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1. Introduction

The purpose of this paper is to derive explicit algebraic conditions on points
a1,3q,34) € C3 which imply that the equation
132:23

(1.1) y? = (t-a,)(t-8,)(t—ag)x(x=1)(x)

has a non—trivial €(t)—rational solution, to determine irreducible components and
intersections for some of these conditions, to list maximal independent sets of
C(t)—rational solutions for certain values of (31'3‘2'3‘3) , and to discuss some related

problems.

In this paper the discussion is simplified by restricting attention to points (al,a.2,a.3)
in the complement V C €3 of the planes defined by a, =0, a, =1, a, = 8 with i#j.
A non—trivial €(t)-rational solution of (1.1) is defined to be a pair (x(t),y(t)) of rational
functions which satisfies (1.1) and is different from (0,0), (1,0) and (t,0) . The height of
(x(t),y(t)) is defined to be the degree of the curvein P, parametrized by (1:t:x(t)) . For
each N >0, Wy denotes the set of points (al,az,a3) € V such that (1.1) hasa
non—trivial C(t}-rational solution of height < N . In an earlier paper [6] it is shown that
each Wy ig the union of a finite number of closed irreducible algebraic surfaces in V.
The main results of the present paper concern the three algebraic sets W, W, C W,
and can be outlined as followed: In § 2 irreducible components of W1 , W2 and W3 are

described in terms of suitable extra contact for configurations {XL,C} defined by

3L, : (t-a))(1-ay)(t—a5) ¥ (x—1)(x—t) =0 and
C:x=x(t) .
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In § 3 equations and intersections are determined for irreducible components of W, .
Minimal models, intersection products, Neron—Severi lattices and Mordell-Weil groups for
(1.1) are described in general in § 4 and are computed explicitly for the example

(a.l,a.z,as) = (—1,1/2,2) in § 5. A subsequent paper.(in preparation) will determine
parameterizations and intersections for other components of W2 and W3 and will
compute intersection products, Neron—Severi lattices and Mordell-Weil groups for (1.1) for

generic (al,a2,a3) as these components.

The work of one of the authors (Hoyt) on this paper has been supported by the
Faculty Academic Study Program of Rutgers University and by Max—Planck—Institut fir
Mathematik in Bonn. The authors are very grateful to both Rutgers University and
Max—Planck—Institut for helping to make this work possible. We are also very grateful to

J. Stienstra for advice on this work and to Frau Sarlette for excellent typing.
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2. Di for irr ibl ne le,W2ﬁgdW3

(2.1) Diagrams (2.4.1)—(2.4.10) in Table (2.4) below represent configurations
{2L,,C} consisting of six lines L,,...,Lg and a rational curve C of degree <3 in P,
for which there exist a point (a,,8,,84) € V and a non—trivial C(t)—rational solution
(x(t),y(t)) of (1.1) such that XL, and C are defined by

(2.1.1) { (t—;)(4-a,)(t-ag)x(x—1)(x~t) = 0 and

x = x(t) , resp.,

relative to some choice of inhomogeneous coordinates in [P, . For each such configuration
here are several different choices of (a;,a5,a,) and (x(t),y(t)) which satisfy (2.1.1). One
such choice is indicated for each diagram in the adjacent columns of Table (2.4), with y(t)
determined up to sign by the indicated values for x(t), x(t)-1 and x(t)—t . Other
choices can be obtained by replacing y(t) by —y(t), by permuting the labels t = 3,

t =a,,t =2, on the three concurrent L., and/or by permuting the labels x =10,
x=1,x =1t onthe other three L. in Table (2.4). The latter permutations are induced as

indicated in Figure (2.5) by the six projective transformations of P,

100 111] fJo-10] [111] [o10] [100
o10f, [-100|, |111], |o-10|, |t0o0f, {111
001 00-1] (0o0-1] [0o0-1] Joo1 00-1

which leave fixed the point (0,0,1) at o on vertical lines and which alter labels on
vertical lines from t =a to t =b with

b=a,1/(1-a),1<1/a),1-a, 1/a, a/(a~1) , resp.

The effect of such changes on components of Wl , W2 and W3 will be discussed in §§ 3



and 6 below.

(2.2) Conversely, for each (al,a.z,as) in W, , W, or W, and for each non—trivial
C(t)-rational solution (x(t),y(t)) of (1.1) of height £ 3, the configuration {XL,C}
defined by (2.1.1) is of one of the types (2.4.1)+2.4.10). In particular XL, has a single
triple point (at ® on t = ai) ; C iseither a line, a conic, a nodal cubic, or a cuspidal

cubic; and x(t) must have one of the forms
by+b,t, c0+...+c3t3 , (d0+...+d2t2)/(t-a.2) ,
(ent.teqtd)/(t-a:)(t=a.) or (fr+...4+1,t%)/(t—h)>2
otte3 i i {0 -ty

with b, $0, cg $0, 8 # 3 # h , since other forms violate either the condition that C

has degree < 3 or the condition that

(t-a;)(t—ag) (t-ag)x()(x(t)-1)(x(t)-t) = (v(+))?

is a perfect square in {(t) . Furthermore points and branches of C at which two L; meet
or at which some L, is tangent correspond to common factors or a square factor of x(t) ,
x(t)-1 and/or x(t)—t . Consideration of these conditions shows that {ELi;C} must be of
one of the types (2.4.1)—(2.4.10).

(2.3) In Diagram (2.4.1) the points labelled (a;,0), (a5,0) can be varied on the line

x=0 in a manner which leads to another configuration of type (2.4.1). This leads to the

explicit birational parametrization

(alaaz) _— (31’32’3'1/(1'*'3'1_&2))



of one of the irreducible components of W, . (See (3.2) below). Similarly in Diagram
(2.4.9) the points labelled (a3,a2) can be varied on C in & manner which yields a
rational parametrization of a component of W3 by a quotient of C x C x C modulo an
action of the group of homotheties (a3,a2) — ((7a)3,( 7a)2) . It i8 expected that similar
rational parametrizations of each component of W, and W3 can be defined by varying
points marked in Diagrams (2.4.2)—(2.4.10).



Type of
configuration

(2,4.,3)

(2.4.4
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Table (2.4)

One choice of

labels for ELi

& =e

&. (4, 0)
%ttﬁt -.\_4,‘. (‘Q" o)

Corresponding values
for x(t), x(t)-1, x(t)—t

X = P(t"al)
x-1 = q(t-a,)
x—t = r(t—as)

x= P(t_ag)t/(t—al)
x—1 = q(t-a5)(t-1)/(t-a;)
x—t = rt(t-1)/(t—=,)

x = p(t—a,)/(t—8,)
x—1 = q(t—a,)/(t—s,)
x-t = r(t-h)?/(1-a,)

x = p(t-h))/(t-a,)
x-1 = q(t-hy)?/(t-3,)

x—t = 1(t-a5)(t—25)/(t—3})
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Table (2.4)
(continued)

x = pi(t-h)?/(t-a;)(t—8,)
x—1 = q(t—1)(t—hy)/(t—a,)(t-a,)
x4 = rt(1-1)(t—8,)/(t-3, )(t-2,)

x = plt—ag)(t-h,)%/(1—a, )(t—a,)
x-1 = q(t-1)(t-hy) *(t-8;)(t-,)
x4 = r(t-1)(t~hy)%/(t~a, )(t-a,)
x = pt(t—a,)/(t-h,)?

x-1 = q(t-hy)/(t-h;)°

x—t = Tt(t-8,)(t—a4)/(t-h )2

x = p(t—a,)(t—ay)/(t-h,)°
"x-1 = q(t-8)%/ (1))

x— = r(t—a5)/(t-g)2/(t-h,)?
x = p(t-a;)(t-hy)*/(th,)?
x-1 = q(t—ag)(t-h,)?/(t-h))?
x—+ = r(t-a,)(t-h,)%/(t-h,)?




Figure (2.5)
(0,0,)
™t Y= 100
010
Yoo 001
(|,4,07
i)
(1~a,1,0) vt 0 0-1
("";',')
*=0 ot 0-10
111
(@,%,0) xx | [o 0-1]
(a,a-1, @)
¥t 010
x=t 100
001
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3. Equations and intersections for components of W1

(3.1) If (a},89,84) € V and if (1.1) has a non—trivial {(t)—rational solution (x,y)
of type (2.4.1), then there exist a permutation (ijk) of (123) and non—zero values
p,q,r € € such that

x=p(t—a,),x-1= q(t—aj) , x—t =1{t—a, ),

= = 1_ =
q—p,r—p—l,pai+7—paj,pai—(p—1)ak and
ai—(1+ai—a.j)a.k=0 .

Conversely if (al,a.2,a3) € V satisfies this last relation for some (ijk), then (1.1) hasa

non—trivial €(t)—rational solution (x,y) which satisfies the preceding relations with the
same (ijk) .

Proof: The hypotheses in the first assertion imply that x = mt+b # 0,1,t and that
(t—a;)(t—a,)/(t—85)x(x—1)(x~t) is a perfect square in C(t) . This and the equality
defining V imply that x, x—1, x~t must be multiples of t-a, , t—ay , t—a, in some
order, with multiples p,q,r determined by the order as indicated. The converse follows
easily.

(3.2) W, is the union of six irreducible components

with Qg C €3 the quadric surface defined by

a; — (1+al—aj)ak =9
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and with Q’i ik the closure of Q; ik in Py .
Proof: This is an immediate corollary of (3.1).

(3.3) If (al,a2,a3) € V and if (1.1) has two different solutions which satisfy the

conditions in (3.1) for two different permutations (ijk) , (£nm) , then

[ (11/a;),3;,1/(1-ay)) if (Lmn) = (jki) or (kij),
(-l,a:,1/a.) if (¢mn) = (ikj) ,
(3j,358) = 1o . .
(2;,2,3;/(3;-1)) if (&mn) = (kji),
[ (3;,1-3;,1/2) if (¢mn) = (jik) .

Furthermore the existence of two such solutions for two permutations (ijk) , (jki) of the
same parity implies the existence of a third solution for the third permutation (kij) of this
parity. Conversely if (31’32’33) € V satisfies one of the displayed relations, then (1.1) has
a pair of solutions which satisfy the conditions in (3.1) for the corresponding pair of

permutations.
Proof: The hypotheses and (3.1) imply

ai—(1+a.i—aj)ak =0 and

:.=.l,‘—(1+ap_-.am)a11 =0 .

If (£mn) = (jki), then elimination of a, yields
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0= a(1—8y )1 +8;-a,)(1-a;)ay =
= (a8 )(1-ay tam) ;

hence a, = 1/(1—a.j) since a # ay ; etc. f (Lmn) = (ikj) , resp. (kji), resp. (jik), then
subtraction yields

0= a’i—(1+ai_aj)a'k-ai+(1+a'i_ak)aj = (1+ai)(aj-ak) , TESP.
0= ai—(1+a»l-a..])ak--ak+(1+a.k—::xj)ai = (ai—a.k)(2-—aj) , Tesp.
0= ai—(1+a"1"aj)ak_aj+(1+aj—ai)ak = (ai—a.j)(l—2a.k) ; etc.

The case (£mn) = (kij) and also the second assertion follow easily from the identity
(3.3.1) [~ 1+ai—aj)ak] + [aj—( 1+aj—a.k)ai] + [ak—(1+ak—ai)aj] =0 .
Also see (3.7) below. The converse of the first assertion follows easily from (3.1).

(3.4) 1t follows from (3.3) that the intersection V N Q, ik NVNQpn, of each pair
of distinct components of W1 is an irreducible curve which is the intersection of V either
with one of two twisted cubics or with one of six plane conics or with one of three lines in
€3 . These curves are listed in Table (3.8) and their real parts are sketched in Figure

(3.10). The components of Q123 n Qi ik in [P3 are listed in Table (3.9) for compansion.

(3.5) As indicated in Figure (3.10) intersections of triples or quadruples of distinct

irreducible components of W1 are either empty or one of the six special points

(—1$1/212) ) (_172a1/2) ) (1/2)23_1) ) (2:1/23_1) ' (23_111/2) ) (1/2’_1!2)
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or one of the two twisted cubics in Table (3.8). In Figure (3.10) hour hand positions I, III,
V, VII, IX, XTI are used as labels for the preceding six points and also for permutations
(ijk) and irreducible components V N Q; ik which correspond a8 in Figure (3.10). In
addition parenthetical labels such as (INTII) or (INII N VII N XI) are used for

intersections of components of Wl .

(3.6) Figure (3.11) represents combinations of configurations {ELp,Lijk} and
{ELp,L gmp) Which correspond to pairs of solutions in (3.3). Note that permutations
(ijk) , (¢mn) of different parity correspond to lines L, ik Ly mn which meet at double
points of ELp but that permutations of the same parity correspond to lines which do not

ton IL_.
meet on IL,

(3.7) The relation (3.3.1) in the proof of (3.3) corresponds to a special case of the
theorem of Pappus as in Figure (3.12): If A,B,C are collinear (say on Liog ) and if
A’ B’,C’ are collinear (say on L9 ), then A"B".C" ﬁre also collinear (on Ly, ). In
this special case, the lines AB", A"B’, A’B are concurrent.



Table (3.8)
VNQ NVNQyy,
114 \' VII IX XI
VNQj93 VNQso; VNQgy9 VNQg;3 VNQosy
1 1
("'l)a'% (1133331—3) (aa%sl-a) (m,a,l—%) (a:ai :2)
(3.2:52%) (1L, 5) (2,1-0,3) (Lo
1
(aséa_l) (m,a,l—%) (%rl_a:a)
1.1
(2113_313) (l_a)a': a)
1
(Ev"lia)




—14 —

Table (3.9)

Components of

Q32N Qi CPy
m Vv VII IX
l:‘)“123 Q321 -Q-312 Q-213
1 1

I (1-183) (Lsal) (1,8,5,1-8) (Lpal3)
Q'132 (1,3,a,a) (1,3,a,a) (1,a,a,a) (1,a,a,a) (1,3,a,a)

(l,a,l,l) (0,1,&,1) (0,1,0,&)

(0,1,0,a)
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Figure (3.10)

Real parts of
VnQijanthmn

Labels in terms of hour hand positions

I I \' VII X XTI  —
Second (-132)  {(-123) F2-1)  |G-12)  |@-13) (@3- -
point

permutat. | (132) (123) (321) (312) (213) (231)
irreduc. van Vr‘tQ123 VnQ321 VﬂQ312 VnQ213 VnQ%1 -
component
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Figure (3.11)

Configurations {m‘p’Lijk’Ltmn} which

correspond to pairs of solutions of type (2.4.1)

=T
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Figure (3.12)

A special case of the

theorem of Pappus
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4. Neron—Severi Lattices and Mordell-Weil groups

(4.1) For fixed (a,,a5,84) € V, the Neron model X — P, for (1.1) relative to
C(t) is an elliptic K3 surface with six singular fibers

Cg+Ci at 8=0,l,m or
8 _ ‘ :
¢= cBrcBiaci+cB4+C® at s=a 8,2
QT TelgTlgThy 12233

x
of Kodaira types Iy or I, with Picard number p = 17,18,19 or 20, and with
Neron—Severi group NS(X) & I generated by homology classes of sections and
components of fibers. Furthermore there is a sublattice L C NS(X) of rank 17 generated

by the 17 independent classes of the curves

(4.1.1)

1|2345678910l11121314151617

tf AOf AL [ {21 A21| A2 21| 22 (22 [ B2 22] 23] 23] 23 (24
oo [C'[ C1|CT[CTIC, | Co 1€ |4 {C1% [C5° 15" |C47 [C1° 1 Cy° [ Cq° [C

with 9 the section at o, cta good fiber, and C} , i >0, the 15 components of
singular fibers which do not meet 7, -

Proof: These properties are special cases or easy consequences of results in Shioda
[10] and Barth, Peters, and van de Ven [1]. Cf. [6]. In particular by [1, pp. 87,
183,189] X can be identified with the minimal non—singular resolution of a double sectic
with A-D—E singularities which is defined by (1.1), and hence X is a K3 surface with
p 20 . See (4.6) below.
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(4.2) If (a;,89,34) € V does not belong to any of the Wy in§ 1, then p=17.1In
this case the submodule L in (4.1) has index 4 in NS(X) with cosets represented by the
classes of 7 and the sections 7, Ta Ty defined by the trivial solutions (0,0), (1,0),
(t,0) , resp. of (1.1). However if (al,a.z,a3) €V belongs to one of the Wy and if
(x(t),y(t)) is an associated non—trivial solution of (1.1) as in § 2, then p > 18 and
(x(t),y(t)) determines a section 0 of X — P, andaclass [o] € NS(X) which is
independent modulo L .

Proof: Cf. [6].

(4.3) Intersection products D-E for curves on X determine a nondegenerate
bilinear form on NS(X) with signature (1+,(p—1)-) and with discriminant
d= det(Di-Dj) where Dl""’Dp represent a basis for NS(X) . Cf. [ ]. Intersection
products for the 17 curves in (4.1.1) can be computed as in (4.5) and (4.6) below and form
the 17x17 matrix in Table (4.7) with determinant 29 . In case p = 17 it follows that
NS(X) has discriminant d = 29/16 = 2° . There are partial results on discriminants for

examples with p > 17 in §§5 and 6 below.

(4.4) As usual the set & of holomorphic sections o of X — P, can be identified
with the Mordell-Weil group of C(t)-rational solutions of (1.1), with o, as zero element
and with ¢,+0,+0, = 0 if and only if the corresponding (t)-rational solutions (x;,y;)
are collinear on (1.1). In this case S I ® (1;!/21)2 with r = p—17 and with torsion
subgroup consisting of T and the sections ) T Ty corresponding to the trivial

solutions (0,0) , (1,0) , (£,0) of (1.1) . The numbering of the 7, corresponds to

a- *
non—empty intersections with components CiJ of the Iy fibers in Figure (4.8) below.
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Each ¢ € G determines a class [o] € NS(X), but difficulty with translation and torsion
prevents the map o — [¢] from being a group homomorphism. However there is a
modified map
6:6—1NS(X)®Q
which is a homomorphism and which is characterized by the properties (4.5.1) that
[¢] — 6(c) is a Q-linear combination of the curves D in (4.1.1) and (4.5.2) that
6(c) - D=0 foreach D in (4.1.1). Furthermore the modified intersection product
(0’,0") =—6(o) - 6(0")

is positive definite on & modulo torsion.

Proof: See [10] or [6] for the first two assertions. See Cox and Zucker [2] for
definition and properties of & and (,) . See (5.4) below for an example.

(4.5) Each of the 16 curves # C, in (4.1.1) is a nonsingular rational curve on X.
For such curves D the adjunction formula yields

D-D=D -(D+Kx) = 2pa(D)_2 =2
since X is.a K3 surface with canonical class KX = 0. This and the relation
Ct'Ct = Ct'ct’ =0

yield the self-intersection numbers on the diagonal in Table (4.8). See {1].
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(4.6) Let Y — P, be the singular double cover defined by (1.1) with ramification
locus B = ELi s let Pé —_— [P2 be the blow—up of the triple point of B ; and let
Py — IPé be the multiple blow—up of the double points of the total transform B’ of
B . Then X in (4.1) can be identified with the nbn--singula.r double cover of Py with
disconnected, non—singular ramification locus consisting of the components of odd order in
the total transform B" of B’ . This follows from definitions and results in [1, pp. 87,
183, 189] which show in particular that this double cover of IP% is the minimal
non—singular model for Y since Y is a double sextic with A—D—E singularities. It
follows that the 16 curves # C, in (4.1.1) lie over the components of B" with the
configuration shown in Figure (4.8) below. It follows from Figure (4.8) together with (4.5)
that the intersection products for the curves in (4.1.1) are those listed in Table (4.7). In
Figure (4.8) the lines and ovals represent non—singular rational curves which intersect each
other transversely at indicated points. The map X — IP; is ramified on the curves 7y

a a
1 2 33
1'4,1'3,1'1,02 ,02 ,C2.
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Table (4.7)

Intersection products for 17 curves in (4.2)

11 14 17 16 15

(=14

-~J GO © O

13
12
11

14
17
16
15

(all other entries are 0 )
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Figure (4.8)

Configurations for X — Py — P, — P,
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5. The special case (al,a.2,a.3) = (-1,1/2,2) with p =20
(5.1) As illustrated in Figure (3.10) there are four different permutations
(ijk) = (132), (123), (312), (281)
such that (a;,89,85) =(-1,1/2,2) €V satisfies ai—(1+ai—aj)ak =0 and lies in
vnQ ik As illustrated by Figure (5.6) there are four corresponding configurations
{ZL p’Lijk} of type (2.4.1) with IILP defined by
(t+1)(t-1/2)(t—2)x(x—1)(x—t) = 0
and with lines Li ik which pass through double points
(3,00, (351), (a1
of ZLp and which satisfy the conditions in (3.1)
Lo X = 2{t+1), x-1 = 5(t-2), x—t = —2(t—)
132+ % = JHD), 21 = 0-2) 2t = )
e 2 _ 2 1 _ 1
Ligq i x = 3{t+1), x—1 = 5{t—5), x~t = —(1-2)
Logo: X = —x(t=2), x=1 = —H{4+1), x~t = —(t-1)
g1z %= —§0=2) 31 = (41, x4 =46,

Log i x = 32;(1;—%), x—l—%(t—2), x—t = —§(t+l) .

Therefore a8 in (3.1) the equation
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(5.1.1) y2 = (t+1)(t<1/2)(t—2)x(x—1)(x~t)

has four pairs of non—trivial €(t)-rational solutions of type (2.4.1)
(xy390 * ¥139) = (5(t+1), @(tﬂ)@-&)(t—@) ,
(%193 Y193) = ((4+1), * @mxt—é)(t—z» ,
(xg79 % Y319) = (—4(t-2), . @wn(t—é)(t-z)) ,

5
(x231 * Y231) = (%(t—%): £ v[%(tﬂ)(‘—%)(t—?)) )

which are determined up to the sign of %y, ik by {IILP,Li jk} .

(5.2) Let X — P

1
X—Py— EPé +[P, be the maps specified in (4.6), and for each (ijk) let Tiik be

be the Neron model for (5.1.1) relative to €(t) , let

the section determined by (xijk' +yijk) in (5.1). Each Tiik lies over L, ik in P, and
also over the proper transform L'i' ik of Li ik in Pg . The points

(1:=1:0), (1:1/2:1/2), (1:2:1) € P,, are blown up in PPj ; they also are points of intersection
of two distinct Li ik which have different directions through these points; and
consequently these points do not lift to points of intersection of distinct '1' ik or o, k-
The other points of intersection of two distinct I’ijk are (1:0:2/3), (1:1:1/3), (0:1:1/3) ;
these three points lift to transversal points of intersection of the corresponding T they

can be represented in Table (5.1) by solutions
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(0,2.%) = (Fe Bp (tic)g)

of an equation

w? = (12, +c)u)(1~{(ay+e)u)(I~{a5+c)u)a(z-u)(z—1+cu)

for a birationally equivalent model of X which is biholomorphically equivalent to X at

each of these points. There are no other points of intersection of distinct Tiik -

(5.3) Intersection products for the Tiik with each other and with the 17 curves in
(4.1.1) are listed in Table (5.8). These values can be computed as follows: o, jk2 =-2 by
(4.5) since o; ik is a non—singular rational curve; three %k mn = 1 and the others
=0 by (5.2); aiik-D =0 or 1 for D in (4.2) by inspection of Figure (5.9) for 0,4,
and similar diagrams for other o; ik Intersection products are also listed in Table (5.8) for

the preceding curves and the torsion sections 7, 74, 7, in (4.3).

(5.4) Intersection products for the 17 curves in (4.1.1) together with the three

7.In

sections 0132 123 7312 form a 20x20 matrix A with determinant det A = —3-2
fact by ordering these 20 curves a8 in the first column of Table (5.10) and by adding
suitable fractional multiples of early entries to later entries as in the second column of
Table (5.10) one obtaines the equivalent matrix 'EAE in Table (5.11) which obviously
has det(*EAE) = —3-27 and det E = 1. Furthermore the classes in NS(X) ® @ of the
last three entries in the second column of Table (5.10) must coincide with 6(0132),

6(7194); 6(0414) , 1€8D., since the former classes obviously have the properties (4.5.1) and
(4.5.2) which characterize the latter classes. Consequently the negative



—27 —

10 0
0 1 -1/2
0-1/2 1

of the lower right hand corner of 'EAE is the matrix of corresponding modified

intersection numbers

<aijk’ af,mn) = _6(aijk) ) J(Uan) )
(ifk), (emn) = (132), (123), (312) .

(5.5) It follows from (5.4) that X has Picard number p = 20, that the classes of the
20 curves in the first column of Table (5.10) form a basis for NS(X) @ Q , that these
classes generate a sublattics L’ with finite indexin NS(X) and with discriminant

—3-27

,and that L’ and the classes of T|» Tq T4 generate an intermediate lattice L"
with discriminant —3-27/ 16 = —24 . Consequently either NS(X) = L" with discriminant
d = —24 , in which case & is generated by 01391 0193 O319» Ty T3 3 OF NS(X) has
discriminant d = —6 and contains L" as a sublattice of index 2, in which case 7130
7193 %312 T 73 generate a subgroup of index 2in & . J. Stienstra has pointed out that

in fact d = —24 since otherwise X would have a transcendental lattice Tx with

rank = 2 and discriminant = 6 , contrary to a result of Shioda and Inose [11].
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Figure (5.6)

A configuration for (—1,1/2,2) which
corresponds to four solutions of type (2.5.1)
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. p t=2
) \ “La3y) /\t"‘—
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(with (0:1%%4\ of 00)

(W!t‘! L!?o':. 42/«:)



Table (5.7)

Values of (u,z,w) =

1 x y _
(t+C’ iro (t+c)3) at t=0,1,0 on %k

t
i 0 1 o

‘Qs 03+
123 | '3"+‘3 Vg) (GromTrey a +c) ‘g (0’33"“[%_;)
312 ’3"+‘3g (1+03(%+c) (;c) V[!— (0"21{’“%)
VC, (o%w@)

132 ,3—,*—'3 Q) (1+C 3(1+c) (1+c)3'

231 |( ,3—»+‘3'£ (1+c3(1+c) a +c)3
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Table (5.8)

7123 7312 7931 51

7132

9

-2

10
12
13
11

14
16
17
15







L= B - 7L N

10

12

13

11

14

16

17

15

18
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Table (5.10)

a a a
3.1,,23 .33 3
02 +2(C1 +C3 +c4 )

1 1-21 311,41 31 3
7139~2(Co+5op)+35C; +Cy +5(C; +C5 +Cy)

+%(C?+C;2+%(C?+022+C:2)+%C:3+C:3+§(C

=06(0y39)

a
1

a
310,240

a
3
1)



19

20

7123

7312

& 3 3
193 2(02+1200)+201 +C L(c, +C47+Cy)

+C:2)+%C:3+C:3+§(C:3+C:3+C:3)

+QC3 +C2 +2-(C

=6(0193)

az"z

=08(0319)

+02

+1(C, 240

7315-2(CyHo 4G, 4G,
319~ 2(Cot390)+5C,

gt

a

1
+5(Cy +Cs +C4 )

c?)%c +C +,(C +C +C4)
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Table (5.11)

o O - O

- o O ©

- O O O

-2

1

0
1

0
0

0

0 0 0

0
1

0 0

0 0 O

1

0 0 0] O
0 0 0] O

1
1

.0
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'EAE =

0 O
L
T
-1

-1

0 -1
1
3

0

-2

T
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