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Abstract We campiete the proofs of two statements conceming periodic on x finite-gap

solutions of the KdV equation:

1) mast of these solutions survive under Hamiltoniao perturbations of the equation

(see[3]),

aod

2) for the most of solutions of the perturbed equation which were elose to same finite

gap potential at t = 0 the averaging theorem of Bogolyubov-Krylov type is valid

(see[ 1,2,4]).

Various approaches are known for studying weakly perturbed integrable equations of math

ematical physics. In particular averaging procedures formulated in terms of the finite-gap

solutions of non-perturbed equation were suggested to salve same initial-value problems. As

a rule, an estimate for the disparity is not calculated. The sufficient condition on initial data

justifying an application of averaging procedure was obtained in [3,4] , where the case of

an integrable system with a discrete SPectrum as a non-perturbed equation was considered

(the KdV equation with periodic boundary condition is an example of such a system). This

condition represents itself same non-degereracy condition fOT the initial family of finite-gap

solutions (see below for the statement).

We prove the non-degeneracy of all the families of the Periodie finite-gap solutions of the KdV

equation with zero mean value. Our proof is based on the parametrization of the finite-gap

solutions via the Schottky unifOJmazation [5-7].

Real N-gap solutions of the KdV equation

are given by the Its-Matveev formula

u(t, x) = 28; log B(i(Vx + Wt + D)) + 2c,

(1)

(2)

whereB is the theta function with the period matrix (2lriI, B) and V, W, DERN. The vectors

W aod D are called a frequency and aphase vectors respectively. These solutions are

parametrized by the hyperelliptic M ·curves of genus N,

(3)

Let us denote by R the variety of these curves. We consider the equation (1) in the space

Zo of periodie functions with zero mean value:

2...-

u(t, x) - u(t, x + 2rr), Ju(t, x)dx == 0,

o

(4)

and denote Rn c R a subset, corresponding to the finite-gap solutions with zero mean value.

Everywhere below we fix the vector U and set

UEZN,c=O. (5)



(6)

The family of solutions (2), (5) with D varying at the torus RN /21r ZN is called a toroidal

family of solutions. The toroidal families of solutions are in one to one correspondence with

points of 'Ro(U). Let us consider X E 'Ro(U), generating the solution uo(t, x) of the problem

(1), (4) and the variational equation along uo(x):

fJ
4vt = 38x (vuo) + V xxx ·

It is known [1-3] that the substitution v(i) = B(t) V(t)(where B(t) is a linear operator in Zo,
quasiperiodie in t) reduces the equation (6) to a linear equation in Zn : Vi = AxV with the

operator Ax independent from t. Nonzero eigenvalues ofAx are purely imaginary {±iA(X)}.
The numbers Aj (X) are called fundamental frequencies of the variational equation. The

frequency Aj(X) can be found by varying j-th closed gap of the spectrum of uo(t, x). It
means that to find Aj(X) one should e-open the j-th gap and calculate the frequency vector

(W], . .. , WN, vVj)(X, e) of the obtained N + I-gap solution. Fundamental frequencies are

given by the limit [1-3]

(7)

Definition: The [amily Ro(U) o[ N-gap solutions o[ the problem (1), (4) is called non

degenerate if

A) {W(X)jX E 'Ro(U)} is an j\,T-dimensional domain.

B) for any s E ZN \ {O} and j,j},j2 E N,jl i= j2

W(X) . s + 2Aj(X) :1= 0 (X E Ro(U)), (8)

(9)

If 'Ro(U) 1S non-degenerate then by the results of [2-4] solutions of perturbed equation

possess the properties formulated in the abstract.

Theorem. All[amilies Ra (U) o[ N -gap so/urions o[rhe prob/ern (1), (4) are non-degenerare.

1bis theorem shows that the theorems of [2-4] mentioned above are applicable to the KdV

case. They justify investigation of pertubations. For details see these papers.

For the proof of the theorem we use the technique of the Schottky uniformization [5-7], which

we now briefly review. Let us consider the complex z-plane with 2N circles orthogonal to

the real axis such that all the discs bounded by these circles are disjoint and are arranged in

pairs symmetric with respect to z ....-? - z. Each pair determines a hyperbolic transfonnation

an with the fixed points±An :

o< f-ln < I, An E R

The Schottky space S = (A, f-l) is a full-dimensional subset in R2N and is described explicitly

[5,6]. The complement of the discs mentioned above is a fundamental domain for the Schottky
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group G generated by al,' .. , aN. Let n be the region of discontinuity for G. All hyperelliptic

M-cUlves (3) can be unifonnized as nfG with the point z = 00 as apreimage of A = 00.

Let us denote by 9 the group of transfonnations or 'R En -? En + const with the same

constant for all n. The parameters (A, JL) determine an element X E njg. The solutions

detennined by X are of the form (2) and one of them is with V = V, w = W, c = cgiven

by the following Poincare theta series

iJn = L (aAn - a( -An)]
uEG/Gn

Wn = L [(aAn)3 - (a(-An))3],
uEG/On

""' -2C= L f
uEG,O!.f

(10)

Here On is a cyclic group generaled by an. and (~ ~) is a PSL(2, R) representation

of a. The factor Rfg is isomorphie to 'Ro, the corresponding transfonnation of the solution
(2), (10) is the following

....... '"

U = U, W = VV -3cV,c= O. (11)

Lemma 1. There is an analytic isomorphism S H R o. It defines the analytic coordinates

(A, JL) on Ro.

Below we consider the case of small gaps (small potentials). Let us remark that it corresponds

to small JL since IE2n+1 - E2n I ro..J VJi;; (see [7]).

Lemma 2. The map (A, fl) -+ (V, W) determined by the series (10). (11) is analytic. In the
neighborhood 01 (A, 0) it has the following leading terms:

N

Un = 2An +L U nkJ1.k + O(I/-l1 2
),

K=l

(12)

(13)

This lemma follows from the explicit formulae (10), (11). The leading terms are given by

the summation in (10) over the elements {I, 0"1, all, ... , aN, a N1
} E G.

Lemma 3. The sufficiently small parameters J1. = (/-lI, ... ,JlN), /-ln > 0, can be taken as
coordinates on the subdomain olRo (UD) ,UD E ZN. In olher words an analytic map J1. --t A (,L )
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exists such that the so/utions determined by (A(JL), jL) form a Juli-dimensional subdomain in
Ra (UD). Furthermore

(14)

Proof: The series (12) is invertible with small j1. The equality U(A, Jl) = UD due to the

implicit funetion theorem determines A = A(p), and 8Aj8j1 = -!fJUjfJ/l. It gives

and finally (14). The first statement of the lemma follows from lemma 1.

Ta eomplete the proof of the theorem let us suppose that there is an expression of the fonn (8)

indentically vanishing on Ra (VO). Then in particular it vanishes on the subset of solutions
with jpl << I diseussed in lemma 3. Let us e-open the gap j preserving (5). The obtained

1\'+I-gap solution is characterized by the parameter (PI, ... ,JlN, /lj) and the frequeney vector
(W, Wj). The functions Wj ean be analytically continued to the point (Jl,O) and (7) gives

(15)

Differentiating (8) with respect to /ln we get

8
8Jln (W . s +2Aj )11J=o = o.

Together with (14), (15) it gives A~sn = 0 for all n = 1, ... ,N. Vanishing s proves (8). The
same arguments prove (9). @
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