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Abstract. In this paper, we initiate an investigation of the stability properties of a

one-parameter family {A} of spatially homogeneous, time almost-periodic classical

solutions to a class of nonautonomous semilinear parabolic initial value problems with

Neumann boundary conditions on bounded regions 0 of IRN . In particular, for p E (N,m)

and for every AE {A} , we construct in the Sobolev space H2,P(O,IR) a codimension-one

Ioeal stable manifold of classicalsolutions of small amplitude, which thereby all stabilize

exponentially rapidly around A. Dur method of investigation exploits the Banach algebra

structure of H2,P(O,IR) , and mainly rests upon the construction of fixed point solutions to

certain nonlinear integral equations in weighted Banach spaces of exponentially decaying

H2,P(O,IR)-valued maps. The class of equations which we analyze here contains in

particular Fisher's type reaction-diffusion equations of population genetics. The results of

tbis paper are thereby complementary to those of [14] and [15].
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1. Introduction and Outline.

This is the second of aseries of articles devoted to the analysis of stabilization phenomena

for certain classical solutions to real semilinear parabolic Neumann boundary value

problems of the form

[

u t (x, t) = &u(x, t)+s(t)g(u(x,t)), (x,t)EO)(!R+ }

Ran( u) C (uO,u1)

~ (x,t) = 0 (x,t )ElKllClR+

(1.1)

( [14] - [17] ). In eqnations (1.1), 0 denotes an open bounded connected subset of IRN

with smooth boundary an and N E [2,m) n w+- ,while !! stands for Laplace's operator

in the x-variables. Furthermore, s : IR+ --+ IR is the restriction to IR+ of a Bohr

almost-periodic function on [R which we shall also denote by s, while g E ~(1)(1R,1R)

possesses at least t wO zeroes uD and n1 such that g(u) > 0 for every u E (uO'u1) , with

the property that g' (uD) > 0 and g' (u1) < 0 . Finally, Ran(u) denotes the range of u

and ~ stands for the normalized outer normal vector to an. In [15], we proved that for

every (suitably defined) classical solution (x,t) --+ u(x,t) to problem (1.1), there exists a

classical time almost-periodic solution t --+ A(t) to the initial value problem

(1.2)

A - 2
such that u(t) - u(t) --+ 0 as t --+ m , strongly in the Sobolev space H ,p(O,IR) for

same p E(N,m) ,where u(t)(x) = u(x,t) for every x En.In fact, we proved this result
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under the additional hypotheses

lim G(u) = - (I)

u--+u O

lim G(u) = + (I)

u--+u 1

(1.3)

(1.4)

where G denotes any primitive of l/g over the open interval (uO,u1) , and under the

condition that s be Bälder continuoUB on IR+ . Furthermore, we distinguished two very

different casesj in the first one we assumed that the primitive of s is itself

almost-periodic, in which case we proved that every attractor A is a classical

almost-periodic solution to (1.2) of the form

(1.5)

where t, E (uO'u1) , and where G-1 denotes the monotone inverse of G . In the second

case, we aBsumed that the primitive of 8 is not almost-periodic and moreover that its

time average J'B(S) satisfies J'B(s) < 0 (resp. l'ß(s) > 0 ) . Under such conditions, we

proved that the (global) attractor is given by the equilibrium solution ~ = Uo (resp.

~ = u1 ). With the exception of the case A=Uo1 ' those results of [15] thus left entirely,
open the question of the stability properties of the one-parameter family of functions

{A} A ' since for a given :" E (uO'u1) it is apriori still conceivable that the
IIE(uO'u1)

corresponding solution ~ of (1.2) attracts no classical solution of (1.1).

In this paper, we initiate an investigation of the stability properties of the one-parameter
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family {A} A • In Section 2, assuming that the primitive of s is also
vE(uO'u1)

almost-periodic, our purpose is to prove that for p E (N,0)) , for every AE {A} A .

lIE(uO'u1)

and under further restrictions concerning the regularity of s and g, there exists in

H2,P(O,IR) a smooth one--eodimensionallocal stable manifold of classical solutions of small

amplitude to Problem (1.1). We also prove that those solutions stabilize around A

exponentially rapidly, with a rate detennined by the largest negative eigenvalue of some

appropriate realization of Laplace's operator in H2,P(O,(). In order to accomplish this, we

first analyze the initial-boundary value problem

{

Ut (x, t) - A Au(x, t)+s( t )g(u(x,t», (x,t)xEEnnX!R+ }

u(x,O) = J'(x) E (u O,u1) ,

~ (x,t) = 0 , (x,t) E ao><\R+
(1.6)

rather than (1.1). We then transform (1.6) into a suitable dynamical system on

H2,P(O,IR) , aspace which becomes a commutative Banach algebra with respect to the

usual pointwise operations and an appropriate norm [1]. We finally exploit the Banach

algebra structnre of H2,P(n,lR) to carry out the stahle manifold construction without any

growth conditions on g, upon invoking fixed point arguments in a weighted Banach space

of exponentially decayjng maps defined from IR! into H2,P(n,IR). By using some

regularity arguments and the strong para.bolic maximum principle, we can then easily

prove that our construction provides the classicalsolutions to problem (1.1) that we seek.

Methodologically, the techniques of this section are in fa.ct complementary to those used in

[7], [8] and [10] - [13] for the analysis of some hyperbolic problems. In Section 3, we

&Ssume that the primitive of s is not almost-periodic and moreover that is time average

Pß(s) satisfies Pß(s) < 0 (resp. J'B(s) > 0 ). Under further restrietions on 8 and g
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and using techniques similar to those of Section 2, we then prove that the two equilibria

Uo and u1 are exponentially asymptotically stable with the decay rate

lU
O

= g' (uO)JjB(s) < 0 (resp. r
Ul

= g' (u1)JjB(s) < 0) . In Section 4 we apply the results

of Sections 2 and 3 to Fisher's type equations of population genetics. Finally, Section 5 is

devoted to Bome remarks and to the discussion of some open problems while Appendices A,

B and C are devoted to proving some more technical facts of the theory. For a short

announcement of the above resulta, we refer the reader to [16].

At this point, it is worth observing that the stabilization processes disCU8sed in this article

have a very different physical origin in the case where s has an almost-periodic primitive,

than they do have when B has a time average different from zero. In fact, our methods of

proof will show that in the first case, the convergence of the solutions of small amplitude to

the attractors {A} A is mainly governed by the diffusion process. This ia in sharp
IIE(uO'u1)

contrast to the second case, where the convergence to the equilibria Uo and u1 is

governed by the reaction process. In the third and last part of this work [17], we shall

complete our stability analysis of the attractors {A} A throngh the conatruction
IIE(uO'u1)

of a one-parameter family of one-dimensionallocaJ center manifolds corresponding to the

fa.ct that zero is an eigenvalue of Lapla.ce's operator in (1.1). The combination of that

analysis with comparison arguments based on parabolic maximum principles will then show

that the above remark is not merely limi ted to the particular solutions constructed in this

article, but applies to the stabilization process of~ classical solution to Problem (1.1).

We still refer the reader to [15] for further references regarding the origins of the problems

investigated here.
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2. A Qne-Parameter Family of Codimension=One Stable Manifolds associated with

Problem (1.1).

Let IRB be the Bohr compactification of the rea.lline ( [4], [6], [9]). Whenever

convenient we shall identify a real Bohr almost-periodic function s with its unique

uniformly continuoUB extension on IRB ' that is s E ff(IRB,IR); in this case we have

for every t E IR , where

t
Sk = JJB(SXk) = 1im ClJd{sWXkW

t-HD 0

and t --t Xk(t) = exp [-iAkt] for each k. In particular,

t
l1ß(s) = 1im Cl Jd{s({)

t-HD 0

(2.1)

(2.2)

(2.3)

denotes the time average of s . It then follows from a classic criterion of Bohr that

t t

t --+Jd{s({) E ~(IRB,IR) if, and only if t --+Jd{sW = 0(1) as Itl --+ m [4]'
o 0

Under this condition and under the hypotheses concerning g described in the preceding

section, we proved in [15] that Problem (1.2) possesses the one-parameter family of

almost-periodic ff(1)-solutions {A} A given by relation (1.5); in addition, we
vE(uO'u1)

proved that each one of those solutions remains uniformly bounded away from the
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equilibria Uo and u1 ' and that every Fourier exponent of A ia a finite linear

combination with integer coefficients of the Fourier exponents of s . In order to construct a

Iocal stable manifold for every AE {A} A ' we now proceed to define the notion of
vE(uO'u1)

classical80lution to Problems (1.1) and (1.6). Let [N/2] be the integer part of N/2 i

throughout the remaining part of this paper, we shall assume that n has a

tf5+ [N/2] -boundary in the sense of [1], in such a way that n lies only on one side of

8{l , and that it satisfies the interior ball condition for every x E 8{l . We note that we

have assumed the boundary an to be more regular than in [15] (compare with the proof

of Lemma 2.1 below). We shall also write fi for the compact closure of n, and denote by

~2,1(nxlR+,IR) the set consisting of all functions z E ~(nxlR+ ,IR) such that

(x,t) --t 0lnoz(x,t) E '6(nx[R+,IR) for all 0= (0l' ... ,oN) E NN, 'Y E N , satisfyjng

N

l 0j + 27 ~ 2 . In a similar way we define 'if1,0(nxlR+,IR) as the set consisting of all

j=1

z E tf(nxlR+ ,IR) with the property that nOz E ~(nxlR+ ,IR) for all ° E NN such that

N

l 0j ~ 1 . Now fix p E (N,m) ; we then have the following

j=1

Definition 2.1. A function u E 't2,1(nXIR+ ,IR) n ff(fiXlRt ,IR) n 't1,0(nxlR+ ,IR) is said to

be a classical solution to Problem (1.1) (resp. (1.6)) if the following conditions are satisfied:

(Cl) There exists (1 E (0,1] and, for every T E IR+, a function c E LP(n,lR) such

that Iu(x,t)-u(x,t') I ~ c(x) It-t' I (J for every x E n and every

t,t' E [r,m).

(C2) x --t u(x,t) E ~(2)(n,lR) for every t E IR+ .

(C3) (x,t) --t ut(x,t) E ~(nxlR+,IR) and in fact t --t ut(x,t) E 'if(lR+ ,IR)

uniformly in x En.
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(C4) u satisfies relations (1.1) (resp. 1.6) identically.

It is then clear that every classical solution to Problem (1.1) is also a classical solution to

Problem (1.6), and that conversely every classical solution to (1.6) is a classical solution to

(1.1) by the strong parabolic maximum principle. Now let u be any classical solution to

problem (1.6), pick AE {A} A and define y(x,t) = u(x,t) - A(t) for every
IIE(uO'u1)

(x,t) E n)(ItÖ .Upon using relations (1.2) and (1.6) we then conclude that y is a classical

solution to the initial-boundary value problem

[

Yt(X,t) - ~y(x,t)+s(t)g/(A(t))y(x,t)+S(t)gA(t,Y(X,t)), (x,t) EO)(!R+ }
A A U

y(x,O) = p(x) -11 ,x E n
~ (x,t) = 0 , (x, t)EOIllClR+

where

AA, A
gA (t,y(x,t)) = g(u(t)+y(x,t»-g(u(t)-g (u(t))y(x,t)

u

(2.4)

Clearly, the stability analysis of A is then reduced to the stability analysis of the trivial

solution of the partial differential equation in (2.4). Let H2,P(() = H2,P(O,() be the usual

Sobolev space consisting of all complex LP-functions z with LP-distributional derivatives

naz for IalE [0,2] ,equipped with the norm

(2.5)

where 11·llp denotes the uaual LP-norm. For ßE (O,l-p-IN] ,let
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~1,,8(() = ~I,ß(n,() be the Banach space of all complex Bälder continuous functions on

n with Hölderian derivatives Daz of exponent ß for IalE [0,1] and the norm

IlzIIIß=llzlll + max sup Ix-YI-ßIDaz(x)-Daz(Y)1
, ,ID lai E [0,1] x1yEO

xfY

- max sup IDaz(x)I + max sup Ix-YI-ßIDaz(x)-Daz(y)I
laIE[O,I] xEn laIE[O,I] x,yEn

xfy

Recall that there exists the continuous embedding

(2.6)

(2.7)

and that B2,P(() is a commutative Banach algebra with respect to the UBual pointwise

operations and a norm equivalent to (2.5) [1]. We denote by A .A'" the LP(()-realizationp,

of Laplace's operator on the domain Dom(&p, f) = H ]'P(() , where

(2.8)

It follows from the standard methods of [5] that A fis the infinitesimal generator of ap,
compact holomorphic contraction ~(OL-6emigroupon LP(() i in addition, Ap, f has a

discrete point spectrum, namely u(& v) = {~k} ..rl- U {O} where {Ak} ..rl- ( IR- ,
p, .n ' kE~.' kE~ .

the eigenvalues ~k have finite multiplicities and Ak --+ --(I) as k --+ ID [15] . Let

p(A f) be the resolvent set of A fand fix ~O E p(& ,AI) n IR j we first renormP, p, p,

H]'P(() with
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(2.9)

1t then follows !rom the closed graph theorem and standard elliptic theory that the norm

(2.9) is equivalent to that defined by (2.5). According to the above remarks and without

restricting the generality, we shall thus a.Bsume that H ~p(G:) ia a Banach algebra with

respect to the usual pointwise operations and the norm (2.9). This Banach algebra will

henceforth be denoted by H~ ,p .;() . Dur first preparatory result states the existence of
0'

a diffusion semigroup on H~ ,p ';G:) whose properties are identical to those of the
0'

semigroup generated by A f.p,

Lemma 2.1. Let A f be the H~ ,p ';()-realization of Laplace's operator on the domain
0'

Dom(ä f) = {z EH]P(() : ä ."yz E H~ ,P ';G:)} . Then A."yis the infinitesimal
p, 0'

generator of a compact holomorphic contraction ~(OL-semigroupon H~'p .;() . In
0'

addition, A."y has a discrete pure point spectrum, namely

u(A ."y) = up(A ."y) = {~k}kEW U{o} ,where {~k}kE~ ( IR- ,the ~k's have finite

multiplicities and ~k --+ -1I) as k --+ m .

Proof. Let {wA (t)} + be the ~(O)-fiemigroupgenerated by A fon LP(() j
p, f tEIR

O
p,

since {w/!,. )t)} + ia holomorphic, we have W /!,. (t)(LP(G:)) .c H ]p(() for
p, tErR O p, f

every t E IR+ by the smoothing property, so that {wA (tl} + leaves H~ ,p .;()
p, ."y tEIR 0 0'

globally invariant. Let {W(t)} + be the restrietion of {wA (t)} + to
tE[R 0 p, Jf tElR 0

H~ ,p ';G:). We claim that {W(t)} + ia the desired semigroup with the infinitesimal
0' tEIR O
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generator ä.A'; it is indeed easily verified that {W(t)} + is a ~(O)-semigroup on
tEIR O

H~ ,p vr«) .In addition
0'

for every t E rRt and every z E H~ ,p vr«) ,so that {W(t)} + is a contraction
0' tE~o

semigroup. Using similar graph-norm arguments we can prove that the compactness and

the holomorphy of {W(t)} + follow from the corresponding properties of
tEIR O

{wä (t)} + . Now let z EDom(ä J.) ; then Q= (~O-A ."y)z EH~ ,p vr<G:) , so
p, f tElR o p, 0'

that we obtain

Ilt-1
(W(t)z-z) - ä rll~ 2 =p, 0' ,p

11
- 1 A A All= t (Wä (t)z-z) - A fZ -----40

p,..#" p, P
(2.10)

,.

as t ---+ 0 . Hence z E D , the domain of the infinitesimal generator of {W(t)} + .
tEIR O

Conversely let z E D,set Q= (~o-& f)z and ~ = s-1 i m t-1(W(t)z-z) in
p, t ..... O
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11
- 1 A A Nilt (W!J. (t)Z-Z)-(~O.:...,1 ."y)Z =

P,J.V p, p

(2.11)

as t ..... 0 . Hence ~ E H~ ,p vr<G:) so that z E H]'P(() by elliptic regularity, which
0'

impliea that z E Dom(ä J.V) since A r = ~oz-~ EH~ ,p vr«). In addition we have
p, 0'

(2.12)

from the definition of ~ , as well as

(2.13)

which follows !rom relation (2.11). Since ~O E p(ä J.V)' we infer from relations (2.12)p, <

and (2.13) that ~ =!J. r' We conclude from this that D= Dom(!J. f) , and that thep,

infinitesimal generator of {W(t)} + is!J. f restricted to Dom(!J. f) . Finally, let
tE[R 0 P,

C{J EDom(ä."y) be an eigenfunction of !J. J.V correaponwng to the eigenvalue ~; then a

fortion C{J E H ].2(() and is trivially an eigenfunction of the corresponding

L2(()-realization of the Laplacian associated with the same eigenvalue. Conversely, let

C{J E H ].2(() be a (generalized) eigenfunction of the L2(G:)-realization of Laplace's

operator. Since n has a ~5+ [N/2] -bonndary, it follows from standard elliptic regularity

theory that C{J EH~ [N/2] ,2(G:) ----+ if4(O,G:) . Hence C{J E H]'P(() and

IJ.p, ft = ),rp E H~~~ vr<G:) J so that rp E Dom(IJ..,.y) and is an eigenfunction of IJ..,.y

associated with the same eigenvalue. In addition, the remaining spectral properties of !J. f
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•

From now on we shall write H~'P ~IR) for the real component of H~ ,p ~() and
0' 0'

{W!J. (t)} + for the restrietion of the diffusion semigroup of Lemma 2.1 on
f tEIR O

H~ ,p ~IR). Dur next preparatory result states that {W!J. (t)} + enjoys properties
0' f tEIR O

of exponential dichotomies on H~ ,p ~lRl similar to those of {W!J. (tl} + on
0' p, f tElR o

LP(IR) . In fact, define the operators P and Q on H~ ,p ~IR) by
0'

P=I~ 2 -Q
0' ,p

(2.14)

Qz = 1°1-1f dxz(x)
n

where I~ 2 denotes the identity operator. It is then easily verified that P and Q are
0' ,p

projection opera.tors on H~ ,p ~IR). We write 111 · 111 ~ 2 for the usual operator
0' 00, 0' ,p

norm on H~ ,p ~lRl. We then have the following counterpart of Proposition 2.3 of [15].
0'

Lemma 2.2. The diffusion semigroup {w!J. (tl} + leaves Ran P globally invariant;
f tEIR O

moreover, if ~l denotes the largest negative eigenvalue of &f' there exists a positive

constant Cl depending on N , P , ~1 and the geometry of n, such that the estimates
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(2.15)

hold for every t E IR+ . Finally, {w& (t)} + leaves Ran Q pointwise invariantj
.A" tElR o

that is,

(2.16)

for every t E IRt and every z E Ran Q .

Proof. We first show that relation (2.15) follows !rom relation (2.35) in Proposition 2.3 of

[15] through an appropriate graph-norm argument. Since the first estimate (2.15) also

holds for t = 0 we mayassume that t E IR+ throughoutj then from relation (2.35) of

[15] we get

(2.17)

far ~very z EH~ ,p ~IR) , since an this space {w11 (t)} + and {W11 ~t)} +
0' P,.A" tEIR O tEIR O

coincide. We further notice that on Dom(L\ f) n H~ ,p ~lR) , we have
0'

(;\O-ä f)P = P(;\O-A f) ,Ä ~ Afand L\ fWA (t) = WA (t)A v; moreover,
p, f.A' ..n

WA (t)P leaves Dom(~ ,JY) n H~ ,p ~IR) globally invariant. Therefore, upon using
.A' 0'
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relation (2.17), we obtain

for every z E Dom(& f) nH~' Pvr<lR) . Inequality (2.15) then follows by extending the
0'

validity of (2.18) by a density argument to every z EH~ ,p vr<1R) . The pr60fs of the
0'

remaining statements of the lemma are identical to those of the corresponding statements

in Proposition 2.3 of [15]. •

In relation with our stability analysis of the trivial solution of equation (2.4), we now

observe that the linearized part of (2.4) also contains an almost-periowc perturbation to

Laplace's operator. Accordingly, we next investigate a related family of evolution operators

on H~ ,p vr<1R) . Pick AE {A} A ; on H~ ,p vr<1R) , define the two-parameter
0' lIE(uO'u1) 0'

family of operators {uA(t ,r)} t~r~O by

t

UA(t,r) = exp [J dl7S( '7)g I (A( '7))] w~ )t-r)
r

Our next result states that in fact the family {uA(t,r)}t~r~O enjoys the same

(2.19)
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exponential decay properties aB the diffusion semigroup {wfj, (t)} + .
.A" tEIR 0

t

P Qj)O n 2.1. Let s C j(UWLR be sn h triat t --+Jim r) = Oll) v It I --+ lD •

o
Let g C j((I)(LR,LR) be such that there exists uO•I C LR with g(uO) = g(u l ) = 0 ani

g(u) > 0 for each u E (uO,u1) , in such a way that g' (uo) > 0 and g' (u1) < 0 . Let G

be the primitive oI l/g over the open interval (uO,u1) and &Bsume that it satisfies

relations (1.3) and (1.4). Pick AE {A} A • Then the two-parameter family (2.19)
vE(uO'u1)

generates a compact family 01 evolution operators on H~ ,p ~IR) . Moreover, the following
0'

conclusions hold:

(A) The evolution system {u~(t.r)}t~r~o iecays exponentially on Ran P i that is,

there exists a constant c2 E IR+ uniform in t and r Buch that the estimate

(2.20)

holds for every t ~ r ~ 0 .

(B) The evolution system {u~(t,r)}t~r~o remains uniformly bcuniei on Ran Q i that

is, there exists a constant c
3

EIR+ uniform in t and r such that

1I1
U A(t,r)Q 111 ..\ 2 ~ c3u CD, 0' ,p

(2.21)

(C) The restriction of each one of the operators {u~ (t,r)}t~r~O to Ran Q is invertible.
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Proof. The first part of the statement follows immediately from relation (2.19) and the

compactness of {WtJ. (t)} + . As for the proof of estimate (2.20), it is sufficient to
.A' tEIR O

show that

t

(t,r) ------+ expUd'78(11)g' (~( 11))]
r

is bounded since we already know that estimate (2.15) holds. We first notice that the

differential equation in (1.2) implies the relation

t t [A ]fdxq' ~p)) = f hhLmg(A('7))) = Ln g(uPU
o 0 g(lI)

(2.22)

It then follows from (2.22), the almost-periodicity of t --+ g(A(t)) and statement (C) of

Proposition 2.1 of [15] that

(2.23)

rernainB uniformly bounded as the product of Bohr almost-periodic functions. This proves

statement (A). The proof of statement (B) is then immediate since, by relation (2.16), we

obtain

t

UA (t,r)Q = expUd'78(11)g' (~( 11))] Q
u r

(2.24)

a.s an operator equality on H~ ,p ~lR) . As tor the proo{ o{ conclusion (C), we note that
0'
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the equality

holdB on Ran Q .

t

UA(t,r)Q = expUd718( l1)g' (A( 11»] I~O,2,p
r

(2.25)

•

Remark. We note that if we choose YO EDom(A f) n H~ ,p vr<1R) n Ran P , then the
0'

H~ ,p vr<iR) - valued function y(t) = UA(t,O)yo provides a classical ~olution (in the sense
0' u

of the theory of evolution equations on Banach spaces) to the equation

y'(t) = (A r s(t)g'(A(t)))y(t) (2.26)

which decays exponentially rapidly as t ----+ m. On the other hand, if yo E Ran Q then

t ----t y(t) provides an almost-periodic cla.ssical solution to (2.26). This observation thus

suggests that we identify Rau P with the codimension-one stahle manifold associated

with equation (2.26), and Ra.n Q with its one-dimensional center manifold. While

nonlinear versions of Ran Q will be eonstrueted in [17], our purpose in the remaining

part of this section is to construct a loeal nonlinear version of Rau P associated with the

initial value problem

{

y' (t)=(A r s(t)g' (A(t)))y(t)+s(t)a A(t,y(t)),t E IR+}
A A u

y( 0) = J-' - v
(2.27)

on H~ ,p vr<1R), corresponding to equation (2.4). In relation (2.27), we have
0' .

i A(t,·) : H~ ,p vr<1R) ----+ H~ ,p vr<1R), and this map will be properly defined and analyzed
u 0' 0'
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in Proposition 2.2 below. It is in the prcof of Proposition 2.2 and in the related Appendix A

that the Banach algebra structure of H~ ,p .)IR) will be used for the first time in a crucial
0'

way. The precise result is the following

Proposition 2.2. Assume that s and g satisfy the hypotheses of Proposition 2.1 and pick

AE {A} A • Assume in addition that g E 'lf(5)(IR,IR) ; for z EH~'P .)IR) and
lIE(uO,u1) 0 '

t E IR , define

A AA, A
gA (t,z) = go( u(t)+z)-gou(t)-(g ou(t))z

u
(2.28)

Then g (t,·) E ~(2)(H2,p .JIR), H2 ,p .11R)) for every t E IR . Moreover, for j = 0,1,2
A A0 I A'\ A0' .;f\

there exist non decreasing mappings t ~ j) : IR! --+ IR! such that the following estimates
u

hold uniformly in t E IR and for all z,h,k EH~'P .)IR) :
0'

(2.29)

(2.30)

(2.31)

In the above expressions, Dg A(t,·) and D2gA (t,·) stand for the first and the second
u u

Frechet derivative of gA (t,· ) , respectively.
u
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Proof. The fact that z EH~ ,p ~IR) implies ~ A(t,z) E H~'P ~IR) for every t E IR
0' u 0'

follows immediately from relation (2.28), the embedding (2.7) and the smoothness of g .

The proof of the fact that g E ~(5)(1R,1R) implies gA (t,·)E if(2)(H~ ,p ~IR),H~,p ~IR))
u 0' 0'

is given in Appendix A. There we establish the relations

and

Da A(t,z)h = (g' o(A(t)+z)--g' oA(t))h
u

2A A
D gA (t,z)(h,k) = g"O( u(t)+z)hk

u

(2.32)

(2.33)

valid for every z,h,k E H~ ,p ~IR) in the sense of pointwise multiplication in
0'

H~ ,p ~IR) . It remains to prove estimate (EI)' (E2) and (E3). In order to establish (2.29),
0'

we have to estimate the LP-norm of (AO-~ f)g A(t,z) . We first write
p, u

A
(AO-äp f)g A (t,z) =

, u

(
A A , A

= ~O go(u(t)+z)-gou(t)) - g ou(t)(~O-& f)zp,

, A A V 2-g o( u(t)+z)& r - g"O( u(t)+z) 1 z I =p,

A A, A , A= ~O(go(u(t)+z) - gou(t) - g o( u(t)+z)z) - g ou(t)(~O-& A'.)zp,

+g' o(~(t)+z)(~o~ v)z - g"O( ~(t)+z) 1Vz 1
2

p, ..,,'

(2.34)
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We then proceed to estimate the LP-norm of each term. in (2.34). In order to simplify the

notation 8Omewhat, we omit all of the irrelevant positive multiplicative constants in the

formulae that follow; this includes in particular all of the embedding constants. With this

A
in mind consider the first term. in (2.34) and write momentarily T(t,x) = u(t) + z(x) ;

then

(2.35)

uniformly in t and x, because of the boundedness of A and embedding (2.7); in relation

(2.35), a1 denotes some positive constant. We then infer the estimate

Ilgo(A(t)+z)11 ~ sup max Igo(A(t)+z(x)) I ~
p tEIR xEn

~ sup Ig( T) I
ITI E[0,a1+lIzll~ 2 pJ

0' ,

(2.36)

This leads us to define t/J A: IRt ---+ IRt by t/J A({) = I I 8[UP J Ig(T) I ;
1,u 1,u T E 0,a1+{

clearly, , A is non decreasing and we have
1,u

uniformly in t E IR . The second term in (2.34) is handled in a similar way. As for the third

one, we may write
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Ilg' o( ~(t)+z)zllp ~ ~E~ manx Ig' o( ~(t)+z(x)) IIHlp ~
xE

~ sup max Ig' o(A(t)+z(x)) IIIZII~ 2
tEIR n 0' ,pxE

because of embedding (2.7); we then argue aB above to conclude that the estimate

(2.37)

(2.38)

holds with some non decreasing function , A: rRt --+ IRt uniform in t . The remaining
2,u

terms can be handled in a similar fashion, upon using the definition of 11 ·1I'\a,2,p and

embedding (2.7). This proves estimate (EI)' As for the proof of inequalities (2.30) and

(2.31), we start from relations (2.32) and (2.33). From the method of Appendix A we

already know that g' o(A(t)+z) - g' oA(t) E H~'P ~rR) along with gtlo(A(t)+z) .
0'

Invoking the Banach algebra properties of H~'P ~rR) , we then obtain from (2.32) and
0'

(2.33) the inequalities

(2.39)

and

In order to prove estimate (E2) and- (E3), it is thus sufficient to show that the inequalities
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(2.41)

and

(2.42)

hold for some nondecreasing functions t ~ 1,2) : IRt ---+ IRt .But this follows from
u

considerations entirely similar to those entering the proof of estimate (EI)' •

In order to construct a codimension-one stable manifold associated with the trivial solution

of equation (2.27), we now convert the initial value problem (2.27) into an integral

equation on H~ ,p ~lR) . The interplay between the estimates of Proposition 2.2 and those
0'

of Proposition 2.1 is here essential. We begin with the following

Definition 2.2. As before let "'I be the largest negative eigenvalue of tJ.....rj we denote by

y ~ the set of all continnous maps y: 1R6 ---+ H~ ,p ~IR) such that
1 0'

(2.43)

It is clear that Y..\ becomes areal Banach 8pa.ce with respect to the usual pointwise
1

operations and the weighted norm (2.43).

The conversion of equation (2.27) into an equivalent integral equation will be proved for

decaying solutions of the following kind.



-23-

DehnEn 2] Let ; on -I nJ;- ~IR) ; we sa; that ; is an eJqlonentiall; decaying

classical solution to equation (2.27) if the following three requirements are satisfied:

y Ey~
1

y(t) EDom(~ vf) n H~'P ~IR) and satisfies equation (2.27) identically on
0'

H~ ,P ~IR) for every t E IR+ .
0'

The basic conveIsion result is then the following

Proposition 2.3. Let 5 and g satisfy the hypotheses of Proposition 2.1. In addition,

assume that g E ~(5)(1R,1R) and that s be locally Hölder continuous on lR+ . Pick

AE {A} A and let y Ey~ be such that y E ~(l)(IR+,H~'P ~IR)). Then y is
vE(uO'u1) 1 0'

an exponentially decayjng c1assical solution to equation (2.27) if, and only if, the integral

equation

t

;(t) = U A (t,O)P;(O) +Jd{U A(t,{)s({)PaA({,;({»
u 0 u u

(JJ

-Jd{U A(t,{)s( {)(I~ 2 p-P)g A({,y({))
u 0' , u

t

(2.44)

\
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holda for every t E IRt .In the first two terms ofrelation (2.44), {u~ (t, e)} t~ e~O is

given by relation (2.19), while in the third one we have defined

for {~t ~ 0 and every z ERan Q , according to Statement (C) of Proposition 2.1 and

relation (2.25).

Proof. Let y be an exponentially decaYing classical solution to equation (2.27) and write

Yp{t) = Py{t) , YQ{t) = Qy{t) for each t EIR! .We then infer from (2.27) that the

equations

Yp(t) = (& r s(t)g' (A(t)))Yp(t) + s(t)Pg A(t,y(t)) (2.46)
u

and

YQ{t) = s{t)g' (A(t))YQ(t) + s(t)Qg A(t,y(t))
u

(2.47)

hold for each t E IR! ' since P and Q are continuous operators on H~ ,p ~IR) and
0'

eince ä / = P&.A" ä~ = Q&.A'= 0 on Dom(A vY) n H~'P ~IR). We now prove
0'

that equation (2.46) implies the relation

t

Yp(t) = UA(t,O)Py(O) + f deU A(t,e)s( e)pL (e,y(e)) (2.48)
u 0 u U

f
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ior every t E ~! I while equation (2.47) implies

m

YQ(t) = -J deU A(t,{)s({)(I~ 2 p-P)g A({,y({)) (2.49)
t u 0' , u

with the absolute convergence oi the integral in (2.49). This will prove relation (2.44) since

y(t) = Yp(t) + YQ(t) . In order to derive (2.48) !rom (2.46), it is sufficient to show that

for then (2.48) follows !rom a standard argument involving the variation oi constants. But

statement (2.50) is a simple consequence of inequalities (2.20) and (2.31), for

1

~ c1exp PI(t-OJ IlslllDl~Jd<1(1-<1).(2) [11 <lyW II Ao,2,p] IIYWII~o,2,P
o
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In order to establish relation (2.51), we have successively used relation (2.20), the

second-order Taylor expansion

(2.52)

around the origin of H~ ,p .JIR) , estimate (2.31) and relation (2.43) through the
0' .A'\

monotonicity properties of t(2) and the notation Ilsllm,1R = !E~ Is(~) I . Hence relation

(2.48) holds. We now prove that (2.47) implies (2.49). To this end, define

for every t E IRÖ according to definition (2.45). We then obtain yQ(t) = UA(t,O)z(t) ,
u

!rom which we infer that the relation

YQ(t) = UA(t,O)Z'(t) + s(t)g'(A(t))U A(t,O)Z(t)
u u

(2.54)

holds far each t E 1R1) . Comparing equation (2.54) with (2.47), solving for z' (t) and

integrating over [t, t] for some fixed t E (t,co) , we obtain

t
UA(t,O)z(t) = YQ(t) + f d~U A(t.OsWQL(~.y(~)) (2.55)

U t U U

where {U A(t,e)} is given by relation (2.45). For any fixed t E1R1; , we now can
u e~t~O
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prove that

upon invoking the boundedness of (t,e) --+ U A(t,e) on Ra.n Q and an argument similar
u

to that leading to estimate (2.51). This and classic results of integration theory now imply

the absolute convergence of the integral in relation (2.55), with

m

UA(t,O)z(m) = YQ(t) + JdeU A(t, e)swQL (e,yW) (2.56)
U t U u

and z(m) = s-l i m z(t) . In order to show that (2.49) holds, it remains to prove that
t-+oo

z(m) = 0 . But this ia immediate, far

aB t --+ m . This proves the only if part of the proposition. Conversely, assume that

relation (2.44) holds for every t E rRt and define

t

Y1(t) = UA (t,O)Py(O) +JdeU A(t,e)s( e)pL (e,y( en (2.57)
u 0 u u

m

Y2(t) = JdeU A(t,e)swQL (e,yW) (2.58)
t u U
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Clearly, t ----+ U A (t,O)Py(O) is continuously differentiable on IR+ and belongs to
u

Dom(ä .K) n H~'P ~IR) for every t E IR+ . The same property holds true for the setond
0'

term in (2.57)i in fact, invoking the remark immediately following the proof of Proposition

A.l in Appendix A, we have {----+ i A ({,y({)) E f!(I)(IR+ ,H~ ,p ~IR)); the continuous
u 0'

differentiability of the second term in (2.57) then follows !rom the loeal-Hölder property of

s , the fact that {wä ~t)} + is a holomorphic semigroup and minor modifica.tions of
tEIR O

the standard arguments of [3] and [5]. Moreover, Yl(t) E Dom(~ .K) n H~'P ~IR) and
0'

Yl (t) = (ä .r s(t)g I (~(t)))Yl (t) + s(t)PgA(t,y(t)) (2.59)
u

for every t E lR+ . Since y E ~(l)(lR+,H~ ,p ~IR)) by hypothesis, it follows in the same
0'

way that t ----+ y2(t) = Y1(t) - y(t) is continuously differentiable on IR+ with

Y2(t) EDom(ä .K) n H~'P ~IR) and
0'

Y2(t) = (&.r s(t)g' (~(t)))Y2(t) - s(t)Qa A(t,y(t)) (2.60)
u

for every t E IR+ . Equation -(2.27) is then obtained upon subtracting relation (2.60) !rom

relation (2.59). •

While it is conceivable to analyze relation (2.44) as an integral equation on H~'P ~[R) , it
0'

ie now our intention to interpret it as a fixed point equation on Y A . To thie end, define
1

F A(y)(t) = U A(t,O)Py(O)
O,U U

(2.61)
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t

F1 A(y)(t) = JdeU A (t,e)s( e)paA(e,y( e))
, u uo

CD

F A(y)(t) = -J deu A(t, e)s( e)(I,\ 2 p-P)gA( e,y( e))
2 u u 0' , u, t

(2.62)

(2.63)

It follows from easy considerations that t --+ F. A(y)(t) E t4'(lRt,H~ ,p .)IR)) for each
J,U 0'

y EY,\ . In addition, it follows from the arguments used in the first part of the proof of
1

Proposition 2.3 that FA. maps Y,\ into itself for every j (for instance, estimate (2.51)
u,J 1

proves immediately that y E Y,\ implies that F A (y) EY,\ ). Equation (2.44) may
1 1,u 1

thus be read as the fixed point equation

2

Y = 1: F. A (y)
j=O J,u

(2.64)

on Y,\ . With the results of Propositions (2.2), (2.3) and relation (2.64), the structure of
1

our theory thus becomes identical to that developed in ( [10] - [13] ) for the analysis of

some hyperbolic problems. We are thereby in a position to invoke the methods developed

in those articles to solve equation (2.64) in small balls of Y;\ . In this way, we get the
1

following Ioeal stable manifold theorem for equation (2.27), which is the main result of this

section.

Theorem 2.1. Let sand g satisfy all of the hypotheses of Proposition 2.3. Let

A {A} +u E u A and choose Po E IR in such a way that
IIE(uO'u1)
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I A(PO) = {ll E IR: Iv-t I < PO} C(uO,u1) . Let c E IR+ denote the embedding constant
11

corresponding to the embedding (2.7). Then there exist constants ~O E (O,m) 1 ~O E [1,m)

and, for each f E (0, ~O) , an open spherical neighborhood .A' A 1 of radius (2~0)-1
(2kO)~ E

centered at the origin of H~ ,p ~lR), such that the following statements hold:
0'

(A) For every 1] E."r A 1 n Ran P , there exists a unique YA(1'J) E.A' such that
(2kO)~ u E

Py A(1]) = 1'J , and a unique function
u

t --i YA (t,1]) E ~(lRt,H~ ,p ~IR)) n ~(1)(IR+,H~ ,p ~IR))
u 0' 0'

which provides a classical solution to the Cauchy problem

{

y' (t)=(~ .,f'+ s(t)g' (~(t)))y(t)+s(t)~~ (t,y(t)), t EIR+}
y(O)=YA(71)

u

~oreover, theinequality

hohls.

(B) The exponential decay estimate

(2.65)

(2.66)

hohls for every t E IRt .
(C) There exists a codimension-one ~(l)-manifold .J(lo~ ( H~ ,p ~IR), tangent to

S,1I 0'

Ran P at the origin, namely
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(2.68)

Proof. Upon using the result of Proposition 2.2, we first easily get for ~ A(t,·) an
u

estimate analogous to relation (3.27) in Lemma 3.1 of [13]. This combined with relations

(2.61), (2.62), (2.63) and with inequalities (2.20), (2.21) of Proposition 2.2 then leads

immediately to estimates for the F. A'S which are identical to those of Proposition 3.3 of
J,U

[13]. Hy a neady verbatim adaptation of the proof of Theorem 3.1. of [13], we therefore

conc1ude that there exists €O E (0,00) J ~O E [1,00) and, for € E (O,€O] ,an open

spherical neighborhood A'(2~O);1 of radius (2~O);1 centered at the origin of

H~'P ~IR) , such that for every 11 E f A -1 n Ran P the nonlinear mapping
0' '(2kO)€

2

y~ F A(y,1J) = UA(t,O)" + l F. A(Y)
u U j=1 J,u

becomes a contraction in the ball

(2.69)

(2.70)

Now define ~O = min(€OJc- 1pO) Jchoose € E (O,~O) and let us carry out the above

construction for such a restricted set of €'S. Then the mapping FA ( • ,11) defined by
u

relation (2.69) possesses a unique fixed point YA( • ,11) ES", (e). In order to prove
U 1

statement (A), we first notice that t~ YA (tJ1]) E ~ (IRt,H~ ,P ~IR)) by definition of
u 0'

Y", i in
1
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addition, it follows from relation (2.69) that the equation

t

YA(t,q) = U A(t,O)q +f d{U A(t.{)s({)pa A<{.y A({.q»
u u 0 u u u

(2.71)

holds for every t E rRÖ . Set YA(1]) = YA(0,1]) j clearly YA(1]) E.A" and Py A(1]) = 1] ,
u u U E u

the latter relation being a consequence of relation (2.71) with t = 0 . Since it follows from

Appendix B that t ----+ YA (t,1]) E ~(l)(rR+ ,H~'P ~rR)) , we conclude that (2.65) holds
u 0'

as a consequence of relation (2.71) because of Proposition 2.3. Finally, relation (2.66)

follows from the definition of ~0 and the choice of E'S. This proves statement (A).

Statement (B) follows immediately from Definition 2.2. The proof of Statement (C) follows

from a direct a.daptation of the proof of the corresponding sta.tement in Theorem 3.2 of

[8]. •

Remark. The necessity of having inequality (2.66) may at first look rather mysteriousj in

fad, its role ia elucidated by translating the content of Theorem 2.1 back into the context

of Problem (1.1) or (1.6). The precise result is the following statement which is a simple

consequence of Theorem 2.1.

Corollary 2.1. Let s and g satisfy the same hypotheses as in Theorem 2.1. Fix

A A A A. A
U E {u} A and let PO' c, EO'.O be as In Theorem 2.1j for f E (0, f O) and

vE(uO'u1)

1] E.A" A -1 n Ran P ,let y A ( • ,1]) be the classica1 solution to problem (2.65) which
(2k O) E u
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satisfies estimates (2.66) and (2.67). On n x R6" ' define the function

(x,t) --t u(x,t,'7) = y A(t,'1)(x) + A(t) . Then the following conclusions hold:
u

(A)

(B)

For every '7 E.A" Ja -1 n Ran P , the function u(·,· ,'7) is a classical solution to
(2k O) E

Problem (1.1) in the sense of Definition 2.1 for every p E (N,CD) . In addition,

x --t u(x,t,'7) E ~3,ß(n,lR) for each t E IR+ and each ßE (O,1-p-lN] . Finally, if

'71 f '72 ' the function u(·,·, '11) is not identica.lly equal to u(·,·, '12) .

There exist positive constants c4 5 depending only on N, p and the geometry of n,
such that the following exponential decay estimates hold for every t E IR! and every

ßE (O,I-p-lN] :

sup Iu(x,t,1J)-A(t) I ~ c4E exp [~1t] (2.72)

xEn

sup IVu(x,t, '7) I ~ C5 f exp[~lt] (2.73)

xEn

Remarks. (1) We first note that relations (2.72), (2.73), (2.74) and (2.75) immediately

imply relations (2.10), (2.11), (2.12) and (2.13) of [15]. However, we shall prove in [17]

that the converse statement is not true: in general, an arbitrary classica.l solution to

problem (1.1) stabilizes only polynomially rapidly around A; tbis is related to the fact

that there exists a one-dimensional center manifold around A since zero is an eigenvalue
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of fJ.,A'" Relations (2.72), (2.73), (2.74) and (2.75) thus only reflect a codimension-one

exponential stability of A.
(2) We stress the fact that the method of investigation of this paper is essentially

different from the philosophy of [15]; in that paper, we started with any classical solution

u to problem (1.1) and proved that there exists a AE {A} A such that relations
IJE(uO'u1)

(2.10), (2.11), (2.12) and (2.13) of [15] hold. In contrast, here we start with any

A A
U E {u} A and prove that there exists a smooth codimension-one stable manifold

IJE(uO'u1)

of classical solutions to (1.1) which s&tisfy relations (2.72), (2.73), (2.74) and (2.75). This

complementarity of the two approaches will be exploited in [17].

(3) Relations (2.72), (2.73), (2.74) and (2.75) show that the exponential stabilization

of the solutions u(·,., '1) around A is essentially govemed by the diffusion process in

(1.1) through the largest negative eigenvalue of fJ.,A'" This was not apriori obvious since

in equation (2.65), Laplace's operator is perturbed by an aImost-periodic function coming

!rom the reaction term.

(4) From the definition of (x,t) --+ u(x,t,'1) in the preceding corollary, we note

that the set of initial configurations for Problem (1.6) may be written as

u(· ,0,,,) = YA(,,) + ~ where ~ E (uO,u1) . According to Statement (C) of Theorem 2.1,
u

those configurations thus also generate a smooth codimension-one manifold in H~'P .)IR)
0'

parametrized by "E,A" A 1 n Ran P . Since the constmction of Theorem 2.1 can be
(2.k0)~

repeated for each AE {A} A ' we obtain a one-parameter family
IJE(uO'u1)

{ ...t'IO~} A of Buch manifolds indexed by ~ E (uO'u1) .
8,11 IIE(uO'u1)

Wenow can give the
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Proof of Corollary 2.1. We start by proving that u(·,· ,1])E ~(n)(IRÖ,IR)n ~(l)(nXIR+,IR) ;

we first note that y A(to''!}) is uniformly continuous on n for each fixed to E1R6 '
u

because of embedding (2.7) and the compactness of n; in addition, the same embedding

(2.7) implies that t --+ YA(t,'!})(x) E ~(IRÖ,IR) unifonnly in x En.These two
u

properties combined prove the joint continuity (x,t) --+ y A(t,1])(x) E 'if(TlXIR6,1R)
u

through the triangle inequality. In a similar way we have

(x,t) --+ (y A)t(t,1])(x) E ff(nx!R+,IR) , since y~(to,1]) is also uniformly continuous on n
u u

for each toE IR+ by equation (2.65) and embedding (2.7), and since

t --+ y~ (t,1]) E ~(IR+,H~'P ~IR)) . A similar argument holds to prove that
u 0'

(x,t) --+ (y A)x.(t,1])(x) E ~(nxlR+ ,IR) far each j E{l,... ,N} . We canelude thereby that
u J

u(·,· ,1]) = YA(. ,1])(.) + A(·) E 'if(nXIRi;',IR) n ~(l)(nxlR+,IR) . In order ta prove the
u

required regularity of Definition 2.1, it remains to show that u ( .,.,1]) E ff(OxlR+ ,IR)
xi,xj

for every i,j E {l, ... ,N} . Since yA(t,1]) E H]..P(IR) for t E IR+ by construction, we
u

already know· that u(· ,t, '!}) E ~3,ß(n,lR) --+ 'if2(n,lR) for every t E IR+ and every

ßE(O,l-p-IN] . The fact that u ( .,. ,11) E ~(nxlR+ ,IR) then follows from standard
xi,xj

parabolic regularity theory ([2], [18]) and we conelude that

u( •. •,1]) E ~2,l(nxlR+ ,IR) n 'if(nxIRÖ ,IR) n 't1,O(nXIR+,IR) . It remains to prove that

conditions (C1)-(C4) of Definition 2.1 hold. From Appendix C we know that yA( • ,17) ia
u

globally Hölder continuous on every interval of the form [r,m) and for every T E IR+ .

From the definition of u(·,·, 1]) , embedding (2.7) and the fact that Ais Lipschitz

continuous on IR, we infer the existence of a constant ca ER+ and the existence of same

(J E (0,1) such that the estimate
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lu(x,t,7])-u(x,t',7]) I ~ !y A(t,,,)(X)-y A(t',7])(X)I + 1~(t)-A(t')1
u u

(2.76)

holds for every x En , every t,t' E [T,m) and every T EIR+ . This proves that (Cl)

holels. Condition (C2) has already been proved; condition (C3) follows easily from the fact

that t --+ Y~ (t, 7]) E ~ (IR+,H~ ,p ~IR)) . As for condition (C4)' we first observe that
u 0' "

inequality (2.66) and embedding (2.7) imply that YA(,,)(x) + tEl A(PO) for every
u v

x En; we then conclude from equation (2.65) that the function (x,t) --+ u(x,t, 7])

satisfies the initial boundary value problem

{

Ut (x, t) = h(x, t)+: (t )g(u(x, t)),(x, t) EO><IR+

u(x,O) = YA(7])(x)+11 E (uO,u1), x E n
Du u71ii (x, t ) = 0, (x , t ) E80x lR+

(2.77)

But since s is uniformly bounded in t and since g is smooth, it follows from the strong

parabolic maximum principle that u(x,t,7]) E (uO,u1) for every (x,t) EnXIR6 ' and hence

that u(·,· ,'I) is a classical solution to Problem (1.1). The fact that

x --+ u(x,t,,,) E ~3,ß(n,lR) for each t E IR+ and each ß E (O,l-p-lN] has already been

proved. Finally, assume that "1 2 E f A -1 n Ran P with "1 f 1]2 ; if we had
, (2Jt

O
) f

u(x,t,1]l) = u(x,t,7]2) on n x IRt ' then y A(t,111) = YA(t,112) would hold for each
u u

t E 1R6" . In particular, this wou1d imply that y A(0,1]1) = y A(0'''2) , so that
u u

Py A (0,111) = '11 = Py A(0,112) = 112" would follow from Statement (A) of Theorem 2.1,
u u
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thereby contradicting the hypotheses 111 f 112 . This proves Statement (A). As for

conclusion (B), it follows immediately from relation (2.67) and embedding (2.7). •

Remarks. (1) Without any further conditions on 1], the above method does not allow one

to construct classical solutions to Problem (1.1) which satisfy condition (Cl) of Definition

2.1 with 9 = 1 (compare with the proof of Proposition C.l of Appendix Cl. However, if

IR+ a,

jU(X,t,11)-U(X,t',1])I ~ clt-t'l (2.78)

for every x En,for some c E [R+ and for every t,t' E [R+ (and not merely for

t,t' E [r,en) for each r E R+) . This follows immediately !rom estimate (2.76) and

Proposition C.2 of Appendix C. It is precisely the global stabilization properties of classical

solutions satisfyjng the conditions of Definition 2.1 with (Cl) replaced by (2.78) which

were discussed in [15].
A

(2) It is not possible to reiterate the above construction if u = Uo1 . In fact, the,
classical solutions to Problem (1.1) remain uniformly bounded away from Uo and U1

when t --+ f: df7S(17) =0(1) as Itl --+ m [15].

In the next section, we investigate the stability properties of the two equilibria Uo and u1

when Pß(s) +0 .

3. On the Exponential Stability of the Two Eguilibria Uo and u1 .

In this section we prove that under certain restrietions on the selection function s, there

exist classical solutions of emall amplitude to Problem (1.1) which converge exponentially

rapidly to Uo or u1 . We also show that the corresponding rates of decay are determined

solely by g' (uO), g' (u1) and JlB(s) , and thns that they do not depend on any spectral
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property of Laplace's operator. Throughout this section, we still 88sume that n and on
satisfy the same geometric conditions aa before, and that the notion of clasaica1 solution ia

the same &S in Section 2 . We begin with the description of the exponential dichotomies of

the compact families of evolution operators {u'1J}t,r)}t~r~O defined by

and

t

UU
1
(t,r) = exp [g' (u1) [ d1J8( 71)] w11 )t-r)

(3.1)

(3.2)

In relations (3.1) and (3.2), {W4 (t)} + is the diffusion semigroup of Lemma 2.1.
.h' tEIR 0

We remark that expressions (3.1) and (3.2) correspond to relation (2.19) when A= uo1 .,

Proposition 3.1. Let s E ~([RB,IR) be such that J13(s) +0 and &Ssume that
t

t --IJd71~ (71) = 0(1) aB It I --I lD , where we have defined ~ = s-Pa(s) . Let

o
g : IR ---+ IR be differentiable at uo and u1 in such a way that g' (uo) > 0 and

g' (u1) < 0 . Set r
uo

=g' (uO)J'B(s) and r
U1

=g' (u1)Pa(s) . Then there exists c7 E IR+

such that the following two conclusions hold:

(A) H Pß(s) < 0 , then the estimate

(3.3)
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holdB for every t ~ r ~ 0 .

(B) H JJB{a) > 0 , then the eatimate

Ill u (t,r)111 '2 ~ c...exo[r (t-r)]u1 00''''0' ,p ., ---. u1

holdB for every t ~ r ~ 0 .

(3.4)

•

Proof. Write s = #ß{s) + a in relation (3.1); relation (3.3) then follows from the facts

that a has an almost-periodic primitive and that {wfj, (t)} + ia a contraction
,AI tEIR 0

semigroup on H~ ,p ~IR) . The proof of estimate (3.4) is of course similar.
0'

Remarks. (1) The hypothesia concerning ~ in Proposition 3.1 ia satiafied whenever s is

periodic, and for a wide class of almost-periodic functionB such as for instance

's(t) = 1 + cos(w1t)+coa(w2t) where {wl'w2} (IR/{O} ia rationally independent.

m

However, it fails to hold for instance for s(t) = 1 + 1: k-2exp [ik-2t] ,since the

k=l
m

primitive of t ----t a(t) = l k-2exp [ik-2t] ia unbounded.

k=l

(2) In contrast to the estimates of Proposition 2.1, estimates (3.3) and (3.4) hold on

the whole of H~~~~IR) I irrespective of the fact that 0 E up(fJ. ...r) . In fact, the nature of

the spectrum of fJ,AI playa no role in the considerations that follow.

In order to investigate the stability properties of Uo and U1 ' we may now proceed along

the lines of Section 2; the relevant initial value problems on H~ ,p ~lR) are then
0'
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{
y' (t) =A(A r S(t)g' (UO))y(t) + S(t)gUO(y(t)) }

(3.5)
y(O) = ~-uO

and

{

y' (t) = (ä r S(t)g' (U1))y(t) + S(t)aU (y(t))}
A . 1

y(O) = ~-u 1

In relations (3.5) and (3.6), we have defined

(3.6)

(3.7)

for every z E H~'P ~IR) . Converting first equations (3.5) and (3.6) into appropriate
0'

integral equations when g is sufficiently smooth and using then fixed point arguments

similar to those of Section 2, we obtain the following statement which is the main result of

this section.

Theorem 3.1. Let s satisfy the hypotheses of Proposition 3.1. Assurne in addition that B

is locally Hölder continuous on IR+ . Let g E ~(5)(1R,1R) be such that there exist Uo1 E IR,
with the property that g(uo)= g(u1) = 0, g(u) > 0 for every u E (uO'u t ) and

g' (uO) > 0, g' (ut ) < 0 . Let c E lR+ denote the embedding constant corresponding to

the embedding (2.7). Then there exist constants ~1 E (0,00), ~1 E [1,(0) and, for each

€ E (0, ~1) , an open spherical neighborhood .A' ~ -1 of radius (2~t)-1 € centered at
(2k 1) €

the origin of H~'P ~IR) , such that the following statements hold:
0'
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(A) H J'B(s) < 0 , then for every "E r 10 -1 = {" E f 10 -1 :" > 0 on n} ,
(2Jt 1) E (2k 1) E

there exists a unique function

t~ Y (t,1/) E ~(lRt,H~ ,p ~IR)) n ff(l)(IR+,H~ ,p .ilR))
Uo 0' AO'.h'\

which provides a classical solution to the Cauchy problem (3.5) with y(O) = " . Moreover,

the exponential decay estimate

(3.8)

holds for every t E IRt .
(B) H #ß(s) > 0 , then for every 1/ E .%- 10 -1 = {" E .% 10 -1 : 1/ < 0 on n} ,

(2k 1) f (2k 1) E

there exists a unique function

t~ Y (t,1/) E 'if(1R6,H~ ,p ~IR)) n ~(1)(1R+ ,H~ ,p .ilR))
u1 0 ' A 0' .ff\

which provides a classical solution to the Cauchy problem (3.6) with y(O) = 1'J • Moreover,

the exponential decay estimate

(3.9)

holdB for every t EIRt .
In addition, the inequality

(3.10)

holds in both cases.

We omit the proof of Theorem 3.1 since it is essentially arepetition of the arguments of
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Section 2 through Proposition 3.1. We simply observe that inequality (3.10) comes about in

suitably restricting the set oI admissible f'S, as we did in the proof oI Theorem 2.1 to

obtain inequality (2.66). We also emphasize the fact that for any 1'/ E r A -1 ,the
(2][) f

corresponding initial condition is y (0,1'/) = " , and not a more complicated function of
uo1,

1'/ as in Section 2. This is because oI the fact that the exponential dichotomies of the

evolution operators {u (t,r)} hold on the whole of H~' P ~IR) .
uO,1 t~r~O 0'

Remarks. (1) We can easily verify that the sets r A -1 are (non empty and) open
. (2][1) f

in the H~ ,p .11R)-topology. In order to see this let ~(IR) be the usual Banach space
AO' .A'\ ,

consisting oI all real continuous functions on n equipped with the uniform norm. Since

there exists the continuous embedding H~'P ~IR) ---+ 'if(IR) , and since .% A -1 is
0' (2x 1) f

an open ball in H~ ,p ~IR) , it is then sufficient to prove that the set of a1l positive (resp.
0'

negative) continuous functions on n is open in 'if(IR). Thia fact ia easily verified for, if

fOE ~(lR) with fO> 0 on n, then there exists RO> 0 such that IO~ RO as a

consequence oI the compactness of n. It is thus clear that for every f E (O,Ra) , the open

ball of radius. f centered at fO in the 'if(lR)-topology consists exclusively of positive

functiona on n. The sets r A -1 ihus provide H~'P ~lR)--smooth manifolds of
(2x 1) f 0'

small initial data associated with the exponentially decaying solutions y (. ,1'/) anduo

(2) The conclusions 01 Statements (A) and (B) already hold if the subsets

r 1 are replaced by .% A l' In this case, it ia the open ball f A 1
(2~1)- E (2x1)- f (2][1)- E

which provides a manifold of smaJl initial data associated with the exponentially decaying
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solutions y (. ,1]) and y (. ,1]) . However, without the additional sign constraints of
Uo u1

Statements (A) and (B) and without inequality (3.10), it is not possible to garantee that

the functions u(·,. ,1]) = Y
uO

(. ,1]) + Uo and u(·,· ,1]) = YU

1
(. ,'I) + u1 satisfy the range

condition in (1.1). In fact, the role of these additional const.raints is clarified in the

following

Corollary 3.1. Let s and g satisfy the same hypotheses aB in Theorem 3.1. Let c, ~ l' ~1

be aB in that theoremj for E E (0, ~1) and 1] E f+ A -1 ' let yu (. ,1]) be the
(2k 1) E 0

classieal solution to problem (3.5) with y(O,1/) = 1] whieh satisfies estimates (3.S) and

(3.10) when J.'B(s) < O. On nx lRÖ ' define the funetion

(x,t)~ u(x,t,1]) = Yu (t,1])(x) + Uo. Then the following conclusions hold:
o

(A) For every 1] E f+ A -1 ' the function u(·,· ,1]) is a classieal solution to Problem
(2 k 1) E

(1.1) in the sense of Definition 2.1 for every p E (N,m) . In addition,

x~ u(x,t,1]) Ec3,ß(n,lR) for each t E [R+ and each ßE (O,1-/11N] . Finally, if

1/1 +'12 ' the funetion u(·,·, 1/1) is not identically equal to u(·,·, 1]2) .

(B) There exiet positive eonstants eS 9 depending only on N,p and the geometry of n,
such that the folIowing exponential decay estimates hold for every t E IRÖ and every

ßE (0,1-p-IN] :

sup Iu(x,t,1])-uOI ~ CSE exp [ru t]
xEn 0

HUp IVu(x,i,l1) I ~ CgE exp [ru t]
xEn 0

(3.11)

(3.12)
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sup Ix-y!-ßlu(x,t,1})-u(y,t,1]) I ~ CaE exp[r
U

t] (3.13)
x,y.EO 0
xfY

sup Ix-yl-ß 1 Vu(x,t,1})-Vu(y,t,1})I ~ CgE exp[ru t] (3.14)
x,y.EO 0
xfy

(C) Identic&1 statements hold for the function (x,t) --+ u(x,t,1}) = Y (t,1])(x) + u1u1

when ~(s) > 0 and 1] E f J,. -1 ,with u1 and r replacing Uo and r in
r-Jj (2k

1
) E u1 . Uo

estimates (3.11)-{3.14).

Proo[ The above statements follow from Theorem 3.1 exactly as Corollary 2.1 follows

from Theorem 2.1. We simply note that because ofinequality (3.10) and embedding (2.7)

we get 11}(x) I < u1-uO for every x E n,which implies that

u(x,O,1J) = 1](x) + UoE (uO'u1) if 1] > 0 on n. In a completely similar way

u(x,O,,.,) = 1](x) + ul E (uO'ul ) if 1] < 0 on n, so that the range condition in (1.1) is

satisfied in hath cases by the strong parabolic maximum principle. _

Remarks. (1) We first note that relations (3.11)-{3.14) imply relations (3.1) and

(2.12)-(2.13) of [15]. We ahall in fact prove in [17] that if s satisfies the condition of

Theorem 3.1, and if s is globally Hölder continuous on IR+,then every classical solution to

(1.1) converges to Uo or ul exponentially rapidly with a rate of decay determined by

r or r .
Uo u1

(2) Relations (3.11)-{3.14) show that the exponential stabilization of the solutions

u( .,. ,1]) around Uo or U1 ia essentially governed by the reaction-selection process in

(1.1), in contrast to the resulta of Section 2.

(3) Aremark similar to that immediately following the proof of Corollary 2.1 can be

made concerning Condition (Cl) of Definition 2.1; in particular, if ,., ia chosen sufficiently
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regular and if s is globally Bälder continuous on IR+ J then the classical solutions o{

Corollary 3.1 are globally Lipschitz continuous in the time variable on IR+ .

In the next section, we discuss several examples.

4. The Role o{ Reaction-Diffusion ProcesseB in Some Examples {rom Population Genetics.

It is instructive to reconsider some of the examples of Section 4 of [15) in light of the

preceding results. We begin wiih the following

Example 4.1. Consider the problem

ut(x,t )=äu(x,t )+(cos( w1t )+cos( w2t ))u(x, t) (l-u(x,t ))(Q11(X, t)+(1-0')( l-u(x,t ))

(x,t) E nxlR+

Ran(u) C(0,1)
Du
~x,t) = 0

(4.1)

where a E (0,1) and where {wl'w2} CIR/{O} is rationally independent. Bere we have

g(u) = u(l-u)(Q11+(I-a)(l-u)) with Uo= 0, u1 = 1 and s(t) = COs(w1t) + cos(w2t).

We can easily verify that all of the hypotheses of Theorem 2.1 or of Corollary 2.1 are

satisfied. We can then conelude that every attractor AE {A} ~E(O,I) is quasiperiodic. In

addition, given any AE {A} ~E(O,I)' there exists a codimension-one manifold of elassical

solutions to (4.1) which stabilize around A in the sense of relations (2.72)-(2.75). In this

example, the role of the diffusion process is thus predominant.
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Examole 4.2. Conclusions entirely aimilar to thoae of the preceding example hold for the

boundary value problem

[

Ut(X,t) = &u(x,t)+ain( cut )sin( ru(x,t))

Ran(u) ( (0,1)

~x,t) = 0

, (x,t) EOxlR+

,(x,t) E iJ(}xlR+

where g(u) = sin(rn), Uo= 0 and u1 = 1; here s(t) = sin(cut) with wE IR/{O}, and all

of the attractors are time periodic with period T = 2ll"1 wl-1.

We conelude with the following

Example 4.3. Consider the problem

ut(x,t)=&u(x,t)+(cos( w1t )+cos( w2t ):l:l)u(x,t)(l-u(x,t) )exp[-u(x,t)]

(x,t) E OxlR+

Ran(u) ( (0,1)
Du
~x,t) = 0, (x,t)E iJ(}xlR+

(4.3)

where {wl'w2} ia as in Example 4.1. Here g(u) = u(1-u)exp[-u] so that Uo= 0 and

u1 = 1. Moreover, s(t) = COs(w1t) + cos(w2t):i:1, with J.i3(s) = :1:1. It is then easily

checked that all of the hypotheses of Theorem 3.1 and of Corollary 3.1 are satisfied, so that

Problem (4.3) possesses cla.ssicalsolutions converging to uD = 0 if J.'B(s) = -1, and to

u1 = 1 if J.'B(s) = 1. In the first case the rate of decay is r
uO

= -1, while in the second
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case we have r1 = --e-1. In both cases the reaction4ielection process is primarily

responsible for the stabilization phenomenon.

We refer the reader to the references of [15] for more information concerning the

significa.nce of Examples (4.1)-{4.3) in population genetics.

5. Concluding Remark and Formulation of an Open Problem.

In relation with the developments of the preceding sections, the major open problem

concerns Neumann boundary value problems in which the selection function exhibits a

spatial structure. Those boundary value problems are of the form

I [Ut (X,t)=4U(X,t)+S(X,t)g(U(X,t)),

Ran{u) C(uO'u1)
Du
ij<x,t) = 0 ,(x,t) E af)xlR+

} (5.1)

where the selection function depends explicitly on x En in such a way that t ---+ s(x,t) is

Bohr almost-periodic for each x En, and that x ---+ s(x,t) is smooth on n for every

t E IR+. In (5.1) we assume that g satisfies the same hypotheses as in Section 2. Define

ä{t) = max s{x,t) and ~(t) = mi n s(x,t). If t ---+ J~d1]i( 1]) = 0(1) as 1t 1---4 00, it is
xEn xEn

possible to show that every classical solution to (5.1) stabilizes around a spatially

homogeneous, time almost-periodic solution to the initial value problem

A' (t)=s{t) g( A(t))

Ran{u) C[UO'U!)
A Au{O) = v E [uO,u1)

tEIR

} (5.2)
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On the other hand, if Jla(i) < 0 (resp. Pß(i) > 0), then every classical solution to (5.1)

converges to the equilibrium Uo= 0 (resp. u1 = 1). While these statements easily follow

from the methods of [15], it is important to note that a local geometric theory similar to

that developed in Sections 2 and 3 does not exist at the present time. It is thereby

impossible to determine how fast the above stabilization processes develop, and to specify

their physical nature. Due to the presence of a spatial structure in s, the physical origins of

the stabilization phenomena for the solutions to (5.1) are presumably more complicated

than just the combination of reaction-diHusion proce8ses. In this context, the major open

problem consists in developing an invariant manifold theory for nonautonomous parabolic

problems such as (5.1).
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Appendix A. On the Frechet Differentiability of gA(t.·) on H,\2,p .QB.1
u 0 .A",

In this appendix we complete the prcof of Proposition 2.2 by proving the following
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Proposition A.1. Assume that s and g satisfy the hypotheses of Proposition 2.2. Pick

AE {A} A E( ) and define aA(t,·) by relation (2.28) for every t E IR. Thenv uO,u1 U

gA (t,·) E ff(2)(H 2,P .JIR),H2 ,P .iR).
u ~O' ~ ~O' ~

Proof. For simplicity we shall write g(n) for the nth~erivativeof g. From relation (2.28)

we obtain

= g 0 (A(t)+z+h) - g 0 (A(t)+z) - (g(l) 0 A(t»h (A.l)

for every h,z EH~ ,p ';IR). We now prove that we in fact have
0'

on H~ ,p ';IR). From relation (A.l) and for each x En, we obtain
0'

A AgA(t,z+h)(x) - gA(t,z)(x) =

AA, A
= g(u(t)+z(x)+h(x)-g(u(t)+z(x»)-g (u(t»h(x) = (A.3)
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In order to derive relation (A.2) from relation (A.3), it is thus sufficient to prove that

g(l)o( A(t)+z)-g(l)oA(t) E H~'P ~IR) along with g(2)o( ~(t)+z) whenever
0'

z EH~'P (IR). It is clear that these two functions belong to LP(IR) and satisfy
O,f

Neumann's boundary condition. AB for their partial derivatives, we obtain

(A.4)

in the first case, and

(g(2)o(A(t)+z)) = (g(3)o(A(t)+z))z +(g(4)o(A(t)+z))z zX.,x. X.,x. x. x.
1 J 1 J 1 J

(A.6)

(A.7)

in the second case, for each i,j E {l, ... ,N}. From the smoothness of g, the properties of A

and embedding (2.7), we then infer that (g(l)o(A(t)+zk(l)oA(t)) E LP(IR) along with
x·
J

the second-order derivatives gjven by (A.5). The conclusion for (A.6) and (A.7) ia similar,

so that relation (A.2) holds. Now, define Dg A (t,z) by
u

A (1) A (1) ADgA(t,z)(h) = (g o(u(t)+z)-g ou(t))h (A.8)

where pointwise multiplication in H~ ,p ~IR) is meant on the right-hand side of (A.8).
0'

From the Banach algebra properties of H~'P .ilR), it follows that Dg A(t,z) is a linear
AO'~\ u
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bounded operator on H~ ,p .JIR) for each z, with its uniform operator norm bounded
0' .A'\

above by

(A.9)

We now wish to prove that z ---+ Dg A(t,Z) is continuoU8 on H~ ,p .JIR) for every t E[R.
U AO' ~

Assume that z ---+ z strongly in H~ ,p .JIR); it is then sufficient to prove that
n AO'~

g(l)o(A(t)+z ) ---+ g(l)o(A(t)+z) strongly in H~ ,p .JIR) according to relations (A.8)
n AO' JY\

and (A.9). From the smoothness of g and embedding (2.7), it is already clear that

g(l)o(~(t)+z ) ---+ g(l)o(~(t)+z) strongly in LP{IR). Hy the definition ofthe norm (2.9),
n

it thus remains to prove that ä .Jg(l)o(A(t)+z)) ---+ &p .Jg(l)o(A(t)+z)) stronglyp, .A'\ n,..K'-

in LP(IR). To this end, write momentarily fA (t) = A(t)+z and fA (t) = A(t) + zn' Weu u,n

have the identity

(A.I0)

= (g(2)ofA (t))(& .JA (t)-ä .1A(t)) + ä .JA(t)(g(2)ofA (t)--g(2)ofA(t))u,n p, Jf6u ,n p, JY6u P, ..K6u u,n u

Since fA (t) ---+ fA (t) strongly in H~ ,p .JIR) for each t E IR, it follows from the
u,n U AO' .A'\

sIDoothnes80f g and embedding (2.7) that every term in (A.I0) converges strongly to zero
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in LP(lR). Thus z --+ D~A(t,z) is continuoUB. In order to conclude that D~ A(t,·) is the

smooth Frechet derivative of gA(t,.), it rernains to prove that

as h --+ 0 in H~ ,p ~lR). Write
0'

(A.12)

By the Banach algebra properties of H~ ,p ~lR), we obtain the estimate
0'

In order to prove (A.l1) from (A.13), it is ihus sufficient to show that

h -+ f: d61Ig(2)O(~(t)+Z+6h)lI~o,2.p remains bounded aB h -+ O. In fact we prove a

stronger resuIt, namely that

This in tum follows from the fact that g(2)0 (A(t )+z+ tJ h) ---+ g(2)0 ( A(t )+z) strongly in

H~ ,p ~lR), uniformly in tJ E (0,1) aB h ---+ O. In order to see this, write
0'

fA,tJh(t) = A(t)+z+tJh and fA(i) = A(t)+z. Clearly, fA,tJh(t) ---+ fA(t) strongly in
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H~'P~R) uniformly in d aB h --+ 0; since g(n) is continuous for n = 2,3,4, we infer
0'

from this that

(A.15)

(A.16)

(A.17)

uniformlyon n, uniformly in .& E (0,1) aB h --+ O. 1t now follows from (A.15) that

~og(2) 0 fA h(t) --+ ~Og(2) 0 fA (t) strongly in LP(IR), with the same uniformity in .&.
u,.& u

Since

Ilg(2)ofA h(t) - g(2)ofA (t)11 \ 2 = 11(~0-A v)(g(2)ofA h(t)--g(2)ofA(t))11
u,.& U "O"P p,.n' U,.& U P

it remains to prove that fJ. .Jg(2)ofA h(t)) --+ L\ .Jg(2)ofA(t)) strongly in LP(IR)
P, "K\ U, .& P, "K\ u

uniformly in .& E (0,1) as h --+ O. To this end we note as above that the relation

(A.18)

=(g(3)ofA h(t))(6 .JA h(t) - L1 .!A(t))+& .JA(t)(g(3)ofA h(t)--g(3)of A(t))
u,.& P, .A'+u,.& P, .A'+u P, "K+u U,.& U

+(g(4)ofA h(t))( 1vfA h(t) 12-1 vfA (t) 12)+ IvfA (t) 12(g(4)ofA h(t)-g(4)ofA (t))
U,6 U,6 U U U,6 U

holdB. Invoking relations (A.16), (A.17) and the strang convergence fA h(t) --+ fA (t) in
U,6 U

H~'P ~IR) uniformly in 6, we can now conelude that each term in relation (A.18)
0'
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converges to zero strongly in LP(IR) with the desired unifonnity in 6 E (0,1). This proves

relation (A.14), and henee that Dg A(t,·) is the smooth Frechet derivative of gA (t,·)u u

for every t E IR. While the above arguments require g E ~(4)(lR,IR), we note that the

hypothesis g E ~(5)(1R,1R) allows one to carry out the above steps onee more to prove that

is the smooth Frechet derivative of D~ A(t,· ).u

(A.19)

•

Remarks. (1) Using relation (2.28) and arguments siInilar to those of the above proof, it

is possible to show that if e---t y( e) E J.1)(IR+,H~ ,p ~IR)), then
0'

~ ---t g A(~,y(~)) E J1)([R+,H~ ,p .JlR)) as well. This fact was used in the Becond part of
U AO' JY\

the proof of Proposition 2.3.

(2) A proof identical to that of Proposition A.1 also shows that if

g E ~(5)(1R,1R), then g E ~(2)(H~ ,p .flR),H~ ,p .flR)) where ~ is defined by
uo1 A 0' ..K\ "0' .A'\ uo1

, J

relation (3.7). This was used implicitly in the proof of Theorem 3.1.

Appendix B. Proof cf thc Ccntinuous Differentiability cf the Fixed Point Solution

to Eauation (2.71).

The main purpose of this appendix is to complete the proof of Theorem 2.1.

Proposition B.l. Let 8 and g s&tisfyall of the hypotheses of Theorem 2.1. Let

AE {A} A E( ) and let y A( .,1]) be the fixed point solution to equation (2.71). Then
11 uO,u1 u

YA(. ,fJ) E ~(1)(1R+ ,H~ ,p ~IR)) for every 1] as specified in Theorem 2.1.
u 0 '
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We begin our discussion by splitting equation (2.71) into the sum of the three terms

F2 A(YA(·,17))(t) = - rod~UA(t,~)s(~)Q~A(~'YA(~,17)), Jt

(B.I)

(B.2)

(B.3)

according to the notation introduced in relations (2.61), (2.62) and (2.63). We first notice

that t -+ F. A(yA( ·,11))(t) E ~(1)(IR+,H~'P .flR)) for j = 0 and j = 2. For j = 0 this
J, u u 1\0' ,A"

is an immediate consequence of relation (2.19) and the fact that {W11 .%(t)hEIR! is a

holomorphic semigroup. For j = 2 we first invoke relation (2.45) to rewrite (B.3) as

F2 A(y A( • ,1]))(t) = -exp Ut
d1]s( 1])g' (A( 1]))] )(

,U U 0

The result then follows from the absolute convergence of the integral and the fact that

exp [-J~d1]S( 17)g I (A( 'I))] s( ~)Q~ A(~,yA(~, 'I)) E

E L1((t,(D),H~'P ~R))n 'if([t,(D),H~'P ~IR))
0' 0'
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for every t E IR+. The remaining part of this appendix is therefore devoted to proving that

t ---+ FI A(y A(. ,1]))(t) E ff(I)(IR+ ,B~ ,p .JIR)). We begin with the following
,U U AO' ~\

Lemma B.1. The functions e---+ yA(e, 1J) and e-+ ~ A({,yA({,11)) are both locally

Bölder continuous on IR+.

Proof. In the first case it is sufficient to prove that t ---+ F. A(y A( • ,1]))(t) is locallyJ,U u

Bölder rontinuous on IR+ for each j becauBe of relation (2.71) (Note that F. A (y A( • , ,.,))J,u u
is uniformly bounded in t for each j since F. A(y A( ., ,.,)) EY \ by construction).

J,u u Al

Because of the remark preceding the statement of Lemma B.I, we already know that the

statement holds true for j = 0 and j = 2. We complete the proof of the first part of the

Lemma in showing that t --t F1 A (y A(. ,11))(t) is locally Bölder continuous on IR+. Fix,u u
toE IR+ arbitrarily and choose T E IR+ in such a way that to'E (O,T). Since

y~ ( •,'I) E ~(lRt ,H~~~ ';IR)) by construction it follows from relation (2.28) and the

smoothness of g that {---+ gA({,y A({ J 11)) E ff (IR+O,H ~ J P .JIR)). Now write
u u AO' .K\

according to relation (2.19), where we have defined

It follows from the remark immediately preceding (B.5) and from relation (B.6) that

tpA ELq«(O,T),B~'P .JIR)) for every q E (1,00) since
u AO' .K\
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Since {WtJ. ."y(t)hElRt is holomorphic it then follows from the standard Hölder estimates

t
of [5] that t ---+ JdeW!J. (t-e),A (e) iB Hölder continuoUB on [O,T], and hence ao f u

fortiori locally so around tO' ThiB and relation (B.5) then imply that F1 A(y A( .,1])) ia,u u
locally Hölder continuoUB on IR+. We conclude that the latter property holds true for

YA ( • ,1/) because of relation (2.71). AB for the second part of the lemma we first notice that

we have

A AA, A
gA({,YA({, 1])) = go( u( {)+YA({,1]))-gou( {)--(g ou({))YA({,1]) (B.7)

!rom relation (2.28). We next observe that each term in (B.7) ia uniformly bounded in e
in the H~'P ~lR)-topology, and that the last two terms on the right-hand side are

0'
trivially locally Hölder continuoUB on IR+ because of the corresponding property for

e ---+ A( {) and e-+ YA (e,1])· It thUB remains to prove that the property holds true for

e ---+ go(A(e)+YA(e,1/)). To this end, write momentarily z(e) = A(e) + y~(e,l1); upon

using the mean-value theorem and the Banach algebra propenies of H~'P ~IR). as in the
0'

proof of Proposition A.l we get

(B.8)
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for every {,{' E IR+. Now fix {,{' E IR+ and define XA ({,{') by the relation

z({ , )+ d (z( e)-z( { , » = A({)+XA({, { ,) (B.9)

Clearly XA (e,e') E H~ ,p ~1R)j it then follows !rom relation (2.41) of Proposition 2.2 and
u 0'

from the triangle inequality that

But e --+ A(e) and {--+ YA(e,1/) are uniformly bounded in e with respect to the

H~ ,p ~IR)-topologyso that there exist positive constants clO and cll such that
0'

11 XA(e,e)11..\0'2,p 5 clO and 11 g' 0 A(e) Ibo,2,P 5 cU" Combining this with the fact that

t ~ l) is "nondecreasing in relation (B.lD) and inserting then the resulting estimate into
u

relation (B.8) we abtain

(B.ll)

for same cl2 E IR+ and every {,e' E IR+. But from the first part of the proof and the

definition of z we infer that e--+ z( e) is locally Hälder continuous on IR+. Then the

same properly holds true for {--+ goz( {).

1t is now easy to complete the

•

Proof of Proposition B.l. It remains to prove that

t --+ F1 A(YA ( •,1/»(t) E ~(l )(IR+,H~ ,p ~IR». We first infer from relation (B.6), the fact
, 0'
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that s islocally Bälder continuoUB on IR+, the second statement of Lemma B.1 and the

boundedness of the funCtiODB involved that "'A islocally Bälder continuous on IR+. Since

{Wfj. f(t)hER! is a holomorphic semigroup, we then conclude that the convolution

t
t ---+ Jd {W ... (t-{) '" A({) is continuously difrerentiable on IR+. This and relation (B.5)o uf u

then lead to the desired conclusion.

Remark. Similar arguments can be used to prove the ~(l)-regularitYof the solutions

yu (. ,11) in Theorem 3.1.
0,1

Appendix C. On the Global Hölder-Lipschitz Continuity of the Fixe<! Point

Solution to Eguation (2.71).

While the result of the preceding section implies that yA(•,11) is locally Lipschitz

continuou8 on IR+, we prove in this appendix that the fixed point solution to equation

(2.71) is in fact globally Bälder continuous on every interval of IR+ located at a positive

distance of the origin. The precise result is the following

Proposition C.1. Let s and g satisfy all of the hypotheses of Theorem 2.1. Let

AE {A}A( ) and let yA( .,1]) be the fixed point solution to equation (2.71) for somev uO,u1 u

"E f(2~O)-1E nRan P, where ~O and E are as in Theorem 2.1. Then YA(•,,,) is

globally Bälder continuous on every interval of the form [T,m), for every T E IR+.

Proof. Again we write

2

YA(t,1]) = l Fj,A(YA(· ,1]))(t)
j=O

(C.1)
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for every t E IR+, where the Fj,A(YA(•,11))'S are given by relations (B.l), (B.2) and

(B.3). Since

and eince {Wd ) t)hEIRt ia a holomorphic aemigroup, it ia clear that F0, ~ (y~ ( · ,11)) is

globally Lipschitz continuous on every interval of the form [T,oo) where T E IR+. The

same conelusion holds true for F 2,A(yA(•,11)), since the time derivative of the second

factor on the right-hand side of (BA) is uniformly bounded on lR+ and since

F2 A(y A( ·,11)) E ~(1)(1R+ ,H~' P .JlR). It remains to prove that F1 A(y A( ·,11)) is
,u u "0' .A'\ , u

globally Hölder continuous on every interval of the form [T,oo) for TE [R+. 1t is then

t
suffident to prove that t --+ Jd{W& (t-{) '" A({) is globally Hölder continuous on

o ."r u

[R+, since F1 A (y A ( ·,11)) can be written aB in (B.5) and (B.6). To this end we first,u u

observe that rpA E Lq([R+,H~ ,p ~IR)) for every q E (1,00), since
u 0'
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for such q's, upon using successively relations (B.6), (2.52), estimate (2.31), the

monotonicity cf t(2) and relation (2.43). Since {wfJ. )t)hEIR"!" ia a contraction

semigroup, we then note that all of the estimates of the proof of Theorem 4.3.1 of [5]

remain virtually unchanged. We conelude that the convolution

t
t --i I deW tJ. (t-e)l!'A ({) is globally Hälder continuous on IR+, and hence on everyo f u

interval of the form [T,m) with T E IR+. The conclusion then follows from relation (C.1).•

The result of Proposition C.! was used in the proof of Corollary 2.1 to show that the

classical solutions constructed there satisfy condition (Cl) of Definition 2.1 for some

8 E (0,1).

A much stronger result holds true if in addition '1 E Dom(ä f)' In fact, in this case we

have the following

Proposition C.2. Let s and g satisfy all of the hypotheses of Theorem 2.1. In addition,

&Baume that s be globally Hälder continuous on ~+. Let AE {A} AE( )'v uO,u1

11 E .h'(2~0)-1 € nRan P nDom (A.h') and let YA(•,11) be the corresponding fixed point

solution to equation (2.71). Then yA( • ,'1) is globally Lipschitz continuous on IR+ .

Proof. Since yA( ·,11) E ~(l)(IR+,H~'P .iIR)) by Appendix B, it is sufficient to prove
u AO' ~

that the derivative of y A ( • ,'1) is uniformly bounded on lR+. Since y A( • ,1'/) EY , and
u u Al

sinee A is uniformly bounded in t, the function t --i s(t )g , (A(t))y A ( t, 11) is bounded inu

the H~ ,p ~IR)-topologyfor every t E IR+. The same statement holds true for
0'

t --i s(t)aA(t'YA(t,'1)), since
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(C.3)

upon using estimate (2.29) and relation (2.43). It then follows !rom equation (2.65) that

t ---+ Y~ (t, 1]) is bounded if, and only if, t ---+ fJ. uV A(t, 1/) is bounded. In order to prove
u A·U

this last statement we first projeet equation (2.65) onto the subspaces Ra.n P and Ran Q.

We obtain

Py I A(t, 1]) = (L1 ...+s(t)g I (A(t ))Py A (t,1])+s(t)P i A (t,y A(t,1]))u ..If' u u u

and

(CA)

since fJ.~ = Qä f= 0 on H]-P(IR). From relation (C.5) and the above remarks it

follows that t ---+ Qy~ (t,1/) is bounded on IR+. Aecording to relation (C.4) it then
u

remains to prove that t ---+ Ar YA(t,1]) is bounded on IR+. In order to accomplish this

we start onee again from the integral equation (2.71) whieh we project onto Han P. We

obtain

(C.6)

since 1] E Ra.n P and eince PQ = QP = O. From relation (C.6), (B.2), (B.5) and the

standard arguments of [3] and [5], we then get
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Since "E Dom(tJ. f) and since {WtJ. f(t)}tEDlö is a contraction semigroup we have

uniformly in t E IR+ so that the first term of (C. 7) ia bounded on IR+. The same

conclusion holds true for the third term of (C.7) since ~A is bounded on IR+, by relations

(B.6), (2.29) and (2.43). It remains to prove that the second term of (C.7) is bounded on

IR+, which is equivalent to proving that

t .

t --+Jd~ä vW ... (t-~){ rpA (~) - 'PA (t)} = 0(1)o .n u."y U U

on IR+. In order to accomplish this, we first notice that 'PA ia globally Hölder continuous

on IR+. To see that we simply reiterate the argument given in the proof of Proposition

(C.1) to conclude that since 1J E Dom(ä JY)' YA(. ,11) is globally Hölder continuous on IR+

(and not merely on [T,m) for every TE 1R+)i it then follows that ~ ---+ gA(~'YA({,1J» is

globally Hölder continuous on IR+ through relation (B.ll). This immediately implies the

global Hölder continuity of ~A through relation (B.6) and the global Hölder continuity of

s . We conclude the argument by observing that ~A = P~A E Ran P, which gives
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t
=Jdet\ v W " (t-e)p{~A(e)-~A(t)}o on LI,K U U

(C.8)

Invoking then the second estimate (2.15) of Lemma 2.2 and the global Bälder continuity of

~A' we obtain after a simple change of variables the estimate

for some "'1 E (0,1). But the last integral in (C.9) is 0(1) on IR+. Rence

t~ t\ fPyA(t, TJ) remains bounded on IR+ by relation (C.7). •

(C.9)

ReIDark. Similar results can be proved for the fixed point solutions y ( ., TJ) of
Uo1,

Section 3.
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