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INDUCED REPRESENTATIONS
OF DOUBLE AFFINE HECKE ALGEBRAS

AND APPLICATIONS

IVAN CHEItEDNIK t

In trus paper we apply the Dlain results about the strllcture oE double affine
Hecke algebras from [Cl.C2] (see [C6] for the proofs) to. its induced representations.
The technique is based on rather standard facts froDl the theory of affine Weyl
groups and the matrix Denlazure - Lllsztig oper~tors fronl [C3] There are elose
connections with the Macdonald theory [MI,M2] and the approach frolll [H,O].

As an application, we establish tbe difference counterpart of Thcorelll 4.6 froDl
[e5] (the isoDlorpbisnl between nlatrix Calogero~Su therland eigenvalue problenls
and affine Knizhnik-Zanlolodchikov equations generalizing the nlain theorenl fronl
[Ma]). Its scalar version (announced in [Cl]) gives the equivalence of the generalized
Macdonald eigenvalue problenls and the corresponding qllantulll (difference) affine
KZ equations. The latter are directly related to the Snurnov- Frenkel· lleshetikhin
equations.

This paper was written trus Stmmler during D1Y stay at Max Plank Institute für
Mathenlatik, Urnversity College of Swansea, and ETH at Zürich. I'd like to thank
F.Hirtzebruch, D.Evans, and G.Felder for kind invitations, and nlY colleagues at
these institutes for hospitality. I aln also grateful to M.Kashiwara for vaillable
advice.

1. Affine root systems.
Let R = {Cl:} C Rn be a root systenl of type A, B, ... ,F, G with respect to a eu­

clidean form (z. z') on Rn :1 z, z'. We fix thc set R+ of positive roots (R_ = -[4),
the corresponding sinlple roots a1, ... , an, and their dual counterparts a1, ... , an, ai =
ay, where a V = 2a/(Ci, a). The fundanlental weights ß1' ... ,ßn and th~ dual fun­
daUlental weights b1, ... , bn are deternlined froDl the relations (ßi' aj) = <SI = (Cii, bj )

for the Kronecker delta. We will also introduce the lattices

Q = E9i~1Zai C P = E9i~lZßi' A = E9i~1Zai C B = E9i~1Zbi,

and Q±,P±,A±,B± for Z± = {nl E Z. ±nl ~ O} instead of Z. (In the standard
notations, B = pV,P+ = P++,ßi =Wi etc.) Later on,

Va = (a,a), I/i = Vai~ VR = {va,a E R}~

Pv (1/2) L Ci = L ßi' for Ci E I4. (1.1)
'''o:=V '''i=V

tPmtially supported by NSF .Qnmt uumbet· DMS 9301114 (md UNC Reseat'ch Cou1t-sd .Qnmt.
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The vectors a = [a~ k] E Rn X R c Rn+l for 0 E R, k E Z forol the affine

root syste1n Ra :J R ( z E Rn are identified with [z,O]). We add (tu d::! [-8.1] to
the sißlple roots for the 1naxiTnal root 8 E R. The corresponding set R+ of positive
roots coincides with I4 u Ha, k], a E R, k > O}.

We will use the Dynkin diagranl r and its affine conlpletion r a with {Oj, 0 ::;
j ::; n} as the vertices (mij = 2,3.4,6 if ai and Oj are joined by 0,1,2,3 laces
respectively). The set of the indices of the inlages of 00 by all the automorphisnls
of r a will be denoted by 0 (0 = {O} for Es, F4 , G2 ). Let 0* = r E 0, r #- O.

Withou t going into detail. we ßlention that (8v . 0) ::; 1 for 8 #- a E 14. More
precisely, 8 = "Ei ßi~ where 111iO > 2. The lllultiplicity (br , a) of the roots Or in
arbitrarya E R+ is also not nlore than 1 for r E 0*. (bf>,O) = 1 (see [B.C4]).

Given ä = [0. k] E Ra, bEB, let

The affine Weyl grotLp W a is the span< Sä >. It is generated by the sinlple
reflections Sj = SOj' 0 ::; j ::; n, and can be represented as the senli-direct product
Wt><A' of its subgroups W =< Sa, a E 14 > and AI = {al, a E A}, where

The extended Weyl grotLp Wb generated by W and BI (instead of AI) is iso­
ßlorphic to W t>< B' :

(wb')([z, (D = [w(z), ( - (z, b)] for 'W E W, bEB.

DEFINITION 1.1.
i) Given b+ E B+, let

(1.3)

wbere Wo (respectively, wd) is tlle IOll/rest elelllent in W (respectively, in W b+

generated by Si preserving b+) relative to tbe set oE generators {Si} tor i > O.
ii) If b is arbitrary tllen tllere exist unique elelllents w E W. b+ E B+ such that

b = w(b+) alld (0, b+) 1= 0 iE (-a) E ~ 3 w(a). We set

( 1.5)

o
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We will discuss ~eneral properties of {Wb,1rb} later. Now we only note that the
elements 1rr~ r E 0, leave r a invariant and foml a group denoted by II, which is
isomorphie to B / A by the natural projection {br ~ 1rr }. As to {w r }, they preserve
the set {-B~ai,i > O}. The relations 1rr (ao) = ar = (wr )-l(-B) distin~uish the
indices r E 0·. These elenIents are inlportant because (due to (B,V]):

Wb = IIt><Wa
, where 1rrSi1r;1 = Sj if 1r,.(ai) = aj. (1.6)

To go further we need the notion of length and its geonletric interpretation.
Given v E VR, r E O*, tU E W a , and a reduced deconlposition 1U = Sj,. ,.sh Sjt

with respeet to {Sj, 0 ~ j ~ n}, we calll = l(w) the length of 1.U = 1r,.iiJ E Wb and
introduee the sets

..\(w) = {öl = aiJ' ä 2 = sh(a12 ), &3 = sit Sh(aj3), ... ,äl = 1Ü-
1
Sj/(ajl)}'

..\v{w) = {äm
, ]J(äm) = v(äjm) = v} for v((a,k]) deJ Ver, 1 ~ 7n ~ l. (1.7)

One has: l = L:v Lv, where Iv = Iv(1.u) = 1..\,.. (1.u)1 denotes the eorrespondin~nunlber
of elenlents.

To see that these sets do not depend on the choice of the reduced deconlposition
we will use the following (affine) action of Wb on z ERn:

(wb')(z) = w(b + z), 10 E W, bEB,

Sä(Z) = z - ((z, a) + k)aV, & = [Cl, k] E Ra, (1.8)

and the affine We'yl Chanlber:
n

ca - nLaj , Lö = {z E R'\ (z, a) + k > O}.
j=O

PROPOSITION 1.2.

- ..\v(w) = {ä E Ra, 1.U- 1(Ca) ct L ö , v(ä) = 1/}

= {n E Ra, l,A1.uS,d < I,.. ('lu)}.

As to the latter eondition~ a direct calculation shows that

l( 1.USä{l} ,.,Sä{p}) > I( 1.USö {l} .,.so{p+l}), if

- { } deI -m l > > 1a q = a q, _ 7n1 > 111.2 > ... > 1Hp > rnp+1 _ .

(1.9)

(1.9)

o

(1.10)

Vice versa, an arbitrary sequence of positive roots ä{ 1}~ ä{2}, ... satisfying the
consequent conditions (1.10) for p = '0, L ... can be obtained by the above construc­
tion (i.e. belon~s to ..\v('w) and corresponds to a certain reduced deconlposition of
ÜJ). We will not use this fact and only nlention that it results fronl the followinp;
rather standard proposition.
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PROPOSITION 1.3. (see e./j. (C4J., Proposition 1.4).
Each ol tbe lollowin/j conditions lor x~ y E Wb is equivalent to tlle relation
lv{xy) = lv{x) + lv{y):

a) Av{XY) = Av{y) U y-l{Av(X))~ b) y-l(Av(X)) c Rf.
c) Av(y) C Av(XY), d) y-l(Av(X)) C Av(XY). (1.11)

o
Now everything is prepared to nlotivate the construction of {1fb}'

THEOREM 1.4.
i) III tlle above notations..

A(bl
) = {Ci:, a E 14, (b, a) > k ? O} U {Ci:, a E R_, (b, a) ? k > O}, (1.12)

A(1fb1
) = {ä, -(b. a) > k ? O}, wllere Ci = [a~ k) E R+, bEB. (1.13)

ii) lf tU E blW (i.e. tu(O) = b) tllen 1U = 1fbtu [or tu E W SUdl tllat l(tu) =
1(1fb) + l(w). Given bEB, tlJis property (valid lor llilY 1U takinl{ 0 to b)
deternllnes 1fb uniquely.

Pr'oof. Fornlula (1.12) is verified directly (see Proposition 1.6. b) fron1 [C4]). By
the way~ it gives the useful foro1ulas (cf. [LI], 1.4) :

lv(bl
) = L I(b, a)l, where 11 = abs. value, a E R+, Va = V E VR,

o

(1.14)

One can follow the srone proposition ( assertion a) ) to check that

(1.15)

It proves (1.13) for B+ due to Proposition 1.3, a) and the relation A(1U-1 ) =
-W(A(W)) (resulting froll1 Proposition 1.2).

Let b = 1O(b+) for positive b+ and 10 E W. We can n1ultiply 10 on the right
by elen1ents preserving b+ (Le. belonging to Wb+). Ir the len~h of tu is the least
possible~ then A(tu) does not contain roots a E R+ orthogonal to b+ (Proposition
1.2) and 1U is defined uniquely. This condition is fron1 Definition 1.1, ii).

Setting b = 1fW for w E W, where 1f E W has the least possible length l{1f),
we are going to calculate A(w) and A(1f-1 ).

The set A(1f) containes only roots a = [a, k] with k > O. Otherwise we could find
in this set a root froll1 14 and apply the second forn1ula fron1 (1.9) to reduce 1f by the
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corresponding reflection fronl W. Hence~ w -1 ( ..\ ( 7f)) c R.+ and the deconlposition
b = 7fW satisfies coudition (1.11). Moreover, w -1 (..\ ( 7f )) contains all the elenIents
fronl "\(b) with k > 0 (since w E W - use (1.11) again). It is enough to calculate
..\(w) because ..\(b) is already known. We will arrive at the sarne fornlula (1.15) (but
now for W and bEB). Applying (1.11) after the passage to -b, we obtain precisely
(1.13) for ..\(7f- 1).

Let us calculate ..\ (Wb) and ..\ (7fb1
) . Thanks to fornlula (1.15) for b+ and the

properties of w (see above) we have the enlbedding ..\(w) C ..\(Wb+)' Hence the
deconlposition Wb+ = WbW satisfies conditions (1.11) and

..\(Wb) = W(..\(Wb+) \ ..\(w)) = W(..\(Wb+)) n f4.
=w({aER,(a,b+) >O})nR+ = {a' ER+~(a',b) >O,}.

Here one cau use Proposition 1.3 with the relation ..\(w) == {a E 14 ~ w( a) E R_}
resulting directly fronl (1.9). We see that (abstact) w defined above and Wb fronl
(1.5) coincide (they have the sanle "-sets). It gives the coincidence of 7f and 7fb~

fornlula (1.13), aIld statenlent ii). As for the lattel' ~ if tU (0) = b, then tU = 1rbW' ~ tu' E

W. However we know that l(7fbW') = l(7fb) + l(w') for any w' E W. 0
We set

c :j b, b ~ c for b, c E B if b - c E A+. (1.16)

and use -{, ~ respectively if b:j:. c. Given bEB, let b+ = w+ 1(b) E B+ for w+ fronl
Definition 1.1. The sets

a V (b) d;j {g E B, w(c) :j b+ for any WE W}.

a6 (b) d;j {c E B, w(c) -{ b+ for any tu E W} (1.17)

are W-invariant (which is evident) and convex. The latter nleans that if c~ c* =
c + rav E aV(b)(E a;j(b)) for a E R~ r E Z+, then

{c, c + oY .... , c + (r - 1)av ~ c*} C (1 v (b) (C (1ti (b)). (1.18)

Really, 'w(c + r'aV
) for 0 < r' < r is always between w(c}, w(c*} for any w with

respect to the ordering ,; -{' and therefore belangs to"(1.17) because w (c) ~ w (c*) do.
For the sake of conlpleteness~ we will check another weIl known property of

aV(b). It contains the orbit W(b). If w(b) ~ b+ and l(wscr ) > l(w) for a E R+~

then w(a) E R+ and wso(b+) = w(b+ - (b+~ a)aY) :S b+. Hence we can argue by
induction.
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PROPOSITION 1.5.
i) Given wE Wb,a E ..\(tu), let b = w(O),w. = wSä,b. = w... (O). Tllen b. E aV(b).

H b E B+ and b... i= b, tllen b. E 0"6(b).
ii) III tbe above llypotlleses, l( tU) > l(b~) jf b+ i= b, and

i(1U ... ) < l(w) iE b. 1= b, w}lere i(w) = i(b') d;! l(1fb)' (1.19)

lii) Let tU. = Sä{p},,,Sä{l} tU ,wllere we take any sequellce (1.10) for tU- l (illstead of

tu) SUdl tllat l(sä{1}w) < l(tu). Tllen i(w.) < l(tu) alld 1U.(0}"# b.

['roof. One has: ..\(tÜ- l ) C {ä = [a,k] E R+,-(b,a) ~ k ~ O} (use (1.9)).
Hence,

b. = sä(b) = b - ((b. a) + k)o:v

is between b and 8 a (b) with respect to the oderin~ '~'. If b E B+ (i.e. b = b+) and
b. 1= b, then a E R_, k > 0, and b -< b. -< s(.~(b). It conlpletes i). Assertions ii) and
iii) follow directly fronl the definitions of 1fb and f( ). 0

2. Double affine Hecke algebras.
Let us fix 6 E C'" which is not a root of unity and {qv E C·, v E l/R}' The

notations are fronl Sec.l. We denote the least COOlOlon order of the elenIents of rr
by 111. (rn = 2 for D 2k • otherwise 711. = Irrl) and set

Let us put forolally Xi = exp(ßd, Xß = exp(ß) = n:~l x7; for ß = L:~l kißi'
and introduce the al~ebra C[x] = C(xß) of polynonlials in· terolS of X;l. We will
also use

n n

Xii = TI X;i6mk if ß= LB,kL ß = L kißi Er. 7nk E Z, (2.2)
i=l i=1

where {Xi} are independent valiables which act in C(x] naturally:

( ( )) () h deI -mk . () C [ )X ß p X = XßP x. w ere Xj3 = XßO • P X Ex.

The elenIents tÜ E Wb act in C[xL C[X] = C[Xß) by the fo1'o111las:

(2.3)

(2.4)



In particular (we will use this in the sequel):

( )
rm(ß b .) ~ deI -1() O.

1rr Xß = X w ;l(ß)U ! r 101' Ct,.• = 1r,. 0'0. r E . (2.5)

DEFINITION 2.1. (see (Cl,C2J)
Tlle double affine Hecke algebra .fj is gellerated by tlle elenlents T j ~ 0 ::; j ::; n},
pairwise conilllutative {Xß, ß E P}, and tlle group II, satjsfying tlle Eollowing
relations (depending on d~ q) :
(0) (Tj - qj)(Tj + q;1) = O~ 0 ::; j ::; n;
(i) TiTjTi ... - TjTiTj .... rnij factors on eacll siele;
(ii) 7rr Ti 7r;1 = T j if 7rr (erd = erj;
(ijj) TiXßTi = XßX;;/ JE (ß~ ad = 1, 1 ::; i ::; n,:
(iv) Tö1X ßTO-

1 = X 30 (ß) = X ßXi 1ß jf (ß, BV
) = 1;

(v) TiXß = XßTi if (ß, ad = 0, wllere ao = OV;
( ') X -1 - X - X nn(b r • .ß) E 0'"VJ 1rr ß1rr -. 1l'"r(ß) - w;l(ß)U ., r .

o
Given tÜ E WU, r E 0, the product

I I

T1frW deI 1r,. II Ti I: , where tU = II Sij;, I = I (lU),
k~1 k_1

(2.6)

does not depend on the choice of the reduced decolllposition (because {T} satisfy
the sanle ~braid" relations as {s} do). Moreover,

TvTw = Tvw whenever l(vtü) = l(v) + l(tu) for V,1U E Wb, (2.7)

which follows fronl (2.6) and relations (ii). In particular, we arrive at the pairwise

conmlutative operators (use (2.7) and (1.14)):

n n

Yb = IIYiki if b = L kibi E B, wherc Yi d~ Tb~' (2.8)
i~1 i~1

PROPOSITION 2.2.

Ti-1YbTi-1 = YbYu~1 iE (b. ai) = 1,

TiYb = YbTi iE (b,O'i) =0, 1 ::; i ::; n. (2.9)

P"ooj(cf. [LIL2.7). We will deduce these relations froll1 (i).(ii). It sufices to

check that

(2.10)
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Applying (1.15) to b= si(bi ) = bi - ai. we see that l(ll) = LOE14 I(bi, si(a))1 =
l(b~) - 2, since si(a) E I4 for a E R+ \ {nd. Hence fornuua (2.7) works for
the tripie deconlposition b~ = SJ}Si. If j 1= i, then Oj ft A(bD (see (1.12)) and
l(b~sj) = l(bD + 1. Now we only have to use the conllllutativity of bi and Sj. 0

Let 1ly be the affine Hecke algeb1'a generated over C by {Ti, 1 ~ i ~ n} and
pairwise cOlllffiutative {Yi } satisfying relations (o,i) frolll Definition 2.1 (for 1 ~

i,j ~ n) and (2.10). Because 0 is not a root of unity we can identify 1ly with the
corresponding subalgebra of jj. It results frollI Theorenl 2.3, [C6L which gives that
an arbitrary elenlent H E Sj , can be uniquely represented as fallows:

H = L hb,wYbTw = L hü;Tü;.
bEB1wEW wEWb

(2.11)

where hb ! W, hü; belang to C [X] (are Laurent polynolllials in {X1 , ... , X n } ).

In particular, we have another description of 1ly. It is generated by Tj , 0 ::; j ::; n
and II with the defining relations (o-ii).

Let us fix a fini te dinlensional representation V of 1ly :

( : 1I.y --t Endc(V).

The 1natrix De1naZ'lL1~e-Lusztig 0pe1'at01'8 (see [C5])

Tj = ( (Tj ) S j + (qj - qj 1) ( X 0 j - 1) -1 ( S j - 1), 0 ::; j ::; n.

(2.12)

(2.13)

act in the space V[x] of polynonlials in {Xtd with the coefficients fronl V. They
generalize the scalar operators fronl (KL, KK, Cl]. In particular.

Tu = ((Tu)su + (qo - qö1)(ßx;-1 7 1)-1(so - 1),

where so(Xi ) = XiX;(ßi/JV
) 6,(ßi,8

V
).

It is worth lllentioning that Wb acts only on {X} conulluting with the action of
((1I.y) on the coefficients (frolll V).

THEOREM 2.3.

Tbe map ((Tj) = Tj , ((Xß) = Xß (see (2.3))., ((1fr) = ((1ff·)7Tr (see (2.5)) can be
uniquely extellded to a faitllfulllOlll0l110l'pllisl11 ( (depell(Jjl1~ Oll {O' E C· 3 q})

froDI Sj to the algebra oE lilleM elldol1l0rplljsllls of V[x]. Tlle resultillg lllodule

coincides witb tlle induced (=universal) Sj -Illodule V generated by V witll the
action of 11. y via (2.12).



Iuduc~d f't:1Jn~seut(Jtious 9

Pt'oof. The decOlllposition fronl (2.11) identifies V with V{x). Given H ES), ß E
P. and v E V~ the induced action is as folIows:

H(vx{3) d:J L h~,w(X)((YbTw)(v)~ where
bEB,wEW

HXf3 == L h~,w(X)YbTw. (2.14)
bEB,wEW

In particular, {X{3} and II operate naturally (see (2.3)~ (2.5)). As to the farnlulas
for the action of {Tj L the coincidence with (2.13) was checked in [C3] (Theorenl
2.1) when j > O. The reasoning for Tu is the SaDle.

The induced representation is faithful. Ta see this we nlay extend C[X) to the
field C(X) of rational functions of Xß replacing S) by

ij' == EBtÜEwb C(X)TtÜ == EBtÜEwb C(X)<DtÜ~ where

<P lJ j == T j + (qj - qj 1 ) (XCl j - 1) -1, 0::; j ::; n. <I> 'Jr r == 1rf', r E O.

<I>vw == <I-v<Dw whenever l(fnu) == l(v) + l(1U). V, tU E Wb. (2.15)

This algebra acts in V (x) = V ® c (x) ( fonuulas. (2.14) renlain the sarne). The
elenlents <Pw are well-defined and (see [e3}, Proposition 1.2) satisfy the following
relations:

(2.16)

U the induced action of H == L:tÜEWb hw(X)<ptÜ is zero, then (use (2.14-16)) the
srone halds true for <I>w with hw t O. However <D w are invertible in 5) . 0

Thanks to fornlulas (2.15) we can introduce the set <Pw, 1U E Wb, such that

<PVtÜ == l/lvv(qJw) if l(vtu) == l(v) + l('lu), where v() == v( )v-1~ (2.17)

cP!Jj == ((Tj ) + (qj - q;1)(XOi _1)-1, 0::; j ::; n~ <P1rr == ((7ff ,), r E O. (2.18)

Arbitrary elenlent if dei ((H), H ES), has the unique representation

H == L gblWbJ'W~ where 9b.w E (Ertdc V)(X). (2.19)
bEB,wEW

PROPOSITION 2.4.
i) Given bEB alld tU == ~bW,W E W ..

Tw == tP1fb 1rbTw + L 9b. ,w b: w,
b.lwEW

(2.20)
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swnmed over b. E a v (b) such tl1at l(b') > l( b~).
ii) H b E B_, tben 7rb = b' and

Yb = cPb1b' + L 9b. ~w b~ 'W~ b f:. b,.. E a V (bL (2.21)
b.. !wEW

where we onlit tlle conditioll e(b') > l(b~) because it is valid for aJ1Y b :j; b. E
a V (b) (Tlleorenl 1.4).

Proof. Following [C4], let

Fj(ä) = ((Tj ) + (qö - qZ;1)(Xö - 1)-1(1 - Sä), a E Ra, 0 ~ j :s; n. (2.22)

Given a reduced deconlposition 'lL7 = lrbW = 7r"Sjl ... Sjp whe1'e l = l('lu). r E 0,

Tw = Fw1U d;j ((lrr )Fh (ä(I))Fj:z(ö(2)) ... Fj1(ä(l))tu for

ä(1) == 7rretjp ö(2) == 7TrSjl (Qj:J. a(3) == 7TrSj1S i2 (Qj3)' ... . (2.23)

These 1'oots constitute the set A(tU -1) (see (1. 7) ). The set {FtÜ} satisfies the cocyde
relations froDl (2.17). We nlay assunle here that 7rb:::: lrr Sjl ... Sjr, e= l(7rb)' If the
ternls with Sö. from Fö'P such that p ~ l are onütted, then the resulting product
coincides with the leading ternl of (2.20) (conlpare (2.18) and (2.22)). Any other
terms contribute to to the elenlents 9b.1Wb~w with b~ f:. b (see Proposition 1.5).

Let us consider now b E B_. Since Yb = T~t" we have to inverse the p1'oduct

T_b':::: (-b')Gjl(ä(l))···Gj1 (ö(I))7T;1 for b':::: 7r"sil"'Sjp

Gj(ä) = «(Tj ) + (qä - Qö1)(X(.;;1 - 1)-1(1- säL l:::: l(b). (2.24)

and use that

Ignoring the tenns with {s}, we arrive at (2.21).

(2,25)

o
3. Difference operators. The algebra of W -invariant elenlents in the C[Y]

is denoted by C[Y]w. We will use that C[y]W is the center of 1{,y. The ganle of
course holds for C[X]W and 1lx. This property is due to Bernstein (see e.g. [LI],
[C3]).

Let {<Pw} be the set obeying (2.1 7) for any V. 'lU (regardless of the lengths) and
nornlalized as follows:
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We introduce the corresponding action of Wb on z E V(x) = V ® C(x) and 9 E
Ende(V(x)):

A# ( A) defA ( A) A# ( A) de f AAA-1 -1
tU Z = l{JtiJtU Z ,tU 9 = 'PtiJ W 9W l{Jw' (3.2)

Let W# C Wi = {'Zu#! 'Zu E Wb}! V[x]W~ be the subspace of W#-invariants. The

W#-invariance of Z llleans that 7Hz) = qiZ for 1::; i ::; n, because

Given arbitrary elenlent !f E 1{.y, its (-inlage can be uniquely represented in
the form:

iI = L 9b:wb'W#, where 9b:w E (EndeV)(X). (3.4)
wEW,bEB

The rational functions 9b:w are regular at the points

deJ ( deIo = Xl = ... = Xn = 0), [><] = (Xl = ... = Xn = 00).

Indeed, {(Xe. - 1)-1} (frOnl (2.11) etc.) are well-defined at these points either for
positive 01' for negative Ci: E Ra.

Let us introduce the difference Harish-Chandra h01no1n01phisrn:

PROPOSITION 3.1.

x( L 9b.wb'W#) = L 9b,w( 0 )b'.
wEW,bEB w,b

(3.5)

(3.6)

Proof. Let us start with b E B_. It follows frOlll fornllua (2.21L that the X-value
of the leading ternl of Yb p;ives exactly (3.5). Really, a E R+ for all X[:~k] in the
fOffilltla for 4>b' (see (2.23)). Hence

for a reduced decoßlpositioß b' = 1rrSll ... Sjl' Any other 9b,.:w (corresponding to
b. i:- b) will contain at least one facto1' (X[~\] - 1)-1 for positive a. Its value at 0
is zero.



The case of positive b fornlally follows fronl this consideration. since Yb == Y~bl.

The direct reasoninp; is not difficult as weIl. One has (see (3.3) and (2.17)):

v

(here we will nleet ä == [0, k] only with 0 E R_). Any other ternlS contribute to
the coefficients 9b•.w with b. ~ b and conle fronl the s-parts of the products (cf.
(1.10)):· .

F(a{ I}) ... F(ä{p} )bl
, where -ä{ I} == ä(7nd, ... , 1::; 'nll < ... < 71~p ::; l.

Moreover, 7111 :s; l, which gives the factor (X[oJ.:] - 1)-1 for ä{l} = [0. k], 0 E R_.
Its value at 0 is O.

1Urninp; to arbitrary bEB. let b == b+ + b_, where b± E B±. Then (see (2.8)).
Yb :::: Yb+Yb_, and we can use the relations (obtained above)

to conlplete the proof.
Given any elenlent A -

o
LWEW.bEB 9b,w bIW#. where 9b~w E (Ende V)(X). set

A d!!l",", I
red - L.. 9b,wb , LH

wEW,bEB

fI"ed~ H E SJ . (3.7)

I

We note that {LH } act in V[x], because to erase {w#} nleans to replace each Ti
by qi (see (3.3)). The restrietions of LH and iI on V[x]w* and their x-values (see
Proposition 3.1) coincide.

THEOREM 3.3.
Let us denote tlle a1{{ebra {{enerated by {Ti. 1 :::; i :::; n} by H. Tlle reduction
map L is au al{{cbraic ]lolllonlorpilisnl Oll the celltraIizer SJH oE H in ..fj. Given
H E sJH, L H is W#-invariaut (i.e w#LH(w#)-l = L H for all 'W E W) alld

preserves V[x]w..-. Operators LH for H E H~ C0l11111ute witll tlle operators

{LF' F E C[y]W}.

Proof. The reduction procedure is trivial exactly on the left ideal in EndeV(x)
p;enerated by the elenlents {Ti -qi, 1 ::; i ::; n}. The nlultiplication on tbe rip;ht by iI
leaves this ideal invariant., Hence (AH)rcd = A"edLH for any A fronl (3.7). Mare­
aver, we see.that 1.U#(H)red(W#)-l = (w#fI(w#)-l)"eJ = (w#H)"cd = W"!!edLH ==
LH (cf. [C5], Theorenl 2.4). The conmlutativity of LH with {LF} for H E tl~ is
clear because {F} are central in Hy. 0
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PROPOSITION 3.4.
Gjven b E B+, let Pb = :LwEw/w" YW(b) , wllere Wb js tlle stabilizer oE b in W.

Tllen

X -1" II qä w(ö) - qö ( )'LJ X ~ _ 1 CPw(-b')W -b .
wEW/W" öEA(b) w(a)

(3.8)

Ifr E O· tlJen a;)'(b) =0 and Nb r = [NbJ.

Proof. The ternl with -b' in the operator Pb can conle only fronl Y-b~ which
follows fronl (2.20) and (2.21). The W#-invariance of Nb = (Pb)n~d gives that

L w#«h-v))w(-b)',
wEW/Wb

o
This theorenl ~eneralizesTheorenl A.3. fronl [C4] (the construction of Macdon­

ald's operators for An via affine Hecke al~ebras). Thc operators Nbr coincide with
the operators correspondin~ to (the nlinllscule wheights) {b,.} fronl [M2] when ( is
the following character:

a(Tj ) = qj~ a(7f,.) = 1, where 0:::; j :::; n, r E O. (3.9)

The construction holds when the reduction procedure is defined for {cp.'W E W},
multiplied by any cocycle on W with the values in the centralizer of ((1iy). It will
be used in the next section.

Without going into detail we deIllonstrate sonle other properties of the operators
under consideration. Let us introduce the shijt opeTato1' by the fornulla Q = X-i y,
where

There will be 00 X 1/ 2 , y1/2 in the final fornlulas. Elenlents X. Y belang ta
C[X], C(Y] respectively. The following proposition in the scahu- case is fronl [CG].



PROPOSITION 3.5.
Tlle operator G d;j Qred preserves V[x]w. aIld is W#-illvariant. Mare0 ver,
N b (q§m/2) G(q) = G(q) Nb(q) far bEB.. wllere we write Nb(q) and so Oll to
SllOW tlle dependence on q = {qv}.

o
Let

This ordering is dual to (1.16). The cone corresponding to ß E r (the counterpart
of aV(b)) will be denoted by a(ß). The proof of the next statenlent repeats the
proof of Proposition 3.6 fronl [C6].

PROPOSITION 3.6.
Operators {iI, H E 1{.y} preserve tlle space E91'Eu(ß) Vx1' for arbitrary ß E r.

o

4. AQKZ and the isomorphism. Let us extend the action of C(X} and
Wb (see (2.3), (2.4)) fronl C[xJ to the algebra C{x} of nleroDl0rphic functions of

xl, ... , x1l • Let ~ E (EndeV){ x} d;j EndeV ® C{ x} be a solution of the affine
quantum KZ equation (A QKZ):

(b')#(~) = ~ where bEB. (4.1 )

This systenl of difference equations is self~consistent because {b} are pairwise
CODllllutative. If V is finite dinlensional and [61 f:. 1, one can follow [Al to check
that it has an invertible solution (q is arbitrary). Trus solution is holonlorphic where
xf3 :I §k for all ß E B, k E Z and unique up to B'-invariant AutcV-valued functions
of x as the right factors.

We will assunle further that ~ ex..ists and is invertible. The equivalent statenlent
is that the S) -nl0dule V {x} is isonlorphic to the direct SUDl of the .fj -Dlodules with
trivial {'Pw, tU E Wb} (Le. coresponding t 0 ( = a for the character fronl (3.9)).
When \1f satisfies (4.1) for an tU E Wb the equivalence is deal'. 0 t herwise it is
necessary to introduce the DlonodronlY cocyde (see below) and to use the proper
version of Hilbert Theorenl 90 (see [C4], Corollary 3.3).

The rnonodr'o1ny matrices {Cw} and the corr~sponding actions of tu E Wb on
9 E (EndeV) {x} are as follows:



(4.4)

The b-action can be uniqllely deternlined fronl the relations

s~ = CP3j sj, 0 ~ j :::; n~ 1f~ = ((YbrT~1 )1fr \ r E0,

((Tj)+(qj- qj1)(Xoj -l)-1 .. b .. b ( .... )b (4.3)
CPllj = -1)' 'U 'W = 'lL'W .qj + (qj - qj ) (X 0 j - 1 -1

Actually the restrietion of C to W is enough to know : Cb'w = Cw, where
Cb' = 1. Moreover,.Cuw = Cu u(Cw ) and b'(Cw ) = Cw for u.w E W~b E B (see
[C4], Theorenl 3.2). The function \l1 is b-invariant with respect to the entire Wb.

Let us modify Theorenl 2.3 to construct the following operators. Given a redllced
clecolllposition tU = sh",Sj,1fn

l -1

-.(T,.) d!y TI ( -1 ~ + qj", - qj", (~ - 1)) •
Cf w - qj", SJ", X

o
. _ 1 sJ", 7fr ·

m=1 J",

They can be obtained for the character Cf fronl (3.9) taken a') C after the substitution

• • cl -1Sj-tSj,1rr -t1rr , an q-tq .

PROPOSITION 4.1. Let o·(Yb) = 'EwEW.cEB 9c.wc'W· for proper 9c:w E C(X).
Then

((Y-b)\lJ = 0* (Yb)(\lJ) = Red(o·(Yb))(\lI) w]Jere bEB, (4.5)

Red( L 9c:wC'W·) d;j L 9c~wc'cp:1. (4.6)
wEW:cEB wEW~cEB

P1'OOf. It suffices to check (4.6) for b E B+. If b = sil", S j l 1r,· then Y-b =
1r;:1Tj~1 ...Tj~1. We can now use the relations

-1

((Tj-
1)'1J = (qj1S; + t-=-q~ (s; -1»)('1J), (4.7)

J

that are equivalent to s~(w) = '11, and replace Tj-
1 by o*(Tj) one after another.

We may do this because the latter operators are scalar and COllllllllte with the action
of «(1iy) on (the coefficients of) V[x]. The order of the indices beconles opposit
after this procedure. As to ((1r;:1), it goes to 1r;, since ((1r,,)1r; = 1r:. (see (2.18).
(4.2)). The reduction Red of o*(Yb ) is possible because wb('1J) = '1J. 0

Let us fix a H- nlodule U and a H-nlorphisDl 'T : V -t U. We deDote the
corresponding hOllloDlorphisDl H -t Ende U alternately by € and 'T(. Set

a*(Pb ) = L gc.wc'w·. b E B+\
wEW,cEB

M * dej R d (-.( TJ )) dej """ I ( -1)b = e.,. (J .1b = L...J gc.w C 'T l.pw .

wEW:cEB

(4.8)
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The operation Red.,. elinlinates the authonlorphisnls r(CPw)'W* on the right. We
emphasize that operators a* (Pb) are scalar and {w *} act on {Xr:d naturally (as
{tu} do). Hence we can onut * in fJ* when applying Red and Red.,.. In particular~

Mb (constructecl for the standard action of W) coincide with Mb' Thus we deal
with a certain direct generalization of (3.8) for scalar (. Let us refornlulate Theorenl
3.3 and Proposition 3.4 in this special case.

THEOREM 4.2.
i) Tlle matrix differellce operators Mb. b E B+, are pairwise COfllfllutative, W{-

invaricult witll respect to tbe action {tu --+ tu{ deI r(cpw)'W}, alld preserve U[X]W... '.
Tlleir leading tenns are as Eollows:

-lX
M = '"" II qtl w(ö) - qö'W (-b)' +~ b'

b L...J X 1 { L...Jgb. *'
WEW/Wb oE.\(b) w(ö) -

wllere b... E o)f(b), gb. E (EndcU)(X) .' w{(b) = r(cpw)w(b)r(<pw)-l.
ii) Let '1J be a solution oE AQKZ [roln (4.1). Tllel11/) = r( 'J1 z) satisfies tlle relations

(4.10)

where z belongs to the space V {x }E' oE tlle V -valued [ullctions tllat are B'­
periodic with respect to tl1e action Er01ll (2.4).

Proof. The reduction procedure Red.,. acts triviallyon the left ideal in EndeV(x)
generated by the elenIents {o(Td - ~(Ti-l), 1 ::; i ::; n}. The nlultiplication on the
right by o(Pb ) preserves this ideal because iJ(Pb) is scalar and Pb is H-invariant.
Then we nlay follow the proof of Theorenl 3.3. Fornlula (4.9) is a straightforward

version of (3.8).
To check the last statenlent. we substitute P-b for Y_bin (4.5), then place

{CPw'W·} on the right in o· (Pb)' erase thenl thanks to the p-invariance of 'lJ ~ apply
everything to z ~ and afterwards take r. D

The nlain aplication of the theorenl is when U co-induces V. To define the latter
we will use the spaces UO = Honl.c(U~ C)~ V O = IfoTnc(V~ C) equipped with the
action

(Ti! ...Tj ,1rr (g))(z) d;j g(1r;:lTjj ...Tj! (z)), 0 ~ j ~ n, TED.

of the corresponding Hecke algebra on linear functions g(z) fronl either UO 01' VO.
Starting with a finite dinlensional U and a honloßlorphisnl ~ : H -t EndcU, we

introduce the space UO(y] for {Yr:d satisfyin~ relations (2.3)-(2.4) with Y instead of
X, and set

(4.11 )



These operators and {Yb } acting in UO[y] give the 1iy-nlodule isonl0rphic to tbe
induced module generated by UO (cf. (2.13)~ Theorenl 2.3~ and [C3]). We fix a
set .x = {.x b ... ~.xn} E C* and consider the quotient Uf[y] of UO[y] by the (central)
relations Pb(Yl~ ... , Yn) = Pb(Ab ... ~ An) for all bEB in tbe setup of (3.8). Finally,

V def (U~[y])o with the structure of a 1iy-nlodule as above. The dinlension of V is

IWI dinlCU. .
This module has the natural projection T : V --t U that is a H- honl0nl0rphisnl.

The inlage of its arbitrary proper 1iy-subnlodule VI (;i: V) with respect to r is
non-zero. Indeed. if r(VI

) = 0 then there exists a proper 1iy-SUbnlodule in UO[y]
containing UO~ which is inlpossible because UO generates UO[y]. There are con­
nections of cü-induced nlodules with induced ones and other related constructions
which will not be discussed here (see [C5] for thc scalar case).

L

THEOREM 4.3.
Let 'I1 be tlle solution oE AQKZ Eroln (4.1). TlJen tlle 111ap r : (lJ1 z) -+ 'ljJ =
r('11z) from TlJeorelll 4.2 is 811 ison1orpllisnl oE tlle space oE tlJe solutions {'!Jz}
oE AQKZ in tlle above Cü-illduced ValId tlle space oE solutions oE tbe Eollowillg
U-valued systelll oE difference equatiolls:

(4.12)

Proof.t Fornlula (4.12) results fronl (4.10). Ir r('!Jz) = 0 (identically) then it
holds true for Yb \11 z and Ti \11 z for any bEB and 1 ~ i ::; n. The latter follows
fronl the H-invariance of r. As to Yb , we can use (4.5) because Red(a*(Yb )) is a
scalar difference operator preserving the (constant linear) relation T('!JZ) = O. We
see that lJIz generates a Hy-subnlodule of V with zero projection onto U~ which is
inlpossible.

The dinlension d of the space of solutions of (4.12) over C { x } B' is not greater
than IW! dinlc U. One can use (4.9) 01' the fornlulac; x(a*(Yb)) = a(Y_b)b' to check
this (here -b appeared because we have to replace q by q-l). We proved that r is
injective in the space of solutions of (4.1) in V {x} (coinciding with the dinlension
of V). Hence d = IWI din1cU and we have the required isonlorphisnl. 0

Fornlula (4.9) p;ives explicit expressions for the operators Mb r ~ T E 0* (coincidinp;
with their leading ternlS). Let us put down the fornlulas for Mbi in the case of A2 .

tRecently lhe autl~or' n:ceived the wor'l; by S.Kuto "R mat1U: "U1lsinq f1'Om Hecke algeb1n,', (md its
applic(ttion to Macdonald's diffen:mce ope1nto1's", cont(tining a dinct p1vvf 01 n ce1"tain ver"Si011

vI Theofem ~LI /rum [C4) (see (also (CE}) in the case 01 Mncdo1L(tld 's operuton,. ftt the abovt;

not(ltiofLS, ht; pfv-ved (4 .12) 101' € = a (md mittu,',cule (uwl cedaiu ,..imila1-) tL"~eight......
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Here 14 = {al, 0:2,01 + 0:2}, a1 = 2ß1 - ß2, a2 = 2ß2 - ß1, Si(ßi) = ß3-i - ßi
(the sanle relations hold for {ai, bd). One has: X k •ß•+k7.fh. = X~l X~7., (-b')(Xß ) =
62(b~ß) X ß . Setting

we arrive at the followinp; fornlllla:

Mb. = /+(0:1)/+(0:1 + a2)(-b~) + /(ad!+(0:2)F1(adFt(a1)(b~ - b~)+

/(a1 + 0:2)!(a2)F2(a2)F1(al + 0:2)Ft(al + (2)Fi(a2)(b~). (4.14)

To 0 btain M b-;z it is necessary to switch the indices 1 anel 2. 11ere {Ti, i = 1, 2} are
the generators of H in an arbitrary representation.:t:
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