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Abstract

An asymptotic formula for the derivatives at zero as the order of
the derivative tends to infinity is found for the function introduced by
P. R. Taylor, for which the Riemann hypothesis on the zeros holds.
As a corollary an asymptotic formula for the derivatives at any point
of the function which plays an important role in the theory of the
Riemann zeta-function (main term in Riemann’s ξ-function) as the
order of the derivative tends to infinity is derived. The comparison of
each of the obtained asymptotic formulae with that found earlier by
L. D. Pustyl’nikov for the Riemann ξ-function is given.
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1 The Basic Result

We derive an asymptotic formula for the derivatives of the function G(s) =
ξ1(s + 1/2) − ξ1(s − 1/2) at the point s = 0 as the order of the derivative

1



tends to the infinity. Here ξ1(s) = π−s/2Γ(s/2)ζ(s), Γ(s) is the gamma
function, and ζ(s) is the Riemann zeta function. It is proved in [1] that for
the function G(s) the Riemann hypothesis on the zeros holds, i.e. that all
nontrivial zeros of G(s) are on the critical line <s = 1/2. On the other hand,
in [2] and [3] for the Riemann function ξ(s) which is by definition

ξ(s) = (1/2)s(s − 1)ξ1(s) (1)

an asymptotic formula for its derivatives at the point s = 1/2 as the order
of the derivative tends to the infinity has been found.

Hence it is of interest in relation of the Riemann hypothesis on the zeros
to compare these asymptotic formulae. To this end we first find asymptotic
formulae of the derivatives of the functions

G1(s) = ξ1(s+ 1/2) and G2(s) = ξ1(s− 1/2) (2)

at the point s = 0 as the order of the derivative tends to the infinity. These
formulae give then the corresponding asymptotics for G(s).

Remark Because of the equality ξ(s) = ξ(1− s) and (1) the odd deriva-
tives of G1(s) at the point s = 0 are all equal to zero.

The main result of our paper is the following.
Theorem For the derivative of the function G(s) at the point s = 0 the

following asymptotic expression holds as the order of the derivative r tends
to the infinity:

drG

dsr
(0) ∼

{

−2r+1r!(1 − 1
3r+1 ) if r is odd,

2r+1r!(1 + 1
3r+1 ) if r is even .

(We use the notation a(r) ∼ b(r) for a(r)/b(r) → 1 as r → ∞.) The
theorem clearly follows from the remark above, Theorem 1 and Theorem 2
given below which rely on a basic estimate of integrals given in Theorem 3
involving these functions. The methods of proofs are similar to that devel-
oped in [3] .

2 An Asymptotic Formula for the Function G1(s)

The following theorem holds based on Theorem 3 proved in Section 3.
Theorem 1 For the even-order derivative of the function G1(s) at the

point s = 0 the following asymptotic expression holds as the order r of the
derivative tends to the infinity:

drG1

dsr
(0) ∼ −2r+2r! . (3)
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Proof

Let us consider the well-known relation (see [4] )

π−s/2Γ(s/2)ζ(s) = 1/(s(s− 1)) + f(s) + g(s) , (4)

where s 6= 0, 1, and

f(s) =

∫ ∞

1
xs/2−1ω(x) dx, g(s) =

∫ ∞

1
x−s/2−1/2ω(x) dx, (5)

and ω(x) =
∑∞

n=1 e
−πn2x. It is clear that the relation

f(s) = g(1 − s) (6)

holds. From (5) and (6) for each even natural number r follows

drf

dsr

(

1

2

)

+
drg

dsr

(

1

2

)

= 2
drf

dsr

(

1

2

)

=

(

1

2

)r−1 ∫ ∞

1
(lnr x)x−

3

4ω(x) dx . (7)

Further, one clearly sees that for each even natural r

dr

dsr

1

s(s− 1)

∣

∣

s=1/2 = −2r+2r! (8)

holds. Now Theorem 1 easily follows from the definition of the function
G1(s), the equalities (2), (7), (8) and Corollary of Theorem 3 given below.

3 An Asymptotic Formula for the Function G2(s)

The following theorem holds based on Theorem 3 proved in Section 3.
Theorem 2 For the derivative of the function G2(s) at the point s = 0

the following asymptotic expression holds as the order r of the derivative
tends to the infinity:

drG2

dsr
(0) ∼ 2r+1r!(1 − 1

3r+1
) . (9)

Proof In view of (4 – 6) we have

dr

dsr
G2(s) |s=0 =

dr

dsr
(1/(s(s− 1)) + f(s) + f(1 − s))

∣

∣

s=−1/2 . (10)
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Further we have

dr

dsr

1

s(s− 1)

∣

∣

s=−1/2 = 2r+1r!(1 − 1

3r+1
) . (11)

Then Theorem 2 follows from (10), (5), (11) and Corollary of Theorem 3
given below.

4 Formulation and Proof of Theorem 3

1. For every natural r ≥ 2 and for each real a let

Ir,a =

∫ ∞

1
(lnr x)xaω(x) dx (12)

with ω(x) as in Section 2.
Theorem 3 We have the following asymptotic expression as r → ∞:

Ir,a ∼ (ln
r

π
− ln ln

r

π
+ β)r exp

(

−r(ln r

π
)−1eβ

)

×
(

r

π

(

ln
r

π

)−1
)a+1 √

π
√

r
(

1
2(ln r

π
−ln ln r

π
)2

+ 1
2 ln r

π

)

, (13)

where the function β = β(r) satisfies limr→∞ β(r) = 0.
The proof of Theorem 3 is given in subsections 2 - 6.
2. Set u = lnx. Then

Ir,a =

∫ ∞

0
ureu(a+1)ω(eu) du =

∫ ∞

0
eF (u) du , (14)

where

F (u) = r lnu+u(a+1)−πeu +ln(1+ψ(eu)), ψ(x) =

∞
∑

n=2

e−(n2−1)πx . (15)

Differentiation of the function F (u) results in the relations

dF

du
(u) =

r

u
+ a+ 1 − πeu +

d ln(1 + ψ(eu))

du
, (16)

d2F

du2
(u) = − r

u2
− πeu +

d2 ln(1 + ψ(eu))

du2
. (17)
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Let us consider the equation

dF

du
(u) =

r

u
+ a+ 1 − πeu +

d ln(1 + ψ(eu))

du
= 0 (18)

for u ≥ 0. Since

lim
u→0

dF

du
(u) = +∞ , lim

u→+∞

dF

du
(u) = −∞

and the inequality d2F
du2 (u) < 0 holds for u ≥ 0 for large r, equation (18) has

a unique solution for u > 0 and large r.
We consider the “approximating equation”

r

u
− πeu = 0 . (19)

By Lemma 1.2 in [3], its solution u = û has the form

û = ln
r

π
− ln ln

r

π
+ c1, (20)

where the function c1 = c1(r) satisfies the condition limr→∞ c1(r) = 0.
Therefore, by (20), (18), and (17), the solution u = ũ of equation (18) can
be written as

ũ = ln
r

π
− ln ln

r

π
+ c2, (21)

where the function c2 = c2(r) satisfies the same condition as c1 = c1(r), that
is,

lim
r→∞

c2(r) = 0 . (22)

Let εr be a constant such that 0 < εr < ũ. We represent the integral Ir,a in
the form

Ir,a =

∫ ũ−εr

0
eF (u) du+

∫ ũ+εr

ũ−εr

eF (u) du+

∫ ∞

ũ+εr

eF (u) du . (23)

Substitution of (21) in the first equation in (15) gives

eF (ũ) =
(

ln
r

π
− ln ln

r

π
+ c2

)r

× exp

(

−r
(

ln
r

π

)−1
ec2
)(

r

π

(

ln
r

π

)−1
ec2
)a+1

×
(

1 + ψ

(

r

π

(

ln
r

π

)−1
ec2
))

. (24)
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Next, by (22), the asymptotic relation

(

r

π

(

ln
r

π

)−1
ec2
)a+1

∼
(

r

π

(

ln
r

π

)−1
)a+1

(25)

holds as r → ∞, and

lim
r→∞

ψ

(

r

π

(

ln
r

π

)−1
ec2
)

= 0 .

Therefore, by (24), we obtain the asymptotic formula

eF (ũ) ∼
(

ln
r

π
− ln ln

r

π
+ c2

)r
exp

(

−r
(

ln
r

π

)−1
ec2
)

×
(

r

π

(

ln
r

π

)−1
)a+1

(26)

as r → ∞. Substitution of (21) in (17) yields

d2F

du2
(ũ) = − r

(

ln r
π − ln ln r

π + c2
)2

− π exp
(

ln
r

π
− ln ln

r

π
+ c2

)

+
d2 ln(1 + ψ(exp(ln r

π − ln ln r
π + c2)))

du2

= − r

(ln r
π − ln ln r

π + c2)2

− r
(

ln
r

π

)−1
ec2 + o(1) < −c3 r

(

ln
r

π

)−1
, (27)

where c3 > 0 does not depend on r and limr→∞ o(1) = 0.
Let us estimate |d3F (u)/du3| for ũ − εr ≤ u ≤ ũ + εr. Differentiating

(17), we obtain

d3F

du3
(u) =

2r

u3
− πeu +

d3 ln(1 + ψ(eu))

du3
.

Therefore, by (21),

sup
ũ−εr≤u≤ũ+εr

∣

∣

∣

∣

d3F

du3
(u)

∣

∣

∣

∣

< c4

(

r

(ln r
π − ln ln r

π + c2 − εr)3
+ r

(

ln
r

π

)−1
eεr

)

,

(28)
where c4 > 0 is a constant not depending on r.
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For ũ− εr ≤ u ≤ ũ+ εr, the equality

F (u) = F̃ (u) + F̂ (u) (29)

holds, where

F̃ (u) = F (ũ) +
1

2

d2F

du2
(ũ)(u− ũ)2, F̂ (u) =

1

6

d3F

du3
(ζ1)(u− ũ)3 , (30)

and ũ− εr ≤ ζ1 ≤ ũ + εr. Applying Lemma 2.1 from [3] and formula (27),
we obtain

∫ ũ+εr

ũ−εr

exp

(

1

2

d2F

du2
(ũ)(u− ũ)2

)

du =

√
π

√

|12 d2F
du2 (ũ)|

(1 +Rεr
) ,

where

|Rεr
| <

exp(1
2

d2F
du2 (ũ)ε2r)

1 +
√

1 − exp( 1
2

d2F
du2 (ũ)ε2r)

.

Therefore, by (27),

∫ ũ+εr

ũ−εr

exp

(

1

2

d2F

du2
(ũ)(u− ũ)2

)

du =

√
π

√

r(A+ o(1))
(1 +Rεr

) , (31)

where

A =
1

2(ln r
π − ln ln r

π + c2)2
+

exp(c2)

2 ln r
π

and

|Rεr
| < exp(−rε2rA+ εro(1))

1 +
√

1 − exp(−rε2rA+ εro(1))
(32)

By (29), we have

exp(F (u)) = exp(F̃ (u) + F̂ (u)) = exp(F̃ (u)) + exp(F̃ (u))(exp(F̂ (u)) − 1) .

Consequently,
∫ ũ+εr

ũ−εr

eF (u) du =

∫ ũ+εr

ũ−εr

eF̃ (u) du+R
′

εr
, (33)

where, according to (30),

|R′

εr
| < eF (ũ) sup

ũ−εr≤u≤ũ+εr

| exp(F̂ (u))−1|
∫ ũ+εr

ũ−εr

exp

(

1

2

d2F

du2
(ũ)(u− ũ)2

)

du .

(34)

7



Applying the relation for F̂ (u) in (30) and inequality (28), and assuming
that ε3rr does not exceed a constant not depending on r, we derive the
inequality

sup
ũ−εr≤u≤ũ+εr

| exp(F̂ (u)) − 1| < c5ε
3
r

r

ln r
π

where c5 is a constant not depending on r. But if the relation

lim
r→∞

ε3rr = 0 (35)

holds, then the previous inequality implies that

|R′

εr
| = eF̃ (u)

(
∫ ũ+εr

ũ−εr

exp

(

1

2

d2F

du2
(ũ)(u− ũ)2

)

du

)

o(1) ,

and, by (33), the asymptotic relation

∫ ũ+εr

ũ−εr

eF (u) du ∼ eF (ũ)

∫ ũ+εr

ũ−εr

exp

(

1

2

d2F

du2
(ũ)(u− ũ)2

)

du (36)

holds as r → ∞.
We now apply (36), (26), (31), and (32) and, assuming (35) and the

relation
lim

r→∞
ε2rr = ∞ , (37)

obtain the asymptotic expression

∫ ũ+εr

ũ−εr

eF (u) du ∼
(

ln
r

π
− ln ln

r

π
+ c2

)r
exp

(

−r(ln r

π
)−1ec2

)

×
(

r

π

(

ln
r

π

)−1
)a+1 √

π
√

r
(

1
2(ln r

π
−ln ln r

π
)2

+ 1
2 ln r

π

)

(38)

as r → ∞, where the function c2 = c2(r) satisfies the inequality (22).
3. We write u+ = ũ+ εr and u− = ũ− εr. Since u = ũ is a solution of

equation (18), we have

F (u+) = F (ũ) +
ε2r
2

d2F

du2
(ζ+), F (u−) = F (ũ) +

ε2r
2

d2F

du2
(ζ−), (39)

where the numbers ζ+ and ζ− satisfy the inequalities

ũ ≤ ζ+ ≤ ũ+ εr, ũ− εr ≤ ζ− ≤ ũ . (40)
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The application of (17), (21) and (40) results in

max

(

d2F

du2
(ζ−),

d2F

du2
(ζ+)

)

< − r

(ln r
π − ln ln r

π + c2 + εr)2

− r

ec2+εr ln r
π

+ c6 , (41)

where c6 is a constant not depending on r. Now let

εr = r−(1/2−δ), 0 < δ <
1

6
. (42)

Then (35) and (37) hold and, by (39) and (41), we have the inequalities

F (ũ) − F (u+) > c7r
δ, F (ũ) − F (u−) > c7r

δ,

eF (u+) = eF (ũ)−(F (ũ)−F (u+)) <
eF (ũ)

ec7rδ
, (43)

eF (u−) = eF (ũ)−(F (ũ)−F (u−)) <
eF (ũ)

ec7rδ
,

where c7 > 0 is a constant not depending on r.
By (17), the inequality d2F

du2 < 0 holds for r large enough and 0 ≤ u ≤ ũ,

and thus we have dF
du (ũ) = 0, and F (u) is a monotone increasing function as

u grows. Therefore formulae (43) and (21) imply the inequality

∫ ũ−εr

0
eF (u) du < c8ũe

F (u−)

< c8
(ln r

π − ln ln r
π + c2)e

F (ũ)

ec7rδ
, (44)

where c8 > 0 is a constant not depending on r.
4. Suppose that a positive number ˜̃xr satisfies the equation

lnr ˜̃xr = exp(πδ ˜̃xr) , (45)

where δ is the parameter introduced in (42). Then the relation

r

πδ
=

˜̃xr

ln ln ˜̃xr

, (46)

holds. From this we deduce

ln
r

πδ
= ln ˜̃xr − ln ln ln ˜̃xr = ˜̃yr − ln ln ˜̃yr ,
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where
˜̃yr = ln ˜̃xr . (47)

Let us set
µ = ln

r

πδ
, f( ˜̃yr) = ˜̃yr − ln ln ˜̃yr .

Then µ = f( ˜̃yr). Let ŷr satisfy the equation

µ = ŷr − ln ŷr . (48)

By (46) and (48), we have

f(ŷr) > µ , f(µ) < µ ,

and, since f(y) is a monotone increasing function as y grows, relation (46)
implies that ˜̃yr satisties the inequality

µ < ˜̃yr < ŷr (49)

According to (46) and Lemma 1.1 from [3], the solution ŷr of equation
(48) has the form

ŷr = ln
r

πδ
+ ln ln

r

πδ
+ c9 ,

and the function c9 = c9(r) satisfies the condition limr→∞ c9(r) = 0. Con-
sequently, by (49) and (47), we have

ln
r

πδ
< ln ˜̃xr < ln

r

πδ
+ ln ln

r

πδ
+ c9 , lim

r→∞
c9(r) = 0 . (50)

The application of (43) and (50) gives

∣

∣

∣

∣

∣

∫ ln ˜̃xr

u+

eF (u) du

∣

∣

∣

∣

∣

< eF (u+)| ln ˜̃xr − u+|

<
eF (ũ)

ec7rδ

(

ln
r

πδ
+ ln ln

r

πδ
+ c9 − u+

)

. (51)

5. Let us estimate the integral

˜̃Ir
def
=

∫ ∞

˜̃xr

(lnr x)xaω(x) dx , (52)

where ˜̃xr is defined by (45) and ω(x) is the function introduced at the
beginning of this section. According to (45), (50) and the definitions of
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ω(x) and ˜̃xr, we have

˜̃Ir <

∫ ∞

˜̃xr

xa

(

∞
∑

n=1

e−πx(n2−δ)

)

dx

<

∫ ∞

r/(πδ)
xa

(

∞
∑

n=1

e−πx(n2−δ)

)

dx . (53)

6. According to the definition of the integral Ir,a the following inequality
holds:

Ir,a =

∫ ũ−εr

0
eF (u) du+

∫ ũ+εr

ũ−εr

eF (u) du+

∫ ln ˜̃xr

ũ+εr

eF (u) du+

∫ ∞

ln ˜̃xr

du , (54)

where ũ, εr, and ˜̃xr are the numbers introduced above. For εr as in (42) we
obtain, by (44) and (51)–(53), the inequality

∣

∣

∣

∣

∫ ũ−εr

0
eF (u) du+

∫ ∞

ũ+εr

eF (u) du

∣

∣

∣

∣

< c10
(ln r

π − ln ln r
π + c11)e

F (ũ)

ec7rδ

+

∫ ∞

r/(πδ)
xa

(

∞
∑

n=1

e−πx(n2−δ)

)

dx (55)

for all r sufficiently large, where c10 and c11 are constants not depending on
r.

As r → ∞ the first term on the right-hand side of (55), by (36), (31),
and (32), is

o

(
∫ ũ+εr

ũ−εr

eF (u) du

)

and the second term there is o(1). Therefore the asymptotic relation

Ir,a ∼
∫ ũ+εr

ũ−εr

eF (u) du

holds as r → ∞ and, by (38), the same is true for the asymptotic relation

Ir,a ∼ (ln
r

π
− ln ln

r

π
+ c2)

r exp
(

−r(ln r

π
)−1ec2

)

×
(

r

π

(

ln
r

π

)−1
)a+1 √

π
√

r
(

1
2(ln r

π
−ln ln r

π
)2

+ 1
2 ln r

π

)

, (56)
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where the function c2 = c2(r) satisfies (22).
Thus, Theorem 3 with β(r) = c2(r) is proved.

Corollary We have the following asymptotic expression as r → ∞:

drf

dsr
(s) |s=b ∼

(

1

2

)r

(ln
r

π
− ln ln

r

π
+ β)r exp

(

−r(ln r

π
)−1eβ

)

×
(

r

π

(

ln
r

π

)−1
)a+1 √

π
√

r
(

1
2(ln r

π
−ln ln r

π
)2

+ 1
2 ln r

π

)

, (57)

with the function f(s) defined in (5), a = b/2− 1 and the function β = β(r)
for which limr→∞ β(r) = 0 holds.

5 Discussion

In [3] the following asymptotic formula for the even-order derivative of the
Riemann function ξ = ξ(s + 1/2) at the point s = 0 as the order r of the
derivative tends to ∞ was found:

dr

dsr
ξ(s+ 1/2) |s=0 ∼ 2−(r−2)

(

ln
r − 2

π
− ln ln

r − 2

π
+ γ

)r−2

× exp

(

−(r − 2)

(

ln
r − 2

π

)−1

eγ

)

(r − 2)1/4r(r − 1)

×
(

ln
r − 2

π

)−1/4 π1/4

√

(r/2 − 1)

(

1
(ln r−2

π
−ln ln r−2

π
)2

+ 1
ln r−2

π

)

, (58)

where the function γ = γ(r) satisfies the condition limr→∞ γ(r) = 0.
One can easily compare this formula first with that given here in our

main Theorem for P. R. Taylor’s function G(s) for which the Riemann
hypothesis holds (see [1]) and then with (57) given in Corollary above for
b = 1/2. In the first case we see that the absolute value of the even-order
derivatives of G(s) at the point s = 0 growfor r → ∞ more quickly than
that of the Riemann function ξ = ξ(s + 1/2) at the same point s = 0. In
the second case for the function f(s) both formulae are very similar and the
main term in (57) can be obtained from the main term in (58) by replacing
in it r − 2 by r.
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