difference equations is self-consistent because {b} are pairwise
commutative. If V' is finite dimensional and || # 1, one can follow [A] to check
that it has an invertible solution (g is arbitrary). This solution is holomorphic where
zg # 6% for all B € B,k € Z and unique up to B'-invariant AutcV-valued functions
of = as the right factors.

We will assume further that ¥ exists and is invertible. The equivalent statement
is that the $) -module V{z} is isomorphic to the direct sum of the $ -modules with
trivial {pg, € W?} (i.e. coresponding to {( = o for the character from (3.9)).
When ¥ satisfies (4.1) for all 0 € W?* the equivalence is clear. Otherwise it is
necessary to introduce the monodromy cocycle (see below) and to use the proper
version of Hilbert Theorem 90 (see [C4], Corollary 3.3).

The monodromy matrices {Cy} and the corresponding actions of @ € W* on
g € (EndcV){z} are as follows:

W*(§) = w(§)Cys, 2°(5) = d#(J)Cy for Cy = T 10# (). (4.2)
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The b-action can be uniquely determined from the relations
s =485, 0<j <, ab = (%, T 7 €0,
D)+ @)K =D
’ g+ (g — ;) (Xa; = 1)1
Actually the restriction of C to W is enough to know : Cy, = C,, where
Cy = 1. Moreover, Cyuy = Cy u(Cy) and V'(Cy) = C,, for u,w € W,b € B (see
[C4], Theorem 3.2). The function ¥ is b-invariant with respect to the entire W°.

Let us modify Theorem 2.3 to construct the following operators. Given a reduced
decomposition ¥ = s;, ...5;, 7y,

— d —1 q N Qi . .
=4 H ( Jml Im j|—'j(sjm - 1)) e (4.4)

C'J'

P = (@)’ (4.3)

They can be obtained for the character o from (3.9) taken as ¢, after the substitution
s; = 8§, = 75, and g gL

PROPOSITION 4.1. Let 5*(Yy) = 3, cw.cen dewcWw” for proper g, € C(X).
Then
C(Y_p)¥ = d*(Y3)(¥) = Red(c*(Y,))(¥) where b€ B, (4.5)
Red( Z GewC' W) = Z GewC ot (4.6)
weEW,ceB weW.ceB

Proof. It suffices to check (4.6) for b € By. If b = s;,...5;m, then Y_; =
w7 T Tt We can now use the relations

gt =g

(T = (a5 + (5~ D) (@), (4.7)

3 3
that are equivalent to s;(\Il) ¥, and replace T} ! by 5*(T;) one after another.
We may do this because the latter operators are scalal and commute with the action
of {(Hy) on (the coefficients of) V[z]. The order of the indices becomes opposit
after this procedure. As to ((77!), it goes to 7¥, since {(m, )7 = 7 (sec (2.18),
(4.2)). The reduction Red of 5*(Y;) is possible because w’(¥) = ¥, O
Let us fix a H- module U and a H-morphism 7 : V = U. We denote the
corresponding homomorphism H = EndcU alternately by £ and 7. Set

') = >, gewCw". b€ By,
weW,ceB
« de % e —_
My E Red, @ (P)E S gewd (5}, (4.8)

weEW,ceB
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The operation Red, eliminates the authomorphisms 7(¢,,)w* on the right. We
emphasize that operators 6*(I%) are scalar and {w*} act on {Xg} naturally (as
{w} do). Hence we can omit * in &* when applying Red and Red,. In particular,
M, (constructed for the standard action of W) coincide with M. Thus we deal
with a certain direct generalization of (3.8) for scalar . Let us reformulate Theorem
3.3 and Proposition 3.4 in this special case.

THEOREM 4.2.

i) The matrix difference operators M,,b € B, are pairwise commutative, We-

invariant with respect to the action {w — wg =1 7(¢w)w}, and preserve Uz)Wr ..

Their leading terms are as follows:
-1
_ % Xw(a) —9a : ;
My= ) ‘ I1 Koy — 1 we(=b)' + > 9.V, (4.9)
weW/W, aeA(b)

where b. € oy (b), gb. € (EndcU)(X) , we(b) = T(w)w () T{pw) ™ .
ii) Let ¥ be a solution of AQKZ from (4.1). Then+ = 7(¥z) satisfies the relations

M) = ((P_p)¢ for b€ By. (4.10)

where z belongs to the space V{z}® of the V-valued functions that are B'-
periodic with respect to the action from (2.4).

Proof. The reduction procedure Red., acts trivially on the left ideal in EndcV (x)
generated by the elements {7(T;) — £(T7),1 < i < n}. The multiplication on the
right by () preserves this ideal because (%) is scalar and I is H-invariant.
Then we may follow the proof of Theorem 3.3. Formula (4.9) is a straightforward
version of (3.8).

To check the last statement, we substitute P_, for Y_, in (4.5), then place
{pww*} on the right in *(I), erase them thanks to the b-invariance of ¥, apply
everything to z, and afterwards take 7. O

The main aplication of the theorem is when U co-induces V. To define the latter
we will use the spaces U° = Homc(U,C), V° = Homc(V,C) equipped with the
action

(le...Tj‘W,-(g))(Z) & g(ﬂ:lTjt"':Z-jjl(z))l 0<j<nreo,

of the corresponding Hecke algebra on linear functions g(z) from either U° or V°.

Starting with a finite dimensional U and a homomorphism £ : H = EndcU, we
introduce the space U°[y] for {ya} satisfying relations (2.3)-(2.4) with Y instead of
X, and set

TY = €T)si + (gi—gr (Y, =17 (si=1), 1<i<n, (4.11)
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These operators and {Y;} acting in U°[y] give the Hy-module isomorphic to the
induced module generated by U° (cf. (2.13), Theorem 2.3, and [C3}). We fix a

set A = {\;,...,A,} € C* and consider the quotient Ug[y] of U?[y] by the (central)
relations Py(y1,....¥n) = (A1, ..., An) for all b € B in the setup of (3.8). Finally,
def

V = (Ug[y])° with the structure of a Hy-module as above. The dimension of V is
|W| dimeU.

This module has the natural projection 7: V' — U that is a H- homomorphism.
The image of its arbitrary proper Hy-submodule V' {# V) with respect to 7 is
non-zero. Indeed, if 7(V’) = 0 then there exists a proper ‘Hy-submodule in U°[y]
containing U°, which is impossible because U° generates U°[y]. There are con-
nections of co-induced modules with induced ones and other related constructions
which will not be discussed here (see [C5] for the scalar case).

THEOREM 4.3.
Let ¥ be the solution of AQKZ from (4.1). Then the map 7 : (¥2) — ¢ =
7(¥z) from Theorem 4.2 is an isomorphism of the space of the solutions {¥z}
of AQKZ in the above co-induced V and the space of solutions of the following
U-valued system of difference equations:

Mb(’(,b) = P_b(/\l,...,)\n)l/) for b€B+. (412)

Proof.t Formula (4.12) results from (4.10). If 7(¥2) = 0 (identically) then it
holds true for Y, ¥z and T; ¥z for any b € B and 1 < 7 < n. The latter follows
from the H-invariance of 7. As to Y}, we can use (4.5) because Red(c*(Y,)) is a
scalar difference operator preserving the (constant linear) relation 7(¥z) = 0. We
see that Wz generates a Hy-submodule of V' with zero projection onto U, which is
impossible.

The dimension d of the space of solutions of (4.12) over C{z}# is not greater
than |W| dimcU. One can use (4.9) or the formulas x(7*(Y3)) = o(Y_)b' to check
this (here —b appeared because we have to replace g by ¢~!). We proved that 7 is
injective in the space of solutions of (4.1) in V{z} (coinciding with the dimension
of V). Hence d = |W| dimcU and we have the required isomorphism. 0

Formula (4.9) gives explicit expressions for the operators My, , 7 € O* (coinciding
with their leading terms). Let us put down the formulas for M}, in the case of Aj.

T Recently the author recesved the work by S.Kato “R matriz arising from Hecke algebras and its
application to Macdonald’s difference operntors”™, containing a direct proof of a certain version
of Theorem 3.4 from [C4] (see also [C2]) in the cose of Macdunald’s operators . In the above

notations, he proved (4.12) for £ = 0 and minuscule (and certain similar) wheights.
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Here Ry = {ay, a2, 0y + a2}, @y =201 — P2, ag =202 — p1, 8i(B:) = PBs—i— i
(the same relations hold for {a;,b;}). One has: Xy, g, 4k, = X X352, (=0')(Xp) =
§2:P) X 5. Setting

fla) = (@Xa— ¢ 1)/ (Xa=1), ft(a)= (X' —¢H/(X;'-1). ge C*,

-1 2y -1 _ ._1
Fie) =228 T pro = D Dol

1

. . 4.13
g Xa—qt ' (4.13)

we arrive at the following formula:

My, = fH(en)fT(an + a2)(=b)) + f(en) f¥ (az) Fa(an) Fy(ay) (D) — by)+
flay + az) f(o2)Fa(az) Fi{ay + o) Fif (ay + ag) F; (a2)(Dy). (4.14)

To obtain My, it is necessary to switch the indices 1 and 2. Here {T},7 = 1,2} are
the generators of H in an arbitrary representation.
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