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Lemma 5. Given kK and 0 < D < w/JE, there exists a x > 0 so
that if Ts' Tae are unit minimal in Sk with 0 < a(yAB, 7AC) <,
L(y,) s D, and d(B, C) < 3x, then for any 0 < t =
min {L(-yAB), L(7m)} and minimal curve a from ‘rm(t) to 7ac(t)’

max (d(A, ;(s)) <t + x.

Proof. Since metric balls are convex for k 5 0, we need
only consider k > 0; by scaling the metric we reduce to k = 1,
and clearly now we can assume t > x/2. Let y > 0 be small enough

that cos D - (cos (1.5x))(cos (D+x)) > 0. We fix curves ;AB, L
as above, assume a is parameterized on (0, 1] and let o =
d(A, a(1/2)) = max {d(A, y(s)). Letting X = L(a) and applying

the Cosine Law to cx(;AB, a) we obtain

cos r_- (cos t)(cos A/2) _cos t - (cos t)(cos A)
sin A/2 sin A

which reduces to cos r = cos t / cos A/2.

Applying the sum formula to cos (r-t) we see that r - t is
an increasing function of both t and A; i.e., for fixed x, r - t
is maximized when L(a) = L(8) = t = D. Thus we only nee.d to
prove cos-l(cos D / cos (1.5x)) s cos (D+x), and this follows

from the way x was chosen. ]

For 0 < D < n//k, fix a closed ball B = B(p, D) ¢ X and a
cover U of E(p, 2D) by reglons of curvature 2 k, and let x(U) < D
be as in Lemma 5 and also less than one eighth of a Lebesque

number of U. Let r(U) small enough that if ca, ; are unit



Introduction. Let X be a topological space with a finite group G acting on it. For .
suitable coefficient systems and cohomology theories, H*(X; F) bmoﬁes a G-represen-
tation. Study of such representations and their relationship to the symmetries of X has
been the subject of extensive study. In our previous paper [A1]—[A5], we have studied
such representations from the view points of group cohomology and local—global con-
siderations. In particular, [A3] considers the integral representations on Hz(X;H) when
X is a compact simply—connected 4—-manifold. In the following paper, we continue [A3]
by specializing to the case of algebraic curves and surfaces.

Historically speaking, such investigations for complex projective curves (compact
Riemann surfaces) goes back to the 1893 paber of Hurwitz, in which complex represen—
tations of cyclic automorphism groups of Riemann surfaces were studied. His work was
completed by Chevalley and Weil, also using analytic techniques. See Weil‘s collected
works Vol. I, pages 529 and 532—533 for historical details and a discussion of these results.
Chevalley—~Weil’s results were further generalized by Tamagawa to. the case of curves over
ﬁt;.lds of positive characteristic with free regular automorphism groups. Ta.magawé’s result
is formulated in terms of unramified Galois extensions of the corresponding function fields.
This point of view has been further developed by number theorists, in particular, Madan
and Valentini among others. (See Valentini~Madan, Journal Number Theory, Vol. 13,
1981, for a historical survey and further developments.)

Some of the results of the present paper may be considered as modest generalizations
of the above—mentioned results. Such generalizations are in two directions. First, we have
determined the integral representations Hl(X,H) for a compact Riemann surface with an
arbitrary finite automorphism group (Section 4). Since the structure of ZG—modules is a
complete mystery for almost all finite groups, our formulations are in terms of group co-
homology in the general case. Secondly, we have studied certain representations for suitable
non-singular projective surfaces in analogy with Chevalley—~Weil and Tamagawa’s results.

Namely, for free G—actions on projective surfaces X where pa(X) = pg(X)
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(p, = arithmetic genus and Pg = geometric genus). For curves, pa(X) = pg(X) always.
But for surfaces, this is a real restriction, and it should be compared with
simple—connectivity hypothesis for complex projective surfaces. In Section 6, we have
determined the kG—module HO(X; J x) (= vector space of regular 2-forms) in analogy
with the case of regular 1—forms for curves. Section 5 makes a preliminary study of the
IG—representation H2(X;Zl) when X is compact Kihler. The génera.l theme of sections
3-5 is to relate the topology and geometry of the underlying symmetry to the homological
properties of suitable representations. In Section 2 we have gathered some definitions and a
brief discussion of some of the homological notions for the convenience of the reader.

Further preliminary material may be found in [A3] or in the references.

Note added in proof. Since the appearance of the first version of this paper, several related
works are brought to my attention. I would like to thank Chad Schoen for discussions on
his interesting results in this direction andnfor sending me his manuscript [Schoen]. I am
also grateful to G. Ellencwejgand T. Koho/fo who brought to my attention the related -
works of S. Nakajima [Nakajima 1 & 2] which go deeper in the number theoretic direction

and seem to have a slight overlap with some of our results.



i iminary Notions.

In the following sections, we will use the same notation and conventions as in [A3].
However, we review some of the notation for the convenience of the reader. Let G be a
finite group, and R be a commutative ring with unit, e.g. R = Z, ilp = p—adic integers,

F pr O C . The RG—modules are finitely generated and R—free. Finite generation may not
hold for some of the RG—modules in the chain complexes used in Section 6. However, the
cohomology and homology groups are all finitely generated, and this will be sufficient. Two
RG—modules M, and M, are called projectively stably RG—isomorphic, denoted by

M, ~M,, if there is a commutative diagram:

n
Ml @ Pl E —=M2 2] P2
M, - M,

where P1 and P2 are RG—projective, j and = are the obvious inclusion and projection,
and g is an isomorphism. If P, and P, are RG—{ree, then we call M, and M, stably
isomorphic. Stable isomorphism is an equivalence relation. Heller [Hr] has defined loop
and suspension operations for RG—modules when the notions "projective cover" and
"injective hull" make sense. However, projective covers do not exist, in general, for
IG—modules although they exist for [FpG—-modules or ip [G] —modules. Here, we can
define a stable version of the "Heller loop—operator”, which we denote by «, on the set of
stable equivalence classes of RG—lattices (i.e. R—torsion free RG—modules). Namely, «{M)
is stably well-defined (by Schanuel’s Lemma [Sw]) from the exact sequence

0 — (M) — (RG)® — M — 0. If we use projective RG—modules instead of

(RG)h , then (M) is well—-defined up to projective stable equivalence. Then we set
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wl(M) = w(M) and wi+1(M) = w(wi(M)) inductively. For i € Z , this definition has a
natural extension, so that wi(M) are stably well—defined for all i € Z .

We will also make use of a construction for RG—modules from cohomology classes
which is explained in [A3]. Our description is a generalization and a stable version of the
construction used by J. Carlson [C] in modular representation theory. Recall the Tate

cohomology f[i(G;M),i € 7 asin e.g. Cartan—Eilenberg [CE] . Then

A\ def .
HomL(M,R) = HO(G,HomR(M,R)) is isomorphic to the group of RG—homomorphisms

f: M — R modulo the subgroup of those which factor through an RG—projective. (See

Mac Lane pp. 74—75 [Mc] for related discussion. It turns out that

-0 n def /\ n N * * ‘
H'(G,Homp(w (M),R)) = Hom(w (M),R) ¥ HY(G;M ), where M = Homp(M,R)
with the diagonal RG—module structure. Now, given a cohomology class, x € ﬁn(G;M*) ,
we may represent x by an RG—homomorphism ¢ : ¥"(M) —— R which is well—defined
up to factorization through RG—projectives. ¢ may be assumed also surjective. Define
LSD = Ker(y) . Then L ” is well—defined up to projective stable equivalence. (See [A3] for
further discussion). The notation class (@) will be used for the cohomology class repre-
sented by ¢ . The functor thi;(-—,-—) is also constructed in analogy with Tate cobo-
mology ﬁi(G,—) using complete resolutions; (see e.g. Cartan—Eilenberg [CE] or Carlson
(CI).

An algebraic generalization of a Poincaré duality space is the notion of a chain com-
plex with duality. Let C, be a bounded connected chain complex of dimension n over a
ring R, so that HO(C*) R and C, =0 for i <0.o0r i >n (for some n >0 ). We call
Cs a chain complex with duality of formal dimension m , if there exists a chain homotopy
equivalence h: C o Ci between C, and C* . The cellular chain complex of a
Poincaré duality space or a closed oriented smooth manifold are basic examples of such

complexes with duality.
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In Section § and 6 we will need some basic facts from algebraic geometry. The stan-
dard reference for the definitions and concepts used in the following are Hartshorne [H]

and Mumford [M1] [M2].



tion 3. iong.

In this section we study hdmology representations of free actions.

3.1 Theorem. Let X, be a (k—1)~connected bounded RG—free chain complex with duality

of formal dimension 2k . Then: -

(a) The RG—module H(Xs) is completely determined up to stable equivalence by a
homology class x € Ho, (G;R).

(b) Let ¢: w_zk_]‘(R) —++ R be a representative for x. Then H,(X.) is stably
RG—isomorphic to ka ¢

(c) Let ¢o: w—k"l(R) —_— wk(R) be such that class(yp) = class({) = x under the

isomorphisms |

A
- Homg(a R, KR & Homg(o BN (R), R) 2 Hy (GR)

Then Hk(x*) is completely determined (stably) from the short exact seqeunce below:
0 — H(X) — o I (R) 4 5(R) —0 .

The following corollary has been proved for k = 2 by Hambleton~Kreck [HK].

3.2 Corollary. A symmetric expression for H, (Xs) is obtained as follows. Let

z € Ext é(w"k_l(R), wk+l(R)) . Then the extension class z is represented by the short

exact sequence:

0 — *T(R) — H (X,) @ (RG—Free) — v < L(R) —10 .
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Proof. Since X, is R—chain homotopic to its R~dual X = HomR(X*,R) , We have
Hi(X*) =0 for k + 1 <i<2k—1. Moreover, without loss of generality, we may assume
that X, =0 for i 2 2k+1 (seee.g. Assadi [A3] Lemma 4.2.). The connectivity of Xy in

the above—mentioned dimensions gives rise to long exact sequences below:

0 —+ R — Xy ——t oro. — X bei1 y
Xog = e k+1 » Xy

—~ coker(8, 1) —0 .

We conclude that By, = «*(R) and coker(8, ;) = v '(R). To identify H,(X,),
we consgider the commutative diagram below:

0 0

I !

(D) 0— R —Xpy — e Xy g — Ty ~Eo H (Xe) ———0

N o N N

0-—R — Xy — o Xy — Xy f%cbk.’er(ak_*_l)—-ﬂo

1, -,
Lk l
By — By

The homomorphism j in the above diagram is induced from the inclusion
i: Z’k  —— Xk . Thus we have the short exact sequence:

0 — By (Xe) — o< L(R) 24 JK(R) — 0



of RG—modules, and Hk(X,.) i stably determined by the class
(p) € H/o}nG(w-kﬂl(R), wk(R)) . Using the isomorphisms

o (1), o(R) 2 Homg (e R 2 Brg R RR) 2 Hyy (GR) , we
obtain the class x € H,, (G;R) corresponding to class (y) . Let ¢: -Zk—l(B.) —R
~ be a representative for x. Then LC = Ker({)=w (Ker ), 50 that Hi(X4) = w kr,

-
This proves the Theorem. n

Proof of Corollary 3.2. The homomorphisms j and » of the diagram (D) in the proof of
Theorem 3.1 above give rise to the following short exact sequence:

(E) 0— 2, 22l B (X) @ X, T coker(8 ;) — 0 .

"k"l(R) and Zy = o k+1(R) from the exact sequence

0 *.Zk :Xk s J :XO - R +» 0 we obtain the desired short exact

Since coker(d) +1)

sequence of the corollary. It remains to determine the extension class
A _ N\ _ol—
2 € Ext(coker(d , ;),2,) = Ext (™ I(R), FH(R) 2 ExGEYR,R)
G +1/ G\¥ A G
N H_m‘-l(G,R) = H2k(G,R) . We apply HomG(coket( d +1),—) to the exact sequences

0 — Hy (X4) — coker( 8k+1) £, B,_;—0 and

a -
0— Zk ) Xk k Bk—l — 0 as well as (E). We get the commutative diagram

below in which §’ and JE are the connecting homomorphisms of the last two sequences:



A
HomG(coker(Bk+1), coker( Bk-l-l))
Ps og
/N N1
Hom 5 (coker ( 6]‘_,_1) By 1) — Ext 5(coker ( 3k+1) 1Zy)

ejon
Y

rﬁag(w““l(a) , F(R)) el (), SHm)

\ sz(G’R) /

Since z = § (identity) and ,(identity) = class(y) = class({) = x , and all other isomor-

12

e

phisms are obtained by dimension shifting, it follows that z and x correspond under
these natural isomorphisms. -

3.3 Theorem. Let X be a (k—1) connected finite dimensional Poincaré complex of formal
dimension 2k . Let G act freely on X and let f:X/G — BG be the classifying map
for the G—covering X —— X/G . Then:
(a) The homology class x E f.[X/G] € H,, (BG;Z) = H,, (G;I) completely determines
the ZG—module Hk(X;Zl) up to ZG-stable isomorphism and vice versa. In fact,
Hy (X) is stably isomorphic to oKL ¢ where class({) = x as in Theorem 3.1 above.
(b) Each x € H,, (G;Z) is realized by a free analytic G—action on a compact connected
Riemann surface when k = 1, and by a free smooth G—action on a compact
simply~conrected 4—manifold when k= 2.

Proof of Theorem 3.3. Applying the result of Theorem 3.1 to the free ZG—chain complex

C«(X) , we conclude that the stable ZG—isomorphism class of H, (X) is determined by
Z\

x = class(yp) € HomG(coker( by +1), B, ;) 2 H, (G;T) . We compute x in terms of the
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induced homomorphism fx : Hoy (X/G;T) — Hoy (BGZ) = Hyy (G;Z) as follows. Let
E,. = C*(EG) , where EG —— BG is the universal G-covering as usual, and

Ca = Ca(X) . The RG—chain map T# : Co — E4 isinduced by ¥: X — E . We
identify (Es,8%) as a free IG—resolution of Z, Ker 9%, = o***1(Z), and

coker( 0]" +1) = wk(ﬂ.') . Consider the commutative diagram below induced by T and the

above identifications:

2k+1 - @ Per1 ™
0~ okt (H)—-bEZk — . Ek+1 +#Ek — w (I)—0
0 — H, (X) —C,y ——....C ak+1 » C r—‘Q 0
2k 2k ¢ k+1 "k '

The class f,[X/G] € H,, (G;Z) is determined by
f € Hom(Hy, (BG)) = Hom(Z,H,, (G;Z)) . The shifting isomorphism, denoted by

(k¥ - flom(Q,6T) 2 Homeg (L), 5+ 1()

sends class(1) to class(1.) =f, in the diagram below:

fom (Q, o) —‘f@)—» H{o}né( SF1(Q), )

N

B,y (GiD) - Bom(H,, (X)), o*1(@) .

ji2

Therefore, it suffices to prove that class(A) = class(yp) . Consider the commutative
diagrams below in which (I) determines class(¢p) :
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0 0
T
(1) Bk_l—:-—-r Bk—l
| To
0 — B, — C, T __ 1 Q 40
L L | L
0— B, — 2, —— H (X)—0
[ |
0 0
By1
N\
(1) Q S )
g, I
Cy T Ey
(1) 0 — wk(ﬂ) ——E _|— — E, — I + 0
T’k-l P# IT# I=
0———-+Bk_1 -—--—ka_l - :CO )/*.II 30

A
Under the shifting isomorphism a(wk) : EI/0>1G(ZZ,Z[) Z HOmG(uk(Z), wk(l)) o
n E{a}nG(Bk_l, wk(H)) in diagram (III), class(idy) corresponds to Qags(rk_l) . Thus

the isomorphism (Tk-l)* below:
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A AN
HomG(Q, Bk—l) —(.,-_ki?)?" Hom@(Q: w ()

i
e

Hoy (G;T)

sends class(p) to class(A), and this is what we wanted. Thus part (a) of the theorem is
proved. The proof of part (b) is included in Assadi [A3] Proposition 4.4 (c) for the case
k=2.For k=1, the Hurwicz homomorphism 150(BG) — Hy(BG) = Hy(G;I) is

surjective, hence part (a) implies the desired conclusion. - -

3.4 Corollary. For every x € H2(G;H) , there exists a free projective G—action on a
non—singular projective curve/€ such that Hl(Xa_n;Zl) is ZG—stably isomorphic to
(wlL C)* where ( € HomG(w"a(Zl),Zl) represents x under the isomorphjsm

om (0 3(T),7) ¥ B3(G;l) = Hy(G;T) , and X, is the underlying space with the

usual topology.

Proof: According to 3.3 (b) above, there exists a compact Riemann surface ¥ and a map
f: £ — BG such that {,[¥] =x € Hy(BG;Z) = H,(G;I) . Let X be the G—overing
induced by f together with the free G—action on X via covering translations. Then
H,(X;Z) is stably ZG—isomorphic to wl(L C) and class({) = x by Theorem 3.1 above.
Now G acts on the compact Riemann surface X by complex analytic isomorphisms, and
Hl(Xa_n;H) is IG—ismorphic to Hom(H,(X),Z) = (ulL 4)* and class({) =x by
Theorem 3.1 above. We may assume that the genus (X) 2 2, hence genus (X) 2 2, s0
that the canonical sheaves Ky, and ¥y are ample. By Serre’s GAGA principle' [S1],
Y and K y are algebraic. Thus, X is a complete non—singular curve on which G acts by
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algebraic isomorphisms, Jy is an ample G-line bundleon X, and x: X — X =X/G
is an algebraic morphism for which ¥y = (7 ¥y)C . Since the pluricanonical
embedding X — PI(X, F™) is equivariant, the G—action on X is projective.

3.5 Examples. (1) If G = Z/pll, then Hy(G;I) = 0 = H,(G;Z) = 0. Thus, if
dimpX = 2 , then for 1 = %(5-1) B'(X)2 7876 (ZG)*", and if dimpX =4 and
xl(X) =0, then H2(X) ~ 161 (IG)° where I is the augmentation ideal. Since
I~ 7T[(],where ( isa primitive p—th root of unity with the usual ZG—module
structure, then H2(X;Z) ~ Z[(] ® Z[(] @ (ZG) .

(2) Suppose G has periodic cohomology, so that the p—Sylow subgroups of G are
cyclic for p = odd and either cyclic or generalized quaternionic for p = 2 . Then
H2(Gp;l) =0= H4(Gp;l) for all p—Sylow subgroups Gp L G . Therefore,

H,(G;Z) = 0 = H,(G;Z) , and we have the following conclusions. For dimpX =2,
HY(X;Z) is IG—isomorphic to w?(Z) ® v 2(Z) ® (ZG)** . For duanX 4, m(X)=0,
HY(X;T) = °(T) ® ~3(T) @ (ZG)® .

(3) Suppose G = (E/pﬂ) then H2(G;H) ~ Z/pl and H4(G;H) ~ (Zl/pﬂ)2 . There-

fore, in this case we get non—trivial examples corresponding to the non—zero elements of

sz(G;l) .

At this point, oné may raise the point that the procedure in Theorem 3.3 (b) to
produce free G—actions on simply—connected smooth 4—manifolds involved non—algebraic
~arguments. That is, surjection of QEO(BG) onto H,(BG) produces £ : Wg — BG
such that fys [Wg] = x € H,(BG) and smooth surgery on the map {; corrects the
fundamental group to give f: w! — BG with 1, [W] = x . Then the universal cover of
W ,say X, is the desired smooth simply-connected 4—manifold whose homology
IG-module Hy(X) realizes the class x € H,(BG) . It is not clear if either one of these

steps can be achieved using complex manifolds. Thus, we pose the following
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3.6 Problem. Which homology classes x € H,(G;Z) arise in Theorem 3.3 for analytic

G-actions on compact complex surfaces X with rl(X) =07
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In this section, we assume that G is a finite group acting effectively on the compact

Riemann surface ¥ via complex analytic isomorphisms. Thus, G preserves the orientation

and the isotibpy subgroups Hi € G are all cyclic. Moreover, for all H, #1, EHi consists
of at most finitely many points of X. We delete the trivial subgroup (i.e. the principal iso-
tropy subgroup for all effective finite group actiorns) from the list of isotropy subgroups of
the action. The orbit space £’ = /G is still a compact Riemann surface and £ —Z— 3’
is a ramified finite covering. We may choose a triangulation for £’ such that the ramifi-
cation points are all included in the set of vertices of X’ , and we lift this triangulation to
Y ,togive ¥ an equivariant triangila.tion. Under these circumstances, ¥ becomes a
G—CW complex, and the cells of ¥ provide permutation bases for the cellular chain
complex of ¥ . This makes C,(X) intoa pérmuta.tion complex. In Section 3, we proved
that if G acts freely on X, then the ZG—module H,(X;I) is stably ZG—isomorphic to
wlLC , where class(() = x € Hy(G;Z) is theimage f, [Z/G] € Hy(BG;Z) = H,(G;) |
under the homomorphism induced by the classifying map f: X/G — BG . Moreover,
every element of H,(G;Z) arises by such a free G—action. For instance, if Hz(G;IZ) =0,
then H,(5)» o*(Z) ® w™%(Z) @ (ZG)* , where r is determined by counting Z-ranks of
both sides of this equation. We proceed to determine the ZG—module structure of H,(Z;Z)
for non—free actions in the same spirit.

First of all, the following analogue of Assadi ([A3] Theorem 5.4) is easily
established.

4.1 Proposition. With the above notation, the following are equivalent:
(a) HYEZ) is ZG—projective.
(b) For each prime order subgroup CL G, HI(E;H) is ZC—projective.
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(¢) For each prime order subgroup CC G, $C consists of 2 points.
Furthermore, if HI(E;ZZ) is ZG—projective, then p—Sylow subgroups of G are
cyclic.

Proof. (a)3 (b) and (b) 2 (c¢) by considering the spectral sequence Eq x c!]——» BC
and applying the localization theorem (Hsiang [Hs] or Quillen [Q]). From (¢) it follows
that p—Sylow sabgroups of G must have oge-—dimensional faithful complex linear repre-
sentations, hence they must be cyclic. Thus, maximal p—elementary abelian subgroups of
G are isomorohic to Z/pZ . Therefore (b) 2 (a) by Chouinard’s theorem (Chouinard
[Ch] or Jackowski [J]). (c) 2 (b) is also possible by reversing the spectal sequence
argument for (b) 2 (c) . For a more elementary argument, consider Iy =X~ {x} where
x € £C . Then H,(%,) = H,(%) and Hy(Ey) = 0. Therefore, H,(T) is the only non-
vanishing homology group in the ZG—free chain complex C,.(EO,Z% ) . Hence, it is stably
IC—free, and since C is cyclic, Hl(E) is ZC—free. -

The following lemma and the above discussion take care of |G| = prime.

4.2 Lemma. Let G = I/pl = <t> where p is a prime. Then EG# ¢ if and only if
H (Z) 2 Z[¢]? @ (ZG)", where ¢ is a primitive p—th root of unity and Z[{] has the
usual ZG—module structure Z[{] = Z[G] /(1+t+..... +tp-1) . Here r = 2g - (p—1)e and

a=#(EG)—2.

Proof. If 5% = ¢, then H,(E)x 7% @ (ZG)" . Therefore, assume that IC # 4 . Let

x, € EG , and choose a small G—invariant disk D about Xg s and let )30 = Y—interior
(D). First, observe that IS # ¢ . Otherwise, we would consider the classifying map of the
regular p—fold cover Ly~ %,/G, say f: 5,/G — BG, and conclude that

f| #%4/G = ' : S' — BG is null~homologous in H,(BG) & I/pl & x,(BG) , hence
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null-homotopic. But r_l(ﬂ):o/ G) = 6D is connected, 8o that f’ cannot be null~homo-
topic by covering space theory. Consequently, there exists xy € 2% . Let
EG = {xo,xl,yl,...,y a} , and consider the permutation chain complex C,..(Eo) , in which
Cy(Ey) 2 Colxp) @ Cp(Zyxg) = L@ E(%) and &((%,) 2 7% @ (ZG)" . Since
H,(%,) = 0, it follows that Ker 4, = Z, ¢ H, (&) ® C,(Z,) and

a
0 — 2y — C;(T,) ~1. 8y(Z,) — 0 is exact. Therefore, Z, is stably ZG—iso-
morphic to 1%, where I is the augmentation ideal of Z[G] , which is isomorphic to
Z{(¢] becauwse G = Z/pl . Hence H,(T) H,(Z,) 2 Z[(]% @ (ZG)" as claimed.

Next, we assume that =G + ¢ ,s0that G is necessarily cyclic, but possibly having
composite order. Unlike the case -of G= H/pkll when p = prime, in this case EG = one -
point is possible, as shown by Conner—Floyd [CF] (see also Ewing—Stong [ES]). Thus,
‘we consider two cases below. Note that the case G = E/pkll is covered by the first case
below since agcording to Ati}ah-—Bott and others )3 # one point.)

4.3 Proposition. Suppose I has at least two points, and let {H, :i=1,..,0} be the
collection of non~—trivial isotropy subgroups considered with repetition according to the

H.
number of orbits in ¥ ', and excluding two copies of G corresponding to the first two
points in O | Let ¢; bean |H;|—th root of unity and Z{({;] with the usual

n
I[H,]-module structure. Then H,(Z)¥ ® (ZG ®y I[(] @ (IG), where
i=1 i

= gy [rask By (%) -.21 +g.il-r(|ni|-1)] .

Proof. Let xy € EG , and consider a small G~invariant disk neighborhood of x; (avoiding
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other fixed points), called D(x) . Let &, = I—interior (D(x,)) . As before, Z, admits a
G—CW structure in which C,(Z;) and Cy(%;) are ZG—ree, and Cy(Z) is a permu-
tation module. Let x, € E%; # ¢ and consider the augmentation C(Z,) Cy(xp)
which is ZG—split via the inclusion {x,} CZ;. Thus Cy(%)) ¥ CO(EO) ® 7 . Consider the
following short exact sequences:

0 —— CyfBg) —— By (%) ——0
0 —— BI(EO) —_— ZI(EO) — HI(EU) — 0
0 — Zl(Eo) —_— CI(EO) — 60(20) —_—0 .

From these, it follows that BI(EO) is ZG—free, and HI(E) ] Hl(EO) is stably isomorphic
to ZI(EO) . Since all modules are Z—free and B, (%) is ZG—free, reflexivity of IG
implies that the second exact sequence is ZG—split. Leaving out {xy,x;} CE® from the
sin@_ﬂa.r set of the action, it is clear that ﬁd(EO) is stably isomorphic to ? I(G/H))

where H, are‘isotropy subgroups of the fixed points in £ — {x;,x,} . Therefore, Zl(ZO)

is stably ZG-isomorphic to ® o'T(G/H,) . We also have

w'I(G/B,) ~ IG O wy () ~ TG ® T[(,] , where the last stable isomorphism is due to
1 1 1

wIHi(?I) ¥ I[¢;] as Z[H,]-modules, because H; is cyclic. o

4.4 Proposition. Suppose 30 = {xo} . Then G is a cyclic group whose order is divisible
by at least two distinct primes. Let {Hi :i=0,1,...,0} be the collection of non—trivial

isotropy subgroups such that Hy =G and H, # G . Then H,(Z) is completely deter-
n
mined by the permutation module B= & Z[G/H;] and an element
i=1

n
KT) e @ H/lﬁill from the exact sequence:

i=
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0 — B (Y —2[c]tez-£BoI[G]* —0 .

A\ n .
Here, ¢ represents a homology class in Bom(Z[G]*®7,BeZ[G]%)x @ 7/|E,|Z

j=

and class(p) = () .

Proof. Consider the commutative diagram below, in which Q = coker( 62), Ce = Cu(%),

and
Co2Z[G/G) ©Im(8,) ¥ T@B, =TI ®B® (IG)° :
0 0
By — B,
61 ©
0—1Z —-*Cz—-—-rCl L — Q — 0
I: I:.— .i ]
0— I ——CHh— 17 a—:Hl(X)——-»O
0 0
In the sequence 0 —— B, () —— Q —£— B, ——0,Q 2 2@ (ZG)* and

n
B,¥B®(ZG)*, with B= ® Z[G/H] .Bere, we use the fact that G must be cyclic,

1=

hence it has a periodic resolution 0 —— I — IG — ZG — I — 0 . Comparing this

with the top horizontal row and applying the Schanuel Lemma (Swan [Sw]) we find out
Q is stably ZG—isomorphic to Z . Moreover,
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N\ N n _
class(p) = 9(X) € HomG(é',Bo) 8 Hom,(Z,B) = 'Ql I/|H;[T determines H,(Z) up to
i=

stable ZG—isomorphism.

4.5 Corollary. In the above Proposition, if §(X) =0, then
H(Z)xZ0(® Z[(])®Z[G]®, where
1 i>0 !

= rorlaak B (D -1- 3 (15]-1)] .

i>0

Proof. If §(X) =0, then class(¢) =0 and in the sequence

0 —H,(Z)—1I [G] lez 2 ,Bo (ZG] L , ¢ factors through a projective
IG—module P, which without loss of generality we may assume to be a free ZG—module.
We form the following pull-back diagram (the left square) and complete the commutative
diagram as indicated below:

0—— Kerp/ — T 2 -+ P » 0
) N ”’/7 l
0 —— H, (%) — (26) ‘o7 —— Bo(zG)t — 0

l

0 0

Since P is free, ¢’ splits, and this gives a splitting of % . Therefore,
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PO Ker(p')uTal®(1G) @ u'B .

Identifying the terms P = (IG)*, Ker ¢’ 2 B (%), and v'B ~ eozz[ci] , we conclude
i>
that H,(Z) is stably ZG—isomorphic to Z @ (® Z[(.] . Since cancelation holds for
i>0

ZG—modules when G is cyclic (Swan [Sw]), the desired formula is obtained.

4.6 Corollary. Suppose R is a commutative ring such that RG is semisimple (e.g. a field

of characteristic zero, or prime to order of G ). Then, in the representation ring of RG
’ n
we have the following equation: [H,(%R)] = [R] + m[RG] =) [R®g RG] ,and-m
i=1
is determined by counting the ranks of corresponding free R—~modules.

Proof. The sequence m Proposition 4.4 splits in the representation ring of RG due to

semisimplicity. B

The above corollary for R = € is proved by A. Broughtor [Br] using Eichler’s trace
formula.

The final possibility is when IO = ¢ while G does not act freely on £ . In this
case, G need not be cyclic, and the formulas are somewhat more complicated:

4.7 Proposition. Suppose that G acts without fixed—points, but not freely. Let
{Hi :1 €I} be the collection of isotropy subgroups considered with multiplicities as be-
fore, and let € be the augmentation homomorphism (e(gH;) =1) and By = Ker(e) in
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¢ : @ I(G/H,) — I . Then, up to stable ZG—isomorphism, the ZG—module is deter-
i€l

- *
mined by By, and a homology class &(Z) € H,(G;By) . Indeed, if ¢ : & *(By) — I,
*
represents 4(¥) via the isomorphisms Ii/cn}xG(w—2(B0),H) ¢ H,(G;Bg) , then
—_ — *
BY(Z) 2 v (Ker ¢) and H (5) 2 o ((Kerg) ).

Proof. We have an exact sequence 0—-o1m81-—-+00-—§—-oll-—-—>0 in which

m
C,2(ZG)t @ (® I(G/H,)), B, #1.Let {¢:1<i<m} and fu;:1$j <R} bethe
i=1

1=

obvious generators and basis elements for the two factors in C0 . We choose a new basis
for (ZIG)F‘ factor, by fixing Hy $1, ey € ZI(G/H,) its ZG—generator, and setting

vi=u;- ey - Such an ey exists because the action is not free by assumption. With the

new basis {vj : 1< j< L}, weobserve that Im 61 is ZG—stably isomorphic to B, in

the statement of the proposition. Again, from the exact sequénce
1 x *
0———03(2)—+Z1(2).———+Bi(2) -0

as in the preceding cases, we get the following exact sequence, up to ZG—stable iso-

morphism:
1 -] 1
0—HY(Z)—w (BO)—-H.; (I) — 0 .
From the latter, we have:

0— w—IHI(E) — w—z(BU) —2 a1 ——0
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N\ — ~_
and the classes of ¢ in Homg(w 2(130),71) ~H 2(G,BO) 2 H,(G,B;) is the class ()
mentioned above. One checks that B'0 and @(X) together determine the stable iso-

morphisni class of H,(Z). -



- 24 —

Section 5. Group Actions on Kihler Surfaces.

In this section, X denotes a simply—connected compact Kahler surface, and we
assume that G is a {inite group acting by complex automorphisms. Unlike general smooth
manifolds, the Kahler condition imposes strong conditions on the action, and consequently

on the ZG—representation afforded by H2(X;ZI) .

5.1 Proposition. Let G be an arbitrary non—trivial finite group acting on X as above.
Then H2(X) cannot be ZG—projective if G preserves the Kihler cohomology class in
H3(X) .

Proof. It suffices to show this for G = le . Consider the Serre spectral sequence of the

* * *
Borel fibration E x3 X — BG, H (GH (X)) 3 Hg(X) . If G acts freely on X, then
H2(X) ~I1®1@(IG)°, hence H2(X) is not projective. Suppose xG ¥ ¢ . Let
t€ Hz(G) o le and let a € H2(X) be given by the Kihler forﬁ, so that
[ada] = [X] = cohomological orientation class of x . Consider the cup prociuct in the
spectral sequence, as well as the H*(G)—a.lgebra. structure of the Eo—term in the follwoing
commutative diagram:

54(G) ® BY(G,H%(X)) GHO(G,.Hz(X))-—-———;HQ(G) ® 50(G,H%(X) & EY(X))

B4(G,BY(X)) ® HY(G,BY(X)) g2(c) ® BY(¢,m(X))
BY(G,EY(X) @ B4(X)) — 5%q,m%X))

Since t-[X] #0 in H2(G,H4(X)) , we have 0#t-(eAa) = (ta)Aa, hence
t-a #0. Therefore a € HO(G,H2(X)) = Hz(X)G cannot be H*(G)—torsion.
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Consequently, IEI‘(G,HZ(X)) #0, s0 that H2(X) cannot be G—projective.g

5.2 Corollary. Let G = le act on the simply—connected Kahler surface X preserving the

Kahler cohomology class. Then ) £,(XC)2 3, where f = i~th Betti number, and
‘ 0
xC # ¢ by hypothesis.

Proof. Since XG # ¢, and for degree reasons, the Serre spectral sequence of

Eqn xgX — BG collpases. (See e.g. [A3]). Now the above proof shows that
H'(GE/(X)) #0 for i =024 . Therefore, B (G)-rank of Hg(X) is at least 3. The
localization theorem ( [HS] or [Q]) implies the desired conclusion.

In the following theorem, conditions are given which guarantee that modulo ZG—pro-
jective modules, G must act trivially on HZ(X) . Recall Theorem 4.14 of [A3] IIL.

5.3 Theorem. Suppose X is a Kahler surface, 7;(X) =0 and G acts smooth but not
freely, and G = (llp)s , 8 2 1. Assume that for each cyclic subgroup CL G,p > ﬂO(XC)
and B;(X°) = 0 . Then the following hold:

(a) there exists an m > 0 such that the ZG—module HQ(X) v 1™ &M where G acts
trivially on 7% and M is ZG—projective.

1) x(X%) = x(xC)=m foreach CCG,|C| =p,and rank(G)<2.

(¢) If rank(G)>1,then G acts freely on the set of symplectic 2—forms of X ; hence

G does not preserve any symplectic structure on X .

Proof. Since ﬁl(Xc) =0, XC consists of 2—spheres and isolated points. Moreover,
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H5,(X) 2 (%) @ Z[C]" as ZC—modules, where C acts trivially on Z°(C) , and
1(C) = x(X©)-2 . Also, G/ must act trivially on 7(X®) since p> G,(XC) by
assumption. Hence G/ ¢ must act effectively on each component 52 , and each isolated
fixed point in XC must be an isolated G—fixed point. If G=C = le , then we are done.
If rank(G) > 1, then G cannot have a free action in the punctured neighborhood of an

isolated fixed point. Since XC + ¢ forsome C#1,G/ @ must act effectively on each

copy 52 C XC . Therefore X© = (.‘,(C)G/c # ¢ . From this (c) follows, since if C
preserves some symplectic 2—form of X, then XC must consist of exclusively isolated
fixed points. (Consider the complex C—representation on the tangent space TQX for some
QE XC , and observe that if a symplect form is preserved, then the two eigen—values of
any generator of C must be distinct and not equal to 1). In view of the above observation
that XC contains copies of S2, and that XC I XC # 4 foreach C# 1, we see that

each C, and hence G, acts freely on the set of symplectic 2—forms of X . Since each

G/
s2 ¢ XC contributes one copy of s9¢ (XC) C , then x(XC) = x(XG) . It suffices,
therefore, to prove (a). But () is proved in Theorem 5.6 of Assadi [A3] OIL

Finally, the actions considered in this section are "regular” in the terminclogy of
[A3]. Hence, the general theorems of [A3] apply to this situation, and the same prin-
ciples and argument may be used to study the ZG—representations afforded by H2(X) for
a compact Kahler surface. In particular, the fixed point set of the G—action and a suitable
group cohomology element completely determine the ZG—module H,(X) as in Proposition
4.7 of [A3] L "
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In this section, we consider non—singular projective surfaces X defined over an

algebraically closed field of arbitrary characteristic k . The analogue of simply-connecti-
vity for complex surfaces is the condition q(x) =p g(X) = p,(X) =0 i.e. the irregularity is
zero. Let J¥_ be the canonical sheaf of X , and let 0%(X)= H'(X; J¥_) be the k—vector
space of "holomorphic 2—forms" of X . We compute the kG—representation ﬂ2(X) for the
free G—actions on X . A suitable cohomology theory is Cech cohomology using an open
covering % of X consisting of G—invariant affine subsets of X . Such a Cech cohomo-
logy group coincides with Grothendieck’s coherent cohomology, i.e.

B'( %; %) ¥ 1%(X) . On the other hand, by Serre duality,

0%(X) & Homy (BX(X; 0y),k) & Hom, (B%( #%; 0y)X) . Consider a free G—action on X,
and observe that the variety X/G exists (Mumford [M]) and it is non—gingular and
projective. Moreover, the morphism {: X — X/G' is an étale principal covering. Let

%, be a suitable finite covering of X/G by affine open sets, and let

Y= {{"1(\/0) Vg E. %,} - Theneach V= f'l(VO) is also affine, and we have

1 |V:V——V, is given by a k—algebra homomorphism ¢:R—5,ie,

VO = Spec(R), V = Spec(S) and ¥p = f'1'|V .

6.1 Theorem. Let-X be (an irreducible) non—ﬂingulaf projective k—surface with
q(X) = 0 . Suppose that G acts freely on X by automorphisms. Then the kG~module
0%(X) is stably kG—isomorphic to w3 (k).

6.2 Remark. Compare this with Corollary 3.2 which describes H2(X;Z) stably ZG—iso-
morphic to an extensgion of wé(ll) and u'G's(E) . For k = €, the Hodge decomposition
vields HY(X,C) ~ B20(x;¢) @ BY2(x;¢) ® B (X,C) . Since H%® and E®? are dual
to each other, and 13(X) & H>0(X;€) the above result implies that from
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B(X;€) ¥ 0%(X) ® Bom(P%(X),€) @ €[G]* & w3(C) @ Hom(w3(€),€) ® C[G]® we
conclude EM(X;€) v €[G]¢.

6.3 Problem. Compute the ZG-lattices H'¥(X,€) n HIH(X,T) .

Proof. Consider the Cech complex C = C ( %) of kG—modules for the coherent sheaf
0y inwhich BY(C) =k, BY(C") = HY( % 0y) ¥ BY(X; 0y) since

q(X) = pg(X) —-p,(X) = dimkHl(X; Ox) and q(X) = 0. by assumption. Moreover,
H(C") = BY( %; 04) 4 BY(X; 0y) =0 for i>2,and C'=0 for i sufficiently large,
since % is a finite cover. In the case of a complex analytic manifold, we could use the
analytic topology, and choose % sufficiently refined until 1(VO) NG x Vy.isa free
orbit of V0 up to G—isomorphism. This would imply that the Cech complex C* is a free
G—complex. In the general case at hand, we have used Zariski open sets, and we need to
resort to a somewhat different argument. Consider ¢ : R —— S such that

%0 : Spec § — Spec R is the given étale covering £y =f|V:V —V,, V =f‘1(v0) .

Then va V admits a section, so that va NGxV asVO-schemeswithfree
0 0

G—actions. Therefore, S ®p S is a free k[G] —module. Consider the kG—isomorphisms:
5&S5yS§ QR(R @kS) ~S @R(S A R) (S QRS) @ R which shows that 59,5 is also
kG—free. This implies, in particular, that S is kG—projective. Hence CO( %) is a pro-
jective kG—module. A similar argument applies to show that Ci( %) is kG—projective.
Consider the dual chain complex Cy = Hom,(C k) of kGprojective modules, in which
HO(C,..) &k and H2(C,..) = Homk(nz(x),k) are the only non—vanishing homology groups.
It follows that B2 =Im 82 C C2 is projective over kG, since

0—C,—C,_; —*... — Cq3— By — 0 is exact for some sufficiently large

n . Moreover, Z, = Ker 9y N wé(k) in view of the exact sequence:
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a
2 .
0-—-—122—-——-¢C2 .C1 .CO-—--rk—-rO.

The exact sequence 0 —— By — Zo — Hz(C*) — 0, splits, since kG is injective.

Therefore, Ho(Cy) ~ Z2' = wé(k) is an stable kG—isomorphism. Hence

n%(x) = BX(C") = Homy (v (k),k) = g (k) as claimed. -
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Introduction. Let X be a topological space with a finite group G acting on it. For
suitable coefficient systems and cohomology theories, H*(X; F) becoﬁes a G—represen-
tation. Study of such representations and their relationship to the symmetries of X has
been the subject of extensive study. In our previous paper [A1]—[A5], we have studied
such representations from the view points of group cohomology and local—global con-
siderations. In particular, [A3] considers the integral representations on Hz(X;H) when
X is a compact simply—connected 4—manifold. In the following paper, we continue [A3]
by specializing to the case of algebraic curves and surfaces.

Historically speaking, such investigations for complex projective curves (compacﬁ
Riemann surfaces) goes back to the 1893 pai;er of Hurwitz, in which complex represen—
tations of cyclic automorphism groups of Riemann surfaces were studied. His work was
completed by Chevalley and Weil, also using analytic techniques. See Weil‘s collected
works Vol. I, pages 529 and 532—533 for historical details and a discussion of these results.
Chevalley—Weil’s results were further generalized by Tamagawa to the case of curves over
fields of positive characteristic with free regular automorphism groups. Tamagawa’s result
is formulated in terms of unramified Galois extensions of the corresponding function fields.
This point of view has been further developed by number theorists, in particular, Madan
and Valentini among others. (See Valentini—Madan, Journal Number Theory, Vol. 13,
1981, for a historical survey and further developments.)

Some of the results of the present paper may be considered as modest generalizations
of the above—mentioned results. Such generalizations are in two directions. First, we have
determined the integral representations Hl(X,H) for a compact Riemann surface with an
arbitrary finite automorphism group (Section 4). Since the structure of ZG—modules is a
complete mystery for almost all finite groups, our formulations are in terms of group co-
komology in the general case. Secondly, we have studied certain representations for suitable
non—singular projective surfaces in analogy with Chevalley—Weil and Tamagawa’s results.

Namely, for free G—actions on projective surfaces X where p a(X) =p g(X)



)

(p, = arithmetic genus and p g = geometric genus). For curves, p a'(X) =p g(X) always.
But for surfaces, this is a real restriction, and it should be compared with
gimple—connectivity hypothesis for complex projective surfaces. In Section 6, we have
determined the kG—module HO(X; Jx) (= vector space of regular 2—forms) in analogy
with the case of regular 1-forms for curves. Section 5 makes a preliminary study of the
IG—rtepresentation HZ(X;II) when X is cbmpact Kahler. The general theme of sections
3-5 is to relate the topology and geometry of the underlying symmetry to the homological
properties of suitable representations. In Section 2 we have gathered some definitions and a
brief discussion of some of the homological notions for the convenience of the reader.

Further preliminary material may be found in [A3] or in the references.

Note added in proof. Since the appearance of the first version of this paper, several related
works are brought to my attention. I would like to thank Chad Schoen for discussions on
his interesting results in this direction a.ndnfor sending me his manuscript [Schoen]. I am
also grateful to G. Ellencwejg and T. Koho/o who brought to my attention the related
works of S. Nakajima [Nakajima 1 & 2] which go deeper in the number theoretic direction

and seem to have a slight overlap with some of our results.



Section Two. Preliminary Notions.

In the following sections, we will use the same notation and conventions as in [A3].
However, we review some of the notation for the convenience of the reader. Let G bea
finite group, and R be a commutative ring with unit, e.g. R = 7, ilp = p—adic integers,

F p Of € . The RG—modules are finitely generated and R—free. Finite generation may not
hold for some of the RG—modules in the chain complexes used in Section 6. However, the
cohomology and homology groups are all finitely generated, and this will be sufficient. Two
RG-modules M1 and M, are called projectively stably RG—isomorphic, denoted by

M;~M,, if there is a commutative diagram:

E iy
M1 ® P1 ? ,M2 ® _P2
Ml A.M2

where P, and P, are RG—projective, j and 7 are the obvious inclusion and projection,
and g is an isomorphism. If P1 and P2 are RG—free, then we call M1 and M2 stably
isomorphic. Stable isomorphism is an equivalence relation. Heller [Hr] has defined loop
and suspension operations for RG—modules when the notions "projective cover" and
"injective hull" make sense. However, projective covers do not exist, in general, for
IG—modules although they exist for IFpG—modules or flp [G] ~modules. Here, we can
define a stable version of the "Heller loop—operator", which we denote by «, on the set of
stable equivalence classes of RG—attices (i.e. R—torsion free RG—modules). Namely, w{M)
is stably well—defined (by Schanuel’s Lemma [Sw] ) from the exact sequence

0 — (M) — (RG)¥ — M — 0. If we use projective RG—modules instead of
(RG)Y, then w(M) is well—defined up to projective stable equivalence. Then we set
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o'(M) = (M) and 'T1(M) = o(oA(M)) inductively. For i € I, this definition has a
natural extension, so that wi(M) are stably well—defined for all i €7 .

We will also make use of a construction for RG~modules from cohomology classes
which is explained in [A3]. Our description is a generalization and a stable version of the
construction used by J. Carlson [C] in modular representation theory. Recall the Tate

-cohomology ﬁi(G;M), i € Z asin e.g. Cartan—FEilenberg [CE] . Then

N\ def .
Hom~(M,R) = HO(G,HomR(M,R)) is isomorphic to the group of RG—homomorphisms

f: M — R modulo the subgroup of those which factor through an RG—projective. (See

Mac Lane pp. 74—75 [Mc] for related discussion. It turns out that

0 o def /\ 0 “n * *
H'(G,Homp(w (M),R)) = Hom(w (M),R) ¥ H(G;M ), where M = Homp(M,R)

with the diagonal RG—module structure. Now, given a cohomology class, x € iIn(G;M*) ,
we may represent x by an RG—homomorphism ¢ : »"(M) — R which is well-defined
up to factorization through RG—projectives. ¢ may be assumed also surjective. Define
L?9 = Ker(y) . Then LSO is well—defined up to projective stable equivalence. (See [A3] for
further discussion). The notation class () will be used for the cohomology class repre-
sented by ¢ . The functor Exté(-,—) is also constructed in analogy with Tate coho-
mology ﬁ[i(G,w) using complete resolutions (see e.g. Cartan—Eilenberg [CE] or Carlson
().

An algebraic generalization of a Poincaré duality space is the notion of a chain com-
plex with duality. Let Cy4 be a bounded connected chain complex of dimension n over a
ring R, sothat Hy(Cy) 2R and C;=0 for i<0 or i>n (for some n > 0 ). We call
Cx a chain complex with duality of formal dimension m , if there exists a chain homotopy
equivalence h: Cm—i — Ci between C4 and C* . The cellular chain complex of a
Poincaré duality space or a closed oriented smooth manifold are basic examples of such

complexes with duality.
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In Section 5 and 6 we will need some basic facts from algebraic geometry. The stan-
dard reference for the definitions and concepts used in the following are Hartshorne [H])

and Mumford [M1] [M2].



Section 3. Free Actions.

In this section we study homology representations of free actions.

3.1 Theorem. Let X, be a (k—1)—connected bounded RG—iree chain complex with duality

of formal dimension 2k . Then:

(a) The RG—module Hk(X*) is completely determined up to stable equivalence by a
homology class x € Hoy (G;R).

(b) Let ¢: w—2k"'1(R) —+ R be a representative for x. Then Hy(X,) is stably
RG—isomorphic to ka ¢

—k-1

(c) Let : w (R) — wk(R) be such that class(yp) = class({) = x under the

isomorphisms
Fom (™ m), () 2 QG(w‘zk‘l(R), R) ¥ Hy (GiR) .
Then Hk(X,) is completely determined (stably) from the short exact seqeunce below:
0 — H(X) — o ¥ 1(R) -5 JK(R) —0 .
The following corollary has been proved for k = 2 by Hambleton—Kreck [HK].
3.2 Corollary. A symmetric expression for Hk(x*) is obtained as follows. Let

z € Extcl;(w_k—l(R), wk+1(R)) . Then the extension class z is represented by the short

exact sequence:

0 — FFL(R) — H (X4) @ (RG-Free) — v =1 (R) —0 .



Proof. Since X, is R—chain homotopic to its R—dual X* = HomR(X*,R) , we have
Hi(X*) =0 for k + 1 <i< 2k—1. Moreover, without loss of generality, we may assume
that X; =0 for i 2 2k+1 (see e.g. Assadi [A3] Lemma 4.2.). The connectivity of Xy in
the above—mentioned dimensions gives rise to long exact sequences below:

0—B, ; —X — . —Xj—R—0
ey :
0—R —:x2k b oo %Xk+1—————bxk-—+coker(c9k+l)—~——90 .
We conclude that B, | = o*(R) and coker(dy ;) = v ¥ (R) . To identify Hy(X.),

we consider the commutative diagram below:

0 0

| !

(D) 0— R — Xy — ees xk+1_-.zk-9_-»£{k(x.) —_0

R OFE

0—R — Xy, — o Xy — X, '—:cok"er(ﬁk_H)-——»O

'L"k -,
By 1/ By

(=1
Q‘

The homomorphism j in the above diagram is induced from the inclusion

i: Zk — Xk . Thus we have the short exact sequence:

0 — Hy(Xy) — 5™ H(R) 5 o5(R) —0



of RG—modules, and H,(Xs) is stably determined by the class

-\
(p) € ]SIomG(aJ_k_1

(R), wk(R)) . Using the isomorphigms
fo (R, oK(R) & Hom (B (R)R) 2 ExigE R R) ¥ Hyy (GiR) , we
obtain the class x € H,, (G;R) corresponding to class (y) . Let (: w_zk_I(R) —~ R
be a representative for x . Then L ¢= Ker(¢{) = w_k(Ker @) , 80 that Hy(X,) = J5L ¢

This proves the Theorem. -

Proof of Corollary 3.2. The homomorphisms j and » of the diagram (D) in the proof of
Theorem 3.1 above give rise to the following short exact sequence:

, . ,
(E) 0—Z, 2 I%Hk(X)GXk—E-L-»coker(ak_i_l)—-»O.

k

Since coker(d) +1) = w_k—l(R) and Z, = wk"'l(R) from the exact sequence

00— Zk - xk - ceren — XO ~—— R — ) we obtain the desired short exact

sequence of the corollary. It remains to determine the extension class
N\ - N\ oy
z € Ext L(coker(d, , ,),Z,) = Ext L (s ¥ L (R), FTI(R)) ¥ Ext 32X Y(R R)
"G k+1/%k G A G
) H_zk_l(G;R) = Hyy (G;R) . We apply Hom (coker(d, +1),—) to the exact sequences

a -
0—2Z, — X, k_, B, ;—— 0 as well as (E). We get the commutative diagram

below in which 6’ and é'E are the connecting homomorphisms of the last two sequences:



A\

Px 6E
//\ 6! /\ 1
HomG(coker( 8k+1) By 1) N » Ext o(coker ( 8k+1) » Zy)
A\ ~ AR
Bomg(v ¥ (R), F(R)) 2 yk Lr), JS(w)
\ sz(G,R)

Since z = & (identity) and p4(identity) = class(p) = class({) = x, and all other isomor-

phisms are obtained by dimension shifting, it follows that z and x correspond under

these natural isomorphisms. -
3.3 Theorem. Let X be a (k—1) connected finite dimensional Poincaré complex of formal

dimension 2k . Let G act freely on X andlet f: X/G — BG be the classifying map
for the G—covering X —~— X/G . Then:
(a) The homology class x = {,[X/G] € H,, (BG;I) = H,, (G;Z) completely determines
the ZG—module Hk(X;ZI) up to ZG—stable isomorphism and vice versa. In fact,
H, (X) is stably isomorphic to oL ¢ where class({) = x as in Theorem 3.1 above.
(b) Each x€ H2k(G;ZI) is realized by a free analytic G~action on a compact connected
Riemann surface when k = 1, and by a free smooth G—action on a compact

simply—connected 4—manifold when k = 2.

Proof of Theorem 3.3. Applying the result of Theorem 3.1 to the free ZG—chain complex
C«(X) , we conclude that the stable ZG—isomorphism class of H, (X) is determined by
x = class(p) € Hom(coker(4, +1), B,_;) ¥ Hoy (G;T) . We compute x in terms of the
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induced homomorphism f, : Hoy (X/G;T) — H,, (BGZ) = Hy, (G;Z) as follows. Let
Ee= C*(EG) , where E5 —— BG is the universal G—covering as usual, and

Cs = C4(X) . The RG—chain map T 4 : Cs — B is induced by ¥T:X—E;. We
identify (E4,8%) as a free ZG—resolution of Z , Ker %k = wzk"'l(ﬂ) , and

coker(dy +1) = wk(H) . Consider the commutative diagram below induced by T and the

above identifications:

0— (1) — B, — . B —E B » WX (T) — 0
0—— H,, (X) —C,, ——....C 0k+1—‘C . y Q -0
2k 9k k+1  Cy ' 0.

The class f,[X/G] € Hoy (G;Z) is determined by
f € Hom(H,, (BG)) = Hom(Z,H,, (G;Z)) . The shifting isomorphism, denoted by

o(**) : Fomg(Q4T) 2 flom(+*+1(Q), K+(1)

sends class(A) to class(T) = f, in the diagram below:

flomg (@, o4() 250 fomg(v*1 (@), K1)

N

H,, (G;1T) — Homg(H,, (X), o2 () .

1Pd

Therefore, it suffices to prove that class(A) = class() . Consider the commutative

diagrams below in which (I) determines class(yp) :



0 0
1T
(D) B, ,— B,
I 0
0——’Bk—-+Ck T . Q 3 0

0 0
B1
/N
A k
(II) — @ (1)
xl v lx’
c #__ E
k k
(1m1) 0 —— 5(2) —E,_, —  E, I —— 0
e % e |-
0———-+Bk 1-———ﬂCk_1 N C0 — I — 0

e . ky . N\ T N k k
Under the shifting isomorphism ¢(w") : Hom5(Z,1) —— Hom (™ (Z), v (Z)) &
PN
~ Homo(B, _, wk(ﬂ)) in diagram (III), cla.ss(idﬂ) corresponds to class(r,_,) . Thus

the isomorphism (7))« below:
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A\ ~ N\ k
HomG(Q, Bk—l) W HomG(Q, w (Z))
Hgk(G;H)

sends class(y) to class(A), and this is what we wanted. Thus part (a) of the theorem is
proved. The proof of part (b) is included in Assadi [A3] Proposition 4.4 (c) for the case
k=2.For k=1, the Hurwicz homomorphism 5°(BG) — H,(BG) = Hy(G;1) is

surjective, hence part (a) implies the desired conclusion. =

3.4 Corollary. For every x € H2(G;R) , there exists a free projective G—action on a
non—singular projective curve/C such that Hl(xan;ll) is ZG—stably isomorphic to
(wlL C)* where ( € HomG(w_s(H),ﬂ) represents x under the isomorphism
HomG(w_3(R),Il) o fi_a(G;Zl) = Hy(G;T) , and X, 18 the underlying space with the
usual topology.

Proof: According to 3.3 (b) above, there exists a compact Riemann surface ¥ and a map
f: X — BG such that f4[X] = x € Hy(BG;Z) = Hy(G;Z) . Let X be the G—covering
induced by f together with the free G—action on X via covering translations. Then
H,(X;Z) is stably ZG—isomorphic to wl(L C) and class(¢) = x by Theorem 3.1 above.
Now G acts on the compact Riemann surface X by complex analytic isomorphisms, and
(X, ;) is ZG—ismorphic to Hom(H,(X),Z) = (o'L C)* and dlass(¢) = x by
Theorem 3.1 above. We may assume that the genus (¥) 2 2, hence genus (X) 2 2, 80
that the canonical sheaves ¥y, and Ky are ample. By Serre’s GAGA principle [S1],

Y and K 5 are algebraic. Thus, X is a complete non—gingular curve on which G acts by
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algebraic isomorphisms, J¥ X is an ample G-line bundleon X, ,and »: X — ¥ =X/G
is an algebraic morphism for which % » = (me K X)G . Since the pluricanonical
embedding X — PI'(X, ¥ im) is equivariant, the G—action on X is projective.g

3.5 Examples. (1) If G = Z/pZ, then H,(G;I) = 0 = H,(G;Z) = 0 . Thus, if
dimpX = 2, then for 1 = Il—)(g-—l) BY(X) 2 707 ® (ZG)?", and if dimpX =4 and
7(X) =0, then H2(X) ~vI1@©18 (ZG)® where I is the augmentation ideal. Since
I~ Z[(], where ( is a primitive p—th root of unity with the usual ZG—module
structure, then H2(X;T)~ Z[¢] ® Z[¢] @ (ZG)® .

(2) Suppose G has periodic cohomology, so that the p—Sylow subgroups of G are
cyclic for p = odd and either cyclic or generalized quaternionic for p = 2 . Then
Hz(Gp;H) =0=H 4(Gp;ﬂ) for all p—Sylow subgroups Gp C G . Therefore,

Hy(G;Z) = 0 = Hy(G;I) , and we have the following conclusions. For dimpX =2,

R
HY(X;T) is ZG~isomorphic to w*(Z) ® w~%(Z) ® (ZG)*" . For dimpX =4, 7,(X) =0,
BY(X;T) = o3(Z) @ v 3(Z) ® (IG)° .

(3) Suppose G = (Z/pI)® then H,(G;Z)  I/pI and H,(G;I) 2 (Z/pT)? . There-
fore, in this case we get non—trivial examples correspogding to the non—zero elements of

Hy (GT) .

At this point, one may raise the point that the procedure in Theorem 3.3 (b) to
produce free G—actions on simply—connected smooth 4—manifolds involved non—algebraic
arguments. That is, surjection of QEO(BG) onto H,(BG) produces f;: Wé — BG
such that fys [Wg] =x€H 4(BG) and smooth surgery on the map f, corrects the
fundamental group to give f: W% __BG with f.[W] = x . Then the universal cover of
W ,say X, is the desired smooth simply—connected 4—manifold whose homology
IG-module Hy(X) realizes the class x € H,(BG) . It is not clear if either one of these

steps can be achieved using complex manifolds. Thus, we pose the following
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3.6 Problem. Which homology classes x € H 4(G;E) arise in Theorem 3.3 for analytic

G—actions on compact complex surfaces X with rl(X) =07?
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ion 4. Gr Actiong on Ri n
In this section, we assume that G is a finite group acting effectively on the compact

Riemann surface ¥ via complex analytic isomorphisms. Thus, G preserves the orientation

and the isotropy subgroups H; C G are all cyclic. Moreover, forall H, #1, EHi consists
of at most finitely many points of X . We delete the trivial subgroup (i.e. the principal iso-
tropy subgroup for all effective finite group actions) from the list of isotropy subgroups of
the action. The orbit space ¥/ = £/G is still a compact Riemann surface and £ —Z— ¥’
i3 a ramified finite covering. We may choose a triangulation for ¥/ such that the ramifi-
cation points are all included in the set of vertices of £’ , and we lift this triangulation to
¥ ,togive ¥ an equivariant triangulation. Under these circumstances, ¥ becomes a
G—CW complex, and the cells of ¥ provide permutation bases for the cellular chain
complex of ¥ . This makes Cy(X) intoa péfmutation complex. In Section 3, we proved
that if G acts freely on ¥, then the ZG—module H,(X;Z) is stably ZG—isomorphic to
wch , where class(¢{) =x € H,(G;I) is the image I, [Z/G] € H2(BG;E) = H,(G; 7)) |
under the homomorphism induced by the classifying map f{: £/G — BG . Moreover,
every element of H2(G;ﬂ) ariges by such a free G—action. For instance, if H,(G;Z) =0,
then H,(5) 2 v%(Z) @ v~2(7) @ (ZG)*, where  is determined by counting I~ranks of
both sides of thig equation. We proceed to determine the ZG—~module structure of H,(%Z)
for non~{ree actions in the same spirit.

First of all, the following analogue of Assadi ([A3] Theorem 5.4) is easily
established.

4.1 Proposition. With the above notation, the following are equivalent:
(a) HI(E;H) is8 ZG—-projective.
(b) For each prime order subgroup CC G, HI(E;E) is ZIC—projective.
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(c) For each prime order subgroup C( G, xC consists of 2 points.
Furthermore, if HI(E;H) is ZG—projective, then p—Sylow subgroups of G are
cyclic.

Proof. (a) 2 (b) and (b) 2 (c) by considering the spectral sequence E x cZ~— BC
and applying the localization theorem (Hsiang [Hs] or Quillen [Q]). From (c) it follows
that p—Sylow subgroups of G must have ope—dimensional faithful complex linear repre-
sentations, hence they must be cyclic. Thus, maximal p—~elementary abelian subgroups of
G are isomorohic to Z/pZ . Therefore (b) 3 (a) by Chouinard’s theorem (Chouinard
[Ch] or Jackowski [J]). (c) = (b) is also possible by reversing the spectal sequence
argument for (b) = (c) . For a more elementary argument, consider L, =¥ ~ {x} where
x € £C . Then H,(%,;) = H,(Z) and H,(X;) = 0. Therefore, H,(X) is the only non-
vanishing homology group in the ZG—free chain complex C*(EO,Eg) . Hence, it is stably
ZC—ree, and since C is cyclic, H,(X) is ZC—ree. -

The following lemma and the above discussion take care of |G| = prime .

42 Lemma. Let G = Z/pl = <t> where p is a prime. Then EG#: ¢ if and only if
H,(Z) ¢ Z[¢] ¥ ® (ZG)", where ¢ is a primitive p—th root of unity and Z[¢] has the
usual ZG-module structure Z[{] = Z[G]/(1+t+..... +tp”'1) . Here r=2g —(p—1)a and
a=#(2%-2.

Proof. If X% = ¢, then H,(¥)2 2% @ (ZG)" . Therefore, assume that IC # ¢ . Let

X, € xC , and choose a small G—invariant disk D about x,, and let )30 = Y—interior
(D). First, observe that ES # ¢ . Otherwise, we would consider the classifying map of the
regular p—fold cover 2, x, %,/G ,say f:%)/G— BG, and conclude that

f| %,/G =1’ : S' — BG is null-homologous in H,(BG) & Z/pZ ¥ x,(BG) , hence
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nuli-homotopic. But 1—1( %,/G) = D is connected, so that f/ cannot be null-homo-
topic by covering space theory. Consequently, there exists x, € E%" . Let
EG = {xo,xl,yl,...,ya} , and consider the permutation chain complex C,.,(ZO) , in which
Cy(Zy) @ Cylxg) © Co(Tpuxg) =L@ L (%) and Ti(Ty) & 7@ (ZG)" . Since
H,(Z;) = 0, it follows that Ker 8, = 2, ¥ H, (%)) ® C(%;) and

d
0—7Z, — CI(IIO) 1, 50(20) —— 0 is exact. Therefore, Z, is stably ZG~iso-
‘morphic to 1%, where I is the augmentation ideal of Z[G] , which is isomorphic to
I[¢] because G = Z/pZ . Hence H,(T) ¥ H,(%,) ¥ Z[(]* @ (ZG)" as claimed.

Next, we assume that £ # ¢, 5o that G is necessarily cyclic, but possibly having
composite order. Unlike the case of G = Zl/pkl when p = prime, in this case EG = o;e
point is possible, as shown by Conner—Floyd [CF] (see also Ewing—Stong [ES]). Thus,
we consider two cases below. Note that the case G = I/pkll is covered by the first case

below since according to Atiyah—Bott and others EG # one point.)

4.3 Propogition. Suppose EG has at least two points, and let {Hi :i=1,..,n} bethe

collection of non—trivial isotropy subgroups considered with repetition according to the

H.
number of orbitsin B ', and excluding two copies of G corresponding to the first two

points in £C . Let ¢, bean |H;[~h root of unity and Z[(,] with the usual

o .
/4 [Hi] —module structure. Then HI(E) v @ (IG %5 Zl[(i] ® (IG)", where
i=1 1

n
r = 7 [renk Hy(%) - § %|Hi|-1)] .
.==1 1

Proof. Let x, € Z‘G , and consider a small G=invariant disk neighborhood of X, (avoiding
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other fixed points), called D(x)) . Let X, = X—interior (D(x,)) . As before, &y admits a
G—CW structure in which C,(%,) and 02(20) are IG—ree, and Cy(Z,) is a permu-
tation module. Let x, € Eg ¥ ¢ and consider the augmentation CO(EO) ' Co(xo)
which is ZG—split via the inclusion {x,} C%, . Thus C(E,) ¥ T((%;) @ Z . Consider the
following short exact sequences:

0 —— Cyf8y) —2— B, () —— 0
0 —— B, (%)) — 2,(Z)) — HI(EO) —0
00— ZI(EO) —_— CI(EO) — 60(20) —0 .

From these, it follows that B,(X,) is ZG—free, and H,(Z) 2 H,(%,) is stably isomorphic
to ZI(EO) . Since all modules are Z—iree and BI(EO) is ZG~iree, reflexivity of ZG
implies that the second exact sequence is ZG—sgplit. Leaving out {xo,xl} C EG from the
singular set of the action, it ig clear that T (%)) is stably isomorphic to ?E(G/Hi)

where Hi are-isotropy subgroups of the fixed points in ¥ — {xo,xl} . Therefore, ZI(L"O)

is stably ZG—isomorphic to @ will(G/Hi) . We also have

wIH(G/Hi) ~IG @y wé.(l’l) ~ IG @ I[(;] , where the last stable isomorphism is due to
i~ i

W B(T) ¥ T[] as T[H;]-modules, because H, is cyclic. -
4.4 Proposition. Suppose ¥C = {xo} . Then G is a cyclic group whose order is divisible

by at least two distinct primes. Let {H,:i= 0,1,....,0} be the collection of non—trivial

isotropy subgroups such that Hy =G and H, # G . Then H,(Z) is completely deter-

n
mined by the permutation module B= @ Z[G/H;] and an element
i=1

n
AX)€ @ I/|H;|T from the exact sequence:
i=1
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0— H(E)— 1[Gl ez £ Boz[G)* —0 .

N\ n .
Here, ¢ represents a homology class in HomG(H [G] Loz ,B@I[G] k) ¥ @ I/|E|Z

1=

and class(p) = 6(%) .

Proof. Consider the commutative diagram below, in which Q = coker(d,), C« = C«(%),

and

Co2Z[G/G] @Im(8,) 2 T@B;=T1®B®(1G)° :

0 0
Bo =5
61 @

In the sequence 0 —— H (%) — Q —£— B, ——0,Q2 Z® (ZG)" and

0
. n
B, 2 B®(ZG)*, with B= ® Z[G/H,] . Here, we use the fact that G must be cyclic,

i=

hence it has a periodic resolution 0 —— I — IG — IG — 7 — 0 . Comparing this
with the top horizontal row and applying the Schanuel Lemma (Swan [Sw]) we find out
Q is stably ZG—isomorphic to Z . Moreover,
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N\ A\
class(p) = 6(%) € Hom5(6,B)) ¥ Hom(Z,B) =

n
® I/|H,|I determines H,(X} upto
i=1

stable ZG—isomorphism.

4.5 Corollary. In the above Proposition, if §(Z) =0, then
H(EZ)xZ@(@ I[¢])®I[G]", where
1 i>0 !

r=-[-C1;T[rank H(D-1-Y (JE|-1)] .

i>0

Proof. If §(X¥) =0, then class(p) =0 and in the sequence

0 — H,(Z) — Z[G] tez ¥ . Bo® [ZG] k__Lo , @ factors through a projective
IG—module P, which without loss of generality we may assume to be a free ZG—module.
We form the following pull-back diagram (the left square) and complete the commutative

diagram as indicated below:

0 ' 0

|

1

wlB—= !B

l

0—Kergp' — T P ~+ P -0
- # Lv |
0 —— H, (%) — (26) oz —— Be(zG)* — 0

! |

0 0

4

Since P is free, ¢’ splits, and this gives a splitting of ¢ . Therei’ore,
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PO Ker(p’) v T8 (ZG) @ !B .

Identifying the terms P = (ZG)%, Ker ¢’ & H,(¥) , and !B~ _GOZZ[Ci] , we conclude
i>
that H,(3) is stably ZG—isomorphic to Z @ ( ® ZI[(i] . Since cancelation holds for
i>0

IG—modules when G is cyclic (Swan [Sw]), the desired formula is obtained.

4.6 Corollary. Suppose R is a commutative ring such that RG is semisimple (e.g. a field

of characteristic zero, or prime to order of G ). Then, in the representation ring of RG,
n
we have the following equation: [H,(EZ;R)] = [R] + m[RG] - 2 [R ®; RG] , and-m
i=1 -
is determined by counting the ranks of corresponding free R—modules.

Proof. The sequence in Proposition 4.4 splits in the representation ring of RG due to

semisimplicity. -

The above corollary for R = C is proved by A. Broughton [Br] using Eichler’s trace
formula.
The final possibility is when £C = ¢ while G does not act freely on ¥ . In this

case, G need not be cyclic, and the formulas are somewhat more complicated:

4.7 Proposition. Suppose that G acts without fixed—points, but not freely. Let
{Hi :i €I} be the collection of isotropy subgroups considered with multiplicities as be-
fore, and let ¢ be the augmentation homomorphism (e(gH,) = 1) and Bj = Ker(e) in
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€: @ I(G/H;) — I . Then, up to.stable ZG—isomorphism, the ZG—module is deter-
i€l

mined by By, and a homology class 6(F) € H,(G;By) . Indeed, if ¢: v %(Bg) —+ Z.
*
represents G(X) via the isomorphisms ﬁlG(w_z(Bo),H) ~ H,(G;B) , then
- - *
BY(Z) 2 o (Ker ¢) and H (%) ¢ v ((Ker p) ) .

Proof. We have an exact sequence 0 ' Im@1 ) C0 Iy +0 in which

m
Co2 (7G) @ (® I(G/H,) , H #1.Let {e:1<i<m} and {u;:1<§< 2} bethe
i=1

1=

obvious generators and basis elements for the two factors in C0 . We choose a new basis
for (ZlG)P‘ factor, by fixing H, 1, e € ZZ(G/HO) its ZG—generator, and setting

vi=u;- €y - Such an €y exists because the action ia not free by assumption. With the

new basis {v i 1< j< 2}, weobserve that Im 4, is ZG—stably isomorphic to B, in

the statement of the proposition. Again, from the exact sequence
1 x *
0 — H(E) — ZI(E) — BI(E) — 0

as in the preceding cases, we get the following exact sequence, up to ZG—stable iso-

morphism:
1 -1 1
0— HY(X) — w (BO)-—-—bw (Z) —0 .
From the latter, we have:

0— ¢ EY(S) — 4By —£— T -—0
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N g -2 . |
and the classes of ¢ in Homqg(w “(By),Z) 2 H “(G,By) 2 H(G,By) is the class 0(X)
mentioned above. One checks that B, and 0(X) together determine the stable iso-

morphism class of H,(Z) . : -

a1
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Section 5. Group Actions on Kéhler Surfaces.

In this section, X denotes a simply—connected compact Kihler surface, and we
assume that G is a finite group acting by complex automorphisms. Unlike general smooth
manifolds, the Kdhler condition imposes strong conditions on the action, and consequently

on the ZG—representation afforded by H2(X;ZZ) .

5.1 Proposition. Let G be an arbitrary non—trivial finite group acting on X as above.

Then H2(X) cannot be ZG—projective if G preserves the Kahler cohomology class in
H(X) .

Proof. It suffices to show this for G = ﬂp . Consider the Serre spectral sequence of the

* * *
Borel fibration E x X — BG , H (G,H (X)) 2 Hy(X) . If G acts freely on X, then
HY(X) ¥ 1810 (IG)®, hence H2(X) is not projective. Suppose X© # ¢ . Let

t € HQ(G) vI andlet a€ HQ(X) be given by the Kahler form, so that

P
[eAa] = [X] = cohomological orientation class of x . Consider the cup product in the

*
spectral sequence, as well as the H (G)—algebra structure of the E2—term in the follwoing

commutative diagram:

1%(G) ® BY(G,H%(X)) ® HO(G,'H"(X))-—-,HQ(G) e H'(G,B%(X) ® HAX))

—

H2(G,HY(X)) @ m0(GHX(X)) H2(G) ® HO(G,H4(X))
H2(G,HY(X) ® H2(X)) L EY(G,EYX))

Since t-[X] #0 in H2(G,H4(X)) , we have 0# t:(aha) = (ta)Aa, hence
t-a # 0. Therefore a € HO(G,Hz(X)) = HQ(X)G cannot be H*(G)—torsion.



- 925 —

- ¥
Consequently, H (G,H2(X)) #0, so that Hz(x) cannot be G—projective.g

5.2 Corollary. Let G = Hp act on the simply—connected Kihler surface X preserving the

Kahler cohomology class. Then E ﬁi(XG) 2 3, where f, = i—th Betti number, and
i20
xG # ¢ by hypothesis.

Proof. Since XG ¥ ¢, and for degree reasons, the Serre spectral sequence of
Eq xoX — BG collpases. (See e.g. [A3]). Now the above proof shows that
ﬁ*(G,Hi(X)) #0 for i=0,2,4. Therefore, H*(G)—ra.nk of HE(X) is at least 3. The

localization theorem ( [HS] or [Q]) implies the desired conclusion.

In the following theorem, conditions are given which guarantee that modulo IG—pro-

jective modules, G must act trivially on H2(X) . Recall Theorem 4.14 of [A3] HI.

5.3 Theorem. Suppose X is a Kahler surface, xl(X) =0 and G acts smooth but not
freely, and G = (Hp)B , 8 2 1. Assume that for each cyclic subgroup CCG,p > ﬂO(XC)
and f;(X®) = 0 . Then the following hold:

(a) thereexists an m > 0 such that the ZG—module Hy(X) % I™ ®M where G acts
trivially on 7™ and M is ZG—projective.

) x(X®) = x(XC)=m foreach CCG,|C| =p, and rank(G)<2.

(¢) I rank(G) > 1,then G acts freely on the set of symplectic 2—forms of X ; hence

G does not preserve any symplectic structure on X.

Proof. Since ﬁl(XC) =0, XC consists of 2—spheres and isolated points. Moreover,
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Hy(X) 2 77%) @ Z[C]™ as ZC~modules, where C acts trivially on Z(C), and

(C) = x(XC)—2 . Also, G/~ must act trivially on xO(XC) since p > ,BO(XC) by
assumption. Hence G/ C must act effectively on each component 82 , and each isolated
fixed point in XC must be an isolated G—fixed point. If G=C = Hp , then we are done.
If rank(G) > 1, then G cannot have a free action in the punctured neighborhood of an
isolated fixed point. Since x© + ¢ forsome C#1,G/ ¢ must act effectively on each

G/
G_ (XC) C # ¢ . From this (c) follows, since if C

copy 52 c XC . Therefore X
preserves some symplectic 2—form of X , then XC must consist of exclusively isolated
fixed points. (Consider the complex C—representation on the tangent space TQX for some
QE XC , and observe that if a symplect form is preserved, then the two eigen—values of
any generator of C must be distinct and not equal to 1). In view of the above observation
that XC contains copies of 52 , and that XC J XG # ¢ for each C# 1, we see that

each C, and hence G, acts freely on the set of symplectic 2—forms of X . Since each

G/q

52 ¢ XC contributes one copy of s0¢ (XC) , then x(XC) = x(XG) . It suffices,

therefore, to prove (a). But (a) is proved in Theorem 5.6 of Assadi [A3] LIL

Finally, the actions considered in this section are "regular" in the terminology of
[A3]. Hence, the general theorems of [A3] apply to this situation, and the same prin-
ciples and argument may be used to study the ZG—representations afforded by H2(X) for
a compact Kahler surface. In particular, the fixed point set of the G—action and a suitable
group cohomology element complete}y determine the ZG—module H2(X) as in Proposition
‘4.7 of [A3] II.
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In this section, we consider non—singular projective surfaces X defined over an

algebraically closed field of arbitrary characteristic k . The analogue of simply—connecti-
~vity for complex surfaces is the condition g(x) =p g(X) - pa(X) = 0 i.e. the irregularity is
zero. Let % be the canonical sheaf of X, and let ﬂz(X) = HO(X; &) be the k—vector
space of "holomorphic 2—forms" of X . We compute the kG-representation 02 (X) for the
free G—actions on X . A suitable cohomology theory is Cech cohomology using an open
covering % of X consisting of G—invariant affine subsets of X . Such a Cech cohomo-
logy group coincides with Grothendieck’s coherent cohomology, i.e.

B #; %) 2 2%(X) . On the other hand, by Serre duality,

%(X) 2 Hom, (B4(X; 0y),k) ¥ Bomy (B( %; 0y)k) . Consider a free Gaction on X,
and observe that the variety X/G exists (Mumford [M]) and it is non—singular and
projective. Moreover, the morphism f: X —— X/G is an étale principal covering. Let

%, be a suitable finite covering of X/G by affine open sets, and let

w={{ 1(‘v’o) : Vg € %,} . Theneach V= i 1(Vo) is also affine, and we have
! |V:V—V, is given by a k~algebra homomorphism ¢:R-—§,ie,
V, = Spec(R), V = Spec(S) and 2p=1"|V.

6.1 Theorem. Let X be (an irreducible) non—singular projective k—surface with
q(X) = 0. Suppose that G acts freely on X by automorphisms. Then the kG—module
nz(X) is stably kG—isomorphic to wé(k) .

6.2 Remark. Compare this with Corollary 3.2 which describes Hz(X;I) stably ZG—iso-
morphic to an extension of wé(ﬂ) and w'as(ll) . For k = €, the Hodge decomposition
vields H2(X,€) » B20(x;¢) @ BO2(X;¢) ® EVL(X,C) . Since B>? and H®? are dual
to each other, and ﬂz(x) N H2’0(X;C) the above result implies that from
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H(X;€) ¢ 0%(X) @ Hom(0%(X),0) @ C[G]® ¥ w3(C) ® Bom(w3(€),0) @ C[G]* we
conclude EL(X;0) v €[G]*.

6.3 Problem. Compute the ZG-lattices H'(X,€) n BH(X;T) .

Proof. Consider the Cech complex C = C ( %) of kG-modules for the coherent shea
0y inwhich B(C") =k, BY(C") = BY( % 0y) y BY(X; 0y) since
aX)=p (X) pa(X) dlmkHI(X Ox) and q(X) =0 by assumption. Moreover,
HI(C )= Hl( % Ox) Y HI(X Ox)=0 for i>2,and cl=0 for i sufficiently large,
since % is a finite cover. In the case of a complex analytic manifold, we could use the
analytic topology, and choose ¥, sufficiently refined until f 1(VO) ¥ G xV, isafree
orbit of V0 up to G—somorphism. This would imply that the Cech complex C* is a free
G—complex. In the general case at hand, we have used Zariski open sets, and we need to
resort to a somewhat different argument. Consider ¢ : R — S such that
% Spec S — Spec R is the given étale covering fy = 1|V : V—V,, V=1"(V,).

Then V XV V admits a section, so that V Xy ¥ GxV as Vo—schem& with free
0 0

G—actions. Therefore, S @S is a free k [G]—module. Consider the kG~isomorphisms:
5528 GR(R GkS) ~S QR(S QkR) ~ (S ORS) OkR which shows that S GkS is also
kG—free. This implies, in particular, that S i8 kG—projective. Hence CO( %) is a pro-
jective kG—module. A similar argument applies to show that Ci( %) is kG—projective.
Consider the dual chain complex C, = Homk(C*,k) of kG—projective modules, in which
Hy(Cs) 2k and Hy(C4) = Homk(ﬂ2(X),k) are the only non—vanishing homology groups.
It follows that B2 = Im 82 C 02 is projective over kG , since

I » C

0—C,—C 3 —* By — 0 is exact for some sufficiently large

n—-1
n . Moreover, Z, = Ker 4, & wG(k) in view of the exact sequence:
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a
2—#C

0--—-022-—-—-—;02 —>CO —k—0 .

1

The exact sequence 0 » By 12y ) H2(C,.,) — 0, splits, since kG is injective.
Therefore, Hy(Cy) ~ Zy = wg(k) is an stable kG—isomorphism. Hence

* —
0%(X) = B(C) = Homy (w3 (k),k) = wg (k) as claimed. o
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