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Lemma 5. Given k and 0 < D < ~/Jk, there exlsts a X > 0 so

thae if ~ ."" are unit minimal in S . wich 0 < a(:; ..,,) < ~}
'~' '~ k '~} '~

L(i ) :S D, and d(B, G) :S 3X, then for any
~

min (L(~~), L(~y;;)} snd minimal curve ~ from ~Aß (t)

ma.x (d(A, ~(s)) < t + X.

o < C ::$

Co ~ (e),A[;

Proof. Since metric balls are convex for k :S 0, we need

only consider k > 0; by scaling the metric we reduce to k - I,

and clearly now we can assume t > ~/2. Let X > 0 be small enough

that cos 0 - (cos (1.5X»(cos (D+X» > O. We fix curves "'fAß' '1A[;

as above, assume a 15 parameterized on (0, 1] and let u -

d(A, ~(1/2» - max (d(A, "'f(s)}. Letting ..\ - L(a) and applying

- -the Gosine Law to a('1 , a) we obtain
Aß

cos r - (cos t)(cos ..\/2) __c_o_s__t __-~(c_o_s__t~)~(~c_o_s__..\~)
sin ..\/2 si~ ..\

whlch reduces to cos r - cos t / cos ..\/2.

Applying the sum formula to cos (T-t) we see that T - t i5

an increasing function of both t and ..\; i.e., for fixed X, T • t

1s maxlmized when L(;;) - L(ß) - t - D. Thus we only need to

-1
prove cos (cos 0 / cos (1. 5X» s cos (D+x) , and this follows

from ehe way X was chosen. o

For 0 < 0 < ~/Jk, fix a c10sed ball B - B(p, 0) c X and a

cover U of B(p, 2D) by regions of curvature ~ k, and let X(U) < D

be as in Lemma 5 and also lass than one eighth of a Lebesque

number of U. Let. r (U) sma1l enough that if c~. '1 are uni t
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Introduction. Let X be a topological space with a finite group G acting on it. For

*sui table coefficient systems and cohomology theories, H (X; ..5') becomes a G-represen-

tation. Study of such representations and t~eir relationship to the symmetries of X has

been the subject of extensive study. In our previous paper [A1]-[A5], we have studied

such representations from the view points of group cohomology and local-global con­

siderations. In particular, [A3] considers the integral representations on H2(X;71) when

X is a compact simply-connected 4-ma.ni!old. In the following paper, we continue [A3]

by specializing to the case of algebraic curves and surfaces.

HistoricaIly speaking, such investigations for complex projective curves (compact

Riemann snrfaces) goes back to the 1893 paper cf Hurwitz, in which complex represen­

tations of cyclic autamorphism graups cf Riemann surlaces wer~ studied. His werk Wa'S

completed by Chevalley and Weil, also using analytic techniques. See Weil's collected

works Val. I, pages 529 and 532-533 for histerical deta.ils a.nd a cliscussion of these results.

Chevalley":-Weil's results were further generalized by Tamagawa to. the case of curves aver

fields of positive characteristic with free regular automorphism groups. Tamagawa's result

is fonnulated in terms of unramified Gal<?is extensions of the corresponding function fields.

This point of view has been further developed by number theorists, in particular, 11adan

and Valentini among others. (See Valentini-Madan, Journal Number Theory, Val. 13,

1981, for a historical survey and further developments.)

Some of the results of the present paper may be considered as modest generalizations

of the above-mentioned results. Such generalizations are in two directions. First, we have

determined the integral representations H1(X,7I) for a compact Riemann surface with an

arbitrary finite automorphism group (Section 4). Since the structure cf 7lG-modules is a

complete mystery for almest a1l finite groups, our formulations are in terms of group co­

1omolegy in the general case. Secendly, we have studied certain representations far suitable

nen-singular projective surlaces in analogy with Chevalley-\Veil and TamagawaJs results.

Namely, for free G-actions on projective surfaces X where Pa(X) =Pg(X)
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(Pa =arithmetic genus and Pg = geometrie genus). For curves, Pa(X) =Pg(X) always.

Hut for surfaces, tbis is areal restrietion, and it sheuld be compared with

simple-connectivity hypothesis rar complex projective surfaces. In Section 6, we have

determined the kG-medule HO(X; .xX) (= vecter space cf regular 2-ferms) in analogy

with the case ef regular I-fanns far curves. Sectian 5 makes a preliminary study of the

llG-representation H2(X;1l) when X is compact Kähler. The general theme cf seetions

3-5 ia to relate the topology and geometry af the underlying symmetry to the homological

properties of suitable representations. In Secticn 2 w~ have gathered same definitions and a

brief discussion of same of the hcmological nations far the ccnvenience af the reader.

Fnrther preliminary material may be found in [A3] er in the references.

Note added in proof. Since the appearance of the first version cf tbis paper, several related

works are brought to my attention. I would like to thank Chad Schoen for discussions on

bis interesting resuIts in ibis. ~reciion and for sending me bis manuscript [Schoen]. I &In
n

also grateful to G. Ellencwejgand T. KOhoja who brought to my attention the related .

works of S. Nakajima [Nakajima 1 & 2] which go deeper in the number theoretie direction

and seem to have a slight overlap with some of our results.
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Section TWQ. Preliminary Nations.

In the following sections, we will use the same notation and conventions as in [A3].

However, we review same of the notation for the convenience of the reader. Let G be a

finite group, and R be a commutative ring with unit, e.g. R =11, 7lp = p-adic integers,

IFp ,or (. The RG-modules are finitely generated and R-free. Finite generation may not

hold for some of the RG-modules in the chain complexes used in Section 6. However, the

cohomology .and homology groups are all fini tely generated, and this will be sufficient. Two

RG-modules MI and M2 are called projectively stably RG-isomorphic, denoted by

MI_"'" M2 ' if there is a commutative diagram:

MI EB PI
~ 1M2 EB P2=

jl
g

Ir
MI I.M2

where PI and P2 are RG-projective, j and r are the obvious inclusion and projection,

and g is an isomorphism. If PI and P2 are RG-free, then we eall MI and M2 stably

isomorphie. Stahle isomorphism is an equivalence relation. Heller [BI] has defined loop

and suspension operations for RG-modules when the notions t1 projective cover" and

"injective hull" make sense. However, projective covers do not exist, in general, for
...

llG-modules although they exist for IFpG-modules or IIp [G] -modules. Here, we ean

define a stable version of the "Heller loop-operator", which we denote by w, on the set of

stable equivalence classes of RG-lattices (Le. R-torsion free RG-modules). Namely, weM)

is stably well-defined (by Schanuel's Lemma [Sw]) from the exaet sequenee

0---+ w(M) ---+ (RG)O' ----+ M ----+ 0 . If we use projective RG-modules instead of

(RG)O' ,then w(M) is well-defined up to projective stahle equivalence. Then we set
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w1(M) = w(M) and wi+1(M) = w( wi(M)) inductively. For i E 7l. , this definition has a

natural extension, so that ui(M) are stably well~efined for all i E 71 .

\Ve will also malte use of a eonstruetion for RG-modules from eohomology classes

which is explained in [A3]. Our description is a generalization and a stable version of the

eonstruction used by J. Carlson [C] in modular representation theory. Recall the Tate

eohomology Iii(G;M), i E 7l. as in e.g. Cartan-Eilenberg [CE] . Then

./'\ def ..
HOIDG(M,R) == HO(G,HomR(M,R)) is isomorphie to the group of RG-homomorphisms

f: M ----t R modulo the subgroup of those whieh factor through an RG-projective. (See

Mac Lane pp. 74-75 [Me] for related discussion. 1t turns out that

"'0 def A .. * *
H (G,HoffiR(wn(IvI),R)) == Hom(wn(M),R) ~ Hn(G;M ) ,where M = HOffiR(M,R)

.. *
with the diagonal RG-module strueture. Now, given a eohomology class, x EHn(G;M ) ,

we may represent x by an RG-homomorphism cp: wn(M) ----t R which is well~efined

up to factorization through RG-projectives. cp may be assumed also surjective. Define

Lcp == Ker(ep) . Then Lep is well-defined up to projective stable equivalence. (See [A3] for

further discussion). The notation dass (cp) wi~ be used for the cohomology class repre-
/\. '

sented by r.p. The funetor Exta(-,-) is al~o constructed in analogy with Tate eoho-

mology iri(G,-) using complete resolutions (see e.g. Cartan-Eilenberg [CE] or Carlson

[C] ).

An algebraic generalization of a Poincare duality space is the nation of achain com­

plex with duality. Let C. be a bounded conneeted chain complex of dimension n over a

ring R, so that HO(C*) ~ Rand Ci = ° for i < 0. or i > n (for some n > 0 ). We call

C* achain complex with duality of formal dimension m, if there exists achain homotopy
. *

equivalence h: Cm-i ----t Cl between C. and C . The eellular chain complex of a

Poincare duality spaee or a c10sed oriented smooth manifold are basic examples of such

eomplexes with duality.
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In Section 5 and 6 we will need same basic facts from alg~braic geometry. The stan­

dard reference for the definitions and concepts used in the following are Hartshorne [H]

and Mumford [MI] [M2].
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Section 3. Free Actions.

In ibis section we study homology representations of free a.ctions.

3.1 Theorem. Let X. be a (k-l)-connected bounded RG-free chain complex with duality

of formal dimension 2k. Then:

(a) The RG-module Hk(X.) is completely determined up to stable equivalence by a

homology dass x EH2k(G;R).

(b) Let (: w-2k-l(R) ----H R be a representative for x. Then Hk(X.) is stably

RG480morphic to t}L,.

(c) Let rp: w-k-l(R) ---+ wk(R) be such thai dass(rp) = dass( () = x under the

isomorphisms

Then Hk(X.) ia completely determined (stably) !rom the·short exact seqeunce below:

The following corollary has been proved for k = 2 by Hambleton-Kreck [HK].

3.2 Corollary. A symmetrie expression for Hk(X.) ia obtained as follows. Let

z E Exta(w-k-l(R), wk+1(R)) . Then the extension dass z is represented by the ahort

exact sequence:
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•
~. Since X. is R-ehain homotopic to its R-dual X =HomR(X.,R) I we have

Hi(X*) = 0 fer k + 1 ~ i ~ 2k-l . Moreover
"
without 1088 of generality, we may assume

that Xi =0 for i ~ 2k+l (see e.g. Assadi [A3] Lemma 4.2.). The connectivity of X. in

the above-mentioned dimensions gives rise to leng exact sequences below:

We conclude that Bk_1 = wk(R) and coker( 8k+1) = lII-k-l(R) . To identify Hk(X.) ,

we consider ihe commutative diagram below:

The homomorphism j in the above diagram ia induced from the indusion

i : ~ 1Iloo-- ... Xk . Thus we have tbe abort exa.ct sequence:
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of RG-modules, ud Hk(X.) is stably determined by the class

(V') E~G(w-k-l(R), wk(R» . Using the isomorphisms

A (. -k-l ) k() "'" ( -2k-l( ) ) A -2k-l( ) H (G )Homa w (R ,w R ~ Homa w R ,R ~ EnG R,R ~ 2k ;R, we

obtain the class x EH2k(G;R) corresponding to class (cp). Let ,: w-2k-l(R) -+-+ R

. be a representaüve for x. Then L" == Ker( () = w-k(Ker V') , so that Hk(X.) = wkL, .

This proves the Theorem. _

Proof of Corollarv 3.2. The homomorphisms j ud r of the diagram (D) in the proof of

Theorem 3.1 above give rise to the following mort exa.ct sequence:

Since coker( 0k+l) = c.I~-l(R) ud Zx = wk+1(R) from the exa.ct sequence

o-+ ~ --+ Xk --+ ..... ---+ Xo---+ R ---+ 0 we obtain the desired short exa.ct

sequence of the corollary. It remains to determine the extension class

l( ( » A l( -k-l( ) k+l(» A-2k-l( )z EExtG eoker ~+l ,Zk :: ExtG w· R t fJJ R ~ EnG R,R

~ Ji-2k-l(G;R) == lIn(G;R) . We apply ~G(COker(8k+I)'-) to the exact sequences

0---+ Hk(X.) ---+ coker( 0k+l) -!L. Bk- 1 ---+ 0 and
a .

o--+ Zk -+ Xk k I Bk_ 1 -+ 0 aa well as (E). We get the commutative diagram

below in which 6' and 6E are the connecting homomorphisms of the last two sequences:
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5ince z = 6 (identity) and rp.(identity) = cl.ass(~) = class( C) = x , and an other isomor­

phisms a.re abtained by dimension shifting, it fallows that z and x correspond under

these natural isomorphisms. •

3.3 Theorem. Let. X be a (k-l) connected finite dimensional Poinca.re complex offormal

dimension 2k. Let G act freelyon X and let f: X/G --; BG 'be the classifying map

far the G-covering X -!........t X/G . Then:

(a) The homology clus x =f. [X/G] E ~(BG;lI) = ~k(G;ll) completely determines

the 1ZG-module Hk(X;ll) up to 7lG-stable isomorphism and vice versa. In faet,

Hk(X) is stably isomorphie to wkL, where class( C) = x as in Theorem 3.1 above.

(b) Each x E H2k(G;1l) is realized by a free analytic G-action on a compact connected

RiemaDn surlace when k = 1 , and by a free smooth G-action on a compact

simply-eonnected 4-ma.nifold when k =2 .

Proof cf Theorem 3.3~ Applying the result of Theorem 3.1 to the free llG-<:h~ complex

C.(X) J we conclude that the stable llG-isomorphism class of Hk(X) is determined by
A

x = class(tp) E HomG(coker(8k+1)J Bk~l) ~ ~k(G;ll) . We compute x in terms of the
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induced homomorphism f.: ~k(X/G;7I)-+ H2k(BGi11.) =~k(G;11.) as follows. Let

E. =C.(EG) ,where EG ----+ BG ia the universal G-rovering as UBual, and

C* =C.(X) . The tlG-chain map 1#: C. ---+ E. ia induced by 1: x ---+ EG . We

identify (E.,a~) aB a. free llG-resolution of 7I , Ker 82k = U/2k+l(71) J and

coker( 8k+1) =wk(71.) . Consider the commuiative diagram below induced by 1 and the

above idenüfications:

The clasa f. [XIG] E ~k(G;1l) ia determined by

fE Hom(H2k(BG)) = Hom(71,H2k(Gi11.)) . The ahifting isomorphism, denoied by

sends class('\) to claas(1.) = f. in the diagram below:

Therefore, it suffices to prave thai class('\) =clasa(cp) . Consider the commutative

diagrams below in which (I) deiermines dass(cp) :
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0 0

T T
(I) Bk-1

- Bk- 1

T T~
o--+ Bk ----+ Ck tQ ~O

1= .fi Ij
O-tB k~Zk

a
t Hk(X) ----+ 0

T T
0 0

)k-l~_l
(Ir) Q ,\ t wk (1l)

rl
1#

1r'
Ck J Ek

(ill) ko---. tU ( 71) --+ Ek-1 -----+ ..... -----tl E0 ---+ 71 ----+ 0

ITk~ 11# 11# 1=
o-+ Bk- 1 t Ck- 1~ ..... --t~ Co ~ 71 ---1 0

Under the shifting iSOIDOrphisID u(ch: ~G(71I71)~ ~G(c.h71), ",k(71» ~
~ ~G(Bk-l' ",k(71» in diagram (III), class(id71) corresponds to class( T k_ 1) . Thus

the isomorphism (Tk-l )* below:
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sends class(rp) to clasS(A) J and this is what we wanted. Thus part (a) of the theorem ia

proved. The proof of part (b) ia included in Assadi [A3] Proposition 4.4 (c) for the case

k = 2 . For k = 1 J the Hurwicz homomorphism n~O(BG)~ H2(BG) = H2(G;1l) is

surjective, hence part (80) implies the desired conclusion. _

3.4 Corollary. For every x E H2(G;71) J there exists a free projective G-action on a.

non-fiingular projective curve/( such that H1(Xan ;Zl) ia llG-fitably isomorphie to

(,iL,)* where 'E HomG( cu-3(71) ,71) represents x under the isomorphism .

~G(CU-3(71),71) ~ ii-3(G;71) = ~(G;71) ,and Xan is the underlying space with the

usual topology.

~: Aecor~g to 3.3 (b) above, there exists a compact Riemann surfa.ce E and a map

f: E~ BG such that f. [E] = x EH2(BG;71) = H2(Gjll) . Let X be the G-covering

induced by f together with the iree G-action on X via covering translations. Then

H1(X;71) is stably 71G-i80morphic to cu1(L ,) and dass( ,) =x by Theorem 3.1 above.

Now G acta on the compact Riemann suriace X by complex analytic isomorphisms, and

H1(Xan;71) is 71G-ismorphic to Hom(HI(X),71) =(cu1L,t and dass( () =x by

Theorem 3.1 above. We mayassume that the genus (E) ~ 2 I hence genus (X) ~ 2 , so

that the canonical sheaves XE and ...1rX are ample. By Serre' s GAGA principle' [SI] J

E and XE are algebraic. Thus, X ia 80 complete non-5ingular curve on which G acta by
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algebraic iscmorphisInS, X X is an ample G-line bundle on X, and 11"': X ----t ~ = X/G

is an algebraic mcrphism fcr which j{I: = (r* XX)G . Since the pluricanonical

embedding X ----t ff(X, j{~m) ia equivariant, the G-action on X is prcjective.•

3.5 Examples. (1) If G = ll/pll ,then H2(G;1l) = 0 =H4(G;1l) = 0 . Thus, if

dimlRX =2 , then for r =~g-l) H1(X) ~ 71 fB 7l. $ (llG)2r , and if dimor =4 and

~1(X) =0 ,then H2(X) ~ I $ I e (llG)s where I is the augmentation ideal. Since

I ~ 1l. [CJ ,where C is a primitive p-th root of unity with the naua! "U.G-module

strueture, theIi H2(Xi71) ~ 1l [(] e 11 [(] m(11G)s .

(2) Suppose G has periodie cohomology, so that the p-Sylow subgroups af G are

cyclic far p = add and either cyclic or generalized quaternionie fcr p = 2 . Then

~(Gpj71) = 0 = H4(Gpi71) for all p-Sylow subgroups Gp r G . Therefore,

~(G;11) = 0 = H4(Gj11) , and we have the following conclusions. For dim.mX = 2 ,

n1(X;11) ia llG-isomorphic to w2(71) e w-2(71) fB (71G)2r . For ~X=4 , r 1(X) =0 ,

H2(X;11) = ",,3(71) mw-3(1l) $ (llG)S .

(3) Suppose G = (71/p7l.)2 then H2(G;1l) ~ 7l./p11 and H4(G;1l) ~ (1l/p71)2 . :rhere­

fore, in this ca.se we get non-trivial examples corresponding to the non-zero elements of

At this point, one may raise the point that the procedure in Theorem 3.3 (b) to

produce free G-actions on simply-eonnected smooth 4-nianifolds involved non-algebraic

. arguments. That is, surjection of n~O(BG) onto H4(BG) produces fO:~ ---t BG

such that fO* [W~] =x EH4(BG) and smooth surgery on the map fO corrects the

fundamental group to give f: W4
---t BG with f* [W] = x . Then the universal cover cf

W ,say X, is the desired smooth simply-connected 4-manifold whose homology

llG-module H2(X) realizes the dass x EH4(BG) . It is not clea.r if either one of these

steps can be achieved using complex manifolds. Thus, we pose the following
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3.6 Problem. Which homology classes x E H4(G;][) anse in Theorem 3.3 for analytic

G-actions on compact comple.."t surfaces X with i1'"1(X) = 0 ?
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Sectiop 4. Graup Actiops on Riema.nn Snrfaces.

In this section, we assume that G ia a finite group acting effectively on the compaet

Riemann surface :E via complex a.nalytic isomorpmsms. Thus, G preserves the orientation

.- a
and the isotropy subgroups Hi CG are a1l cyclic. Moreover, for all Hi f I ,:E 1 consists

of at most finitely many points of t. We delete the trivial subgroup (Le. the principal iso­

tropy subgroup for a1l effective finite group actions) from the list cf isotropy subgroups of

the action. The orbit space E' = I:/G ia süll a compact Riemann surface and I:~!:'

is a ramified finite covering. We may choose a triangula.tion for :E' such that the ramifi­

caticn points are all included in the sei of vertices cf :E' ,and we lift this triangulation to
\

I: , to give 1: an. equivariant triangulation. Under these circumstances,:E becomes a

G-CW compIex, and the cells of E provide permutation bases for the cellular chain

complex of 1:. This makes C.(1:) into a permutation complex. In Section 3, we proved

that if G acts freely on I:, then the llG-module BI(X;l) is stabIy llG-isomorphic to

,iL, ' where class( C) =x EH2(G;1l) ia the image f. [t/G] EH2(BG;1l) =H2(G;1l)

under the homomorphism induced by ihe classifying map f: :E/G --t BG . Moreover,

every element of ~(Gjll) arises by such a free G-e.ction. For instance, if H2(G;1l) =0 ,

then BI(~ ~ w2(71) • w-2{1l) • (llG)2r ,where r ia detennined by counÜDg ll-ra.nks of

both sides of ibis equation. We proceed to determine the llG-module structure of BI (L;1l)

for non-free actions in the same spirit.

First of all, the following analogue cf Assadi ([A3] Theorem 5.4) is easily

established.

4.1 Proposition. With the &bove nota.tion, the following are equivalent:

(a) HI (E;ll) is llG-projective.

(b) For each prime order subgroup C CG ,HI~ll) ia lle-projective.
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(c) For each prime order subgroup C' G 1 rP conaists of 2 points.

Furthermore, if Hl~1l.) is 7LG-projecüve, then p-Sylow subgroups of G are

cyclic.

Prcof. (a) ~ (b) and (b) ~ (c) by considering the spectral sequence EC x C1: ---+ Be
and applying the localization theorem (Hsiang [Hs] or Quillen [Q]). From (c) it follows

that p-Sylow subgroups of G must have one-dimensional faithful complex linear repre­

sentations, hence they must be cyclic. Thus, maximal p-elementary abelian subgroups of

G are isomorohic to 7I./p71.. Therefore (b) ~ (a) by Chouinard I s theorem. (Chouinard

[ eh] or Jackowski [J]). (c) ~ (b) ia also possible by reversing the spectal sequence

argument for (b) ~ (c) . For a more elementary argument, consider La = ~ - {x} where

x erP .Then BI(La) = BI(1:) a.nd H2c;)::: 0 . Therefore, HI(1:) is the only non­

vanishing homology group in the 1lG-free chain complex C.~~) . Rence, it is stably

7lC-free, and since C is cyclic, BICl:) is llC-free. _

The following lemma and the above discussion take care of IGI = prime.

4,2 Lemmä. Let G = 7l./p71. = <t> where pisa prime. Then rP f ; if and only if

BI(~ ~ 11 [(] a Ei (llG)I ,where , is a primitive p-th root of unitr and 1l. [(] has ihe

usual 7lG-module struciure 7l. [Cl:: 7I [G] /(l+i+.....+tP-l) . Here r = 2g - (p-l)a and

a = #crP)-2 .

fm2i. H -& = , I then HI(E) ~ 71.2 • (71.G)S • Therefore, assume thai 1:G f , . Let

%0 ErP J and choose a small G-invaIiant disk D about Xo' and let La = 1:-in.terior

(D). Fint, observe that ~ 4: ; •Otherwise, we would conaider the cla.ssifying map of the

regular p-fold cover La~ La/G I say f: La/G --+ BG landconclude that

flllEa/G =: f' : 51~ BG is null-bomologous in RI(J3G) ~ 1L/plI ~ r 1(BG) ,hence
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null-homotopic. But r-1(6Eo/G) = 8D ia connected, 80 that f' tannot be null-homo­

topic by covering spa.ce theory. Consequently, there msis xl E~ . Let

~G ={xO,xl'Yl ,... ,ya} , and consider the permutation chain complex C.~), in which

CO~) ~ CO(xa) e CO~O~) =71 e e oC1tl) and e oC1tl) ~ 114 e (llG)I . Since

~(I:O) = 0 , it fellows that Ker 81 =Zl ~ H1C1tl) • C2C1tl) and

8
o~ Zl --+ CI~) 1 I ÖOeto) ---+ 0 iB exact. Therefore, Zl ~s stably llG-iso-

morphic to ra ,where I is the augmentation ideal cf 11. [G] ,which ia isomorphie to

Tl [(J because G =1l/p7J. . Rence H1CE) ~ Hl~) ~ 11. [(] a e (llG)I as claimed.

•

Nm, we assume that r? '* t/J , so that G ia necessarily cyclic, but possibly having

composite order. Unlike the case oi G =l1/pk71 when p =prime, in tbis ca.se LG =one .

point ia possible, as shown by Conner-Floyd [CF] (see also Ewing-5tong [ES]). Thus,

'we consider two cases below. Note that the case G = Tl/pkll is covered by the first case

be10w since a.ccording to Ati~-Bottand others r? f one point.)

4.3 ProPOsition. Suppose r,G has at least iwo points, and let {Bi: i = l,u.,n} be the

collection of non-trivial isotropy 8ubgroups considered with repetition according to the
II. .

number of orbits in t 1, ud excluding two copies of G corresponding to the first two

points in r? .Let 'i be a.n IBi l-th root cf uniiy and 11. ['i] with the usual

n
7l.[H.]-module strneture. Then Hl~) ~ e (7IG ~H 1l[(.] Ei (llG)! ,where

1 . 1 . 1
1= 1

fmgf. Let Xl Et G ,and consider a small G-invariant disk neighborhood of Xl {avoiding
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other fixed points), called D(xo) · Let Ea =I:-interior (D(x1)) . AB before, Ea admits a

G-CW structure in which Cl(Ea) and C2(Ea) are llG-free, and CO(Ea) is a permu­

tation module. Let xo E~ =f: ; and consider the augmentation CO(Ea):=: CO(xa)

which ia llG-split via the indusion {Xc} CEa . Thus CoCEa) ~ ÖoCEa) e "B. . Consider the

following short exa.ct sequences:

0 I C2(Ea) a
I BlCEa) 10

0 1B1CEa) •Zl<Ea) t H1CEa) 10

0 I Zl(Ea) I CI(Ea) 1ÖoCEa) 10 .

Flom these, it follows that BI<Ea) is llG-free, and H1(t) ~ H1<Ea) ia stabIy isomorphie

to Zl<Ea) . Since all modules a.re 7I-free ud BI<Ea) ia 7J.G-free, reflexivity of lG

implies thai the second exa.ct sequence is llG--ilplit. Leaving out {Xo'~} Cr? from the

singular set of ihe action, it ia clear thai Ö~("~-) is stably isomorphie to ~ 7I(GIR.)
. -0 1 1

where Hi are;sotropy subgroups cf the fixed points in E- {Xo~} . Therefare, Zl<~O)

ia stably llG-isomorphie to • 1}7J.(G/Hj ) . We also have

",lll(G/Hi ) N 1lG eH. c4.(1l) N llG eH.71. ['i] ,where the last stable isomorphism is due to
1 1 1

",lHi(ll) ~ 7I ['i] as 7I [Bi] -modules, because Bi ia cyclie.

4.4 Proposition. Suppose r? = {:ca} . Then G ia a cyclic group whose order ia divisible

by at least two distinct primes. Let {Hi : i = O,l, ... ,n} be the collection cf non-trivial

isotropy subgroups such thai HO = G ud Hi 1: G . Tben BI~ ia completely deter-
n

miD.ed by the·permutation module B = (J 7I[G/H.] and an element
. 1 11=

n
~ E • 71./ IHi 171 from the exact sequence:

i=l
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o---+ H
1
(I;) --+ 71 [G] t fB "D. -!I!.-.. B Ei 11 [G] k ---+ 0 .

~ t n
Rere, cp represents a homology dass in HomG(ll [G] fB 11 , B e r [G] k) ~ e llf IB.I11

. 1 11=

and class(cp) = B(L) .

hQQf. Consider the commutative diagram below, in which Q = eoker( 1J2), C* = C.(L:) ,

and

0 0

T T
BO

- .·B 0

r81 111'
0---+ 1I ---+ C2 ----+ Cl IQ .0

J= j= ri Ij
0---+ "0. ---+ C2 ---4 Zl a

tHl(~)--+O

T T
0 0

In the sequence 0 ----+ H1(~) ----+ Q 4', BQ ---t 0 , Q ~ 7l"~ (1lG) l and

BQ ~ B III (llG)k ,with B =.~ "0. [GIRi] . Rere, we use the factthat G must be cyclic,
1=1

hence it has aperiodie resolution 0 --+ 11. ----J llG ----+ llG -t Ti ---+ 0 . Comparing this

with the top horizontal row and applying the Schanuel Lemma (Swan [Sw]) we find out

Q is stably llG-isomorphic to 71. Moreover,
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stahle 7lG-isomorphism.

4.5 CO!ol1ary. In the above Proposition, if 8(L) = 0 J then

H1(1:) ~ 1l EB CED II [(i]) ED II [G] r I where
1>0

r = rfrr[rank Hl(~-l-l (I Hi 1-1)] .
i>O

~. Ir 8(L) = 0 ,then class(<p) =0 and in the sequence

o---+ H1(L) --+ 71. [G] t EB 7l. J!....... B EB [ZlG] k ---t 0 ,<p ractors through a. projective

llG-module P I which without lass cf generality we may assume to be a. iree ZlG-module.

We form the following pull-back diagram. (the left square) and complete the commutative

diagram aB indicated below:

o o

1
o

1
o

Since P ia free, <pI spUta, and thia gives a. splitting oe '/1. Therefore,
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Identifying ihe ierms P = (llG)S , Ker tp' ~ H1(E) ,and wlB N fB 11 [C.] ,we conclude
i>O 1

thai H1~ is stably llG-isomorphic to 7J. m(. 11. ['i] . 5ince cancelation holds ror
1>0

llG-modules when G is cyclic (Swan [Sw]), the desired formula ia obtained.

•

4.6 Corollary. Suppose R is a commutative ring such that RG is semisimple (e.g. a field

of characieristic zero, OI prime io order of G ). Then, in the representation ring of RG ,

n

we h~ve the following equation: [BI~R)] = [R] + m [RG] -I [R eH RG] ,and ·,'m

i=l

ia determined by counting the ranks cf corresponding free R-modules.

!J:2Qf. The sequence in Proposition 4.4 splits in the representation ring of RG due to

semisimplicity. •

The above corollary for R == (: is proved by A. Broughton [Br] using Eichler's trace

farmula..

The final possibility is when ~G =; while G does not aet freely on ~. In this

case, G need not be cyclic, and the formulas a.re 80mewhat more complicated:

4.7 Prgoosition. Suppose thai G acts without fixed-points, but not freely. Let

{Bi: i E I} be the collection of isotropy subgroups considered with multiplicities as be­

fore, and let f be the augmentation homomorphism (E(gHj ) = 1) and B0 = Ker( f) in
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e: e 71.( GIR.) --+ 7I . Then, up to. stable lZG-isomorphisID, the lIG-module is deter-
iEI 1

-2 *mined by BQ and a homology dass 9(~ E H1(GiBO) . Indeed, if cp: w (Ba) ---H ll:

represents SeE) via the jsomorphisms ~G(ClI-2(B~),1l) ~ H1(G;BO) , then

Hl(~ ~ w-l(Ker <p) and H
1
(~ ~ w-l((Ker <p)*) .

~. We have an exa.ct sequence 0 ---t Im01 .--.. Co E I 1---+0 in which

Co ~ (llGl' $ c.: ll(G/Hi» J Hj :f: 1. Let {ei: 1 ~ i ~ m} and {u
J
.: 1 ~ j ~ R..} be the

1=1

obvious generators and basis elements for the two factars in CO. We choose a new basis

for (7IGyt fa.ctor, by fixing HO '4: 1 , eOe ll.(G/Ho) its llG-generator, and setting

Vj = uj - 80 . Such an eO exists because the action ia not free by assumption. With the

new basis {vj : 1 ~ j ~ R..} I we observe that Im a1 is 7IG-stably isomorphie to BQ in

the statement oi the proposition. Again, from the exact sequence

a.s in the preceding cases, we get the following exact sequence, up to lZ~table iso­

morphism:

From the latter, we have:



-23-

~ -2 "-2
and the classes of r.p in HOffiG(w (B O),ll) ~ H (G,BO) ~ BI (G,DO) is the class B(L)

mentioned al>ove. One checks that BQ and O(L) together detennille the stahle iso-

morphism c1a.ss of EICL) . •
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Section 5. Groun Actions on Kähler Surfaces.

In this section, X denotes a simply-eonnecteu compact Kähler suna.ce, and we

assume that G is a finite group acting by complex automorphisms. Unlike general smooth

manifolds, the Kähler condition imposes strang conditions on the action, and cansequently

on the llG-representation afforded by H2(X;1l) .

5.1 Proposition. Let G be an arbitrary non-trivial finite group acting on X as above.

Then H2(X) cannat be lIG-projective if G preserves the Kähler cohomology class in

H2(X) .

Prcof. 1t suffices to show this for G = IIp . Cansider the Serre spectral sequence of the

* * *Borel fibration Ea )(a X~ BG , H (GJH (X)):::} Ha(X) . Ir G acts freely on X, then

H2(X) ~ I ED I m(llG)s ,hence H2(X) is ~ot projective. Suppase XG 4= rP . Let

t E H2(G) ~ IIp and let a E n2(X) be given by the Kähler form, so that. .

[aAa] = [X] = cohomological orientation dass of x . Consider the cup product in the

*spectral sequence, as weil as the H (G)-algebra structure of the E2-term in the follwoing

commutative diagram:

H2(G) o HO(G,H2(X)) ~HO(G,H2(X))_---+tH2(G)0 HO(G,H2 (X) ~ H2(X))

1 1
H2(G,H2(X)) ~ HO(G,H2(X)) H2(G) 0 HO(G,a4(x))

1 1
a2(G,a2(x) ~ a2(x)) I H2(G)H4(X))

Since t· [X] :f °in H2(G,H4(X)) , we have °f. t· (aAa) = (ta)Aa J hence

° 2 2 G *.t· a f °.Therefore a EH (G,H (X)) = H (X) cannot be H (G)-torslon.
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Consequently, ir*(G,H2(X)) '+ 0 , so that H2(X) tannat be G-prajective.•

5.2 Corollary. Let G = IIp act on the simply-connected Kähler surface X preserving the

Kähler cohomalogy dass. Then 1: ~(XG) ~ 3 , where ßj = i-th Betti number, and

i~O

x G :f ; by hypothesis.

fiQQi. Since XG:f ; , and for degree reasoDS, the Serre spectral sequence of

E G )(aX ---+ BG .collpases. (See e.g. [A3]). Now the abeve proof shows that
.. * . ••
H (G,H1(X)) '+ 0 for i = 0,2,4 . Therefore, H (G)-rank of HG(X) is at least 3. The

localization theorem ([HS] OI [Q]) implies the desired conclusion.

•
In the following theorem, conditions are given which guarantee that module llG-pro­

jective modules, G must act triviallyon n2(X). Recall Theorem 4.14 of [A3] m.

5.3 ,Theorem. Suppose X is a Kähler surface, 1('1 (X) = 0 and G aets smooth but not

freely, and G = (ll.p)B , B~ 1 . Assume that for each cyclic subgroup C CG J P > ßo(XC)

and ß1(XC) = 0 . Then the fallowing hold:

(a) there exists an m > 0 such that the llG-module ~(X) ~ 11m ti M where Gatts

triviallyon 11m and M is 7ZG-projective.

(b) X(XG) = x(XC) =m for each C ( G , ICI = p ,and rank(G) ~ 2 .

(c) H rank(G) > 1 ,then Gatts freely on the set of symplectic 2-foIIDS cf X ; hence

G does not preserve any symplectic structure on X.

fiQQf. Since ß1(XC) =0 ,XC consists of 2-5pheres and isolated points. Moreover,
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H
2

(X) ~ 1lr(?) m'0. [e] U as llC-modules, where C acts triviallyon ZZr(C) J and

r(C) = X(XC)-2 . Also, GI C must act triviallyon X'o(XC) since p > ßO(XC) by

assumption. Hence GI C must act effectively on ead component 82 , and each isolated

fixed point in xC mast be an isolated G-fixed point. If G = C = 7lp , then we are done.

If rank(G) > 1 ,then G cannot have a. free a.ction in the punctured neighborhood cf an

isolated fixed point. Since XC =F rP for same C *1 J GI C must act eH'ectively on each

copy S2 CxC . Therefore XG = (XC)GIC :f: rP . From tbis (c) follows, since if C

preserves same symplectic 2-form cf X J then xC must consist cf exclusively isolated

fL'"Ced points. (Consider the complex C-representation on the tangent space TQX far some

Q ExC , and observe that if a symplect form ia preserved, then the two eigen-values of

any generator of C must be distinct and not equal to 1). In view cf the above observation

thai xC contains ~opies cf 52 J and that XC J XG 1= r/J for each C =/= 1 , we see that

each C, and hence G, acta freely on the set cf symplectic 2-fcrms of X . Since each

S2 CxC contributes one copy of SO C (XC)GIC ,then x(XC) = x(XG) . It suffices,

tlIerefore, to prove (a). But (a) is proved in Theorem 5.6 of Assadi [A3] m.

a

Finally, the actions considered in this section are 11regular11 in the terminology of

[A3] . Hence, the general theorems of [A3] apply to this situation, and the same prin­

ciples and argument may be used to study the 1lG-representations afforded by g2(X) for

a. compact Kähler surface. In particular, the fixed point set of the G-action and a suitable

group cohomology element completely determine the llG-module H2(X) as in Proposition

"4.7of [A3] ITI.
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SectiOD 6. Projective Söce with Irregularity Zero.

In this section t we consider non-iiingular projecüve surfaces X defined over an

algebraicaJ.ly closed field cf arbitrary chara.cterlstic k. The analogue cf simply-<:onttecti-

.vity for complex surfa.ces ia the condition q(x):: Pg(X) - Pa(X) = 0 Le. the irregnlarity is

zero. Let .%x be the canonical sheaf cf X, and let fi2(X) == ilex; J{x) be the k-vector

space of IIholomorphic 2-fonnsn of X. We compute the kG-representation rr(X) for the

free G-actions on X. A suitable cohomology theory ia Cech oohomology using an open

C9vering 'it of X consisting of G-invariant affine subsets of X. Such a Cech cohomo­

logy group coincides with Grothendieck's coherent oohomologyt Le.

HO( lJt ; Xx) ~ rr(X) . On the other band, by Serre duality,

fi2(X) ~ Homk(H2(X; t'X),k) ~ Homk(H2( 'it; t'X),k) . Consider a free G-a.ction on X,

and observe that the variety X/G exists (Mumford [M]) and it ia non-singular and

projective. Moreovert t"he morphism f: X ----+ x/a" ia an etale principal coverin'g. Let
. -

'Uo be a suitable fini~e covering cf X/G by affine open sets, and let

?t= {r1(v0) : V0 E Ua}· Then each V =r 1(v0) ia also affine, and we have

1 1 ,V : V~ Vo is given by a k-algebra homomorphism rp: R ---+ S , Le. t

. a r
V0 =Spec(R)t V =Spec(S) and tp =r IV .

"6.1 Theorem. Let·X be (an irreducible) non-singular projective k-surface with

q(X) = 0 . Suppose that G acts freely on X by automorphisms. Then the kG-module

fi2(X) is stably kG-isomorphic to w~(k).

6.2 Remark. Compare this with Corollary 3.2 which describes H2(X;1l) stably 1ZG-iso­

morphic to an extension of w~(1Z) and w(!ClI). For k = ( , the Bodge decomposition

yields H2(X,C) ~ H2tO(X;G:) e HOt2(X;C) fi H1t1(X,C) . 5ince H2tO and HOt2 are dual

10 each other, and fi2(X) ~ H2,O(X;() the above result implies that from
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H2(X;() ~ W(X) e Hom(W(X),() Ei ([G] t ~ "'~«) e Hom( "'ö<(),() s 4: [G] t we

conclude a1,I(x;() ~ «: [G] t .

6,3 Problema Compute the llG-lattices Hi,~x,()n Hi+j(X;1l) .

* *~. Consider the Cech complex C = C ( U) o{ kG-modules for the coherent sheaf

t/X in which HD(C*) = k , BI(C·) =a l ( U; t/x) ~ al(x; "X) since

q(X) = Pg(X) -Pa(X) = dimkH1(X; t'X) and q(X) = 0 byassumpüon. Moreover,
. *., .

BI(C ) =al( U; t/x ) ~ al(x; "X) =D for i > 2 , and Cl =0 for i sufEiciently large,

since 'lt is a finite cover. In the ca.se of a complex analytic manifold, we could use the

analytic topology, and choose Uo sufliciently refined anti! r 1(v0) ~ G x Vo. is a free
*orbit of V0 up to G-i80morphism. This would imply that the Cech complex C is a !tee

~:r:nplex. In the general case at hand, we have used Zariski open sets, and we need, to

resori to a somewhat different argument. Consider r.p: R --+ S such that

Cltp : Spec S~ Spec R ia the given etale covering iQ =11 V : V~V0 ' V =r1(V0) .

Then V Xv V admita a section, so ihat V Xv ~ G x V as VO-schemes with free
o D

G-a.ctions. Therefore, S eRs ia a free k [G] -module. Conaider the kG-isomorphisms:

S~S ~ S eR(R ~S) ~ S 8R(S ~R) ~ (5 eRS) ~R which shows that S ~kS is also

kG-free. Thia implies, in particular, that S ia kG-projective. Hence CO( 'lt) is a. pro­

jective kG-module. A gjmilar argument applles to show that ci( 'lt) is kG-projective.

•Consider the dual chain complex C. =Homk(C ,k) of kG-projective modules, in which

HO(C.) ~ k and ~(C.) =Homk(W(X»)t) are the enly non-vanishing homology groups.

It follOW8 that B2 =Im. 82 CC2 is projective over kG J since

o-+ Cn -+ Cn- 1~ 'U" ---+ C3~ B2 --+ 0 ia exact ror seme sufficiently large

n . Moreover, 112 =Ker 82 ~ "'~(k) in view of the exaci seqnence:
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The exact sequence 0~ B2 ----+ Z2 ----+ H2(C*) ---+ 0 J splits, since kG is injective.

Therefore, H2(C*) N Z:i = w&(k) is an stable kG-isomorphism. Hence
2 2 * 3 -3 .n (X) =H (C ) =ROIDk(WG(k),k) = wG (k) as clalmed. •
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Introduction. Let X be a topological space with a finite group G aeting on it. For

*suitable coefficient systems and eohomology theories, H (Xi ~) beeomes a G-represen-

tation. Study of such representations and t~eir relationship to the symmetries of X has

been the subject of extensive study. In our previoUB paper [Al] -[A5] , we have studied

such representations from the view points of group cohomology and local-global con­

siderations. In particular, [A3] cansiders the integral representations on H2(X;71) when

X ia a compact simply--eonnected 4-manifold. In the following paper, we continue [A3]

by specializing to the case of aIgehraic curves and surfaces.

Historically speakingJ such investigations for complex projective CUIves (compact

Riemann surfaces) goes back to the 1893 paper of Hurwitz, in which complex represen­

tations of eyelle automorphism group8 of Riemann surfaces were studied. His work was

completed by Chevalley and Weil, also using analytic techniques. See '\Veil's callected

works Vol. I, pages 529 and 532-533 for historical details and a discussion oi these results.

Chevalley-Weil's results were further generalized by Tamagawa to the case of curves aver

fields of positive characteristic with iree regular automorphism groups. Tamagawa)s result

is formulated in terms of unramified Galois extensions of the corresponding function fields.

This point oi view has been further developed by number theorists, in partieular, Madan

and Valentini among others. (See Valentini-Madan, Journal Number Theory) Val. 13,

1981, for a historical survey and further developments.)

Some of the results of the present paper may be considered as modest generalizations

of the above-mentioned results. Such generalizations are in two directions. First, we have

determined the integral representations H1(X,ZZ) for a compact Riemann surface with an

arbitrary finite automorphism group (Section 4). Since the structure of ZZG-modules is a

complete mystery for almost all finite groups, our formulations are in terms of graup co­

homology in the general case. Secondly, we have studied certain representations for suitable

non~ingularprojective surfaces in analogy with Chevalley-\Veil and Tamagawa)s results.

Namely, for free G-actions on projective surfaces X where Pa(X) = Pg(X)
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(Pa = arithmetic genus and Pg = geometrie genus). For curves, Pa(X) = Pg(X) always.

But for surfaces, this is areal restrietion, and it should be compared with

simple-connectivity hypothesis for complex projective surfaces. In Section 6, we have

determined the kG-module HO(Xj X X) (= vector space of regular 2-fonns) in analogy

with the case of regular I-forms for curves. Section 5 makes a preliminary study of the

llG-representation H2(Xjll) when X is c~mpact Kähler. The general theme of sections

3-5 is to relate the topology and geometry of the underlying symmetry to the homological

properties of suitable representations. In Section 2 w~ have gathered some definitions and a

brief discussion of some of the homological notions for the convenience of the reader.

Further preliminary material may be found in [A3] or in the references.

Note added in proof. Since the appearance of the first version of this paper, several related

works are brought to my attention. I would like to thank Chad Sehoen for discussions on

bis interesting results in tbis direction and for sending me bis manuscript [Schoen]. I am
n

also grateful to G. Ellencwejg and T. KOhOjo who brought to my attention the related

works of S. Nakajima [Nakajima 1 & 2] which go deeper in the number theoretic direction

and seem to have a slight overlap with some of our results.
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Section Two. Preliminary Notions.

In the following sectioDS, we will use the same notation and conventionB aB in [A3].

However, we review some of the notation {or the convenience o{ the reader. Let G be a
"

finite group, and R be a commutative ring with unit, e.g. R = 11, 7lp , p-adie integers,

IFp ,or (. The RG-modules are finitely generated and R-free. Finite generation may not

hold {or some o{ the RG-modules in the ehain eomplexes used in Section 6. However, the

cohomology and homology groups are all finitely generated, and this will he sufficient. Two

RG-modules Mt and M2 are ealled projeetively stably RG-isomorphie, denoted hy

Mt N M2 ' if there is a eommutative diagram:

Mt e Pt
~

) M2 e 'P2g

jl Ir '-

Mt .M
2

where PI and P2 are RG-projeetive, j and 1C' are the obvious inclusion and projection,

and g ia an isomorphism. I{ Pt and I:-2 are RG-free, then we eall MI and M2 stably

isomorphie. Stahle isomorphism ia an equivalenee relation. Heller [Hr] has defined loop

and suspension operationB for RG-modules when the notions "projective cover ll and

lIinjective hull" make sense. However, projeetive covers do not exist, in general, {or
A

7lG-modules although they exist {or lFpG-modules or IIp [Gl -modules. Here, we can

define a stahle version of the "Heller loop-operator", whieh we denote hy w, on the set of

stahle equivalenee classes of RG-lattices (Le. R-torsion free RG-modules). Namely, w(M)

is stahly well-defined (hy Schanuel's Lemma [Sw]) {rom the exact sequence

0--+ weM) --+ (RG)o --+ M --+ 0 . If we use projective RG-modules instead o{

(RG)o , then w(M) is well~efined up to projective stahle equivalence. Then we set
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u"l(M) = w(M) and ui+1(M) = w("i(M)) induetively. For i E 11 ) this definition has a

natural extension, so that wi(M) are stably well-defined for all i E 11 .

We will also make use of a eonstruetion for RG-modules from cohomology classes

which is explained in [A3]. Dur deseription is a generalization and a stable version of the

eonstruction used by J. Carlson [C] in modular representation theory. Recall the Tate

.cohomology lii(G;M), i E 11 as in e.g. Cartan-Eilenberg [CE] . Then

./\ def A 0
HOffia(M,R) == H (G,HOffiR(M,R)) is isomorphie to the group of RG-homomorphisIDs

f: M -t R modulo the subgroup of those which faetor through an RG-projective. (See

Mac Lane pp. 74-75 [Me] for related diseussion. It turns out that

AO def./\ A * *
H (G,HoffiR(wn(M),R)) == Hom(wn(M),R) ~ Hn(G;M ) , where M = HOIDR(M,R)

.. *
with the diagonal RG-module structure. Now, given a eohomology dass) x E Hn(G;M ) ,

we may rcpresent x by an RG-hoffiomorphisln cp: wn(M) -t R which is well-defined

up to factorization through RG-projeetives. cp may be assumed also surjective. Define

L{f? == Ker(~) . Then L~ is well-defined up to projective stable equivalence. (See [A3] for

further discussion). The notation dass (~) will be used for the eohomology dass repre­
/\ .

sented by <(J. The functor Exta(-,-) is also constructed in analogy with Tate eoho-

mology iri(G)-) using complete resolutions (see e.g. Cartan-Eilenberg [CE] or Carlson

[C] ).

An algebraic gcneralization of a Poineare duality space is the notion of achain eom­

plex with duality. Let C* be a bounded conneeted ehain complex of dimension n over a

ring R, so that HO(C*) ~ Rand Ci = 0 for i < 0 or i > n (for some n > 0 ). We call

C. achain complex with duality of formal dimension m, if there exists achain homotopy

. *
equivalenee h: C . -t Cl between C* and C . The eellular chain eomplex of arn-I

Poincare duality space or a closed oriented smooth manifold are basic examples of such

complexes with duality.
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In Section 5 and 6 we will need some basic facts from algebraic geometry. The stan­

dard reference far the definitions and concepts used in the following are Hartshorne [H]

and Mumford [Ml] [M2].
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Section 3. Free Actions.

In this sedion we study homology representations of free acüons.

3.1 Theorem. Let X. be a (k-1)-eonnected bounded RG-free chain complex with duality

of formal dimension 2k. Then:

(a) The RG-module Hk(X*) is eompletely determined up to stable equivalenee by a

homology class x E H2k(G;R).

(b) Let ,: w-2k-l(R) --++ R be a representative for x. Then Hk(X*) is stably

RG-i80IDOrphic to ",kL,.

(e) Let tp: w-k-1(R) ---. wk(R) be sueh that class(tp) = class( () =x under the

isomorphisms

Then Hk(X.) is completely determined (stably) !rom the short exact seqeunce below:

The following coroUary has been proved tor k = 2 by Hambleton-Kreck [HK].

3.2 CoroUary. A symmetrie expression for Hk(X*) is obtained aB follows. Let

z EExtÖ(w-k-l(R), wk+1(R)) . Then the extension dass z is represented by the short

exact sequence:
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•f!:QQf. Since X. ia R-ehain homotopic to its R-dual X == HomR(X.,R) , we have

Hi(X*) =0 for k + 1 ~ i ~ 2k-l . Moreover,. withoui los8 of generality, we may assume

that Xi = 0 for i ~ 2k+l (see e.g. A8Sadi [A3] Lemma 4.2.). The connectivity of X. in

the above-mentioned dimensions gives rise to long end sequences below:

We conclude thai Bk- 1 = 41
k(R) and coker( Dk+1) = w-k-l(R) . To identify Hk(X.),

we consider the commutative diagram be1ow:

The homomorphiam j in the above diagram ia induced from the inclusion

i : Zk G.C'- ..~ Xk . Thus we have the ahort exa.ct sequence:
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of RG-modules, a.nd Hk(X.) ia stably determined by the clasa
./\

(cp) E HomG(W-k-l(R), ",k(R») . Using the i80morphisma

~ .( -k-l() k()) ~ ( -2k-l( ) ) A -2k-l() ()Homa w R ,W R ~ HomO w R ,R ~ EnG R,R ~ H2k GjR , we

obtain the class x EH2k(G;R) corresponding to class (l,O) • Let ,: W-2k-l(R) ---++ R

be a representative for x. Then L( == Ker( () = &/-k(Ker 11') • 80 that Hk(X.) = &/kL( .

This proves the Theorem. _

Pxoo{ of CoxoUary 3.2. The homomorphisms j and r cf the diagram (D) in the proof cf

Theorem 3.1 above give rise to the following short exact sequence:

Since ecker( 8k+1) = W-k-l(R) and Zk = J+l(R) from the exaet sequence

0----+ Zk ----+ Xk~ ..... --+ Xo----+ R ----+ 0 we obtain the desired short exact

sequence of the corollary. It remains to determine the extension class
1 /\ 1 -k-l "+1 A -2k-l

z E EnG(coker( 8k+1),Zk) == ExtG(W (R), Ir (R» ~ ExtG (R,R)
... 2k-l ~

~~ (GjR) == H2k(GjR) . We apply HomG(coker( 8k+1),-) io the exact sequenees

o----+ Hk(X.) ---+ coker{ 8k+1) ....!:I!..-t Bk- 1 --+ 0 and
8

o--+ Zk --+ Xk k l Bk- 1 ---+ 0 as well as (E). We gei the commutative diagram

below in which Ö' and ÖE are the connecting homomorphisInS of the last two sequences:



-9-

Since z = 0 (identity) and 't'*(identity) =class(cp) =dass( C) =x , and an other isomor­

phisms are obtained by dimension shifting, it follows that z a.nd x correspond under

these natural isomorphisms. •

3.3 Theorem. Let X be a (k-l) connected finite dimensional Poincare complex: of formal

dimension 2k. Let G act freelyon X and let f: X/G ---+ BG "be the classifying map

for the G-eovering X --.!...-... X/G . Then:

(a) The homology class x:: f* [X/G] EISk(BG;71.) = H2k(G;7J.) completely determines

the llG-module Hk(X;ll) up to llG-stable isomorphism and vice versa. In fact,

Hk(X) is stably isomorphie to II1
kLC where dass( C) = x as in Theorem 3.1 aboye.

(b) Each x EH2k(G;1l) ia realized by a free analytic G-a.ction on a compact connected

Riemann surface when k = 1 , and by a free smooth G-action on a compact

simply-eonnected 4-manifold when k = 2 .

Proo{ cf Theorem 3.3~ Applying the result of Theorem 3.1 to the free llG-chain complex

C*(X) , we conclude thai the stable lIG-isomorphism dass of Hk(X) is determined by
A

x =class(cp) EHoma(coker(8k+1), Bk-I) ~ H2k(G;1l) . We compute x in terms cf the
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induced homomorphism f.: H2k(X/G;ll) --+ H2k(BG;71) = H2k(G;ll) as follows. Let

E. = C.(Ea) , where Ea --+ BG ia the universal G---eovering as usual, and

C. = C.(X) . The ltG-chain map 1#: C. --+ E. ia induced by r: X --+ EG . We

identify (E.,8~) as a free 7lG-resolution of 7l , Ker 82k = w2k+1(71) , and

coker( 0k+1) = w
k(71.) . Consider the commutative diagram. below induced by 1 and the

above identifications:

The class f. (X/G] E H2k(G;71) ia determined by

fE Hom(H2k(BG)) = Hom(1l.,H2k(G;1l)) . The shifting i80morphism, denoted by

sends class(..\) to class(1.) = f. in the diagram below:

Therefore, it suffices to prove that class(..\) = class(rp) . Consider the commutative

diagrams below in which (I) detennines class(rp) :
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0 o· "

T ·T
(1) Bk-1

-
Bk - 1.

T T~
- .

o----i Bk ---+ Ck
~ .Q 10

1= .ii L
o----+ B_ k ----I Zk a , Hk(X) ----+ 0

i T
0 0

;k-I~_I
(II) Q ,\ I wk (7Z)

~l
1#

1~I

Ck
) E

k

(ill) ko~ w (ll) ----t Ek- 1 ----+ ..... ---t) EO -----i 71. ~ 0

ITk-I 11# 11# I=
o ----+ Bk-l --4) Ck-l ---+ ..... ---11 Co -----i 7l ---+ 0

. A ~

Under the shifting isomorphism u(wk): HomG(7Z,71)~ HomG(wk(71)J wk(71)) ~

~ ~G(Bk-I' III
k(71)) in diagram (Ill), class(id71) corresponds to class( T k- I ) . Thus

the isomorphism (Tk-l)* below:



-12-

sends class(tp) to class(~) , and this is what we wanted. Thus part (a) of the theorem. is

proved. The proof of part (b) is included in Assadi [A3] Proposition 4.4 (c) for the case

k =2 . For k =1 , the Hurwicz homomorphism n~O(BG) -----+ H2(BG) = H2(G;1Z) is

surjective, hence part (a) implies the desired conclusion. _

3.4 Corollary. For every x E H2(G;1Z) , there exists a free projective G-a.ction on a

non~ingular projeetive curve/( such that H1(Xan;1Z) is 1ZG~tably isomorphie to

(wlL ,)* where 'E HomG(w-3(1l),1l) represents x under the isomorphism

~G(w-3(ll),ll) ~ iJ-3(Gjll) = H2(Gjll) ,and Xan is the underlying space with the

usual topology.

Proof: Aeeording to 3.3 (b) above, there exists a compact Riemann 8urface E and a map

f: E ---+ BG such that {* [E] = x E H2(BG;1l) = H2(G;1l) . Let X be the ~overing

induced by f together with the free G-action on X via covering translations. Then

BI(X;ll) ia stably llG-isomorphic to w1(L c) and class( C) = x by Theorem 3.1 aoove.

Now G acta on the compact Riemann surface X by complex analytic iaomorphisms, and

H1(Xan;1l) is llG-ismorphic to Hom(H1(X),ll) = (wlL / and class( ,) = x by

Theorem 3.1 above. We may assume that the genus (E) ~ 2 , hence genus (X) ~ 2 , so

that the canonicalsheavea XE and Xx are ample. Hy Serre's GAGA principle [SI] 1

~ and XE are algebraic. Thus, X is a complete non-singular curve on which G acta by
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algebraic iSOIDOrphisIDS, Xx is an ample G-line bundle on X, and J'": X --+ E = X/G

is an algebraic morphiSID for which XE = (J'"* XX)G . Since the pluricanonical

embedding X --+ IPr(X, X~m) ia equivariant, the G-action on X ia projective.•

3.5 Exa.moles. (1) If G = 11lp1/. ,then H2(G;7l) = 0 =H4(G;11) = 0 . Thus, if

dimlRX = 2 , then for r = ~g-1) H1(X) ~ 7l Ei 11 Ei (7lG)2r , and if ditnmX = 4 and

J'"1(X) = 0 ,then H2(X) ~ I ED I ED (7lG)8 where I is the augmentation ideal. Since

I ~ 7l. [(] ,where , ia a primitive p-th root of unity with the uaua! 7l.G-module

structure, then H2(X;7l) ~ 7l. [(] Ei 7l. [(] Ei (1/.G)s .

(2) Suppose G has periodie cohomology, so that the p-Sylow subgroups of G are

cyclic for p =odd and either cyclic or generalized quaternionic for p = 2 . Then

H2(Gp;7l) = 0 = H4(G p;7l) for all p-Sylow subgroupa Gp C. G . Therefore,

H2(G;1/.) = 0 = H4(G;1l) , and we have the following conclusions. For dimlRX = 2 ,

H1(X;71) is 7lG-isomorphic to w2(11) CD w-2(11) CD (11G)2r . For dimlRX = 4 , r 1(X) = 0 ,

H2(X;1l) = w3(1I.) Ei w-3(11.) Ei (11G)s .

(3) Suppose G = (71/p7l)2 then H2(G;1I.) ~ lllp11 and H4(G;11) ~ (11lp11)2 . There-

fore, in this case we get non-trivial examples corresponding to the non-zero elements of

At this point, one may raise the point that the procedure in Theorem 3.3 (b) to

produce free G-actions on simply--connected smooth 4-manifolds involved non-algebraic

arguments. That is, surjection of n~O(BG) onto H4(BG) produces fO: W~ --+ BG
4such that fot [WO] =x EH4(BG) and smooth aurgery on the map 10 correcta the

fundamental group to give f: W4
--+ BG with I. [W] '= x. Then the universal cover of

W ,say X J ia the desired smooth simply-eonnected 4-manifold whose homology

7lG-module H2(X) realizes the class x E H4(BG) . It is not clear if either one of these

steps can be achieved using complex manifolds. Thus, we pose the following
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3.6 Problem. Which homology classes x E H4(Gjll) anse in Theorem 3.3 for analytic

G-actions on compact complex surfaces X with ~1(X) = 0 ?
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Section 4, Graup Actions on Riemann Surlaces.

In tbis section, we assume that G ia a finite graup acting effectively on the compact

Riemann surface ~ via complex analytic isomorphisms. Thus, G preserves the orientation
H.

and the isotropy subgroups Hi " G are all cyclic. Moreover, for all Hi f 1 ,E 1 consists

of at most finitely many points of E. We delete the trivial subgroup (Le. the principal iso­

tropy suhgroup for all ef[ective finite group actions) from the list of isotropy subgroups of

the action, The orbit space ~I =~/G ia still a compact Riemann surlace and ~~ EI

ia a ramified finite covering. We may choose a triangulation for EI such that the ramifi­

cation points are all included in the set of vertices of EI ,and we lift tbis triangulation to

E , to give ~ an equivariant triangulation. Under these circumstances, E becomes a

G-CW complex, and the cells cf E pravide permutation bases for the cellular chain

complex of ~. This makes C.(E) into a permutation complex. In Section 3, we proved

that if G acta freely on ~,then the 1ZG-module H1(Xj71) ia stabIy 7lG-isomorphic t~

wh, ,where class(() = x E H2(G;1l) is the image f. [E/G] E H2{BG;1l) = H2(G;1l)

under the homomorphism induced by the classifying map f: :E/G -+ BG . Moreover,

every element of H2(GjlI) arises by such a free G-action. For inatance, if H2(G;1l) = 0 ,

then H1(~ ~ w2(1/.) Ei w-2(1l) Ei (llG)2r ,where r ia determined by counting lI-ranks of

both sides of tbis equation. We proceed to determine the llG-module structure of H1(Lj1Z)

tor non-free actions in the same spirit.

First of all, the following analogue oe Assadi ([A3] Theorem 5.4) is easily

established.

4.1 Proposition. With the above nota.tion, the following are equivalent:

(a) Hl(~ll) is llG-prajective.

(b) For each prime order subgroup C.c. G ,H1(E;lI) is lIC-projective,



-16-

(c) For each prime order subgroup Ce G )rP consists of 2 points.

Furthermore, if H1(1:;1l) is llG-projective) then p-Sylow subgroups of G are

cyclic.

fmQf. (a) =t (b) and (b) =t (c) by considering ihe spectral sequence EC x CE ----+ BC

and applying the localization theorem (Hsiang [Ha] or Quillen [Q]). From (c) it follows

that p-Sylow subgroups of G must have one-dimensional faithful complex linear repre­

sentations, hence they must be cyclic. Thus, maximal p-elementary abe1ian 8ubgroups of

G are isomorohic to 1l/ pll . Therefore (b) ~ (a) by Chouinard' 8 theorem (Chouinard

[eh] or Jackowski [J]). (c) =t (h) ia also possible by reversing the spectal sequence

argument for (b) ~ (c) . For a more elementary argument, consider Eu = E - {x} where

x E rP .Then Hl(En) = Hl(E) and H2<Ea) = 0 . Therefore, H1(l:) ia the only non­

vanishing homology group in the llG-free chain complex C*<Ea~) . Rence, it ia stably

llC-free, and since C ia cyclic, H1(~ ia llC-free. _

The following lemma and the above discussion take care of IG I = prime.

4.2 Lemma. Let G =7I/p7I =<t> where p ia a prime. Then EG f ; if and only if

HI(E) ~ 71 [ Cl a e (71G)r ,where Cia a primitive p-th root of unity and 7L [ Cl haB the

usualllG-module siruciure 11 [Cl == 11 [G] /(l+t+.....+tP-l) . Here r = 2g - (p-l)a and

Ga = #(E )-2.

fmQf. H r? = ; ) then H1(E) ~ 7J.2. (71G)s . Therefore, aBsume that EG f ; . Let

:ca Er? J and choose a small G-tnvariant diak D about Xo J and let Eu =E-interior

(D). First, observe that ~ # ; . Otherwise, we would consider the classifying map of the

regular p-fold cover Eu -!...-.. Eu/G J say f: Eu/G~ BG t and conclude thai

fllJ11J/G =f' : SI~ BG is null-homologous in Hl(-BG) ~ 7J./p11 ~ ~l(BG) t hence
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null-homotopic. Hut .,.-1(~/G) = an is connected, 80 that f' cannat be null-homo­

topic by covering space theory. Consequently, there exista xl EE~ . Let

E
G = {xO,xl'Yl"'.'Ya} , and consider the permutation chain complex C.<Ea), in which

CO(Ea) ~ CO(xa) $ COCEOJXo) = -0. e eo'Ea) and eo'Ea) ~ 7l.a e (llG)r . Since

H2(Ea) =0 , it follows that Ker 81 = Zl ~ HI (Ea) "C2(Ea) and

IJ
o~ Zl~ C1'Ea) 1 I Öo(Ea) --.0 is exact. Therefore, Zl is stably llG-iso-

.morphic to I a ,where I ia the augmentation ideal of 11 [G] , which ia isomorphie to

1l [{] because G =H/pH . Hence BI(~ ~ HI(Ea) ~ 11 [Cl a Ei (HG)r as claimed.

11

Nexi, we a.8sume thai 'EG *,,so that G ia necessarily cyclic, but possibly ha.vi~g

composite order. Unlike the case ~f G =7l/pk7J. when p =prime, in tbis case t G = o~e

point ia possible, as shown by Conner-Floyd [CF] (see also Ewing-Stong [ES]). Thus,

we consider two cases below. Note thai the case G = 7l./pk71 ia covered by the first tase

be10w since according to Atiya.h-Bott and athers EG f ane point.)

4.3 Proposition. Suppose EG has at least two points, and let {Hi : i = l, ... ,n} be the

collection of non-trivial isotropy 8ubgroups considered with repetition according to the

H.
number of orbits in E 1, and excluding two capies of G conesponding to the first two

points in r? 0 Let Ci be an IBi l-th root of unity and "'D. ['i] with the usual
n .

7I. [H.] -module structure. Then BI (};) ~ Ga (llG ~H -0. [Co] e (llG)r , where
1 0 1 . 1

1= 1

~. Let Xl E I;G ,and consider a small G-invariant disk neighborhood of xl (avoiding
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other fixed points), called D(xo)' Let Ea =E-interior (D(xl» . As befere, Ea admits a

G-CW strueture in which Cl(Ea) and C2(Ea) are llG-free, and CO(Ea) is a permu­

tation module. Let Xo E~ *; and consider the augmentation CO(EO)~ CO(xa)

which is llG-fiplit via the inclusion {xO} CEa . Thus Co(l:O} ~ ~o~) e 7I. • Consider the

following short exa.ct sequences:

0 I C2(Ea) IJ
• BI(Ea) .0

0 IBI~) • Zl(EO) IHI~) 10

0 IZI~) • Cl(Ea) I eO(Ea) lO •

From these, it follows that BI(Ea) is llG-free, and H1(E) ~ BI(Ea) ia stably isomorphie

to ZI(Ea) . Since all modules are ll-free and BI(Ea> is llG-free, reflexivity of 7I.G

implies thai the second exact sequence is llG-eplit. Leaving out {xa,xI } C EG from the

singular set cf the action, it ia clear that eO~) ia stably isomorphie to ~ 7I.(G/Hi)
1

where Hi areisotropy subgroups of the fixed points in E - {Xo,x1} . Therefore, Zl(Ea)

ia stably llG-isomorphie to fB J7/.(G/Hi} . We also have

",lll(G/Hi) N 11.G eH. wÜ. (11) N 7lG eH. 71 [Ci] ,where the last stahle isomorphism ia due to
1 1 1

",tRi(l) ~ l ['i] as l [Hil -modules, because Bi ia cyclic.

4.4 Proposition. Suppose r? ={xa} . Then G ia a cyclic group whose order is divisible

by at least two distinct primes. Let {Bi: i = O,l,... ,n} be the collection of non-trivial

isotropy subgroups such thai HO· = G and Hi *G . Then Hl (E) ia completely deter-

n
mined by the permutation module B = CD 71 [GIRi] and an element

i=l
n

9(E) E • 11 IRi 111. from the exact sequence:
i=l
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~ n
Here, 'P represents a homology dass in HomG(lI [G] t e 11 , B mII [G] k) ~ EB llf IH·llI

. 1 11=

and dass(rp) = B(:E) .

Proof. Consider the commutative diagram be1ow, in which Q =eaker( 02)' C* = C*(:E) I

and

0 0

T T
Ba - ,·B

0

j 81
jgJ

o---+ 1l ---+ C2 ---+ Cl IQ ,0

1= f= ri fj
o--+ "0. --+ C2 -----t Zl a • H I (:E) ---+ 0

T r
0 0

In the sequence 0 ---+ H1(L) ----i Q ce IBO --+ 0 I Q ~ ll.'m (llG)t and

k . n
BO~ B e (llG) ,with B = EB 71 [G/H.] . Here, we use the fact .that G roust be cyclic,

. 1 11=

hence it has aperiodie resolution 0 --+ 11 ----t 7I.G ----I 7l.G --t "U. ---i 0 . Comparing this

with the top horizontal row and applying the Schanue1 Lemma (Swan [Sw]) we find out

Q ia stably llG-isomorphic to 7I.. Moreover,
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.A /'.. n
dass(<p) = BCE) E HomG( B,BO) ~ HomG(1Z,B) = i (J) 1 1I/ IHi III determines HI (~) up to

stahle 7IG-isomorphism.

4.5 Corollary. In the ahove Proposition, if eCE) =0 J then

H1(I;) ~ II m<. m 11 [ (i] ) m7l [G] r , where
1>0

r = -rfrr[rank BI(!:) -I-l (IBi 1-1)] .
i>O

Proof. If 8{~) = 0 ,then class(<p) = 0 and in the sequence

o---+ 111(~) ---+ 1I [G] t m7I.~ B m [lZG] k ---+ 0 ,<p ractars through a projcctive

llG-module P, which without 10s8 of generality we may assume to be a free llG-module.

We form the following pull-back diagram (the leit square) and complete the commutative

diagram. as indicated below:

o o

---+10
11

cp'o-+ Ke r ep' ---+ T - I P

1~ 1~1
o----ta H

1
(1;) -t (llG ) ((!rlI. ) BEB(7IG)k --t 0

1 1
o o

Since P is free, <p' splita, and this gives a splitting of t/J. Therefore,
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Identifying the terms P = (71G)8 J Ker cp' ~ H1(E) J and wl B N • tD 7I ['i] ,we conclude
1>0

that H1(L) ia stably llG-isomorphic to 7I. f& <. $ 7I. ['i] . Since cancelation holds for
1>0

llG-modules when G is cyclic (Swan [Sw]), the desired formula ia ebtained.

11

4.6 CeraUm. Suppose R ia a commutative ring such that RG is semisimple (e.g. a field

of characteristic zero, or prime to order of G ). Then, in the representation ring cf RG ,
n

we have the following equation: [H!(~R)] = [R] + m [RG] -}: [R ~H RG] ,and~m

i=l --

ia determined by counting the ranks ef corresponding free R-modules.

~. The sequence in Proposition 4.4 splita in the representation ring oi RG due to

semisimplicity. •

The above corollary for R = «: ia proved by A. Broughton [Br] using Eichler's trace

fonnula.

The final poasibility ia when EG = t/J while G does not a.ct freely on 1:;. In this

case, G need not be cyclic, and the fonnulas are somewhat more complicated:

4.7 ProPOsition. Suppose that G acta without fixed-points, hut not free1y. Let

{Hi : i EI} be the collectien ef isotropy subgroups considered with multiplicities as be­

fore, and let E be the augmentation hemomorphism (E(gHj ) = 1) and BO= Ker( E) in
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E: EB 11.{G/H.) ---+ 7I . Thent up to. stable llG-isomarphismt the 1lG-module is deter-
iE! 1

-2 *mined by Bo and a hamology class e(t) E BI(G;BO) . Indeed, if cp: w (BO) ---H 71..-

represents O(I:) via the isomorphisms ~G(W-2(B~),]I) ~ H1(G;BO) I then

H1(t) ~ w-l(Ker ft') and HI(E) ~ w-l«Ker <p)*) .

.E!QQf. We have an exact sequence 0 ---+ !mOl --+ Co -L-. 7I. ---+ 0 in which

m
Co ~ (lIG)t EB (EB 7l(G/Hi» ,Hi f I . Let {ei: I ~ i ~ m} and {u

J
.: 1 ~ j ~ t} be the

1=1

abviaus generators and basis elements for the two faetors in CO' We chaase a new basis

for (lIG)t factar, by fixing HO f 1 , eOE lI(G/HO) its llG-generator, and setting

vj = uj - eO . Such an eO exia t8 becauae the action ia 'not free by assumption. Wi th t he

new basis {vj : 1 5 j ~ t} , we observe that Im 81 ia llG-5tably isomorphie to Ba in

the statement of the proposition. Again t from the exaet sequenee

1 * *o--+ H (t) --+ Z1(~) ---+ B1(~) ---+ 0

a.s in the preeeding cases, we get the following exaet sequenee, up to 7lG-stable iso­

morphism:

From the latter, we have:
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/'\.. -2 "-2
and the classes of r.p in HomG(w (B O),ll) ~ H (G,BO) ~ H1(G,B O) is the class BCE)

mentioncd above. One checks that BO and O(I:) together detcfluiue the stahle iso-

morphism dass cf H1(I;) . •

........ ,
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Section 5. Group Actions on Kähler Surfaces.

In truB section, X denotes a simply-connected compact Kähler snrface, and we

assurne that G is a finite group acting by cornplex automorphisms. Unlike general smooth

manifolds, the Kähler condition imposes strong conditions on the action, and consequently

on the llG-representation afforded by H2(X;1l) .

5.1 Proposition. Let G be an arbitrary non-trivial finite group acting on X as above.

Then H2(X) cannot be llG-projective if G preserves the Kähler cohomology eIass in

H2(X) .

Proaf. It suffices to show this for G = IIp . Consider the Serre spectral sequence of the

* * *Borel fihration EG x G X --+ BG , H (G,B (X)) =} HG(X) .If G acts freely on X J then

H2(X) ~ I mI EB (llG)s ,hence H2(X) is not projective. Suppose XG f r/J • Let

t E H2(G) ~ IIp and let a E rr2(x) be given by the Kähler form, so that

[aAa] = [X] = cohomological orientation dass of x . Consider the cup product in the

*spectral sequence, as weIl as the H (G)-algebra structure of the E2-term in the follwoing

commutative diagram:

H2(G) ~ HO(G,H2(X)) ~ HO(G,H2(X)) ---i~ H2(G) 0 HO( G, H2 (X) ~ H2(X))

1 1
H2(G,H2(X)) ~ HO(G,H2(X)) H2( G) 0 HO (G ,H4(X))

1 1
H2(G,H2(X) 0 H2(X)) t H2(G,H4(X))

Since t· [X] f °in H2(G,H4(X)) , we have °f t· (aAa) = (ta)Aa , hence

t· a :f= °.Therefore a E nO(G,H2(X)) = II2(X)G cannot be TI*(G)-torsion.
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Consequently, :Ei*(G,H2(X)) f 0 , so that H2(X) cannot be G-projective.•

5.2 Corollary. Let G = IIp act on the simply-eonnected Kähler surlace X preserving the

Kähler cohomology class. Then l ßi(XG) ~ 3 , where ßi = i-th Betti number, and

i~O

XG f , by hypothesis.

Proof. Since XG *' ,p , and for degree reasons, the Serre spectral sequence of

EG xGX ---+ BG collpases. (See e.g. [A3]). Now the above proof shows that
~* . * *
H (G,H1(X)) f 0 for i = 0,2,4 . Therefore, H (G)-rank of Ha(X) ia at least 3. The

localization theorem ([HS] or [Q]) implies the desired conclusion.

•

In the following theorem, conditions are given which guarantee that modulo llG-pro­

jective modules, G must act triviallyon H2(X). Recall Theorem 4.14 of [A3] m.

5.3 Theorem. Suppose X is a Kähler surface, 1"1(X) = 0 and G acts smooth but not

freely, and G = (lIp)s , a ~ 1 . Assume that for each cyclic Bubgroup C.c. G , p > ßo(XC)

and ß1(XC) = 0 . Then the following hold:

(a) there exists an m > 0 such that the lIG-module H2(X) ~ 7J.m e M where G acts

triviallyon llm and M is llG-projective.

(b) X(XG) = x(XC) = m for each C ( G J IC I = p , and rank(G) ~ 2 .

(c) Ir rank(G) > 1 , then G acts freely on the set of symplectic 2-forms of X ; hence

G does not preserve any symplectic structure on X.

Proof. Since ß1(XC) =0 , xC consists of 2-spheres and isolated points. Moreover,
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H
2

(X) ~ 7Ir(?) m7Z [C] u as 7IC-modules, where C acts triviallyon llr (C) , and

r( C) = x(XC)-2 . Also, GIC must act trivially on ~o(XC) since p > ßo(XC) by

assumption. Hence GI C must act effectively on each component S2, and each isolated

fixed point in xC must be an isolated G-fixed point. If G = C = lLp • then we are done.

If rank(G) > 1 ,then G cannot have a free action in the punctured neighborhood of an

isolated fixed point. Since xC *; for some C*1 , GIC must act effectively on each

GI
copy 52 .c. xC . Therefore XG = (XC) C*;.From thiB (c) follows, since if C

preserves same symplectic 2-form of X , then XC roust consist of exclusively isolated

fixed points. (Consider the complex C-representation on the tangent space TQX for some

Q E xC , and observe that if a symplect form ia preserved, then the two eigen-values of

any generator of C must be distinct and not equal to 1). In view of the above observation

that xC contains copies of S2 , and that XC) XG f r/J for each C 1= 1 , we see that

each C, and hence G, acta freely on the set of aymplectic 2-forms of X . Since each

s2 C xC contributes one cOPY oi SO C (XC)G/ C ,then x(XC) = x(XG) . It suffices,

therefore, to prove (a). But (a) ia prove~ in Theorem 5.6 of Assadi [A3] III.

[J

FinallYJ the actions considered in this section are "regular" in the terminology of

[A3] . Hence, the general theorems of [A3] apply to this situation, and the same prin­

ciples and argument may be used to study thc 1ZG-representations afforded by H2(X) for

a compact Kähler surface. In particular, the fixed point set of the G-action and a suitable

group cohomology element completely determine the llG-module H2(X) as in Proposition

"4.7 cf [A3] TII.



-27-

Section 6. Projective Surface with Irregularity Zero.

In thia section, we consider nan-6ingular projective surfaces X de:fined aver an

algebraically closed field of arbitrary characteristic k. The analogue of simply-eonnecti-

.vity for complex surfaces ia the condition q(x):: Pg(X) - Pa(X) = °Le. the irregularity is

zero. Let X be the canonical sheaf of X , and let ril(X):: HD(X; .% ) be the k-vectoIx x
spate of "holomorphic 2-forms ll of X. We compute the kG-representation ril(X) for the

free G-actions on X . A suitable cohomology theory is Cech cohomology using an open

covering 'it of X consisting of G-invariant affine subsets of X . Such a Cech cohomo­

logy group coincides with Grothendieck's coherent cohomology, Le.

HO( 'it ; Xx) ~ n2(X) . On the other band, by Sene duality,

rr(X) ~ Homk(H2(X; c1X),k) ~ HOIDk(H2( 'it; "X),k) . Consider a free G-action on X I

and obaerve that the variety X/G exista (Mumford [M]) and it ia non-singular and

projective. Moreover, the morphism f: X ---+ X/G ia an etale principal covering. Let

'itO be a suitable finite covering of X/G by affine open sets, and le~

'it= {r1(V0) : V0 E UO}' Then each V = r 1(V0) is also affine, and we have

1 1
1V : V ---+ Vo ia given by a k-algebra homomorphism tp: R ---+ S , Le.,

V°= Spec(R), V = Spec(S) and atp =1 1
1V .

.,.-

6.1 Theorem. Let X be (an irreducible) non-tiingular projeetive k-surface with

q(X) = °.Suppose that G acta freely on X by automorphiams. Then the kG-module
,

n2(X) ia stably kG-isomorphic to "'Ö(k).

6.2 Remark. Compare this with Corollary 3.2 which describes H2(X;1l) stably 7lG-iso­

morphic to an extension of w~(ll) and ",tCll). For k = ( , the Hadge decoinposition

yields H2(X,{) ~ H2,O(X;() e HO,2(X;{) fB H1,1(X,() . Since H2,O and HO,2 are dual

to each other, and ril(X) ~ H2,O(X;() the above result implies that from
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H2(X;() ~ n2(X) fB Hom(rr(X),G:) fi 4: [Gl t ~ W~«() fi Hom(w~( (),() mI[ [G] t we

conclude HI,I(X;() ~ ([G] t .

6.3 Problem. Compute the llG-lattices Hi,j(X,() n Bi +j(X;ll) .

* *~. Consider the Cech complex C = C ( U') of kG-modules for the coherent sheaf

()x in which HO(C*) = k , BI(C*) = BI ( ft; t7X) ~ BI(X; t7X) Since

q(X) = Pg(X) - Pa(X) = dimkü 1(X; "X) and q(X) =0 by assumption. Moreover,
. *.. .

BI(C ) = BI
( U'; 0X) ~ HI(Xi 0X) = 0 for i > 2 ,and cf = 0 for i sufficiently large,

since U is a finite cover. In the case of a complex analytic manifold, we could use the

anaiytic topology, and choose ?lo sufficiently refined until rl(v0) ~ G x V0" is a free

*orbit of Va up to G-i80morphism. This would imply thai the Cech complex: C is a free

G-complex. In the general case at hand, we have used Zariski open sets, and we need to

resort to a 80mewhat different argument. Consider cp: R -+ S such that

&VJ : Spec S~ Spec R is the given etale covering iQ =11 V : V ---+" V0 ' V =r 1(V0) .

Then V Xv V admits a section, 80 that V Xv ~ G x V as Va-ßchemes with free
o 0

G-actions. Therefore, S eRS ia afree k [G] -module. Consider the kG-isomorphisms:

S~S ~ S 8 R(R ~S) ~ S 8 R(S ~R) g: (5 eRS) ~R which shows that S 8kS is also

kG--free. This implies, in particular, that S is kG-projective. Rence CO( ?t) ia a pro­

jective kG-module. A similar argument applies to show thai Ci( U) ia kG-projective.

•Consider the dual chain complex C. = Homk(C ,k) of kG-projective modules, in which

HO(C.) ~ k and H2(C.) =Homk(02(X),k) are the only non-vanishing homology groups.

It follows that B2 = Im 82 C C2 is projective over kG t since

o~ Cn ---+ Cn- 1 ---+ ..... ---+ C3 ---+ B2-+ 0 is exact for BOme sufficiently large

n . Moreover, 71.2 = Ker 82 ~ w~(k) in view of the exact sequence:
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The exact sequence 0 --+ B2 ---+ Z2 --+ H2(C*) --+ 0 , splits, since kG is injective.

Therefore, H2(C*) N Z2 = w&(k) is an stable kG-i80morphism. Hence

2 2 * 3 -3 .
(1 (X) = H (C ) = HOIDk(WG(k),k) = wG (k) as claJmed.

-...
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