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1. Introduction

The purpoae of thia paper ia to derive explicit algebraic conditiona on points

(a1,~,a3) E (3 which imply that the equation

(1.1) y2 = (t~l)(t~)(t-ag)x(x-:'l)(x-t)

has a non-trivial ((t)-rational solution, to determine irreducible components and

intersections for some of these conditioDB, to list maximal independent sets of

((t)-rationalsolutioDB for certain valuea of (al'~,a3) , and to discuss sorne related

problems.

In tbis paper the discussion is simplified by restricting attention to points (a1J~,a3)

in the complement V ((3 of the planes defined by a. =0, &. =1, a. =a. with i *j .
1 1 1 J

A non-trivial ((t}-rational solution of (1.1) is defined to be a pair (x(t),y(t» of rational

functions which satisfies (1.1) and is. different from (0,0) J (1,0) and (t,O). The height of

(x(t),y(t» is defined to be the degree of the curve in 1P2 parametrized by (l:t:x(t». For

each N > 0, WN denotes the set of points (alJ~'~) E V such that (1.1) has a

non-trivial ((t}-rational solution of height 5 N . In an earlier paper [6] it ia shown that

each WN ia the union of a finite number of closed irreducible algebraic surfaces in V .

The main results of the present paper cancern the three algebraic sets W1 ( W2 ( w3 '

and can be outlined as followed: In § 2 irreducible components of W1 ' W2 and W3 are

described in terms of suitable extra contact for configurations {Iilii'C} defined by

Iilii : (t-al)(t~)(t-a3) )( (x-l)(x-t) =°and

C : x = x(t) .
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In § 3 equations and intersections are determined for irreducible components of W1 .

Minimal models, intersection products, Neron-Severi lattices and Mordell-Weil groups for

(1.1) are described in general in § 4 and are computed explicitly for the example

(al'~'~) = (-1,1/2,2) in § 5. A.subsequent paper· (in preparation) will determine

parameterizations and intersections for other components of W2 and W3 and will

compute intersection products, Neron-8everi lattices and Mordell-Weil groups for (1.1) for

generic (&1 '&2'&3) as these components.

The work of one of the authors (Hoyt) on this paper has been supported by the

Faculty Academic Study Program of Rutgers University and by Max-Planck-Institut für

Mathematik in Bonn. The authors are very grateful to both Rutgers University and

Max-Planck-Institut for helping to make tbis work possible. We are also very grateful to

J. Stienstra for advice on tbis work and to Frau Sarlette for excellent typing.
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2. Diagrams for irreducible components of W1 ' W2 illil w3

(2.1) Diagrams (2.4.1)-(2.4.10) in Table (2.4) below represent configurations

{~i'C} consisting of six lines Ll' ... ,L6 and a rational curve C of degree ~ 3 in IP2

for which there exist a point (al'~'~) EV and a non-trivial ((t)-rational solution

(x(t),y(t» of (1.1) such that ~i and C are defined by

(2.1.1) {

(t-a1)(t-a2)(t-a3)x(x-l)(x-t) = 0 and

x = x(t) , resp.,

relative to some choice of inhomogeneous coordinates in IP2 . For each such configuration

here are several different choices of (al'~,a3) and (x(t),y(t)) which satisfy (2.1.1). One

such choice is indicated for each diagram in the adjacent columns of Table (2.4), with y(t)

determined up to sign by the indicated values for x(t), x(t)-1 and x(t)-t . Other

choices can be obtained by replacing y(t) by -y(t) , by permuting the labels t = &1 '

t =~ , t =~ on the three concurrent Li' and/or by permuting the labels x =°,
x = 1 , x = t on the other three Li in Table (2.4). The latter permutations are induced as

indicated in Figure (2.5) by the six projective transformations of P2

[
1 0 0] [1 1 1] [0 -1 0] [1 1 1] [0 1 0] [-1 0 0]o 1 0 , -1 0 0 , 1 1 1 , 0 -1 0 , 1 0 0, 1 1 1
o 0 1 0 0 -1 0 0 -1 0 0 -1 0 0 1 0 0-1

which leave fixed the point (0,0,1) at m on verticallines and which alter labels on

verticallines !rom t = a to t = b with

b = a , 1/(I-a) , 1-{I/a) , 1-& , l/a , a/(a-l) , resp.

The effect of such changes on components of W1 ' W2 and W3 will be discussed in §§ 3
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and 6 below.

(2.2) Conversely, for each (&1,~,a3) in W1 ' W2 or W3 and for each non-trivial

((t}-rational solution (x(t),y(t)) of (1.1) of height ~ 3 , the configuration {ELi'C}

defined by (2.1.1) is of one of the types (2.4.1H2.4.10). In particular ELi has a single

tripIe point (at CD on t = ai); C is either a line, a conic, a nadal cubic, or a cuspidal

cubic; and x(t) must have one of the forms

with b1 f 0 , c3 f 0 , ai f aj f h , Bince other forms violate either the condition that C

has degree ~ 3 or the condition that

(t-al)(t~)(t~)x(t)(x(t)-l)(x(t)-t)= (y(t»2

is a perfect square in ((t) . Furthermore points and branches of C at which two Li meet

or at which same Li is tangent correspond to common tactors or a square factor of x(t) ,

x(t)-l and/or x(t)-t . Consideration of these conditions shows that {ELi;C} must be of

one of the types (2.4.1)-{2.4.10).

(2.3) In Diagram (2.4.1) the pointslabelled (al'0) , (~,O) can be varied on the line

x=O in a manner which leads to another configuration of type (2.4.1). This leads to the

explicit birational parametrization
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of one of the irreducible components of W1 . (See (3.2) be1ow). Similarly in Diagram

(2.4.9) the pointslabell~d (a~,a~) can be varied on C in a mannel which yields a

rational parametrization of a component of W3 bya quotient of C )( C )( C module an

action of the group of homotheties (a3,a2) --+ ((7a)3,( ')'a)2) . It is expected that similar

rational parametrizations of each component of W2 and W3 can be defined by varying

points marked in Diagrams (2.4.2H2.4.10).



Type of

configuration
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Table (2.4)

One choice of

labels for EL.
1

Corresponding values

for x(t) , x(t)-1 , x(t)-t

x = p(t-a1)

x-I = q(t~)

x-t = r(t-a3)

x =p(t~)t/(t-al)

x-I = q(t-a3)(t-l)/(t-a1)

x-t = rt(t-l)/(t-a1)

x = p(t~)/(t-al)

x-I = q(t-ag)/(t-a1)

x-t = r(t-h)2/(t-a1)

2x = p(t-h1) /(t-a1)

x-I = q(t-h2)2/(t-a1)

x-t = r(t-a2)(t-ag)/(t-a1)



(~.'1.»)
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Table (2.4)

(continued)

c.... Q,

x = pt(t-hI)2/ (t-a1)(t-a2)

x-I = q(t-1)(t-~)/(t-a1)(t~)

x-t = rt(t-1)(t-a3)/(t-a1)(t-~)

x =p(t-a3)(t-hl )2l(t-a1)(t~)

x-1 = q(t-l)(t-~)2(t-al)(t~)

x-t = r(t-I)(t-h3)2/(t-aI)(t~)

x = pt(t-aI)/(t-hI)2

x-I = q(t-h2)2/(t-hl )2

x-t = rt(t~)(t-a3)/(t-hl)2

x = P(t-aI)(t~)2/(t-hI)2

x-I = q(t-a3)(t-h3)2/(t-hl )2

x-t = r(t-a3)(t-h4)21(t-h1)2

('1,~, t 0 )
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Figure (2.5)
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3. Eguations and intersections for components of WI

(3.1) If (a1,a2'~) E V and if (1.1) has a non-trivial (t)-rational solution (x,y)

of type (2.4.1), then there exist apermutation (ijk) of (123) and non-zero values

p,q,r E( such that

x = p(t-ai) , x-I = q(t-aj ) , x-t = r(t~) ,

1
q = P , r = p-l , p~ + r = paj , p~ = (p-l)ak and

a. - (1 + a. - a.)a.. = 0 .
1 1 J -g

Conversely if (al'~,a3) E V satisfies thislast relation for some (ijk) , then (1.1) has a

non-trivial (t)-rational801ution (x,y) which satisfies the preceding relations with the

same (ijk).

Proof: The hypotheses in the first assertion imply that x = mt+b f O,I,t and that

(t-al)(t~)/(t-a3)x(x-l)(x-t)is a perfect square in (t). This and the equality

defining V imply that x, x-I, x-t must be multiples of t-a1 ' t~ ,t~ in some

order, with multiples p,q,r determined by the order as indicated. The converse follows

easily.

(3.2) W I ia the union of six irreducible components

v n ~ijk =V n Q"ijk

with Qijk ((3 the quadric Burface defined by
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and with Q"ijk the cl08ure of Qijk in IP3 .

Proof: This is an immediate corollary of (3.1).

(3.3) If (a1,a2,a3) EV and if (1.1) has two different solutions which satisfy the

conditions in (3.1) for two different permutations (ijk), (Ln.m) , then

(l-{l/aj),aj,l/(l-aj»

(-l,a.,l/a.)
J J

(ai ,2,ai /(ai-l»
(ai ,1-ai ,1/2)

if (lmn) = (jki) or (kij) ,

if (tmn) = (ikj) ,

if (Lmn) = (kj i) ,

if (tmn) = (j ik) .

Furihermore the existence of two such solutions for two permutations (ijk), (jki) of the

same parity implies the existence of a third solution for the third permutation (kij) of this

parity. Conversely if (al'~'~) E V satisfies one of the displayed relations, then (1.1) has

a pair of solutions which satisfy the conditioDS in (3.1) for the corresponding pair of

permutations.

Proof: The hypotheses and (3.1) imply

a.-{I+a.-a.)a... = 0 and
1 1 J-J[

at -{l+at -am)an = 0 .

H (tmn) = (jki) , then elimination of aj yjelds
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o=aj(I~Hl+aJ~)(I-aj)~ =
= (aJ~)(I~+aj~) ;

hence ~ = l/(l-aj) since aj f ~ ; etc. H (I..mn) = (ikj) , resp. (kji), resp. (jik) , then

subtraction yields

o= &i-{l+&i-aj)ax-ai+(I+~-ak}&j= (l+ai)(aj-~) , resp.

o= &i-{l+~-aj)~~+(l+~-aj)&i = (ai~)(2-aj)' resp.

o= ai-{l+~-aj)~-aj+(l+aJ.-ai)~ = (ai-&j)(1-2ax) ; etc.

The case (lmn) = (kij) and also the seoond assertion follow easily from the identity

Also see (3.7) below. The converse of the first assertion follows easily from (3.1).

(3.4) It follows from (3.3) that the intersection V n Qijk n V n Qtmn of each pair

of distinct components of W1 is an irreducible curve which is the intersection of V either

with one of two twisted cubics or with one of six plane conies or with one of three lines in

(3 . These curves are listed in Table (3.8) and their real parts are sketched in Figure

(3.10). The components of Q"123 n Q"ijk in IP3 are listed in Table (3.9) for compansion.

(3.5) As indicated in Figure (3.10) intersections of tripIes or quadrupies of distinct

irreducible components of W1 are either empty or one of the six special points

(-1,1/2,2) , (-1,2,1/2) , (1/2,2,-1) , (2,1/2,-1) , (2,-1,1/2) , {1/2,-1,2}
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or one of the two twisted cubics in Table (3.8). In Figure (3.10) hout hand positions I, ill,

V, VII, IX, XI are used as labels for the preceding six points and also for permutations

(ijk) and irreducible components V n ~jk which correspond as in Figure (3.10). In

addition parentheticallabels such as (I nm) or (I nm n VII n XI) are used for

intersections of components of W1 .

(3.6) Figure (3.11) represents combinations of configurations {ELp,Lijk} and

{EL ,L D } which correspond to pairs of solutions in (3.3). Note that permutationsp .t..mn

(ijk) , (tmn) of different parity correspond to lines Lijk , L tmn which meet at double

points of ~p but that permutations of the same parity correspond to lines which do not

meet on u,p'

(3.7) The relation (3.3.1) in the proof of (3.3) corresponds to a special case of the

theorem of Pappus aB in Figure (3.12): If A,B,C are collinear (say on L123 ) and if

A' ,B I , C I are collinear (say on L312 ) , then An,B",eil are also collinear (on L231 ). In

this special case, the lines AB It
, AliB', A'B are concurrent.
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Table (3.8)

)

a

m V VII IX XI

vnQ123 vnQ321 vnQ312 vnQ213 vnQ231

1 1 1 1 1 1
(a'a~1'2)I (-l,a,&) (1-a,a,la ) (a'2",l-a) (1-8.,a,1-a)

vnQ132

(a,2'a~l)
1 1 1 1 1m (1a;,a'1-a) (a,1-a,~) (1-a,a'1-a)

1 1 1 1V (a - -1) (1-a,a,la) (~,l-a,a)'a'

(2'1:a,a)
1 1VII (1&,a'1_a

1IX (-,-1,a)
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Table (3.9)

Components of

Q"132 n Q"ijk CP3

m V VII IX XI

Q"123 Q"321 Q"312 Q"213 Q'231

I 1 1 1 1 1 1
(1,a'a:1'2)

"'-
(1,-l,a'ä) (1'1-a,a,1a;) (l,a

'
2",I-a) (l'l-a,a,la;)

.\

Q"132 (l,a,a,a) (1,a,a,a) (l,a,a,a) (l,a,a,a) (1,a,a,a)
(1,a,I,I) (O,1,a,1) (O,I,O,a)

(0,1,0,a)
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Figure (3.10)

Real parts of

V n Qijk n V n Qtmn

Labels in terms of hoUl hand positions

HOUl I m V VII IX ~XI

Second
1 1 1 1 1 1

(-1,~,2) (-1,2,~) (~,2,-1) (~,-1,2) (2,-1'"2") (2'"2",-1)

point

permutat. (132) (123) (321) (312) (213) (231)

irreduc. vnQ132 vnQ123 vnQ321 vnQ312 vnQ213 vnQ231
component
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Figure (3.11)

Configurations {ELp,Liik,Ltmn} which

correspond to pairs of 801utions of type (2.4.1)
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Figure (3.12)

A special case of the

theorem of Pappus
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4. Neron-Seyeri Lattiees and Mordell-WeiI grouDS

(4.1) For fixed (a1J~Jag) EV Jthe Neron model X --+ P1 for (1.1) relative to

((t) is an elliptie K3 surface with six singular fibers

*of Kodaira types 12 or 10 , with Pieard number p = 17,18,19 or 20 J and with

Neron-8everi group NS(X) ~ 7J.p generated by homology classes of seetions and

components of fibers. Furthermore there is a sublattice L C NS(X) of rank 17 generated

by the 17 independent classes of the eurves

(4.1.1)

1 ~ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Ct CO Cl Cm a1 a1 a1 a1 C~ ~ C~ C~ C~ C~
a3 a4

Uo 1 1 1 Cl C2 C3 C4 1 ,C2 3 4 1 2 C3 C4

with (f0 the section at m, Ct a good fiber, and C~, i > 0 , the 15 components of

singular fibers which do not meet (f0 .

Proof: These properties are special cases or easy consequenees of results in Shioda

[10] and Barth, Peters, and van de Ven [1]. Cf. [6]. In particular by [1, pp. 87,

183,189] X can be identified with the minimal non-singular resolution of a double sectie

with A-D-E singularities which is defined by (1.1), and hence X is a K3 surface with

p 5 20 . See (4.6) below.
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(4.2) If (al ,a2'~) E V does not belong to any of the WN in § 1, then p = 17 . In

this case the submodule L in (4.1) hu index 4 in NS(X) with cosets represented by the

classes of 0"0 and the sections 'Tl' ''T3, T4 defined by the trivialsolutions (0,0) , (1,0) ,

(t,O) ,resp. of (1.1). However if (a1'~'~) eV belongs to one ofthe WN and if

(x(t),y(t)) is an associated non-trivial solution of (1.1) as in § 2, then p ~ 18 and

(x(t),y(t)) determines a section 0" of X ----+ IP1 and a clu8 [0"] E NS(X) which is

independent modulo L.

Proof: Cf. [6].

(4.3) Intersection products D· E for curves on X determine a. nondegenerate

bilinear form on NS(X) with signature (1+,(p-1)-) and with discriminant

d = det(Di •Dj) where Dl'oo.,Dp represent a basis for NS(X). Cf. [ ]. Intersection

products for the 17 curves in (4.1.1) can be computed as in (4.5) and (4.6) below and form

the 17x17 matrix in Table (4.7) with determinant 29 . In case p = 17 it follows that

NS(X) has cliscriminant d = 29/16 = 25 . There are partial results on discriminants for

examples with p > 17 in §§5 and 6 below.

(4.4) As usual the set 6 of holomorphic sections 0" of X --t ~1 can be identified

with the Mordell-Weil group of (t)-rational solutions of (1.1), with 0"0 U zero element

and with 0"1+0"2+0"3 = 0"0 if and only if the corresponding (t}-rational solutioRs (xi'Yi)

are collinear on (1.1). In this case 6 ~ 71.r tB (71./211)2 with r = p-17 and with torsion

subgroup consisting of 0"0 and the sectione Tl' T3' T 4 corresponding to the trivial

8Olutions (O,O), (1,0) , (t,O) of (1.1) . The numbering of the 'Ti corresponds to

a· *
non-empty intersections with components CiJ of the 10 fibers in Figure (4.8) below.
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Each u E (5 deiermines a class [u] E NS(X) , but difficulty with translation and torsion

prevents the map u -----. [u] hom being a group homomorphism. However there ia a

modified map

6 : 6 -----. NS(X) GD ~

which is a homomorphism and which is characterized by the propenies (4.5.1) thai

[u] - o(u) ia a ~near combination ofthe curves D in (4.1.1) and (4.5.2) that

6(u) · D = 0 for each D in (4.1.1). Furthermore the modified intersection product

(u,u') = -o(u) · 6(u')

is positive definite on (5 modulo torsion.

Proof: See [10] or [6] for the first two assertions. See Cox and Zucker [2] for

definition and properties of 6" and (,) . See (5.4) below for an example.

(4.5) Each of the 16 curves f Ct in (4.1.1) is a nonsingular rational curve on X.

For such curves D the adjunction formula yields

D· D = D· (D+KX) = 2Pa(D)-2 = -2

since X is.a K3 sUlface with canonical class KX = 0 . This and the relation

yield the self-intersection numbers on the diagonal in Table (4.8). See [1].
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(4.6) Let Y --+ IP2 be the singular double cover defined by (1.1) with ramification

locUB B = ELi ; let IP2--+ IP2 be the blow-up o~ the tripIe point of B ; and let

1P2--+ IP2 be the multiple blow-up of the doubl.e points of the total transfonn B' of

B . Then X in (4.1) can be identified with the non-singular double cover of 1P2with
. .

disconnected, non-singular ramificaüon locuS consisting of the components of odd order in

the total transform B" of :B I • Th1s follows hom definitions and r~ult8 in [1, pp. 87 J

183, 189] which show in particular that this double cover of 1P2 is the minimal

non-singular model for Y since Y is a double sextic with A-D-E singularities. It

follows that the 16 curves f Ct in (4.1.1) lie over the components of B" with the

configuration shown in Figure (4.8) below. It follows from Figure (4.8) together with (4.5)

that the intersection products for the curves in (4.1.1) are those listed in Table (4.7). In

Figure (4.8) the lines and ovals represent non-singular rational curves which intersect each

other transversely at indicated points. The map X --+ 1P2 is ramified on the curves (10 I

a1 ~ a3
T4 ' T 3 ' Tl ,C2 J C2 ,C2 .
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Table (4.7)

Intersection products lor 17 curves in (4.2)

1 2 3 4 5 6 9 8 7 10 13 12 11 14 17 16 15

1 -2 1

2 1 0

3 -2

4 -2

5 -2

6 -2 1

9 -2 1

8 -2 1

7 1 1 1 -2

10 -2 1

13 -2 1

12 -2 1

11 1 1 1 -2

14 -2 1

17 -2 1

16 -2 1

15 1 1 1 -2

(all other entries are 0 )
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Figure (4.8)

Configurations {or X --+ 1P2--+ IP2--+ IP2

f;tJ
C-

1

~
lP'1."

~
lP~f

---- r'1

-- --Z::-3
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5. The special case (a1,~,a3) = (-1,1/2,2) with p = 20

(5.1) As illUBtrated in Figure (3.10) there are four different permutations

(ijk) = (132), (123), (312), (231)

such that (al'~,a3) = (-1,1/2,2) EV satisfies ~-{I+~-aj)~ = 0 and lies in
. .

V n Qijk . As illustrated by Figure (5.6) there are four corresponding configurations

{~p,Lijk} of type (2.4.1) with ~p defined by

(t+l)(t-l/2)(t-2)x(x-l)(x-t) = 0

and with lines Lijk which pass through double points

of ELp and which satisfy the conditions in (3.1)

1 1 2 1L132 : x = i<t+l), x-I = i<t-2), x-t = -i<t,) ,

2 2 1 1L123 : x = j<t+l), x-I = i<t,), x-t = -g<t-2) ,

1 1 4 1L312 : x = -g<t-2), x-I = -g<t+l), x-t = -i<t,) ,

2 1 2 1L231 : x = i<t,), x-1-i<t-2), x-t = -g<t+l) .

Therefore as in (3.1) the equation



(5.1.1)

.=.25-

y2 = (t+1)(t"':'1/2)(t-2)x(x-1)(x-t)

has four pairs of non-trivial G:(t)-raüonal solutions of type (2.4.1)

1 !;2 1
(x312 :i: Y312) = (;<t-2), :i: ryt+1)(t,)(t-2» ,

3

which are determined up to the sign of :i: Yijk by {ELp,Ljjk}.

(5.2) Let X --t IP1 be the Neron model for (5.1.1) relative to (t) , let

X --t 1P2--t IP2--t 1P2 be the maps specified in (4.6), and for each (ijk) let O"ijk be

the section determined by (xijk' +Yijk) in (5.1). Each O"ijk lies over Lijk in IP2 and

also over the proper transform Lijk of Lijk in f 2.The points

(1:-1:0), (1:1/2:1/2), (1:2:1) E IP2 are blown up in 1P2;they also are points of intersection

of two distinct Lijk which have different directions through these points; and

consequently these points do nQ1lift to points of intersection of distinct Lijk or l1jjk .

The other points of intersection of two distinct Lijk are (1:0:2/3), (1:1:1/3), (0:1:1/3) ;

these three points litt to transversal}X>ints of intersection of the corresponding O""k j they
IJ

can be represented in Table (5.1) by solutions



-26-

(u,z,w) = (Iic, t~c' ~())
i+c

of an equation

w2 = (l-{a1+c)u)(l-{~+c)u)(I-{~+c)u)z(z-u)(z-l+cu)

for a birationally equivalent model of X which is biholomorphically equivalent to X at

each of these points. There are no other points of intersection of distinct O"ijk'

(5.3) Intersection products for the O'ijk with ea.ch other and with the 17 curves in

(4.1.1) are listed in Table (5.8). These values can be computed as follows: O"ijk2 = -2 by

(4.5) since O"ijk is a non-singular rational curvej three O"ijk· 0"tmn = 1 and the others

= 0 by (5.2); O'ijk· D = 0 or 1 for D in (4.2) by inspection of Figure (5.9) for 0'132

and similar diagrams for other O'ijk' Intersection products are also listed in Table (5.8) for

the preceding curves and the torsion sections TI' T3' T4 in (4.3).

(5.4) Intersection products for the 17 curves in (4.1.1) tagether with the three

sectiOnB 0"132' u123' 0"312 form a 20)(20 matrix A with determinant dei A = -3. 27 . In

fact by ordering these 20 curves as in the first column of Table (5.10) and by adding

suitable fractional multiples of early entries to later entries aB in the second column of

Table (5.10) one obtaines the equivalent matrix t EAE in Table (5.11) which obviously

has det(tEAE) = -3. 27 and det E = 1 . Furthermore the classes in NS(X) t> ~ of the

last three entries in the second column of Table (5.10) must coincide with 6(0'132)'

6(0'123)' 6(0'312) , resp., since the former classes obviously have the properties (4.5.1) and

(4.5.2) which chara.cterize the latter classes. Consequently the negative
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[
1 0 0]
o 1 -1/2

0-1/2 1

of the lower right hand corner of tEAE is the matrix of corresponding modified

intersection numbers

(ijk), (lmn) = (132), (123), (312) .

(5.5) It follows from (5.4) that X has Picard number p = 20 , that the classes of the

20 curves in the first column of Table (5.10) form a basis for NS(X) ~ ~ , that these

classes generate a sublattics L' with finite index in NS(X) and with discriminant

-3 · 27 , and thai L' and the classes of Tl' T 3' T 4 generate an intermediate lattice L"

with discriminant -3. 27/16 = -24 . Consequentlyeither NS(X) = L" with discriminant

d = -24 , in which case \5 ie generated by tT132' tT123' tT312' Tl' T3 ; or NS(X) has

discriminant d = -6 and contains L" as a sublattice of index 2, in which case u132'

u123' u312' Tl' T3 generate a subgroup of index 2 in \5. J. Stienstra. has pointed out that

in fact d = -24 since otherwise X would have a transcendentallattice T withx

rank = 2 and discriminant = 6 , contrary to a result of Shioda and Inose [11].
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Figura (5.6)

A configuration for (-1,1/2,2) which

corresponds to fOUl 8Olutions of type (2.5.1)

t::--,

-t ':.- \ 4:;..... Y).
(1:0.. ~)

( "', tit. Lf3'1. 41 tt1 )
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Table (5.7)

Values of (u,z,w) = (t';C' t~c'~) at t = O,l,m on u'jk
(t+c) 1

° 1 m

132 '11 1fJ; (1 2 1~) 1~(c,~,+j ) (0'"3"'+ )
c 3 l+c'3(I+c)' (1+c)3 3 3

12 1./!i ~ 2~123 ,(c'~'+-:! )
(1 4 1 2 ) (0'"3"'+ )

c 3 l+c'3(I+c)' (1+c)3 3 3

12 19 ~ 1{4312 (c'~'+~ '3)
(1 1 1.2)

(°'3'+ )l+c'3(I+c)' (l+c)3 3 3

231 (1},4~ 1 1 1 ~ 2{4
,C~ . 3 (H: n cV (1+:)3 • 3 ) (0'"3"'+ )

C ' 3
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Table (5.8)

4

1 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1

3 0 0 0 0 1 1 0

4 0 0 0 0 1 0 1

5 0 0 0 0 0 1 1

6 1 1 0 0 1 0 0

8 0 0 0 1 0 1 0

9 0 0 1 0 0 0 1

7 0 0 0 0 0 0 0

10 0 0 1 0 1 0 0

12 0 1 0 0 0 1 0

13 1 0 O· 1 0 0 1

11 0 0 0 0 0 0 0

14 0 0 0 1 1 0 0

16 1 0 1 0 0 1 0

17 0 1 0 0 0 0 1

15 0 0 0 0 0 0 0

0"132 -2 0 0 0 : 0 0 0

0"123 0 -2 1 1 0 0 0

0"312 0 1 -2 : 1 0 0 0

0"231 0 1 1 I -2 0 0 0

• ~. -2 0 0'Tl 0 0 0 0

- ..

'Tg 0 0 0 0 0 -2 0
,

.',
"

'T 0 -0 0 0 0 0 -2
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Figure (5.9)

_---(1""..,



1 0"0

2 Ct

3 CO
1

4 Cl
1

5 Cm
1

6
&1

Cl

8
&1

C3

9
a1C4

7
&1

C2

10 C~
1

12 C~
3

13 C~
4

11 C~
2

14
&3

Cl

16 C~
3

17
&3

C4

15
a3C2

18 0"132
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Table (5.10)
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1 1 &1 &1 1 &1 &1 &1
u123-2(C2+t'"O)+~1 +C2 +2(C1 +C3 +C4 )

+~~+C~+!Ic~+c~+C~)~&a+C~+!lc~+Ca3+Ca3)
2-3 2' 2\ 1 3 .(. 2-4 2 2\ 1 3 4

=6(0-123)

1 1 ~1 . &1 1 ~1 &1 &1
0"312-2(C2+r"O)+~4 +C2 +2<C1 +C3 +C4 )

~L.2+C~+!tC~+c~+C~)~&a+C&a+!lc&a+Ca3+Ca3)
, 2-1 2 2\ 1 3 4' 2-3 2 2\ 1 3 4

=6(0"312)
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Table (5.11)

-2 1 0 0 0

1 0 1 1 1

.,

-2
-2

-2

-2 1 1 1 0

-2 1 0 0 0

-2 1 0 0 1

1 1 1 -2 0 0 0
..

-:..2 1 0 0 1

-2 1 0 1 0'

-2 1 1 0 0

1 1 1 -2 0 0 0
-- -

-2 1 0 0 0

-2 1 1 0 1

-2 1 0 1 0

1 1 1 -2 0 0 0

0 1 1 0 0 0 0 0 0 0 0 1 0 0 -2 0 0

0 1 1 0 0 0 0 1 0 0 0 0 1 0 \ 0 -2 1

0 1 0 0 1 .0 1 0 0 0 0 1 0 0 0 1 -2
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-.. ...

-2 1

0 1
l'

~ -
-2

-2

-2

-2

-2

-2
1

-1

-2

-2

-2
1

2

-2

-2

-2

"
1

2

-1 0 0

0 -1 1
l'

0 1 -1l'
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