Twisted Legendre Equations
 with Solutions of Height ≤ 3

William L. Hoyt
and
Charles F. Schwartz

Max-Planck-Institut für Mathematik

Gottfried-Claren-Straße 26
D-5300 Bonn 3

Federal Republic of Germany

William L. Hoyt
Dept. of Mathematics
Hill Center
Rutgers University
New Brunswick NJ 08904
USA

Charles F. Schwartz Dept. of Mathematics Rider College
Lawrenceville NJ
USA

DISCRETE GROUPS, EXPANDING GRAPHS and INVARIANT MEASURES
 (preliminary version)
 cundion $1-y$

by

ALEXANDER LUBOTZKY Institute of Nathematics
Hebrew University
Jerusalem, 01004
Israel

The author would be grateful for any corrections. remarks and sugeserions about rhese

Adiresses: Sepr. SS-Aug. S9: Department of Marhemarics. Yale Eniversiry, Box 21.j. Yake Station. New Hawen. CT 06.j20. ESA
Sept. 89-Dec. S9: Department of Mathematics. Culambia Eniversity, New Yorik. NY 10027
Jan. 00-: Institute of Mathematics, Hebrew University, Jerusalem. 01004, Israel.

1. Introduction

The purpose of this paper is to derive explicit algebraic conditions on points $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{C}^{3}$ which imply that the equation

$$
\begin{equation*}
y^{2}=\left(t-a_{1}\right)\left(t-a_{2}\right)\left(t-a_{3}\right) x(x-1)(x-t) \tag{1.1}
\end{equation*}
$$

has a non-trivial $\mathbb{C}(t)$-rational solution, to determine irreducible components and intersections for some of these conditions, to list maximal independent sets of $\mathbb{C}(t)$-rational solutions for certain values of $\left(a_{1}, a_{2}, a_{3}\right)$, and to discuss some related problems.

In this paper the discussion is simplified by restricting attention to points ($\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$) in the complement $V \subset \mathbb{C}^{3}$ of the planes defined by $a_{i}=0, a_{i}=1, a_{i}=a_{j}$ with $i \neq j$. A non-trivial $\mathbb{C}(t)$-rational solution of (1.1) is defined to be a pair $(x(t), y(t))$ of rational functions which satisfies (1.1) and is different from $(0,0),(1,0)$ and ($t, 0)$. The height of $(x(t), y(t))$ is defined to be the degree of the curve in \mathbb{P}_{2} parametrized by (1:t:x(t)). For each $N>0, W_{N}$ denotes the set of points $\left(a_{1}, a_{2}, a_{3}\right) \in V$ such that (1.1) has a non-trivial $\mathbb{C}(t)$-rational solution of height $\leq N$. In an earlier paper [6] it is shown that each W_{N} is the union of a finite number of closed irreducible algebraic surfaces in V . The main results of the present paper concern the three algebraic sets $W_{1} \subset W_{2} \subset W_{3}$, and can be outlined as followed: In $\S 2$ irreducible components of W_{1}, W_{2} and W_{3} are described in terms of suitable extra contact for configurations $\left\{\Sigma \mathrm{L}_{\mathrm{i}}, \mathrm{C}\right\}$ defined by

$$
\begin{gathered}
\Sigma L_{i}:\left(t-a_{1}\right)\left(t-a_{2}\right)\left(t-a_{3}\right) \times(x-1)(x-t)=0 \text { and } \\
C: x=x(t)
\end{gathered}
$$

In § 3 equations and intersections are determined for irreducible components of W_{1}. Minimal models, intersection products, Neron-Severi lattices and Mordell-Weil groups for (1.1) are described in general in § 4 and are computed explicitly for the example $\left(a_{1}, a_{2}, a_{3}\right)=(-1,1 / 2,2)$ in $\S 5$. A subsequent paper (in preparation) will determine parameterizations and intersections for other components of W_{2} and W_{3} and will compute intersection products, Neron-Severi lattices and Mordell-Weil groups for (1.1) for generic ($\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$) as these components.

The work of one of the authors (Hoyt) on this paper has been supported by the Faculty Academic Study Program of Rutgers University and by Max-Planck-Institut für Mathematik in Bonn. The authors are very grateful to both Rutgers University and Max-Planck-Institut for helping to make this work possible. We are also very grateful to J. Stienstra for advice on this work and to Frau Sarlette for excellent typing.

2. Diagrams for irreducible componentr of W_{1}, W_{2} and W_{3}

(2.1) Diagrams (2.4.1)-(2.4.10) in Table (2.4) below represent configurations $\left\{\mathrm{L}_{\mathrm{i}}, \mathrm{C}\right\}$ consisting of six lines $\mathrm{L}_{1}, \ldots, \mathrm{~L}_{6}$ and a rational curve C of degree $\leq \mathbf{3}$ in \mathbb{P}_{2} for which there exist a point $\left(a_{1}, a_{2}, a_{3}\right) \in V$ and a non-trivial $\mathbb{C}(t)$-rational solution $(x(t), y(t))$ of (1.1) such that ΣL_{i} and C are defined by

$$
\left\{\begin{array}{l}
\left(t-a_{1}\right)\left(t-a_{2}\right)\left(t-a_{3}\right) x(x-1)(x-t)=0 \text { and } \tag{2.1.1}\\
x=x(t), \text { resp. }
\end{array}\right.
$$

relative to some choice of inhomogeneous coordinates in \mathbb{P}_{2}. For each such configuration here are several different choices of ($\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$) and $(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t}))$ which satisfy (2.1.1). One such choice is indicated for each diagram in the adjacent columns of Table (2.4), with $y(t)$ determined up to sign by the indicated values for $x(t), x(t)-1$ and $x(t)-t$. Other choices can be obtained by replacing $y(t)$ by $-y(t)$, by permuting the labels $t=a_{1}$, $t=a_{2}, t=a_{3}$ on the three concurrent L_{i}, and/or by permuting the labels $x=0$, $x=1, x=t$ on the other three L_{i} in Table (2.4). The latter permutations are induced as indicated in Figure (2.5) by the six projective transformations of \mathbb{P}_{2}
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{rrr}1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & 0 & -1\end{array}\right],\left[\begin{array}{rrr}0 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & -1\end{array}\right],\left[\begin{array}{rrr}1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{rrr}-1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & -1\end{array}\right]$
which leave fixed the point $(0,0,1)$ at ∞ on vertical lines and which alter labels on vertical lines from $t=a$ to $t=b$ with

$$
\mathrm{b}=\mathrm{a}, 1 /(1-\mathrm{a}), 1-(1 / \mathrm{a}), 1-\mathrm{a}, 1 / \mathrm{a}, \mathrm{a} /(\mathrm{a}-1), \text { resp. }
$$

The effect of such changes on components of W_{1}, W_{2} and W_{3} will be discussed in $\S \S 3$
and 6 below.
(2.2) Conversely, for each (a_{1}, a_{2}, a_{3}) in W_{1}, W_{2} or W_{3} and for each non-trivial $\mathbb{C}(t)$-rational solution $(x(t), y(t))$ of (1.1) of height ≤ 3, the configuration $\left\{\Sigma_{i}, C\right\}$ defined by (2.1.1) is of one of the types (2.4.1)-(2.4.10). In particular $\boldsymbol{\Sigma L}_{\mathbf{i}}$ has a single triple point (at ∞ on $t=a_{i}$); C is either a line, a conic, a nodal cubic, or a cuspidal cubic; and $x(t)$ must have one of the forms

$$
\begin{aligned}
& b_{0}+b_{1} t, c_{0}+\ldots+c_{3} t^{3},\left(d_{0}+\ldots+d_{2} t^{2}\right) /\left(t-a_{2}\right), \\
& \left(e_{0}+\ldots+e_{3} t^{3}\right) /\left(t-a_{i}\right)\left(t-a_{j}\right) \text { or }\left(f_{0}+\ldots+f_{3} t^{3}\right) /(t-h)^{2}
\end{aligned}
$$

with $b_{1} \neq 0, c_{3} \neq 0, a_{i} \neq a_{j} \neq \mathrm{h}$, since other forms violate either the condition that C has degree ≤ 3 or the condition that

$$
\left(t-a_{1}\right)\left(t-a_{2}\right)\left(t-a_{3}\right) x(t)(x(t)-1)(x(t)-t)=(y(t))^{2}
$$

is a perfect square in $\mathbb{C}(t)$. Furthermore points and branches of C at which two L_{i} meet or at which some L_{i} is tangent correspond to common factors or a square factor of $x(t)$, $x(t)-1$ and/or $x(t)-t$. Consideration of these conditions shows that $\left\{\Sigma_{i} ; C\right\}$ must be of one of the types (2.4.1)-(2.4.10).
(2.3) In Diagram (2.4.1) the points labelled ($\left.a_{1}, 0\right),\left(a_{2}, 0\right)$ can be varied on the line $x=0$ in a manner which leads to another configuration of type (2.4.1). This leads to the explicit birational parametrization

$$
\left(a_{1}, a_{2}\right) \longrightarrow\left(a_{1}, a_{2}, a_{1} /\left(1+a_{1}-a_{2}\right)\right)
$$

of one of the irreducible components of W_{1}. (See (3.2) below). Similarly in Diagram (2.4.9) the points labelled ($a_{\mathrm{i}}^{3}, a_{\mathrm{i}}^{2}$) can be varied on C in a manner which yields a rational parametrization of a component of W_{3} by a quotient of $\mathrm{C} \times \mathrm{C} \times \mathrm{C}$ modulo an action of the group of homotheties $\left(a^{3}, a^{2}\right) \longrightarrow\left((\gamma \alpha)^{3},(\gamma \alpha)^{2}\right)$. It is expected that similar rational parametrizations of each component of W_{2} and W_{3} can be defined by varying points marked in Diagrams (2.4.2)-(2.4.10).

Table (2.4)

Type of configuration

(2,4.2)

One choice of
labels for $\boldsymbol{\Sigma L}_{\mathbf{i}}$

Corresponding values
for $x(t), x(t)-1, x(t)-t$

$$
\begin{aligned}
& x=p\left(t-a_{1}\right) \\
& x-1=q\left(t-a_{2}\right) \\
& x-t=r\left(t-a_{3}\right)
\end{aligned}
$$

$$
x=p\left(t-a_{2}\right) t /\left(t-a_{1}\right)
$$

$$
x-1=q\left(t-a_{3}\right)(t-1) /\left(t-a_{1}\right)
$$

$$
x-t=r t(t-1) /\left(t-a_{1}\right)
$$

$$
\begin{aligned}
& x=p\left(t-a_{2}\right) /\left(t-a_{1}\right) \\
& x-1=q\left(t-a_{3}\right) /\left(t-a_{1}\right) \\
& x-t=r(t-h)^{2} /\left(t-a_{1}\right)
\end{aligned}
$$

$$
\mathrm{x}=\mathrm{p}\left(\mathrm{t}-\mathrm{h}_{1}\right)^{2} /\left(\mathrm{t}-\mathrm{a}_{1}\right)
$$

$$
x-1=q\left(t-h_{2}\right)^{2} /\left(t-a_{1}\right)
$$

$$
x-t=r\left(t-a_{2}\right)\left(t-a_{3}\right) /\left(t-a_{1}\right)
$$

Table (2.4)
(continued)

$x=p\left(t-a_{1}\right)\left(t-h_{2}\right)^{2} /\left(t-h_{1}\right)^{2}$
(2.4.9)

$(2.4,10)$

Figure (2.5)

$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$\left[\begin{array}{rrr}1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & 0 & -1\end{array}\right]$

$\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

$\left[\begin{array}{rrr}1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$

3. Equations and intersections for components of W_{1}

(3.1) If $\left(a_{1}, a_{2}, a_{3}\right) \in V$ and if (1.1) has a non-trivial $\mathbb{C}(t)$-rational solution (x, y) of type (2.4.1), then there exist a permutation (ijk) of (123) and non-zero values $p, q, r \in \mathbb{C}$ such that

$$
\begin{aligned}
& x=p\left(t-a_{i}\right), x-1=q\left(t-a_{j}\right), x-t=r\left(t-a_{k}\right) \\
& q=p, r=p-1, p a_{i}+\frac{1}{i}=p a_{j}, p a_{i}=(p-1) a_{k} \text { and } \\
& a_{i}-\left(1+a_{i}-a_{j}\right) a_{k}=0
\end{aligned}
$$

Conversely if $\left(a_{1}, a_{2}, a_{3}\right) \in V$ satisfies this last relation for some (ijk), then (1.1) has a non-trivial $\mathbb{C}(t)$-rational solution (x, y) which satisfies the preceding relations with the same (ijk).

Proof: The hypotheses in the first assertion imply that $x=m t+b \neq 0,1, t$ and that $\left(t-a_{1}\right)\left(t-a_{2}\right) /\left(t-a_{3}\right) x(x-1)(x-t)$ is a perfect square in $\mathbb{C}(t)$. This and the equality defining V imply that $x, x-1, x-t$ must be multiples of $t-a_{1}, t-a_{2}, t-a_{3}$ in some order, with multiples p, q, r determined by the order as indicated. The converse follows easily.
(3.2) W_{1} is the union of six irreducible components

$$
V \cap \mathbb{Q}_{i j k}=V \cap \bar{Q}_{i j k}
$$

with $Q_{i j k} C \mathbb{C}^{3}$ the quadric surface defined by

$$
a_{i}-\left(1+a_{1}-a_{j}\right) a_{k}=0
$$

and with $\bar{Q}_{i j k}$ the closure of $Q_{i j k}$ in \mathbb{P}_{3}.

Proof: This is an immediate corollary of (3.1).
(3.3) If ($\left.a_{1}, a_{2}, a_{3}\right) \in V$ and if (1.1) has two different solutions which satisfy the conditions in (3.1) for two different permutations (ijk), ($\ell \mathrm{nm}$), then

$$
\left(a_{i}, a_{j}, a_{k}\right)= \begin{cases}\left(1-\left(1 / a_{j}\right), a_{j}, 1 /\left(1-a_{j}\right)\right) & \text { if }(\ell m n)=(j k i) \text { or }(k i j), \\ \left(-1, a_{j}, 1 / a_{j}\right) & \text { if }(\ell m n)=(i k j) \\ \left(a_{i}, 2, a_{i} /\left(a_{i}-1\right)\right) & \text { if }(\ell m n)=(k j i) \\ \left(a_{i}, 1-a_{i}, 1 / 2\right) & \text { if }(\ell m n)=(j i k)\end{cases}
$$

Furthermore the existence of two such solutions for two permutations (ijk), (jki) of the same parity implies the existence of a third solution for the third permutation (kij) of this parity. Conversely if $\left(a_{1}, a_{2}, a_{3}\right) \in V$ satisfies one of the displayed relations, then (1.1) has a pair of solutions which satisfy the conditions in (3.1) for the corresponding pair of permutations.

Proof: The hypotheses and (3.1) imply

$$
\begin{aligned}
& a_{i}-\left(1+a_{i}-a_{j}\right) a_{k}=0 \text { and } \\
& a_{\ell}-\left(1+a_{\ell}-a_{m}\right) a_{n}=0 .
\end{aligned}
$$

If $(\ell m n)=(j k i)$, then elimination of a_{i} yields

$$
\begin{aligned}
0 & =a_{j}\left(1-a_{k}\right)-\left(1+a_{j}-a_{k}\right)\left(1-a_{j}\right) a_{k}= \\
& =\left(a_{j}-a_{k}\right)\left(1-a_{k}+a_{j} a_{k}\right) ;
\end{aligned}
$$

hence $a_{k}=1 /\left(1-a_{j}\right)$ since $a_{j} \neq a_{k}$; etc. If ($\left.\ell m n\right)=(i k j)$, resp. ($\left.k j\right)$, resp. ($j k$), then subtraction yields

$$
\begin{aligned}
& 0=a_{i}-\left(1+a_{i}-a_{j}\right) a_{k}-a_{i}+\left(1+a_{i}-a_{k}\right) a_{j}=\left(1+a_{i}\right)\left(a_{j}-a_{k}\right), \text { resp. } \\
& 0=a_{i}-\left(1+a_{i}-a_{j}\right) a_{k}-a_{k}+\left(1+a_{k}-a_{j}\right) a_{i}=\left(a_{i}-a_{k}\right)\left(2-a_{j}\right), \text { resp. } \\
& 0=a_{i}-\left(1+a_{i}-a_{j}\right) a_{k}-a_{j}+\left(1+a_{j}-a_{i}\right) a_{k}=\left(a_{i}-a_{j}\right)\left(1-2 a_{k}\right) ; \text { etc. }
\end{aligned}
$$

The case $(\ell \mathrm{mn})=(\mathrm{kij})$ and also the second assertion follow easily from the identity

$$
\begin{equation*}
\left[a_{i}-\left(1+a_{i}-a_{j}\right) a_{k}\right]+\left[a_{j}-\left(1+a_{j}-a_{k}\right) a_{i}\right]+\left[a_{k}-\left(1+a_{k}-a_{i}\right) a_{j}\right]=0 \tag{3.3.1}
\end{equation*}
$$

Also see (3.7) below. The converse of the first assertion follows easily from (3.1).
(3.4) It follows from (3.3) that the intersection $V \cap Q_{i j k} \cap V \cap Q_{\ell m n}$ of each pair of distinct components of W_{1} is an irreducible curve which is the intersection of V either with one of two twisted cubics or with one of six plane conics or with one of three lines in $\mathbb{C}^{\mathbf{3}}$. These curves are listed in Table (3.8) and their real parts are sketched in Figure (3.10). The components of $\bar{Q}_{123} \cap \bar{Q}_{i j k}$ in \mathbb{P}_{3} are listed in Table (3.9) for compansion.
(3.5) As indicated in Figure (3.10) intersections of triples or quadruples of distinct irreducible components of W_{1} are either empty or one of the six special points

$$
(-1,1 / 2,2),(-1,2,1 / 2),(1 / 2,2,-1),(2,1 / 2,-1),(2,-1,1 / 2),(1 / 2,-1,2)
$$

or one of the two twisted cubics in Table (3.8). In Figure (3.10) hour hand positions I, III, V, VII, IX, XI are used as labels for the preceding six points and also for permutations (ijk) and irreducible components $\mathrm{V} \cap \mathrm{Q}_{\mathrm{ijk}}$ which correspond as in Figure (3.10). In addition parenthetical labels such as ($\mathrm{I} \cap \mathrm{III}$) or ($\mathrm{I} \cap \mathrm{III} \cap \mathrm{VII} \cap \mathrm{XI}$) are used for intersections of components of W_{1}.
(3.6) Figure (3.11) represents combinations of configurations $\left\{\Sigma \mathrm{L}_{\mathrm{p}}, \mathrm{L}_{\mathrm{ijk}}\right\}$ and $\left\{\Sigma_{\mathrm{p}}, \mathrm{L}_{\ell \mathrm{mn}}\right\}$ which correspond to pairs of solutions in (3.3). Note that permutations (ijk) , ($\ell m n$) of different parity correspond to lines $L_{i j k}, L_{\ell m n}$ which meet at double points of ΣL_{p} but that permutations of the same parity correspond to lines which do not meet on ΣL_{p}.
(3.7) The relation (3.3.1) in the proof of (3.3) corresponds to a special case of the theorem of Pappus as in Figure (3.12): If A, B, C are collinear (say on L_{123}) and if $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ are collinear (say on L_{312}), then $\mathrm{A}^{\prime \prime}, \mathrm{B}^{\prime \prime}, \mathrm{C}^{\prime \prime}$ are also collinear (on L_{231}). In this special case, the lines $A B^{\prime \prime}, A^{\prime \prime} B^{\prime}, A^{\prime} B$ are concurrent.

Table (3.8)

$$
V \cap Q_{i j k} \cap V \cap Q_{\ell \operatorname{mn}}
$$

Table (3.9)

Components of

$$
\bar{Q}_{132} \cap \bar{Q}_{i j k} C P_{3}
$$

	$\begin{gathered} \text { ШI } \\ \bar{Q}_{123} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \bar{Q}_{321} \end{gathered}$	VII \bar{Q}_{312}	$\begin{aligned} & \text { IX } \\ & \bar{Q}_{213} \end{aligned}$	$\begin{aligned} & \mathrm{XI} \\ & \bar{Q}_{231} \end{aligned}$
I	(1,-1,a, $\frac{1}{a}$)	($1, \frac{1}{1-\mathrm{a}}, \mathrm{a}, 1-\frac{1}{\mathrm{a}}$)	($\left.1, \frac{1}{2}, \frac{1}{2}, 1-\mathrm{a}\right)$	$\left(1, \frac{1}{1-a}, a, 1 \frac{1}{a}\right)$	($\left.1, \mathrm{a}, \frac{\mathrm{a}}{\mathrm{a}-\mathrm{T}}, 2\right)$
\bar{Q}_{132}	($1, \mathrm{a}, \mathrm{a}, \mathrm{a}$)	($1, \mathrm{a}, \mathrm{a}, \mathrm{a}$)	($1, \mathrm{a}, \mathrm{a}, \mathrm{a}$)	(1,a,a,a)	(1,a,a,a)
	(1,a,1,1)		(0,1,a,1)		(0,1,0,a)

Figure (3.10)

Real parts of $V \cap Q_{i j k} \cap V \cap Q_{\ell m n}$

Labels in terms of hour hand positions

Figure (3.11)

Configurations $\left\{\mathrm{EL}_{\mathrm{p}}, \mathrm{L}_{\mathrm{ijk}}, \mathrm{L}_{\ell \mathrm{mn}}\right\}$ which
correspond to pairs of solutions of type (2.4.1)

Figure (3.12)

A special case of the
theorem of Pappus

4. Neron-Severi Lattices and Mordell-Weil groups

(4.1) For fixed $\left(a_{1}, a_{2}, a_{3}\right) \in V$, the Neron model $X \longrightarrow P_{1}$ for (1.1) relative to $\mathbb{C}(\mathrm{t})$ is an elliptic K3 surface with six singular fibers

$$
C^{s}=\left\{\begin{array}{l}
C_{0}^{8}+C_{1}^{s} \quad \text { at } \quad s=0,1, \infty \text { or } \\
C_{0}^{8}+C_{1}^{8}+2 C_{2}^{s}+C_{3}^{s}+C_{4}^{s} \text { at } s=a_{1}, a_{2}, a_{3}
\end{array}\right.
$$

of Kodaira types I_{2} or I_{0}^{*}, with Picard number $\rho=17,18,19$ or 20 , and with Neron-Severi group $\mathrm{NS}(\mathrm{X}) \cong \mathbb{I}^{\rho}$ generated by homology classes of sections and components of fibers. Furthermore there is a sublattice L C NS(X) of rank 17 generated by the 17 independent classes of the curves

with σ_{0} the section at $\infty, \mathrm{C}^{\ddagger}$ a good fiber, and $\mathrm{C}_{\mathrm{i}}^{1}, \mathrm{i}>0$, the 15 components of singular fibers which do not meet σ_{0}.

Proof: These properties are special cases or easy consequences of results in Shioda [10] and Barth, Peters, and van de Ven [1]. Cf. [6]. In particular by [1, pp. 87, 183,189] X can be identified with the minimal non-singular resolution of a double sectic with A-D-E singularities which is defined by (1.1), and hence X is a K 3 surface with $\rho \leq 20$. See (4.6) below.
(4.2) If $\left(a_{1}, a_{2}, a_{3}\right) \in V$ does not belong to any of the W_{N} in $\S 1$, then $\rho=17$. In this case the submodule L in (4.1) has index 4 in NS(X) with cosets represented by the classes of σ_{0} and the sections $\tau_{1}, \tau_{3}, \tau_{4}$ defined by the trivial solutions $(0,0),(1,0)$, $(t, 0)$, resp. of (1.1). However if $\left(a_{1}, a_{2}, a_{3}\right) \in V$ belongs to one of the W_{N} and if $(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t}))$ is an associated non-trivial solution of (1.1) as in § 2 , then $\rho \geq 18$ and $(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t}))$ determines a section σ of $\mathrm{X} \longrightarrow \mathbb{P}_{1}$ and a class $[\sigma] \in \mathrm{NS}(\mathrm{X})$ which is independent modulo L.

Proof: Cf. [6].
(4.3) Intersection products $\mathrm{D} \cdot \mathrm{E}$ for curves on X determine a nondegenerate bilinear form on NS (X) with signature ($1+,(\rho-1)-$) and with discriminant $d=\operatorname{det}\left(D_{i} \cdot D_{j}\right)$ where D_{1}, \ldots, D_{p} represent a basis for $N S(X)$. Cf. []. Intersection products for the 17 curves in (4.1.1) can be computed as in (4.5) and (4.6) below and form the 17×17 matrix in Table (4.7) with determinant 2^{9}. In case $\rho=17$ it follows that $\mathrm{NS}(\mathrm{X})$ has discriminant $\mathrm{d}=2^{9} / 16=2^{5}$. There are partial results on discriminants for examples with $\rho>17$ in $\oint \S 5$ and 6 below.
(4.4) As usual the set \mathfrak{S} of holomorphic sections σ of $\mathrm{X} \longrightarrow \mathbb{P}_{1}$ can be identified with the Mordell-Weil group of $\mathbb{C}(\mathbf{t})$-rational solutions of (1.1), with σ_{0} as zero element and with $\sigma_{1}+\sigma_{2}+\sigma_{3}=\sigma_{0}$ if and only if the corresponding $\mathbb{C}(\mathrm{t})$-rational solutions ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) are collinear on (1.1). In this case $\mathfrak{S} \cong \mathbb{Z}^{\mathrm{r}} \oplus(\mathbb{Z} / 2 \Pi)^{2}$ with $\mathrm{r}=\rho-17$ and with torsion subgroup consisting of σ_{0} and the sections $\tau_{1}, \tau_{3}, \tau_{4}$ corresponding to the trivial solutions $(0,0),(1,0),(t, 0)$ of (1.1). The numbering of the τ_{i} corresponds to non-empty intersections with components $\mathrm{C}_{\mathrm{i}}{ }^{\mathbf{j}}{ }^{\mathrm{j}}$ of the I_{0}^{*} fibers in Figure (4.8) below.

Each $\sigma \in \mathfrak{S}$ determines a class $[\sigma] \in \operatorname{NS}(X)$, but difficulty with translation and torsion prevents the map $\sigma \longrightarrow[\sigma]$ from being a group homomorphism. However there is a modified map

$$
\delta: \mathfrak{S} \longrightarrow \mathrm{NS}(\mathrm{X}) \otimes \mathrm{Q}
$$

which is a homomorphism and which is characterized by the properties (4.5.1) that $[\sigma]-\delta(\sigma)$ is a Q -linear combination of the curves D in (4.1.1) and (4.5.2) that $\delta(\sigma) \cdot \mathrm{D}=0$ for each D in (4.1.1). Furthermore the modified intersection product

$$
\left\langle\sigma, \sigma^{\prime}\right\rangle=-\delta(\sigma) \cdot \delta\left(\sigma^{\prime}\right)
$$

is positive definite on \mathfrak{S} modulo torsion.

Proof: See [10] or [6] for the first two assertions. See Cox and Zucker [2] for definition and properties of δ and \langle,$\rangle . See (5.4) below for an example.$
(4.5) Each of the 16 curves $\neq C_{t}$ in (4.1.1) is a nonsingular rational curve on X. For such curves D the adjunction formula yields

$$
\mathrm{D} \cdot \mathrm{D}=\mathrm{D} \cdot\left(\mathrm{D}+\mathrm{K}_{\mathrm{X}}\right)=2 \mathrm{p}_{\mathrm{a}}(\mathrm{D})-2=-2
$$

since X is.a $K 3$ surface with canonical class $K_{X}=0$. This and the relation

$$
C_{t} \cdot C_{t}=C_{t} \cdot C_{t},=0
$$

field the self-intersection numbers on the diagonal in Table (4.8). See [1].
(4.6) Let $\mathrm{Y} \longrightarrow \mathbb{P}_{2}$ be the singular double cover defined by (1.1) with ramification locus $B=\Sigma L_{i} ;$ let $\mathbb{P}_{2}^{\prime} \longrightarrow \mathbb{P}_{2}$ be the blow-up of the triple point of B; and let $\mathbb{P}_{2}^{\prime \prime} \longrightarrow \mathbb{P}_{2}^{\prime}$ be the multiple blow-up of the double points of the total transform B^{\prime} of B . Then X in (4.1) can be identified with the non-singular double cover of $\mathrm{P}_{2}^{\prime \prime}$ with disconnected, non-singular ramification locus consisting of the components of odd order in the total transform $\mathrm{B}^{\prime \prime}$ of B^{\prime}. This follows from definitions and results in [1, pp. 87, 183, 189] which show in particular that this double cover of $\mathbb{P}_{2}^{\prime \prime}$ is the minimal non-singular model for Y since Y is a double sextic with $A-D-E$ singularities. It follows that the 16 curves $\neq \mathrm{C}_{\mathrm{t}}$ in (4.1.1) lie over the components of $\mathrm{B}^{\prime \prime}$ with the configuration shown in Figure (4.8) below. It follows from Figure (4.8) together with (4.5) that the intersection products for the curves in (4.1.1) are those listed in Table (4.7). In Figure (4.8) the lines and ovals represent non-singular rational curves which intersect each other transversely at indicated points. The map $\mathrm{X} \longrightarrow \mathbb{P}_{2}^{\prime \prime}$ is ramified on the curves σ_{0}, $\tau_{4}, \tau_{3}, \tau_{1}, \mathrm{C}_{2}^{{ }^{\mathrm{a}}}{ }^{1}, \mathrm{C}_{2}^{\mathrm{a}_{2}}, \mathrm{C}_{2}^{\mathrm{a}_{3}}$.

Table (4.7)

Intersection products for 17 curves in (4.2)

(all other entries are 0)

Figure (4.8)

Configurations for $\mathrm{X} \longrightarrow \mathbb{P}_{2}^{\prime \prime} \longrightarrow \mathbb{P}_{2}^{\prime} \longrightarrow \mathbb{P}_{2}$

5. The special case $\left(a_{1}, a_{2}, a_{3}\right)=(-1,1 / 2,2)$ with $\rho=20$
(5.1) As illustrated in Figure (3.10) there are four different permutations

$$
(\mathrm{ijk})=(132),(123),(312),(231)
$$

such that $\left(a_{1}, a_{2}, a_{3}\right)=(-1,1 / 2,2) \in V$ satisfies $a_{i}-\left(1+a_{i}-a_{j}\right) a_{k}=0$ and lies in $\mathrm{V} \cap \mathrm{Q}_{\mathrm{ijk}}$. As illustrated by Figure (5.6) there are four corresponding configurations $\left\{\Sigma \mathrm{L}_{\mathrm{p}}, \mathrm{L}_{\mathrm{ijk}}\right\}$ of type (2.4.1) with $\Sigma \mathrm{L}_{\mathrm{p}}$ defined by

$$
(t+1)(t-1 / 2)(t-2) x(x-1)(x-t)=0
$$

and with lines $L_{i j k}$ which pass through double points

$$
\left(a_{i}, 0\right),\left(a_{j}, 1\right),\left(a_{k}, a_{k}\right)
$$

of ΣL_{p} and which satisfy the conditions in (3.1)

$$
\begin{aligned}
& L_{132}: x=\frac{1}{3}(t+1), x-1=\frac{1}{3}(t-2), x-t=\frac{2}{3}\left(t-\frac{1}{2}\right), \\
& L_{123}: x=\frac{2}{3}(t+1), x-1=\frac{2}{3}\left(t-\frac{1}{2}\right), x-t=\frac{1}{3}(t-2), \\
& L_{312}: x=\frac{1}{3}(t-2), x-1=\frac{1}{3}(t+1), x-t=\frac{4}{3}\left(t-\frac{1}{2}\right), \\
& L_{231}: x=\frac{2}{3}\left(t-\frac{1}{2}\right), x-1 \frac{2}{3}(t-2), x-t=\frac{1}{3}(t+1) .
\end{aligned}
$$

Therefore as in (3.1) the equation

$$
\begin{equation*}
y^{2}=(t+1)(t-1 / 2)(t-2) x(x-1)(x-t) \tag{5.1.1}
\end{equation*}
$$

has four pairs of non-trivial $\mathbb{C}(t)$-rational solutions of type (2.4.1)

$$
\begin{aligned}
& \left(x_{132}, \pm y_{132}\right)=\left(\frac{1}{3}(t+1), \pm \sqrt{\frac{2^{2}}{3^{3}}}(t+1)\left(t-\frac{1}{2}\right)(t-2)\right), \\
& \left(x_{123^{\prime}}, \pm y_{123}\right)=\left(\frac{2}{3}(t+1), \pm \sqrt{\frac{2^{2}}{3^{3}}}(t+1)\left(t-\frac{1}{2}\right)(t-2)\right), \\
& \left(x_{312} \pm y_{312}\right)=\left(\frac{1}{3}(t-2), \pm \sqrt{\frac{2^{2}}{3^{3}}}(t+1)\left(t-\frac{1}{2}\right)(t-2)\right), \\
& \left(x_{231} \pm y_{231}\right)=\left(\frac{2}{3}\left(t \frac{1}{2}\right), \pm \sqrt{\frac{2^{2}}{3^{3}}}(t+1)\left(t-\frac{1}{2}\right)(t-2)\right),
\end{aligned}
$$

which are determined up to the sign of $\pm y_{i j k}$ by $\left\{\Sigma L_{p}, L_{i j k}\right\}$.
(5.2) Let $X \longrightarrow \mathbb{P}_{1}$ be the Neron model for (5.1.1) relative to $\mathbb{C}(t)$, let $\mathrm{X} \longrightarrow \mathbb{P}_{2}^{\prime \prime} \longrightarrow \mathbb{P}_{2}^{\prime} \longrightarrow \mathbb{P}_{2}$ be the maps specified in (4.6), and for each (ijk) let σ_{ijk} be the section determined by ($\mathrm{x}_{\mathrm{ijk}},+\mathrm{y}_{\mathrm{ijk}}$) in (5.1). Each σ_{ijk} lies over $\mathrm{L}_{\mathrm{ijk}}$ in \mathbb{P}_{2} and also over the proper transform $L_{i j k}^{\prime \prime}$ of $L_{i j k}$ in $P_{2}^{\prime \prime}$. The points (1:-1:0), (1:1/2:1/2), (1:2:1) $\in \mathbb{P}_{2}$ are blown up in $\mathbb{P}_{2}^{\prime \prime}$; they also are points of intersection of two distinct $\mathrm{L}_{\mathrm{ijk}}$ which have different directions through these points; and consequently these points do not lift to points of intersection of distinct $L_{i j k}^{\prime \prime}$ or σ_{ijk}. The other points of intersection of two distinct $L_{i j k}$ are (1:0:2/3), (1:1:1/3), (0:1:1/3); these three points lift to transversal points of intersection of the corresponding σ_{ijk}; they can be represented in Table (5.1) by solutions

$$
(u, z, w)=\left(\frac{1}{t+c}, \frac{x}{t+c}, \frac{y}{(t+c)^{3}}\right)
$$

of an equation

$$
w^{2}=\left(1-\left(a_{1}+c\right) u\right)\left(1-\left(a_{2}+c\right) u\right)\left(1-\left(a_{3}+c\right) u\right) z(z-u)(z-1+c u)
$$

for a birationally equivalent model of X which is biholomorphically equivalent to X at each of these points. There are no other points of intersection of distinct $\sigma_{i j k}$.
(5.3) Intersection products for the $\sigma_{i j k}$ with each other and with the 17 curves in (4.1.1) are listed in Table (5.8). These values can be computed as follows: $\sigma_{\mathrm{ijk}}{ }^{2}=-2$ by (4.5) since σ_{ijk} is a non-singular rational curve; three $\sigma_{\mathrm{ijk}} \cdot \sigma_{\ell \mathrm{mn}}=1$ and the others $=0$ by (5.2); $\sigma_{\mathrm{ijk}} \cdot \mathrm{D}=0$ or 1 for D in (4.2) by inspection of Figure (5.9) for σ_{132} and similar diagrams for other σ_{ijk}. Intersection products are also listed in Table (5.8) for the preceding curves and the torsion sections $\tau_{1}, \tau_{3}, \tau_{4}$ in (4.3).
(5.4) Intersection products for the 17 curves in (4.1.1) together with the three sections $\sigma_{132}, \sigma_{123}, \sigma_{312}$ form a 20×20 matrix A with determinant $\operatorname{det} \mathrm{A}=-3 \cdot 2^{7}$. In fact by ordering these 20 curves as in the first column of Table (5.10) and by adding suitable fractional multiples of early entries to later entries as in the second column of Table (5.10) one obtaines the equivalent matrix ${ }^{t}$ EAE in Table (5.11) which obviously has $\operatorname{det}\left({ }^{t} E A E\right)=-3 \cdot 2^{7}$ and $\operatorname{det} E=1$. Furthermore the classes in $N S(X) \otimes Q$ of the last three entries in the second column of Table (5.10) must coincide with $\delta\left(\sigma_{132}\right)$, $\delta\left(\sigma_{123}\right), \delta\left(\sigma_{312}\right)$, resp., since the former classes obviously have the properties (4.5.1) and (4.5.2) which characterize the latter classes. Consequently the negative

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 / 2 \\
0 & -1 / 2 & 1
\end{array}\right]
$$

of the lower right hand corner of ${ }^{t}$ EAE is the matrix of corresponding modified intersection numbers

$$
\begin{gathered}
\left\langle\sigma_{\mathrm{ijk}}, \sigma_{\ell \mathrm{mn}}\right\rangle=-\delta\left(\sigma_{\mathrm{ijk}}\right) \cdot \delta\left(\sigma_{\ell \mathrm{mn}}\right) \\
(\mathrm{ijk}),(\ell \mathrm{mn})=(132),(123),(312)
\end{gathered}
$$

(5.5) It follows from (5.4) that X has Picard number $\rho=20$, that the classes of the 20 curves in the first column of Table (5.10) form a basis for $\mathrm{NS}(\mathrm{X}) \otimes \mathbb{Q}$, that these classes generate a sublattics L^{\prime} with finite index in $N S(X)$ and with discriminant $-3 \cdot 2^{7}$, and that L^{\prime} and the classes of $\tau_{1}, \tau_{3}, \tau_{4}$ generate an intermediate lattice $L^{\prime \prime}$ with discriminant $-3 \cdot 2^{7} / 16=-24$. Consequently either $\mathrm{NS}(\mathrm{X})=\mathrm{L}^{\prime \prime}$ with discriminant $\mathrm{d}=-24$, in which case \mathfrak{S} is generated by $\sigma_{132}, \sigma_{123}, \sigma_{312}, \tau_{1}, \tau_{3}$; or $\mathrm{NS}(\mathrm{X})$ has discriminant $\mathrm{d}=-6$ and contains $\mathrm{L}^{\prime \prime}$ as a sublattice of index 2 , in which case σ_{132}, $\sigma_{123}, \sigma_{312}, \tau_{1}, \tau_{3}$ generate a subgroup of index 2 in \mathfrak{S}. J. Stienstra has pointed out that in fact $d=-24$ since otherwise X would have a transcendental lattice T_{x} with rank $=2$ and discriminant $=6$, contrary to a result of Shioda and Inose [11].

Figure (5.6)

A configuration for ($-1,1 / 2,2$) which corresponds to four solutions of type (2.5.1)

(with L_{132} at ∞)

Table (5.7)

Values of $(u, z, w)=\left(\frac{1}{\mathfrak{t}+\mathrm{c}^{\prime}} \frac{\mathbf{x}}{\mathfrak{t}+\mathrm{c}^{\prime}}, \frac{\mathrm{y}}{(\mathfrak{t}+\mathrm{c})^{3}}\right)$ at $\mathfrak{t}=0,1, \infty$ on σ_{ijk}

	0	1	\pm
132	$\left(\frac{1}{c}, \frac{1}{3 c},+\frac{1}{c^{3}} \sqrt{\frac{2}{3^{3}}}\right)$	$\left(\frac{1}{1+c}, \frac{2}{3(1+c)}, \frac{1}{(1+c)^{3}} \sqrt{\frac{2}{3^{3}}}\right)$	$\left(0, \frac{1}{3},+\sqrt{\frac{2}{3^{3}}}\right)$
123	$\left(\frac{1}{c}, \frac{2}{3 c},+\frac{1}{c^{3}} \sqrt{\frac{2^{2}}{3^{3}}}\right)$	$\left(\frac{1}{1+c}, \frac{4}{3(1+c)}, \frac{1}{(1+c)^{3}} \sqrt{\frac{2^{2}}{3^{3}}}\right)$	$\left(0, \frac{2}{3},+\sqrt{\frac{2^{2}}{3^{3}}}\right)$
312	$\left(\frac{1}{c}, \frac{2}{3 c},+\frac{1}{c^{3}} \sqrt{\frac{2^{2}}{3^{3}}}\right)$	$\left(\frac{1}{1+c^{\prime}}, \frac{1}{3(1+c)}, \frac{1}{(1+c)^{3}} \sqrt{\frac{2^{2}}{3^{3}}}\right)$	$\left(0, \frac{1}{3},+\sqrt{\frac{2^{2}}{3^{3}}}\right)$
231	$\left(\frac{1}{\mathrm{c}}, \frac{1}{3 c},+\frac{1}{c^{3}} \sqrt{\frac{2^{2}}{3^{3}}}\right)$	$\left(\frac{1}{1+c}, \frac{1}{3(1+c)}, \frac{1}{(1+c)^{3}} \sqrt{\frac{2^{2}}{3^{3}}}\right)$	$\left(0, \frac{2}{3},+\sqrt{\frac{2^{2}}{3^{3}}}\right)$

Table (5.8)

	132	${ }^{123}$	σ_{312}	σ_{231}	${ }^{1}$	τ_{3}	τ_{4}
1	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1
3	0	0	0	0	1	1	0
4	0	0	0	0	1	0	1
5	0	0	0	0	0	1	1
6	1	1	0	0	1	0	0
8	0	0	0	1	0	1	0
9	0	0	1	0	0	0	1
7	0	0	0	0	0	0	0
10	0	0	1	0	1	0	0
12	0	1	0	0	0	1	0
13	1	0	0	1	0	0	1
11	0	0	0	0	0	0	0
14	0	0	0	1	1	0	0
16	1	0	1	0	0	1	0
17	0	1	0	0	0	0	1
15	0	0	0	0	0	0	0
${ }^{132}$	-2	0	0	0	0	0	0
σ_{123}	0	-2	1	1	0	0	0
σ_{312}	0	1	-2	1	0	0	0
σ_{231}	0	1	1	. -2	0	0	0
τ_{1}	0	0	0	0	-2	0	0
${ }^{\tau}$	0	0	0	0	0	-2	0
τ_{4}	0	-0	0	0	0	0	-2

Figure (5.9)

Table (5.10)

$$
\begin{aligned}
& 19
\end{aligned}
$$

Table (5.11)
$\mathrm{A}=$

${ }^{t}$ EAE $=$

References

[1] Barth, Peters and Van de Ven, Complex Surfaces, Springer Verlag.
[2] D. Cox and S. Zucker, Intersection numbers of sections of elliptic surfaces, Inv. Math. 53 (1979), 1-44.
[5] W. Hoyt, Elliptic fiberings of Kummer surfaces, in Springer LNM No. 1383.
[6] - On twisted Legendre equations and Kummer surfaces, in Theta Functions, Bowdoin 1987, AMS Proc. Symp. Pure Math. vol. 49, Part I, 695-707.
[10] T. Shioda, On elliptic modular surface, J. Math. Soc. Japan 24 (1972), 20-59.
[11] T. Shioda and H. Inose, On singular K3 surfaces, in Complex Analysis and Algebraic Geometry, Iwanami Shoten 1977, 119-136.

