MODULI OF MATHEMATICAL INSTANTON VECTOR BUNDLES WITH ODD c_{2} ON PROJECTIVE SPACE

ALEXANDER S. TIKHOMIROV

1. Introduction

By a mathematical n-instanton vector bundle (shortly, a n-instanton) on 3-dimensional projective space \mathbb{P}^{3} we understand a rank-2 algebraic vector bundle E on \mathbb{P}^{3} with Chern classes

$$
\begin{equation*}
c_{1}(E)=0, \quad c_{2}(E)=n, \quad n \geq 1, \tag{1}
\end{equation*}
$$

satisfying the vanishing conditions

$$
\begin{equation*}
h^{0}(E)=h^{1}(E(-2))=0 . \tag{2}
\end{equation*}
$$

Denote by I_{n} the set of isomorphism classes of n-instantons. This space is nonempty for any $n \geq 1$ - see, e.g., $[\mathrm{BT}],[\mathrm{NT}]$. The condition $h^{0}(E)=0$ for a n-instanton E implies that E is stable in the sense of Gieseker-Maruyama. Hence I_{n} is a subset of the moduli scheme $M_{\mathbb{P}^{3}}(2 ; 0,2,0)$ of semistable rank-2 torsion-free sheaves on \mathbb{P}^{3} with Chern classes $c_{1}=0, c_{2}=n, c_{3}=0$. The condition $h^{1}(E(-2))=0$ for $[E] \in I_{n}$ (called the instanton condition) by the semicontinuity implies that I_{n} is a Zariski open subset of $M_{\mathbb{P}^{3}}(2 ; 0,2,0)$, i.e. I_{n} is a quasiprojective scheme. It is called the moduli scheme of mathematical n-instantons.

In this paper we study the problem of the irreducibility of the scheme I_{n}. This problem has an affirmative solution for small values of n, up to $n=5$. Namely, the cases $n=1,3,3,4$ and 5 were settled in papers [B1], [H], [ES], [B3] and [CTT], respectively. The aim of this paper is to prove the following result.

Theorem 1.1. For each $n=2 m+1, \quad m \geq 0$, the moduli scheme I_{n} of mathematical n instantons is reduced and irreducible of dimension $8 n-3$.

A guide to the paper is as follows. In section 3 we remind a well-known relation between mathematical n-instantons and nets of quadrics in arithmetic n-dimensional vector space \mathbf{k}^{n}. The nets of quadrics are considered as vectors of the space $\mathbf{S}_{n}=S^{2}\left(\mathbf{k}^{n}\right)^{\vee} \otimes \wedge^{2} V^{\vee}$, where $V=H^{0}\left(\mathcal{O}_{\mathbb{P}^{3}}(1)\right)^{\vee}$, and those nets which correspond to n-instantons (we call them n-instanton nets) satisfy the so-called Barth's conditions - see definition (13). Thus the description of the moduli space I_{n} of n-instantons reduces to that of the locally closed subset $M I_{n} \subset \mathbf{S}_{n}$ of n-instanton nets of quadrics which is crucial for our study.

In section 4 we prove one result of general position for the set of $(2 m+1)$-instanton nets of quadrics $M I_{2 m+1}, m \geq 1$. Essentially, this result means that the natural map $M I_{2 m+1} \rightarrow \mathbf{S}_{m+1}$ induced by a generic embedding $\mathbf{k}^{m+1} \hookrightarrow \mathbf{k}^{2 m+1}$ is dominating - see Remark 8.1.

Section 5 is a study of some linear algebra related to a direct sum decomposition $\xi: \mathbf{k}^{m+1} \oplus$ $\mathbf{k}^{m} \xrightarrow{\sim} \mathbf{k}^{2 m+1}$ giving the above embedding $\mathbf{k}^{m+1} \hookrightarrow \mathbf{k}^{2 m+1}$. Using the result of section 4 we obtain here the relation (61) which is a key instrument for our further considerations. Also, the decomposition ξ enables us to relate $(2 m+1)$-instantons E to rank- $(2 m+2)$ symplectic vector bundles $E_{2 m+2}$ on \mathbb{P}^{3} satisfying the vanishing conditions $h^{0}\left(E_{2 m+2}\right)=h^{2}\left(E_{2 m+2}(-2)\right)=0$.

In section 6 we introduce a new scheme X_{m} as a locally closed subset of the vector space $\mathbf{S}_{m+1} \times \operatorname{Hom}\left(\mathbf{k}^{m},\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes \wedge^{2} V^{\vee}\right.$ which is defined by linear algebraic data somewhat similar to Barth's conditions. We prove that X_{m} as a reduced scheme is isomorphic to a certain dense
open subset $M I_{2 m+1}(\xi)$ of $M I_{2 m+1}$ determined by the choice of the direct sum decomposition ξ above. This reduces the problem of the irreducibility of $I_{2 m+1}$ to that of X_{m}.

The last ingredient in the proof of Theorem 1.1 is a scheme Z_{m} introduced in section 7 as a closed subscheme of the vector space $\mathbf{S}_{m}^{\vee} \times \operatorname{Hom}\left(\mathbf{k}^{m},\left(\mathbf{k}^{m}\right)^{\vee}\right) \otimes \wedge^{2} V^{\vee}$ defined by explicit equations. We relate the scheme Z_{m} to the so-called t'Hooft instantons. Using the properties of t'Hooft instantons (see subsection 5.2) we show that the scheme Z_{m} is reduced and irreducible.

In the last section 8 we finish the proof of Theorem 1.1. The proof is based on a study of certain scheme \bar{X}_{m} containing X_{m} and fibred over the vector space $\operatorname{Hom}\left(\mathbf{k}^{\vee}, \mathbf{k}^{m+1}\right) \otimes \wedge^{2} V$. We show that the zero fibre of this projection is scheme-theoretically isomorphic to a direct product of Z_{m} and a certain vector space. This together with the irreducibility of Z_{m} and some other results stated earlier leads to the irreducibility of X_{m}.

Acknowledgement. The author acknowledges the support and hospitality of the Max Planck Institute for Mathematics in Bonn where this paper was started during the authors stay there in Winter 2008.

2. Notation and conventions

Our notations are mostly standard. The base field \mathbf{k} is assumed to be algebraically closed of characteristic 0 . We identify vector bundles with locally free sheaves. If \mathcal{F} is a sheaf of $\mathcal{O}_{X^{-}}$ modules on an algebraic variety or scheme X, then $n \mathcal{F}$ denotes a direct sum of n copies of the sheaf $\mathcal{F}, H^{i}(\mathcal{F})$ denotes the $i^{\text {th }}$ cohomology group of $\mathcal{F}, h^{i}(\mathcal{F}):=\operatorname{dim} H^{i}(\mathcal{F})$, and \mathcal{F}^{\vee} denotes the dual to \mathcal{F} sheaf, i.e. the sheaf $\mathcal{F}^{\vee}:=\mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{F}, \mathcal{O}_{X}\right)$. If Z is a subscheme of X, by $\mathcal{I}_{Z, X}$ we denote the ideal sheaf corresponding to a subscheme Z. If $X=\mathbb{P}^{r}$ and t is an integer, then by $\mathcal{F}(t)$ we denote the sheaf $\mathcal{F} \otimes \mathcal{O}_{\mathbb{P}^{r}}(t)$. $[\mathcal{F}]$ will denote the isomorphism class of a sheaf \mathcal{F}. For any morphism of \mathcal{O}_{X}-sheaves $f: \mathcal{F} \rightarrow \mathcal{F}^{\prime}$ and any \mathbf{k}-vector space U (respectively, for any homomorphism $f: U \rightarrow U^{\prime}$ of \mathbf{k}-vector spaces) we will denote, for short, by the same letter f the induced morphism of sheaves $i d \otimes f: U \otimes \mathcal{F} \rightarrow U \otimes \mathcal{F}^{\prime}$ (respectively, the induced morphism $\left.f \otimes i d: U \otimes \mathcal{F} \rightarrow U^{\prime} \otimes \mathcal{F}\right)$.

Everywhere in the paper V will denote a fixed vector space of dimension 4 over \mathbf{k} and we set $\mathbb{P}^{3}:=P(V)$. Also verywhere below we will reserve the letters u and v for denoting the two morphisms in the Euler exact sequence $0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1) \xrightarrow{u} V^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}} \xrightarrow{v} T_{\mathbb{P}^{3}}(-1) \rightarrow 0$. For any k-vector spaces U and W and any vector $\phi \in \operatorname{Hom}\left(U, W \otimes \wedge^{2} V^{\vee}\right) \subset \operatorname{Hom}\left(U \otimes V, W \otimes V^{\vee}\right)$ understood as a homomorphism $\phi: U \otimes V \rightarrow W \otimes V^{\vee}$ or, equivalently, as a homomorphism ${ }^{\sharp} \phi$: $U \rightarrow W \otimes \wedge^{2} V^{\vee}$, we will denote by $\widetilde{\phi}$ the composition $U \otimes \mathcal{O}_{\mathbb{P}^{3}} \xrightarrow{\sharp_{\phi}} W \otimes \wedge^{2} V^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}} \xrightarrow{\epsilon} W \otimes \Omega_{\mathbb{P}}(2)$, where ϵ is the induced morphism in the exact triple $0 \rightarrow \wedge^{2} \Omega_{\mathbb{P}^{3}}(2) \xrightarrow{\wedge^{2} \iota^{\vee}} \wedge^{2} V^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}} \xrightarrow{\epsilon} \Omega_{\mathbb{P}^{3}}(2) \rightarrow$ 0 obtained by passing to the second wedge power in the dual Euler exact sequence. Also, shortening the notation, we will omit sometimes the subscript \mathbb{P}^{3} in the notation of sheaves on \mathbb{P}^{3}, e.g., write \mathcal{O}, Ω etc., instead of $\mathcal{O}_{\mathbb{P}^{3}}, \Omega_{\mathbb{P}^{3}}$ etc., respectively.

Everywhere in the paper for $m \geq 1$ we denote by \mathbf{S}_{m} the vector space $S^{2}\left(\mathbf{k}^{m}\right)^{\vee} \otimes \wedge^{2} V^{\vee}$. Following W.Barth [B2], [B3] and A.Tyurin [T1], [T2] we call this space the space of nets of quadrics in the space \mathbf{k}^{m}.

3. Some generalities on instantons. Set $M I_{n}$

In this section we recall some well known facts about mathematical instanton bundles - see, e.g., $[\mathrm{CTT}]$.

For a given n-instanton E, the conditions (1), (2), Riemann-Roch and Serre duality imply

$$
\begin{gather*}
h^{1}(E(-1))=h^{2}(E(-3))=n, \quad h^{1}\left(E \otimes \Omega_{\mathbb{P}^{3}}^{1}\right)=h^{2}\left(E \otimes \Omega_{\mathbb{P}^{3}}^{2}\right)=2 n+2, \tag{3}\\
h^{1}(E)=h^{2}(E(-4))=2 n-2 .
\end{gather*}
$$

Furthermore, the condition $c_{1}(E)=0$ yields an isomorphism $\wedge^{2} E \xrightarrow{\simeq} \mathcal{O}_{\mathbb{P}^{3}}$, hence a symplectic isomorphism $j: E \xrightarrow{\simeq} E^{\vee}$. This symplectic structure j on E is unique up to a scalar, since E as a stable bundle is a simple bundle, i.e. $\operatorname{Hom}(E, E)=\mathbf{k} i d$. Consider a triple (E, f, j) where E is an n-instanton, f is an isomorphism $\mathbf{k}^{n} \xlongequal[\rightarrow]{\simeq} H^{2}(E(-3))$ and $j: E \xrightarrow{\simeq} E^{\vee}$ is a symplectic structure on E. We call two such triples (E, f, j) and $\left(E^{\prime} f^{\prime}, j^{\prime}\right)$ equivalent if there is an isomorphism $g: E \xrightarrow{\simeq} E^{\prime}$ such that $g_{*} \circ f=\lambda f^{\prime}$ with $\lambda \in\{1,-1\}$ and $j=g^{\vee} \circ j^{\prime} \circ g$, where $g_{*}: H^{2}(E(-3)) \stackrel{\simeq}{\rightarrow} H^{2}\left(E^{\prime}(-3)\right)$ is the induced isomorphism. We denote by $[E, f, j]$ the equivalence class of a triple (E, f, j). From this definition one easily deduces that the set $F_{[E]}$ of all equivalence classes $[E, f, j]$ with given $[E]$ is a homogeneous space of the group $G L\left(\mathbf{k}^{n}\right) /\{ \pm i d\}$.

Each class $[E, f, j]$ defines a point

$$
\begin{equation*}
A_{n}=A_{n}([E, f, j]) \in S^{2}\left(\mathbf{k}^{n}\right)^{\vee} \otimes \wedge^{2} V^{\vee} \tag{4}
\end{equation*}
$$

in the following way. Consider the exact sequences

$$
\begin{equation*}
0 \rightarrow \Omega_{\mathbb{P}^{3}}^{1} \xrightarrow{i_{1}} V^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \rightarrow \mathcal{O}_{\mathbb{P}^{3}} \rightarrow 0, \tag{5}
\end{equation*}
$$

$0 \rightarrow \Omega_{\mathbb{P}^{3}}^{2} \rightarrow \wedge^{2} V^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-2) \rightarrow \Omega_{\mathbb{P}^{3}}^{1} \rightarrow 0,0 \rightarrow \wedge^{4} V^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-4) \rightarrow \wedge^{3} V^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-3) \xrightarrow{i_{2}} \Omega_{\mathbb{P}^{3}}^{2} \rightarrow 0$, induced by the Koszul complex of $V^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \xrightarrow{e v} \mathcal{O}_{\mathbb{P}^{3}}$. Twisting these sequences by E and passing to cohomoligy in view of (2) gives the diagram with exact rows

where $A^{\prime}:=i_{1} \circ \partial^{-1} \circ i_{2}$. The Euler exact sequence (5) yields the canonical isomorphism $\omega_{\mathbb{P}^{3}} \xrightarrow{\simeq} \wedge^{4} V^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-4)$, and fixing an isomorphism $\tau: \mathbf{k} \xrightarrow{\simeq} \wedge^{4} V^{\vee}$ induces the isomorphisms $\tilde{\tau}: V \xrightarrow{\simeq} \wedge^{3} V^{\vee}$ and $\hat{\tau}: \omega_{\mathbb{P}^{3}} \xrightarrow{\simeq} \mathcal{O}_{\mathbb{P}^{3}}(-4)$. Now the point $A=A_{n}$ in (4) is defined as the composition

$$
\begin{align*}
& A: \mathbf{k}^{n} \otimes V \stackrel{\tilde{\tau}}{\leftrightarrows} \mathbf{k}^{n} \otimes \wedge^{3} V^{\vee} \stackrel{f}{\rightrightarrows} H^{2}(E(-3)) \otimes \wedge^{3} V^{\vee} \xrightarrow{A^{\prime}} H^{1}(E(-1)) \otimes V^{\vee} \stackrel{\underset{\sim}{\leftrightharpoons}}{\rightrightarrows} \tag{7}
\end{align*}
$$

where $S D$ is the Serre duality isomorphism. One checks that A_{n} is a skew symmetric map depending only on the class $[E, f, j]$ and not depending on the choice of τ, and that this point $A_{n} \in \wedge^{2}\left(\left(\mathbf{k}^{n}\right)^{\vee} \otimes V^{\vee}\right)$ lies in the direct summand $\mathbf{S}_{n}=S^{2}\left(\mathbf{k}^{n}\right)^{\vee} \otimes \wedge^{2} V^{\vee}$ of the canonical decomposition

$$
\begin{equation*}
\wedge^{2}\left(\left(\mathbf{k}^{n}\right)^{\vee} \otimes V^{\vee}\right)=S^{2}\left(\mathbf{k}^{n}\right)^{\vee} \otimes \wedge^{2} V^{\vee} \oplus \wedge^{2}\left(\mathbf{k}^{n}\right)^{\vee} \otimes S^{2} V^{\vee} \tag{8}
\end{equation*}
$$

Here \mathbf{S}_{n} is the space of nets of quadrics in \mathbf{k}^{n}. Following [B3], [T1] and [T2] we call A the n-instanton net of quadrics corresponding to the data $[E, f, j]$.

Denote $W_{A}:=\mathbf{k}^{n} \otimes V /$ ker A. Using the above chain of isomorphisms we can rewrite the diagram (6) as

Here $\operatorname{dim} W_{A}=2 n+2$ and $q_{A}: W_{A} \xrightarrow{\simeq} W_{A}^{\vee}$ is the induced skew-symmetric isomorphism. An important property of $A=A_{n}([E, f, j])$ is that the induced morphism of sheaves

$$
\begin{equation*}
a_{A}^{\vee}: W_{A}^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}} \xrightarrow{c_{A}^{\vee}}\left(\mathbf{k}^{n}\right)^{\vee} \otimes V^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}} \xrightarrow{e v}\left(\mathbf{k}^{n}\right)^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}}(1) \tag{10}
\end{equation*}
$$

is an epimorphism such that the composition $\mathbf{k}^{n} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \xrightarrow{a_{A}} W_{A} \otimes \mathcal{O}_{\mathbb{P}^{3}} \xrightarrow{q_{A}} W_{A}^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}} \xrightarrow{a_{A}^{\vee}}$ $\left(\mathbf{k}^{n}\right)^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}}(1)$ is zero, and $E=\operatorname{ker}\left(a_{A}^{\vee} \circ q_{A}\right) / \operatorname{Im} a_{A}$. Thus A defines a monad

$$
\begin{equation*}
\mathcal{M}_{A}: \quad 0 \rightarrow \mathbf{k}^{n} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \xrightarrow{a_{A}} W_{A} \otimes \mathcal{O}_{\mathbb{P}^{3}} \xrightarrow{a_{A}^{\vee} q_{A}}\left(\mathbf{k}^{n}\right)^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}}(1) \rightarrow 0 \tag{11}
\end{equation*}
$$

with the cohomology sheaf E,

$$
\begin{equation*}
E=E(A):=\operatorname{ker}\left(a_{A}^{\vee} \circ q_{A}\right) / \operatorname{Im} a_{A} . \tag{12}
\end{equation*}
$$

Note that passing to cohomology in the monad \mathcal{M}_{A} twisted by $\mathcal{O}_{\mathbb{P}^{3}}(-3)$ and using (12) yields the isomorphism $f: \mathbf{k}^{n} \xrightarrow{\leftrightharpoons} H^{2}(E(-3))$. Furthermore, the simplecticity of the form q_{A} in the monad \mathcal{M}_{A} implies that there is a canonical isomorphism of \mathcal{M}_{A} with its dual which induces the symplectic isomorphism $j: E \stackrel{\simeq}{\leftrightharpoons} E^{\vee}$. Thus, the data $[E, f, j]$ are recovered from the net A. This leads to the following description of the moduli space I_{n}. Consider the set of n-instanton nets of quadrics

$$
M I_{n}:=\left\{\begin{array}{l|l}
A \in \mathbf{S}_{n} & \begin{array}{l}
\text { (i) } \operatorname{rk}\left(A: \mathbf{k}^{n} \otimes V \rightarrow\left(\mathbf{k}^{n}\right)^{\vee} \otimes V^{\vee}\right)=2 n+2, \\
\text { (ii) the morphism } a_{A}^{\vee}: W_{A}^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}} \rightarrow\left(\mathbf{k}^{n}\right)^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}}(1) \\
\text { defined by } A \text { in }(10) \text { is surjective, } \\
\text { (iii) } h^{0}\left(E_{2}(A)\right)=0, \text { where } E_{2}(A):=\operatorname{ker}\left(a_{A}^{\vee} \circ q_{A}\right) / \operatorname{Im} a_{A} \\
\text { and } q_{A}: W_{A} \xrightarrow{\leftrightharpoons} W_{A}^{\vee} \text { is a symplectic isomorphism } \\
\text { defined by } A \text { in }(9)
\end{array} \tag{13}
\end{array}\right\}
$$

The conditions (i)-(iii) here are called Barth's coditions. These conditions show that $M I_{n}$ is naturally supplied with a structure of a locally closed subscheme of the vector space \mathbf{S}_{n}. Moreover, the above description shows that there is defined a morphism $\pi_{n}: M I_{n} \rightarrow I_{n}: A \mapsto[E(A)]$, and it is known that this morphism is a principal $G L\left(\mathbf{k}^{n}\right) /\{ \pm i d\}$-bundle in the étale topology - cf. [CTT]. Here by construction the fibre $\pi_{n}^{-1}([E])$ over an arbitrary point $[E] \in I_{n}$ coincides with the homogeneous space $F_{[E]}$ of the group $G L\left(\mathbf{k}^{n}\right) /\{ \pm i d\}$ described above. Hence the irreducibility of $\left(I_{n}\right)_{\text {red }}$ is equivalent to the irreducibility of the scheme $\left(M I_{n}\right)_{\text {red }}$.

The definition (13) yields the following.
Theorem 3.1. For each $n \geq 1$, the space of n-instanton nets of quadrics $M I_{n}$ is a locally closed subscheme of the vector space \mathbf{S}_{n} given locally at any point $A_{n} \in M I_{n}$ by

$$
\begin{equation*}
\binom{2 n-2}{2}=2 n^{2}-5 n+3 \tag{14}
\end{equation*}
$$

equations obtained as the rank condition (i) in (13).
Note that from (14) it follows that

$$
\begin{equation*}
\operatorname{dim}_{[A]} M I_{n} \geq \operatorname{dim} \mathbf{S}_{n}-\left(2 n^{2}-5 n+3\right)=n^{2}+8 n-3 \tag{15}
\end{equation*}
$$

at any point $A_{n} \in M I_{n}$. On the other hand, by deformation theory for any n-instanton E we have $\operatorname{dim}_{[E]} I_{n} \geq 8 n-3$. This agrees with (15), since $M I_{n} \rightarrow I_{n}$ is a principal $G L\left(\mathbf{k}^{n}\right) /\{ \pm i d\}$ bundle in the étale topology.

Let $\mathcal{S}_{n}=\left\{[E] \in I_{n} \mid\right.$ there exists a line $l \in \mathbb{P}^{3}$ of maximal jump for E, i.e. such a line l that $\left.h^{0}\left(\left.E(-n)\right|_{l}\right) \neq 0\right\}$. It is known $[\mathrm{S}]$ that \mathcal{S}_{n} is a closed subset of I_{n} of dimension $6 n+2$. Thus, since $\operatorname{dim}_{[E]} I_{n} \geq 8 n-3$ at any $[E] \in I_{n}$, it follows that

$$
\begin{equation*}
I_{n}^{\prime}:=I_{n} \backslash \mathcal{S}_{n} \tag{16}
\end{equation*}
$$

is an open subset of I_{n} and $\left(I_{n}^{\prime}\right)_{\text {red }}$ is dense open in $\left(I_{n}\right)_{\text {red }}$; respectively,

$$
\begin{equation*}
M I_{n}^{\prime}:=\pi_{n}^{-1}\left(I_{n}^{\prime}\right) \tag{17}
\end{equation*}
$$

is an open subset of $M I_{n}$ and we have a dense open embedding

$$
\begin{equation*}
\left(M I_{n}^{\prime}\right)_{\text {red }} \stackrel{\text { dense open }}{\longrightarrow}\left(M I_{n}\right)_{\text {red }} . \tag{18}
\end{equation*}
$$

For technical reasons we will below restrict ourselves to $M I_{n}^{\prime}$ instead of $M I_{n}$.

4. A Result of general position for $(2 m+1)$-instanton nets

Definition 4.1. Let U and U^{\prime} be two vector spaces of dimensions respectively m and n, where $m \geq n$. Consider the projective space $P\left(U \otimes U^{\prime}\right)$. We say that a point $x \in P\left(U \otimes U^{\prime}\right)$ has rank r (and denote this as $\operatorname{rk}(x)=r$), if
(i) there exist unique subspaces $U_{r}(x) \subset U$ and $U_{r}^{\prime}(x) \subset U^{\prime}$ of dimensions $\operatorname{dim} U_{k}(x)=$ $\operatorname{dim} U_{k}^{\prime}(x)=r$ such that $x \in P\left(U_{r}(x) \otimes U_{r}^{\prime}(x)\right)$, and
(ii) there do not exist subspaces $\tilde{U} \subset U$ and $\tilde{U}^{\prime} \subset U^{\prime}$ of dimension $\operatorname{dim} \tilde{U}=\operatorname{dim} \tilde{U}^{\prime}<r$ such that $x \in P\left(\tilde{U} \otimes \tilde{U}^{\prime}\right)$.

It is well known that each point $x \in P\left(U \otimes U^{\prime}\right)$ has a uniquely defined rank $1 \leq \operatorname{rk}(x) \leq n$.
Fix a positive integer $m \geq 3$ and a $(2 m+1)$-instanton vector bundle E such that $[E] \in I_{2 m+1}^{\prime}$ and denote $H_{2 m+1}=H^{2}(E(-3))$ and $H_{4 m}=H^{2}(E(-4))$. The Euler Exact sequence induces the exact triple $0 \rightarrow E \otimes \Omega_{\mathbb{P}^{3}} \rightarrow V^{\vee} \otimes E(-1) \rightarrow E \rightarrow 0$ which gives a natural multiplication map in the first cohomology:

$$
\begin{equation*}
H_{2 m+1}^{\vee} \otimes V^{\vee} \xrightarrow{\text { mult }} H_{4 m}^{\vee} \rightarrow H^{2}\left(E \otimes \Omega_{\mathbb{P}^{3}}\right) \tag{19}
\end{equation*}
$$

Passing to cohomology of the exact triple $0 \rightarrow E \otimes \Omega_{\mathbb{P}^{3}}^{2} \rightarrow \wedge^{2} V^{\vee} \otimes E(-2) \rightarrow E \otimes \Omega_{\mathbb{P}^{3}} \rightarrow 0$ and using standard equalities $0=h^{2}(E(-2)), h^{3}\left(E \otimes \Omega_{\mathbb{P}^{3}}^{2}\right)=h^{0}\left(E \otimes \Omega_{\mathbb{P}^{3}}\right) \leq h^{0}\left(E(-1) \otimes V^{\vee}\right)=0$ for the instanton bundle E, we obtain: $H^{2}\left(E \otimes \Omega_{\mathbb{P}^{3}}\right)=0$. Hence (19) gives the exact triple

$$
\begin{equation*}
0 \rightarrow W_{4 m+4}^{\vee} \rightarrow H_{2 m+1}^{\vee} \otimes V^{\vee} \xrightarrow{\text { mult }} H_{4 m}^{\vee} \rightarrow 0 \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{4 m+4}^{\vee}:=H^{1}\left(E \otimes \Omega_{\mathbb{P}^{3}}\right) \tag{21}
\end{equation*}
$$

We now prove the following main result of this section.
Theorem 4.2. Let $m \geq 3$ and let E be a $(2 m+1)$-instanton, $[E] \in I_{2 m+1}^{\prime}$. Consider the spaces $H_{2 m+1}=H^{2}(E(-3))$ and $W_{4 m+4}=H^{1}\left(E \otimes \Omega_{\mathbb{P}^{3}}\right)^{\vee}$ together with the injection $W_{4 m+4}^{\vee} \hookrightarrow$ $H_{2 m+1}^{\vee} \otimes V^{\vee}$ defined in (20). Then for a generic m-dimensional subspace V_{m} of $H_{2 m+1}^{\vee}$ one has

$$
W_{4 m+4}^{\vee} \cap V_{m} \otimes V^{\vee}=\{0\}
$$

Доказательство. According to Definition 4.1 in which we put $U=H_{2 m+1}^{\vee}, U^{\prime}=V^{\vee}$, each point $x \in P\left(H_{2 m+1}^{\vee} \otimes V^{\vee}\right)$ has rank $1 \leq \operatorname{rk}(x) \leq \operatorname{dim} V^{\vee}=4$. Thus

$$
\begin{equation*}
P\left(W_{4 m+4}^{\vee}\right)=\bigcup_{r=1}^{4} Z_{r} \tag{22}
\end{equation*}
$$

where

$$
Z_{r}:=\left\{x \in P\left(W_{4 m+4}^{\vee}\right) \mid r k(x)=r\right\}, \quad 1 \leq r \leq 4
$$

are locally closed subsets of $P\left(W_{4 m+4}^{\vee}\right)$. Consider the Grassmannian

$$
G:=G\left(m, H_{2 m+1}^{\vee}\right)
$$

and its locally closed subsets

$$
\begin{equation*}
\Sigma_{r}=\left\{V_{m} \in G \mid V_{m} \supset U_{r}(x) \text { for some point } x \in Z_{r}\right\}, \quad 1 \leq r \leq 4 \tag{23}
\end{equation*}
$$

The condition that $Z_{r} \cap P\left(V_{m} \otimes V^{\vee}\right) \neq \emptyset$ means that there exists a point $x \in P\left(U_{r}\right) \cap Z_{r}$ for some r-dimensional subspace $U_{r} \subset V_{m}$. This together with (22) implies that

$$
\left\{V_{m} \in G \mid P\left(V_{m} \otimes V^{\vee}\right) \cap P\left(W_{4 m+4}^{\vee}\right) \neq \emptyset\right\}=\bigcup_{r=1}^{4} \Sigma_{r}
$$

Thus, to prove the Theorem, it is enough to show that

$$
\begin{equation*}
\operatorname{dim} \Sigma_{r}<\operatorname{dim} G, \quad 1 \leq r \leq 4 \tag{24}
\end{equation*}
$$

We are starting now the proof of (24) for $r=4,3,2,1$.
(i) $r=4$. Set $\Gamma_{4}:=\left\{(x, U) \in P\left(W_{4 m+4}^{\vee}\right) \times G\left(4, H_{2 m+1}^{\vee}\right) \mid \operatorname{rk}(x)=4\right.$ and $\left.U=U_{4}(x)\right\}$ and let $P\left(W_{4 m+4}^{\vee}\right) \stackrel{p_{4}}{\leftarrow} \Gamma_{4} \xrightarrow{q_{4}} G\left(4, H_{2 m+1}^{\vee}\right)$ be the projections. By construction, $\left.p_{4}\left(\Gamma_{4}\right)\right)=Z_{4}$ and the morphism $p_{4}: \Gamma_{4} \rightarrow Z_{4}$ is an isomorphism. Hence

$$
\operatorname{dim} q_{4}\left(\Gamma_{4}\right) \leq \operatorname{dim} \Gamma_{4}=\operatorname{dim} Z_{4} \leq \operatorname{dim} P\left(W_{4 m+4}^{\vee}\right)=4 m+3
$$

By construction we have the graph of incidence

$$
\Pi_{4}=\left\{\left(U, V_{m}\right) \in q_{4}\left(\Gamma_{4}\right) \times \Sigma_{4} \mid U \subset V_{m}\right\}
$$

with surjective projections $q_{4}\left(\Gamma_{4}\right) \stackrel{p r_{1}}{\leftarrow} \Pi_{4} \xrightarrow{p r_{2}} \Sigma_{4}$ and a fibre

$$
p r_{1}^{-1}(U)=G\left(m-4, H_{2 m+1}^{\vee} / U\right)
$$

over an arbitrary point $U \in q_{4}\left(\Gamma_{4}\right)$. Hence
$\operatorname{dim} \Sigma_{4} \leq \operatorname{dim} \Pi_{4}=\operatorname{dim} q_{4}\left(\Gamma_{4}\right)+\operatorname{dim} G\left(m-4, H_{2 m+1}^{\vee} / U\right) \leq 4 m+3+(m-4)(m+1)=m(m+1)-1=$ $=\operatorname{dim} G-1<\operatorname{dim} G$, i.e. (24) is true for $r=4$.
(ii) $r=3$. Consider a morphism $f_{3}: Z_{3} \rightarrow P\left(V^{\vee}\right)^{\vee}=\mathbb{P}^{3}: x \mapsto V_{3}(x)$, where the pair of spaces $\left(U_{3}(x), V_{3}(x)\right), \quad U_{3}(x) \subset H_{2 m+1}^{\vee}$ and $V_{3}(x) \subset V^{\vee}$, is determined uniquely by the point x via the condition $x \in P\left(U_{3}(x) \otimes V_{3}(x)\right)$, $\operatorname{since} \operatorname{rk}(x)=3$ (see Definition 4.1). Now for a given subspace $V_{3} \subset V^{\vee}$ set

$$
\begin{equation*}
\Sigma_{3}\left(V_{3}\right)=\left\{V_{m} \in G \mid V_{m} \supset U_{3}(x) \text { for some point } x \in f_{3}^{-1}\left(V_{3}\right)\right\} \tag{25}
\end{equation*}
$$

Comparing this with (23) for $r=3$ yields

$$
\begin{equation*}
\Sigma_{3}=\underset{V_{3} \subset V^{V}}{\cup} \Sigma_{3}\left(V_{3}\right) . \tag{26}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\operatorname{dim} \Sigma_{3} \leq \operatorname{dim} \Sigma_{3}\left(V_{3}\right)+3 \tag{27}
\end{equation*}
$$

We are going to obtain an estimate for the dimension of $\Sigma_{3}\left(V_{3}\right)$ for an arbitrary 3-dimensional subspace V_{3} in V^{\vee}. This subspace defines a commutative diagram
(28)

where $z=P\left(\right.$ ker : $\left.V \rightarrow V_{3}^{\vee}\right)$ is a point in \mathbb{P}^{3} and the sheaf F has an $\mathcal{O}_{\mathbb{P}^{3}}$-resolution $0 \rightarrow$ $\mathcal{O}_{\mathbb{P}^{3}}(-2) \rightarrow 3 \mathcal{O}_{\mathbb{P}^{3}}(-1) \rightarrow F \rightarrow 0$. Twisting this resolution by the vector bundle E and passing to cohomology we obtain the equalities $H^{1}(F \otimes E) \simeq H^{2}(E(-3))=H_{2 m+1}, H^{2}(F \otimes E)=0$. Respectively, passing to cohomology in diagram (28) twisted by E and using the above equalities and evident relations $H^{0}\left(E \otimes \mathbf{k}_{z}\right) \simeq \mathbf{k}^{2}, \quad H^{1}\left(E \otimes \mathbf{k}_{z}\right)=0$ implies the diagram

In this diagram the composition $\epsilon:=$ mult $\circ \lambda$ is surjective. Hence, setting $W_{2 m+3}\left(V_{3}\right):=\operatorname{ker} \epsilon$, where $\operatorname{dim} W_{2 m+3}\left(V_{3}\right)=2 m+3$, we obtain a commutative diagram

Set

$$
Z_{3}\left(V_{3}\right):=\left\{x \in P\left(W_{2 m+3}\left(V_{3}\right)\right) \mid \operatorname{rk}(x)=3\right\} .
$$

The inclusion j in diagram (30) yields the bijection

$$
\begin{equation*}
Z_{3}\left(V_{3}\right) \stackrel{\simeq}{\rightrightarrows} f_{3}^{-1}\left(V_{3}\right) . \tag{31}
\end{equation*}
$$

Consider the graph of incidence $\Gamma_{3}\left(V_{3}\right):=\left\{(x, U) \in Z_{3}\left(V_{3}\right) \times G\left(3, H_{2 m+1}^{\vee}\right) \mid U=U_{3}(x)\right\}$ with projections $Z_{3}\left(V_{3}\right) \stackrel{p_{3}}{\leftrightarrows} \Gamma_{3}\left(V_{3}\right) \xrightarrow{q_{3}} G\left(3, H_{2 m+1}^{\vee}\right)$. By construction, $p_{3}\left(\Gamma_{3}\left(V_{3}\right)\right)=Z_{3}\left(V_{3}\right)$ and the morphism $p_{4}: \Gamma_{3}\left(V_{3}\right) \rightarrow Z_{3}\left(V_{3}\right)$ is an isomorphism. Hence

$$
\begin{equation*}
\operatorname{dim} q_{3}\left(\Gamma_{3}\left(V_{3}\right)\right) \leq \operatorname{dim} \Gamma_{3}\left(V_{3}\right)=\operatorname{dim} Z_{3}\left(V_{3}\right) \leq \operatorname{dim} P\left(W_{2 m+3}\left(V_{3}\right)\right)=2 m+2 \tag{32}
\end{equation*}
$$

Consider the graph of incidence

$$
\Pi_{3}\left(V_{3}\right)=\left\{\left(U, V_{m}\right) \in q_{3}\left(\Gamma_{3}\left(V_{3}\right)\right) \times \Sigma_{3}\left(V_{3}\right) \mid U \subset V_{m}\right\}
$$

with projections $q_{3}\left(\Gamma_{3}\left(V_{3}\right)\right) \stackrel{p r_{1}}{\leftarrow} \Pi_{3}\left(V_{3}\right) \xrightarrow{p r_{2}} \Sigma_{3}\left(V_{3}\right)$ and a fibre

$$
p r_{1}^{-1}(U)=G\left(m-3, H_{2 m+1}^{\vee} / U\right)
$$

over an arbitrary point $U \in q_{3}\left(\Gamma_{3}\left(V_{3}\right)\right)$. The projection $\Pi_{3}\left(V_{3}\right) \xrightarrow{p r_{2}} \Sigma_{3}\left(V_{3}\right)$ is surjective in view of (31). Hence, using (32), we obtain
$\operatorname{dim} \Sigma_{3}\left(V_{3}\right) \leq \operatorname{dim} \Pi_{3}\left(V_{3}\right)=\operatorname{dim} q_{3}\left(\Gamma_{3}\left(V_{3}\right)\right)+\operatorname{dim} G\left(m-3, H_{2 m+1}^{\vee} / U\right) \leq 2 m+2+(m-3)(m+1)=$ $=m^{2}-1$. This together with (27) and the assumption $m \geq 3$ yields $\operatorname{dim} \Sigma_{3} \leq m^{2}+2=$ $\operatorname{dim} G+2-m<\operatorname{dim} G$, i.e. (24) holds for $r=3$.

Before proceeding to the case $r=2$ we need to make a small digression on jumping lines of E. Introduce some more notation. For a given line $l \subset \mathbb{P}^{3}$ we have $E \mid l \simeq \mathcal{O}_{\mathbb{P}^{1}}(d) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-d)$ for a welldefined nonnegative integer d called the jump of $E \mid l$ and is denoted $d_{E}(l)$; respectively, the line l is called a jumping line of jump d of E. Set $G_{2,4}:=G\left(2, V^{\vee}\right)$ and $J_{k}(E):=\left\{l \in G_{2,4} \mid d_{E}(l) \leq k\right\}$, $J_{k}^{*}(E):=J_{k}(E) \backslash J_{k+1}(E), 0 \leq k$. From the semicontinuity of $E \mid l, l \in G_{2,4}$, it follows that $J_{k}(E)$ (resp., $J_{k}^{*}(E)$) is a closed (resp., locally closed) subset of $G_{2,4}, k \geq 0$. Moreover, by Theorem of Grauert-Mülich, $J_{0}^{*}(E)$ is a dense open subset of $G_{2,4}$. Next, since $E \in I_{2 m+1}^{\prime}$, it follows that $J_{2 m+1}(E)=\emptyset$, so that $J_{2 m-1}(E)=J_{2 m-1}^{*}(E) \sqcup J_{2 m}^{*}(E)$. We will use below the following lemma.

Lemma 4.3. (1) $\operatorname{dim} J_{2 m-1}(E) \leq 1$.
(ii) $\operatorname{dim} J_{k}^{*}(E) \leq 3$ for $1 \leq k \leq 2 m-2$.

Proof of Lemma.
(1) Suppose the contrary, i.e. $\operatorname{dim} J_{2 m}(E) \geq 2$. Take any irreducible surface $S \subset J_{2 m}(E)$ and let D be the degree of S with respect to the sheaf $\mathcal{O}_{G_{2,4}}(1)$. Fix an integer $r \geq 5$ and take any irreducible curve C belonging to the linear series $\left|\mathcal{O}_{G_{2,4}}(r)\right|{ }_{S} \mid$. Then the degree deg C w.r.t. $\mathcal{O}_{G_{2,4}}(1)$ equals to $D r$, hence $\operatorname{deg} C \geq 5$. Hence by [C, Lemma 6] there exist two distinct lines, say, $l_{1}, l_{2} \in C$, which intersect in \mathbb{P}^{3}. Let the plane \mathbb{P}^{2} be the span of l_{1} and l_{2} in \mathbb{P}^{3}. Now the exact triple $\left.\left.\left.0 \rightarrow E(-2)\right|_{\mathbb{P}^{2}} \rightarrow E\right|_{\mathbb{P}^{2}} \rightarrow E\right|_{l_{1} \cup l_{2}} \rightarrow 0$ implies

$$
\begin{equation*}
H^{0}\left(\left.E\right|_{\mathbb{P}^{2}}\right) \rightarrow H^{0}\left(\left.E\right|_{l_{1} \cup l_{2}}\right) \rightarrow H^{1}\left(\left.E(-2)\right|_{\mathbb{P}^{2}}\right) . \tag{33}
\end{equation*}
$$

Next, as $[E] \in I_{2 m+1}$, we have $h^{0}(E(-1))=h^{1}(E(-2))=0$, hence the exact triple $0 \rightarrow$ $\left.E(-2) \rightarrow E(-1) \rightarrow E(-1)\right|_{\mathbb{P}^{2}} \rightarrow 0$ implies

$$
\begin{equation*}
H^{0}\left(\left.E(-1)\right|_{\mathbb{P}^{2}}\right)=0 . \tag{34}
\end{equation*}
$$

Now assume $h^{0}\left(\left.E\right|_{\mathbb{P}^{2}}\right)>0$. Then a section $0 \neq s \in H^{0}\left(\left.E\right|_{\mathbb{P}^{2}}\right)$ defines an injection $\left.\mathcal{O}_{\mathbb{P}^{2}} \stackrel{s}{\hookrightarrow} E\right|_{\mathbb{P}^{2}}$. This injection and (34) show that the zero-set Z of section s is 0 -dimensional and the injection s extends to a triple $\left.0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}} \xrightarrow{s} E\right|_{\mathbb{P}^{2}} \rightarrow \mathcal{I}_{Z, \mathbb{P}^{2}} \rightarrow 0$. Whence

$$
\begin{equation*}
h^{0}\left(\left.E\right|_{\mathbb{P}^{2}}\right) \leq 1 \tag{35}
\end{equation*}
$$

Furthermore, equality together with Riemann-Roch and Serre duality for the vector bundle $\left.E(-1)\right|_{\mathbb{P}^{2}}$ shows that $h^{1}\left(\left.E(-2)\right|_{\mathbb{P}^{2}}\right)=2 m+1$. Whence in view of (33) and (34) we obtain

$$
\begin{equation*}
h^{0}\left(\left.E\right|_{l_{1} \cup l_{2}}\right) \leq 2 m+2 \tag{36}
\end{equation*}
$$

On the other hand, let $x:=l_{1} \cap l_{2}$. Since by construction $l_{1}, l_{2} \in J_{2 m-1}(E)$, it follows that either $\left.E\right|_{l_{i}} \simeq \mathcal{O}_{\mathbb{P}^{2}}(2 m-1) \oplus \mathcal{O}_{\mathbb{P}^{2}}(1-2 m)$, or $\left.E\right|_{l_{i}} \simeq \mathcal{O}_{\mathbb{P}^{2}}(2 m) \oplus \mathcal{O}_{\mathbb{P}^{2}}(-2 m)$, hence $h^{0}\left(E \otimes \mathcal{I}_{x, l_{i}}\right) \geq$ $2 m-1, i=1,2$. This clearly implies $h^{0}\left(\left.E\right|_{l_{1} \cup l_{2}}\right) \geq h^{0}\left(E \otimes \mathcal{I}_{x, l_{1} \cup l_{2}}\right) \geq h^{0}\left(E \otimes \mathcal{I}_{x, l_{1}}\right)+h^{0}\left(E \otimes \mathcal{I}_{x, l_{2}}\right)=$ $4 m-2$. Comparing this with (36) we obtain the inequality $2 m+2 \geq 4 m-2$, i.e. $m \leq 2$. This contradicts to the assumption $m \geq 3$. Hence, the assertion (1) follows.
(2) This is an immediate corollary of Theorem of Grauert-Mülich. Lemma is proved.
(iii) $r=2$. Our notation and argument is completely parallel to that in the case $r=3$. Consider a morphism $f_{2}: Z_{2} \rightarrow G_{2,4}: x \mapsto V_{2}(x)$, where the pair of spaces $\left(U_{2}(x), V_{2}(x)\right), \quad U_{2}(x) \subset H_{2 m+1}^{\vee}$ and $V_{2}(x) \subset V^{\vee}$, is determined uniquely by the point x via the condition $x \in P\left(U_{2}(x) \otimes V_{2}(x)\right)$, $\operatorname{since} \operatorname{rk}(x)=2$ (see Definition 4.1).

According to the above remarks on jumping lines of E we may assume that $l \in J_{k}^{*}(E)$ for some $0 \leq k \leq 2 m$, i.e.

$$
h^{0}(E \mid l)=2, \quad h^{1}(E \mid l)=0, \quad \text { if } \quad l \in J_{0}^{*}(E),
$$

respectively,

$$
h^{0}(E \mid l)=k+1, \quad h^{1}(E \mid l)=k-1, \quad \text { if } \quad l \in J_{k}^{*}(E), \quad 1 \leq k \leq 2 m .
$$

Now for $1 \leq k \leq 2 m$ and a given subspace $V_{2} \in J_{k}^{*}$ set

$$
\begin{equation*}
\Sigma_{2, k}\left(V_{2}\right)=\left\{V_{m} \in G \mid V_{m} \supset U_{2}(x) \text { for some point } x \in f_{2}^{-1}\left(V_{2}\right)\right\} . \tag{37}
\end{equation*}
$$

Then similarly to (26) we have

$$
\Sigma_{2}=\bigcup_{k=0}^{2 m} \bigcup_{V_{2} \in J_{k}^{*}} \Sigma_{2, k}\left(V_{2}\right)
$$

Hence, in view of Lemma 4.3

$$
\begin{equation*}
\operatorname{dim} \Sigma_{2} \leq \max _{\substack{V_{2} \in J_{k}^{*} \\ 0 \leq k \leq 2 m}}\left(\operatorname{dim} \Sigma_{2, k}\left(V_{2}\right)+\operatorname{dim} J_{k}^{*}\right) \tag{38}
\end{equation*}
$$

We are going to obtain an estimate for the dimension of $\Sigma_{2, k}\left(V_{2}\right)$ for an arbitrary 2-dimensional subspace V_{2} in $J_{k}^{*}, 0 \leq k \leq 2 m$. This subspace defines a commutative diagram

where $l=P\left(\operatorname{ker} V \rightarrow V_{2}^{\vee}\right)$ is a line in $\mathbb{P}^{3}, V_{2}^{\prime}:=V^{\vee} / V_{2}$, and $F:=$ coker s. Passing to cohomology in diagram (39) twisted by E, we obtain the diagram

Assume for definiteness that $1 \leq k \leq 2 m$. (The case $k=0$ is treated in a similar way.) In this case diagram (40) leads to a diagram

where we set $W_{k+1}\left(V_{2}\right):=H^{0}(E \mid l), \quad W_{k-1}:=H^{1}(E \mid l), \quad V_{4 m-k+1}:=H_{2 m+1}^{\vee} \otimes V_{2} / W_{k+1}\left(V_{2}\right)$.

Set

$$
Z_{2, k}\left(V_{2}\right):=\left\{x \in P\left(W_{k+1}\left(V_{2}\right)\right) \mid \operatorname{rk}(x)=2\right\} .
$$

The inclusion j in diagram (41) yields the bijection

$$
\begin{equation*}
Z_{2, k}\left(V_{2}\right) \stackrel{\simeq}{\leftrightharpoons} f_{2}^{-1}\left(V_{2}\right) . \tag{42}
\end{equation*}
$$

Consider the graph of incidence $\Gamma_{2, k}\left(V_{2}\right):=\left\{(x, U) \in Z_{2, k}\left(V_{2}\right) \times G\left(2, H_{2 m+1}^{\vee}\right) \mid U=U_{2}(x)\right\}$ with projections $Z_{2, k}\left(V_{2}\right) \stackrel{p_{2}}{\leftarrow} \Gamma_{2, k}\left(V_{2}\right) \xrightarrow{q_{2}} G\left(2, H_{2 m+1}^{\vee}\right)$. By construction, $p_{2}\left(\Gamma_{2, k}\left(V_{2}\right)\right)=Z_{2, k}\left(V_{2}\right)$ and the morphism $p_{4}: \Gamma_{2, k}\left(V_{2}\right) \rightarrow Z_{2, k}\left(V_{2}\right)$ is an isomorphism. Hence

$$
\begin{equation*}
\operatorname{dim} q_{2}\left(\Gamma_{2, k}\left(V_{2}\right)\right) \leq \operatorname{dim} \Gamma_{2, k}\left(V_{2}\right)=\operatorname{dim} Z_{2, k}\left(V_{2}\right) \leq \operatorname{dim} P\left(W_{k+1}\left(V_{2}\right)\right)=k \tag{43}
\end{equation*}
$$

Consider the graph of incidence

$$
\Pi_{2, k}\left(V_{2}\right)=\left\{\left(U, V_{m}\right) \in q_{2}\left(\Gamma_{2, k}\left(V_{2}\right)\right) \times \Sigma_{2, k}\left(V_{2}\right) \mid U \subset V_{m}\right\}
$$

with projections $q_{2}\left(\Gamma_{2, k}\left(V_{2}\right)\right) \stackrel{p r_{1}}{\leftarrow} \Pi_{2, k}\left(V_{2}\right) \xrightarrow{p r_{2}} \Sigma_{2, k}\left(V_{2}\right)$ and a fibre

$$
p r_{1}^{-1}(U)=G\left(m-2, H_{2 m+1}^{\vee} / U\right)
$$

over an arbitrary point $U \in q_{2}\left(\Gamma_{2, k}\left(V_{2}\right)\right)$. The projection $\Pi_{2, k}\left(V_{2}\right) \xrightarrow{p r_{2}} \Sigma_{2, k}\left(V_{2}\right)$ is surjective in view of (42). Hence using (43) we obtain

$$
\begin{gathered}
\operatorname{dim} \Sigma_{2, k}\left(V_{2}\right) \leq \operatorname{dim} \Pi_{2, k}\left(V_{2}\right)=\operatorname{dim} q_{2}\left(\Gamma_{2, k}\left(V_{2}\right)\right)+\operatorname{dim} G\left(m-2, H_{2 m+1}^{\vee} / U\right) \leq k+(m-2)(m+1)= \\
=m^{2}-m-2+k=\operatorname{dim} G-(2 m-k+2), \quad 1 \leq k \leq 2 m .
\end{gathered}
$$

In a similar way we obtain for $k=0$

$$
\operatorname{dim} \Sigma_{2,0}\left(V_{2}\right) \leq 1+(m-2)(m+1)=m^{2}-m-1=\operatorname{dim} G-(2 m+1) .
$$

The last two inequalities together with (38), Lemma 4.3 and the assumption $m \geq 3$ yield $\operatorname{dim} \Sigma_{2}<\operatorname{dim} G$, i.e. (24) is true for $r=2$.
(ii) $r=1$. Consider a morphism $f_{1}: Z_{1} \rightarrow P\left(V^{\vee}\right)=\left(\mathbb{P}^{3}\right)^{\vee}: x \mapsto V_{1}(x)$, where the pair of spaces $\left(U_{1}(x), V_{1}(x)\right), \quad U_{1}(x) \subset H_{2 m+1}^{\vee}$ and $V_{1}(x) \subset V^{\vee}$, is determined uniquely by the point x via the condition $x \in P\left(U_{1}(x) \otimes V_{1}(x)\right)$, $\operatorname{since} \operatorname{rk}(x)=1$ (see Definition 4.1). Now for a given subspace $V_{1} \in\left(\mathbb{P}^{3}\right)^{\vee}$ set

$$
\Sigma_{1}\left(V_{1}\right):=\left\{V_{m} \in G \mid V_{m} \supset U_{1}(x) \text { for some point } x \in f_{1}^{-1}\left(V_{1}\right)\right\} .
$$

Then similar to (26) we have

$$
\begin{equation*}
\Sigma_{1}=\underset{V_{1} \in\left(\mathbb{P}^{3}\right)^{\vee}}{\cup} \Sigma_{1}\left(V_{1}\right) . \tag{44}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\operatorname{dim} \Sigma_{1} \leq \operatorname{dim} \Sigma_{1}\left(V_{1}\right)+3 \tag{45}
\end{equation*}
$$

We are going to obtain an estimate for the dimension of $\Sigma_{1}\left(V_{1}\right)$ for an arbitrary 1-dimensional subspace V_{1} in V^{\vee}. This subspace defines a commutative diagram
(46)

Note that to the point $V_{1} \in\left(\mathbb{P}^{3}\right)^{\vee}$ there clearly corresponds a projective plane $P\left(V_{1}\right)$ in \mathbb{P}^{3}. Set $B(E):=\left\{V_{1} \in\left(\mathbb{P}^{3}\right)^{\vee} \mid h^{0}\left(\left.E\right|_{P\left(V_{1}\right)}\right) \neq 0\right\}$. It is known that, for $m \geq 1$,

$$
\operatorname{dim} B(E) \leq 2
$$

(see [B1]). Moreover, in view of (35)

$$
h^{0}\left(\left.E\right|_{P\left(V_{1}\right)}\right)=1, \quad V_{1} \in B(E)
$$

Passing to cohomology in diagram (46) twisted by E and using the equality $h^{0}(E)=0$ for $[E] \in I_{2 m+1}$ we obtain the diagram

Let $V_{1} \in B(E)$. Setting $\epsilon:=$ multo λ and $W_{1}\left(V_{1}\right):=\operatorname{ker} \epsilon=H^{0}\left(\left.E\right|_{P\left(V_{1}\right)}\right)$, where $\operatorname{dim} W_{1}\left(V_{1}\right)=1$, we obtain from (47) a commutative diagram

Set

$$
Z_{1}\left(V_{1}\right):=\emptyset \text { if } V_{1} \neq B(E), \quad \text { resp., } Z_{1}\left(V_{1}\right):=j\left(W_{1}\left(V_{1}\right)\right) \text { if } V_{1} \in B(E) .
$$

The diagrams (47) and (48) yield the bijection

$$
\begin{equation*}
Z_{1}\left(V_{1}\right) \xrightarrow{\simeq} f_{1}^{-1}\left(V_{1}\right), \quad V_{1} \in\left(\mathbb{P}^{3}\right)^{\vee} \tag{49}
\end{equation*}
$$

The rest argument is completely the same as in cases $r=3$ and $r=2$ above. Consider the graph of incidence $\Gamma_{1}\left(V_{1}\right):=\left\{(x, U) \in Z_{1}\left(V_{1}\right) \times P\left(H_{2 m+1}^{\vee}\right) \mid U=U_{1}(x)\right\}$ with projections $Z_{1}\left(V_{1}\right) \stackrel{p_{1}}{\leftarrow} \Gamma_{1}\left(V_{1}\right) \stackrel{q_{1}}{\longrightarrow} P\left(H_{2 m+1}^{\vee}\right)$. By construction, $p_{1}\left(\Gamma_{1}\left(V_{1}\right)\right)=Z_{1}\left(V_{1}\right)$ and the morphism $p_{4}:$ $\Gamma_{1}\left(V_{1}\right) \rightarrow Z_{1}\left(V_{1}\right)$ is an isomorphism. Hence

$$
\begin{equation*}
\operatorname{dim} q_{1}\left(\Gamma_{1}\left(V_{1}\right)\right) \leq \operatorname{dim} \Gamma_{1}\left(V_{1}\right)=\operatorname{dim} Z_{1}\left(V_{1}\right) \leq 0 \tag{50}
\end{equation*}
$$

Consider the graph of incidence

$$
\Pi_{1}\left(V_{1}\right)=\left\{\left(U, V_{m}\right) \in q_{1}\left(\Gamma_{1}\left(V_{1}\right)\right) \times \Sigma_{1}\left(V_{1}\right) \mid U \subset V_{m}\right\}
$$

with projections $q_{1}\left(\Gamma_{1}\left(V_{1}\right)\right) \stackrel{p r_{1}}{\leftarrow} \Pi_{1}\left(V_{1}\right) \xrightarrow{p r_{2}} \Sigma_{1}\left(V_{1}\right)$ and a fibre

$$
p r_{1}^{-1}(U)=G\left(m-1, H_{2 m+1}^{\vee} / U\right)
$$

over an arbitrary point $U \in q_{1}\left(\Gamma_{1}\left(V_{1}\right)\right)$. The projection $\Pi_{1}\left(V_{1}\right) \xrightarrow{p r_{2}} \Sigma_{1}\left(V_{1}\right)$ is surjective in view of (49). Hence in view of (50) we have
$\operatorname{dim} \Sigma_{1}\left(V_{1}\right) \leq \operatorname{dim} \Pi_{1}\left(V_{1}\right)=\operatorname{dim} q_{1}\left(\Gamma_{1}\left(V_{1}\right)\right)+\operatorname{dim} G\left(m-1, H_{2 m+1}^{\vee} / U\right) \leq 0+(m-1)(m+1)=$ $=m^{2}-1$. This together with (45) and the assumption $m \geq 3$ yields $\operatorname{dim} \Sigma \leq m^{2}+2=$ $\operatorname{dim} G+2-m<\operatorname{dim} G$, i.e. (24) holds for $r=1$. Theorem is proved.

5. DECOMPOSITION $\mathbf{k}^{2 m+1} \simeq \mathbf{k}^{m+1} \oplus \mathbf{k}^{m}$ AND RELATED CONSTRUCTIONS

5.1. Decomposition $\mathbf{k}^{2 m+1} \simeq \mathbf{k}^{m+1} \oplus \mathbf{k}^{m}$.

Fix an isomorphism

$$
\begin{equation*}
\xi: \mathbf{k}^{m+1} \oplus \mathbf{k}^{m} \xrightarrow{\simeq} \mathbf{k}^{2 m+1} \tag{51}
\end{equation*}
$$

and let

$$
\begin{equation*}
\mathbf{k}^{m+1} \stackrel{i_{m+1}}{\longleftrightarrow} \mathbf{k}^{m+1} \oplus \mathbf{k}^{m} \stackrel{i_{m}}{\longleftrightarrow} \mathbf{k}^{m} \tag{52}
\end{equation*}
$$

be the injections of direct summands. For a given $(2 m+1)$-instanton vector bundle $E,[E] \in$ $I_{2 m+1}^{\prime}$, fix an isomorphism $f: \mathbf{k}^{2 m+1} \xrightarrow{\simeq} H^{2}(E(-3))=H_{2 m+1}$ and a symplectic structure $j: E \stackrel{\simeq}{\rightrightarrows} E^{\vee}$. The data $[E, f, j]$ define a net of quadrics $A \in M I_{2 m+1}^{\prime}$ (see section 3), and the exact triple (20) is naturally identified with the dual to the triple $0 \rightarrow \operatorname{ker} A \rightarrow \mathbf{k}^{2 m+1} \otimes V \rightarrow W_{A} \rightarrow 0$ and fits in diagram (9) for $n=2 m+1$

Consider the composition

$$
\begin{equation*}
j_{\xi, A}: \mathbf{k}^{m+1} \otimes V \stackrel{i_{m+1}}{\longrightarrow} \mathbf{k}^{m+1} \otimes V \oplus \mathbf{k}^{m} \otimes V \stackrel{\xi}{\rightarrow} \mathbf{k}^{2 m+1} \otimes V \xrightarrow{c_{A}} W_{A} . \tag{54}
\end{equation*}
$$

Under these notations Theorem 4.2 can be reformulated in the following way:
${ }^{(*)}$ Assume $m \geq 3$ and let A be an arbitrary $(2 m+1)$-net from $M I_{2 m+1}^{\prime}$. Then for a generic isomorphism $\xi: \mathbf{k}^{2 m+1} \xrightarrow{\simeq} \mathbf{k}^{m+1} \oplus \mathbf{k}^{m}$ one has

$$
\begin{equation*}
\operatorname{ker} A \cap \xi \circ i_{m+1}\left(\mathbf{k}^{m+1} \otimes V\right)=\{0\} \tag{55}
\end{equation*}
$$

Equivalently, $j_{\xi, A}: \mathbf{k}^{m+1} \otimes V \rightarrow W_{A}$ is an isomorphism.
Consider the direct sum decomposition corresponding to the isomorphism (51)

$$
\begin{equation*}
\widetilde{\xi}: \mathbf{S}_{m+1} \oplus\left(\mathbf{k}^{m}\right)^{\vee} \otimes\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes \wedge^{2} V^{\vee} \oplus \mathbf{S}_{m} \xrightarrow{\sim} \mathbf{S}_{2 m+1} \tag{56}
\end{equation*}
$$

and let

$$
\begin{align*}
& \xi_{1}: \mathbf{S}_{2 m+1} \rightarrow \mathbf{S}_{m+1}, \tag{57}\\
& \xi_{2}: \mathbf{S}_{2 m+1} \rightarrow\left(\mathbf{k}^{m}\right)^{\vee} \otimes\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes \wedge^{2} V^{\vee}, \\
& \xi_{3}: \mathbf{S}_{2 m+1} \rightarrow \mathbf{S}_{m}
\end{align*}
$$

be projections onto summands. By definition, $\xi_{1}(A)$ considered as a skew-symmetric homomorphism $\mathbf{k}^{m+1} \otimes V \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee}$ coincides with the composition

$$
\begin{equation*}
\xi_{1}(A): \mathbf{k}^{m+1} \otimes V \xrightarrow{j_{\xi, A}} W_{A} \xrightarrow[\simeq]{q_{A}} W_{A}^{\vee} \xrightarrow{j_{\xi, A}^{\vee}}\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee} . \tag{58}
\end{equation*}
$$

This means that assertion $\left.{ }^{*}\right)$ can be reformulated as:
${ }^{(* *)}$ Assume $m \geq 3$ and let A be an arbitrary $(2 m+1)$-net from $M I_{2 m+1}^{\prime}$. Then for a generic isomorphism ξ in (51) the skew-symmetric homomorphism $\xi_{1}(A): \mathbf{k}^{m+1} \otimes V \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee}$ is invertible.

For A and ξ from $\left({ }^{* *}\right)$ we have the commutative diagram
 where $\xi(A)$ is the matrix $\left(\begin{array}{cc}\xi_{1}(A) & \xi_{2}(A)^{\vee} \\ \xi_{2}(A) & \xi_{3}(A)\end{array}\right)$. As $j_{\xi, A}$ in this diagram is invertible, the composition

$$
g_{\xi, A}=j_{\xi, A}^{-1} \circ c_{A} \circ \xi \circ i_{m}
$$

is well-defined, and we obtain a commutative diagram

In particular,

$$
\begin{equation*}
\xi_{3}(A)=\xi_{2}(A)^{\vee} \circ \xi_{1}(A)^{-1} \circ \xi_{2}(A) . \tag{61}
\end{equation*}
$$

For $m \geq 1$ let

$$
\text { Isomem }_{2 m+1}
$$

be the set of all isomorphisms ξ in (51). Consider the open subset $M I_{2 m+1}^{\prime}$ of $M I_{2 m+1}$ defined in (17) and set
(62) $\quad M I_{2 m+1}(\xi):=\left\{A \in M I_{2 m+1}^{\prime} \mid\right.$ the skew - symmetric homomorphism $\xi_{1}(A)$ in (58)

$$
\text { is invertible }\}, \quad \xi \in \operatorname{Isom}_{2 m+1} .
$$

The relation (61) together with $\left({ }^{* *}\right)$ implies the following corollary of Theorem 4.2.

Theorem 5.1. Fom $m \geq 3$ the following statements hold.
(i) The sets $M I_{2 m+1}(\xi), \xi \in \operatorname{Isom}_{2 m+1}$, are dense open subsets of the set $M I_{2 m+1}^{\prime}$ constituting its open cover.
(ii) For any $\xi \in \operatorname{Isom}_{2 \mathrm{~m}+1}$ and any $A \in M I_{2 m+1}(\xi)$ the relation (61) is true.

We will need below the following lemma.
Lemma 5.2. Let ξ and $A \in M I_{2 m+1}(\xi)$ be as in Theorem 5.1 and set

$$
\begin{equation*}
B:=\xi_{1}(A), \quad C:=\xi_{2}(A) . \tag{63}
\end{equation*}
$$

Then the following statements hold.
(i) Consider a subbundle morphism

$$
\begin{equation*}
\alpha_{\xi, A}:=j_{\xi}^{-1} \circ a_{A} \circ \xi:\left(\mathbf{k}^{m+1} \oplus \mathbf{k}^{m}\right) \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \rightarrow \mathbf{k}^{m+1} \otimes V \otimes \mathcal{O}_{\mathbb{P}^{3}} . \tag{64}
\end{equation*}
$$

Then there exists an epimorphism

$$
\begin{equation*}
\lambda_{\xi, A}: \operatorname{coker}\left(B \circ \alpha_{\xi, A}\right) \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}}(1) \tag{65}
\end{equation*}
$$

making commutative the diagram

where can is a canonical surjection.
(ii) Consider the commutative diagram
(67)

where $\tau_{\xi, A}$ and $\epsilon_{\xi, A}$ are the induced morphisms. Then the morphism $\tau_{\xi, A}$ is a subbundle morphism fitting in a commutative diagram

$$
\begin{equation*}
\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}} \xrightarrow{\nu \circ B^{-1}} \mathbf{k}^{m+1} \otimes T_{\mathbb{P}^{3}}(-1) \tag{68}
\end{equation*}
$$

$$
\hat{\mathrm{k}}^{m} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1)=\mathbf{k}^{m} \otimes \hat{\mathcal{O}}_{\mathbb{P}^{3}}(-1)
$$

Доказательство. (i) Consider the commutative diagram

Here the upper triple is the monad (11) for $n=2 m+1$. Whence the statement (i) follows.
(ii) Standard diagram chasing using (63) and diagrams (59) and (67).

5.2. Remarks on t'Hooft instantons.

Consider the set

$$
I_{2 m+1}^{t H}:=\left\{[E] \in I_{2 m+1} \mid h^{0}(E(1)) \neq 0\right\}
$$

of t'Hooft instanton bundles and the corresponding set of t'Hooft instanton nets

$$
M I_{2 m+1}^{t H}:=\pi_{n}^{-1}\left(I_{2 m+1}^{t H}\right)
$$

We collect some well-known facts about $I_{2 m+1}^{t H}$ in the following lemma - see [BT], [NT], [T2, Prop. 2.2].

Lemma 5.3. Let $m \geq 1$. Then the following statements hold.
(i) $I_{2 m+1}^{t H}$ is an irreducible $(10 m+9)$-dimensional subvariety of $I_{2 m+1}$. Respectively, $M I_{2 m+1}^{t H}$ is an irreducible $\left(4 m^{2}+14 m+10\right)$-dimensional subvariety of $I_{2 m+1}$.
(ii) $I_{2 m+1}^{t H *}:=I_{2 m+1}^{t H} \cap I_{2 m+1}^{\prime}$ is a smooth dense open subset of $I_{2 m+1}^{t H}$ and

$$
\begin{equation*}
h^{0}(E(1))=1, \quad[E] \in I_{2 m+1}^{t H *} . \tag{70}
\end{equation*}
$$

(iii) $M I_{2 m+1}^{t H}$ is a smooth dense open subset of the set
(71) $T H_{2 m+1}:=\left\{A \in \mathbf{S}_{2 m+1} \mid A=\sum_{i=1}^{2 m+2} h^{2} \otimes w\right.$, where $\left.h \in\left(\mathbf{k}^{2 m+1}\right)^{\vee}, w \in \wedge^{2} V^{\vee}, w \wedge w=0\right\}$.

We are going to extend the statement of Theorem 5.1 to the cases $m=1$ and 2 . To this end, for $m=1,2$ and $\xi \in \operatorname{Isom}_{2 m+1}$ consider the sets $M I_{2 m+1}(\xi)$ defined in (62) and set

$$
\begin{equation*}
M I_{2 m+1}^{\prime \prime}:=\underset{\xi \in \operatorname{Isom}_{2 m+1}}{\cup} M I_{2 m+1}(\xi), \quad m=1,2 \tag{72}
\end{equation*}
$$

For $m \geq 1$ let $\xi^{0} \in \operatorname{Isom}_{2 m+1}$ be the standard isomorphism $\mathbf{k}^{m+1} \oplus \mathbf{k}^{m} \xrightarrow{\sim} \mathbf{k}^{m+1}$: $\left(\left(a_{1}, \ldots, a_{m+1}\right),\left(a_{m+2}, \ldots, a_{2 m+1}\right)\right) \mapsto\left(a_{1}, \ldots, a_{2 m+1}\right)$. Let $\left\{h_{1}=(1,0, \ldots, 0), \ldots, h_{2 m+1}(0, \ldots, 0,1)\right.$ be the standard basis in $\left(\mathbf{k}^{2 m+1}\right)^{\vee}$ and let e_{1}, \ldots, e_{4} be some fixed basis in V^{\vee}. Consider the nets $A_{(m)} \in T H_{2 m+1}, \quad m=1,2$, defined as follows

$$
\begin{gather*}
A_{(1)}=h_{1}^{2} \otimes\left(e_{1} \wedge e_{2}+e_{3} \wedge e_{4}\right)+h_{2}^{2} \otimes\left(e_{1} \wedge e_{3}+e_{4} \wedge e_{2}\right) \tag{73}\\
A_{(2)}=h_{1}^{2} \otimes\left(e_{1} \wedge e_{2}+e_{3} \wedge e_{4}\right)+h_{2}^{2} \otimes\left(e_{1} \wedge e_{3}+e_{4} \wedge e_{2}\right)+h_{3}^{2} \otimes\left(e_{1} \wedge e_{4}+e_{2} \wedge e_{3}\right)
\end{gather*}
$$

It is an exercise to show that the homomorphisms

$$
\xi_{1}^{0}\left(A_{(m)}\right): \mathbf{k}^{m+1} \otimes V \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee}, \quad m=1,2
$$

are invertible. On the other hand, for a given $\xi \in \operatorname{Isom}_{2 m+1}$ the condition that a homomorphism $\xi_{1}(A): \mathbf{k}^{m+1} \otimes V \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee}$ is invertible is an open condition on the net $A \in T H_{2 m+1}$. Hence, since the sets $M I_{2 m+1}^{\prime}, m=1,2$, are irreducible, Lemma 5.3 yields the following corollary.

Corollary 5.4. Let $1 \leq m \leq 2$.
(i) For $m=1,2$ the set $M I_{2 m+1}^{\prime \prime}$ is a dense open subset of $M I_{2 m+1}^{\prime}$ and of $M I_{2 m+1}$, and the statement of Theorem 5.1 extends to the cases $m=1$ and 2, with $M I_{2 m+1}^{\prime}$ being substituted by $M I_{2 m+1}^{\prime \prime}$.
(ii) Let $m \geq 1$. The set

$$
M I_{2 m+1}^{t H * *}:=\left\{\begin{array}{cl}
M I_{2 m+1}^{t H *}, & m \geq 3 \\
M I_{2 m+1}^{\prime} \cap M I_{2 m+1}^{t H *}, & m=1,2
\end{array}\right.
$$

is a dense open subset of $M I_{2 m+1}^{t H *}$ and of $M I_{2 m+1}^{t H}$ covered by dense open subsets

$$
\begin{equation*}
M I_{2 m+1}^{t H}(\xi):=M I_{2 m+1}^{t H * *} \cap M I_{2 m+1}(\xi), \quad \xi \in \operatorname{Isom}_{2 m+1} \tag{74}
\end{equation*}
$$

Note that (18), Theorem 5.1 and Corollary 5.4 yield
Corollary 5.5. Let $m \geq 1$. Then for any $\xi \in \operatorname{Isom}_{2 m+1}$ the scheme $\left(M I_{2 m+1}(\xi)\right)_{\text {red }}$ is dense open in $\left(M I_{2 m+1}\right)_{\text {red }}$. In particular,

$$
\begin{equation*}
\operatorname{dim} M I_{2 m+1}(\xi)=\operatorname{dim} M I_{2 m+1} \tag{75}
\end{equation*}
$$

5.3. Invertible nets of quadrics from \mathbf{S}_{m+1} and symplectic rank- $(2 m+2)$ bundles.

 Introduce more notations. Set(76) $N_{m+1}:=\left\{B \in \mathbf{S}_{m+1} \mid B: \mathbf{k}^{m+1} \otimes V \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee}\right.$ is an invertible homomorphism $\}$.

The set N_{m+1} is a dense open subset of the vector space \mathbf{S}_{m+1}, and it is easy to see that for any $B \in N_{m+1}$ the following conditions are satisfied.
(1) The morphism $\widetilde{B}: \mathbf{k}^{m+1} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes \Omega_{\mathbb{P}^{3}}(1)$ induced by the homomorphism $B: \mathbf{k}^{m+1} \otimes V \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee}$ is a subbundle morphism, i.e.

$$
\begin{equation*}
E_{2 m+2}(B):=\operatorname{coker}(\widetilde{B}) \tag{77}
\end{equation*}
$$

is a vector bundle of rank $2 m+2$ на \mathbb{P}^{3}. This follows from the diagram (78)

(2) The homomorphism ${ }^{\sharp} B: \mathbf{k}^{m+1} \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes \wedge^{2} V^{\vee}$ induced by $B: \mathbf{k}^{m+1} \otimes V \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee}$ is injective. This follows from the commutative diagram extending the upper horizontal triple in (78)

where w is the morphism induced by the morphism v from the Euler exact sequence in (78). From this diagram we obtain the isomorphism

$$
\begin{equation*}
\operatorname{coker}\left({ }^{\sharp} B\right) \simeq H^{0}\left(E_{2 m+2}(B)(1)\right) \tag{80}
\end{equation*}
$$

(3) Diagram (78) and the Five-Lemma yield an isomorphism

$$
\begin{equation*}
\theta: E_{2 m+2}(B) \xrightarrow{\sim} E_{2 m+2}(B)^{\vee} \tag{81}
\end{equation*}
$$

which is in fact symplectic,

$$
\theta^{\vee}=-\theta
$$ since the homomorphism $B: \mathbf{k}^{m} \otimes V \rightarrow\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee}$ is skew-symmetric. The isomorphism θ together with the upper triple from (78) and its dual fits in the commutative diagram

Note that this diagram immediately implies that

$$
\begin{equation*}
h^{0}\left(E_{2 m+2}(B)\right)=h^{i}\left(E_{2 m+2}(B)(-2)\right)=0, \quad i \geq 0 \tag{83}
\end{equation*}
$$

Let ξ and $A \in M I_{2 m+1}(\xi)$ be as in Theorem 5.1 for $m \geq 3$, respectively, in Corollary 5.4 for $m=1,2$. Then the homomorphism $B: \mathbf{k}^{m+1} \otimes V \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee}$ defined in (63) by definition lies in N_{m+1}. Hence by Lemma 5.2 diagrams (66) and (66) hold. These diagrams together with (82) imply $\widetilde{B}^{\vee} \circ \tau_{\xi, A}=0$, so that there exists a morphism

$$
\begin{equation*}
\rho_{\xi, A}: \mathbf{k}^{m} \otimes \mathcal{O}(-1) \rightarrow E_{2 m+2}(B) \tag{84}
\end{equation*}
$$

such that $\tau_{\xi, A}=e^{\vee} \circ \theta \circ \rho_{\xi, A}$. Since $\tau_{\xi, A}$ is a subbundle morphism, $\rho_{\xi, A}$ is also a subbundle morphism. Moreover, diagrams (68) and (82) yield the commutative diagram

Diagrams (82) and (85) yield the commutative diagram

where $D_{C}:=\widetilde{C}^{\vee} \circ B^{-1} \circ \widetilde{C}=u^{\vee} \circ\left(C^{\vee} \circ B^{-1} \circ C\right) \circ u$ is the zero map. In fact, by (61) and (63) we have $D_{C}=p_{2}\left(\xi_{3}(A)\right)$, where $p_{2}: \wedge^{2}\left(\left(\mathbf{k}^{n}\right)^{\vee} \otimes V^{\vee}\right) \rightarrow \wedge^{2}\left(\mathbf{k}^{n}\right)^{\vee} \otimes S^{2} V^{\vee}$ is the projection onto the second direct summand of the decomposition (8). Since by (57) $\xi_{3}(A)$ lies in the first direct summand of (8) it follows that $D_{C}=0$. We thus obtain the monad

$$
\begin{equation*}
0 \rightarrow \mathbf{k}^{m} \otimes \mathcal{O}(-1) \xrightarrow{\rho_{\xi, A}} E_{2 m+2}(B) \xrightarrow{\theta \circ \rho \rho_{\xi, A}^{\vee}}\left(\mathbf{k}^{m}\right)^{\vee} \otimes \mathcal{O}(1) \rightarrow 0 \tag{87}
\end{equation*}
$$

with the cohomology sheaf

$$
\begin{equation*}
E_{2}(\xi, A):=\operatorname{ker}\left(\theta \circ \rho_{\xi, A}^{\vee}\right) / \operatorname{Im} \rho_{\xi, A} \tag{88}
\end{equation*}
$$

which is a vector bundle since $\rho_{\xi, A}$ is a subbundle morphism. Furthermore, by (83) it follows from the monad (87) that $E_{2}(\xi, A)$ is a $(2 m+1)$-instanton,

$$
\begin{equation*}
\left[E_{2}(\xi, A)\right] \in I_{2 m+1} \tag{89}
\end{equation*}
$$

Lemma 5.6. $E_{2}(\xi, A) \simeq E(A)$, where the sheaf $E(A)$ is defined in (12).
Доказательство. Diagram chasing using (59), (60), (67)-(69), (78)-(79) and (82).

6. Scheme X_{m}. An isomorphism between X_{m} And an open subset of the space $M I_{2 m+1}$

6.1. Space X_{m}. Consider the vector space \mathbf{S}_{m+1}, respectively, its dual space \mathbf{S}_{m+1}^{\vee} and set
(90) $\left(\mathbf{S}_{m+1}^{\vee}\right)^{0}:=\left\{B \in \mathbf{S}_{m+1}^{\vee} \mid D:\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee} \rightarrow \mathbf{k}^{m+1} \otimes V\right.$ is an invertible homomorphism $\}$,

$$
\begin{equation*}
\boldsymbol{\Sigma}_{m+1}:=\operatorname{Hom}\left(\mathbf{k}^{m},\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes \wedge^{2} V^{\vee}\right) \tag{91}
\end{equation*}
$$

According to our convention on notations we will understand an arbitrary point $C \in \boldsymbol{\Sigma}_{m+1}$ either as a homomorphism

$$
C: \mathbf{k}^{m} \otimes V \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee}
$$

or as a homomorphism

$$
{ }^{\sharp} C: \mathbf{k}^{m} \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes \wedge^{2} V^{\vee},
$$

or as an induced morphism

$$
\widetilde{C}: \mathbf{k}^{m} \otimes \mathcal{O}(-1) \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes \Omega(1)
$$

Note also that the set $\left(\mathbf{S}_{m+1}^{\vee}\right)^{0}$ is a dense open subset of the vector space \mathbf{S}_{m+1}^{\vee}.
Consider the set

(i) $\left(C^{\vee} \circ D \circ C: \mathbf{k}^{m} \otimes V \rightarrow\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee}\right) \in \mathbf{S}_{m}$,
(ii) the map $\left(\mathbf{k}^{m+1} \oplus \mathbf{k}^{m}\right) \otimes \mathcal{O} \xrightarrow{\left(D^{-1}, C\right) \circ u}\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee} \otimes \mathcal{O}(1)$ is a subbundle morphism,
(iii) the composition $\hat{C}: \mathbf{k}^{m} \xrightarrow{\sharp} C\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes \wedge^{2} V^{\vee} \xrightarrow{\text { can }}$
$\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes \wedge^{2} V^{\vee} / \operatorname{Im}\left({ }^{\sharp} D^{-1}\right) \simeq H^{0}\left(E_{2 m+2}\left(D^{-1}\right)(1)\right)$ yields a subbundle morphism

$$
\mathbf{k}^{m} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \xrightarrow{\rho_{D, C}} E_{2 m+2}\left(D^{-1}\right),
$$

i.e. $\rho_{D, C}^{\vee}$ is surjective and $E_{2}(D, C):=\operatorname{Ker}\left({ }^{t} \rho_{D, C}\right) / \operatorname{Im}\left(\rho_{D, C}\right)$ is locally free

By definition X_{m} is a locally closed subset of $\left(\mathbf{S}_{m+1}^{\vee}\right)^{0} \times \boldsymbol{\Sigma}_{m+1}$. Hence it is naturally supplied with the structure of a reduced scheme.

Note that in the condition (iii) of the definition of X_{m} we set ${ }^{t} \rho_{D, C}:=\theta \circ \rho_{D, C}^{\vee}$, where $\theta: E_{2 m+2}\left(D^{-1}\right) \xrightarrow{\sim} E_{2 m+2}^{\vee}\left(D^{-1}\right)$ is a natural symplectic structure on $E_{2 m+2}\left(D^{-1}\right)$ defined in (81).

Theorem 6.1. Let $m \geq 1$ and let ξ be as in Theorem 5.1 and Corollary 5.4.
(i) There is an isomorphism of reduced schemes

$$
\begin{equation*}
f_{m}:\left(M I_{2 m+1}(\xi)\right)_{\text {red }} \xrightarrow{\simeq} X_{m}: A \mapsto\left(\xi_{1}(A)^{-1}, \xi_{2}(A)\right) . \tag{93}
\end{equation*}
$$

(ii) The inverse isomorphism is given by the formula

$$
\begin{equation*}
g_{m}: X_{m} \xrightarrow{\simeq}\left(M I_{2 m+1}(\xi)\right)_{\text {red }}:(D, C) \mapsto \widetilde{\xi}\left(D^{-1}, C, C^{\vee} \circ D \circ C\right) .^{1} \tag{94}
\end{equation*}
$$

Доказательство. (i) We first show that the image of the map $f_{m}:\left(M I_{2 m+1}(\xi)\right)_{\text {red }} \rightarrow$ $\left(\mathbf{S}_{m+1}^{\vee}\right)^{0} \times \sum_{m, m+1}^{i n}$ lies in X_{m}, i.e. satisfies the conditions (i)-(iii) in the definition of X_{m}. Indeed, the condition (i) is automatically satisfied, since (57) and (61) give $C^{\vee} \circ D \circ C=$ $\xi_{2}(A)^{\vee} \circ \xi_{1}(A)^{-1} \circ \xi_{2}(A)=\xi_{3}(A) \in S^{2}\left(\mathbf{k}^{m}\right)^{\vee} \otimes \wedge^{2} V^{\vee}$. Next, the morphism $\rho_{D, C}$ defined in (iii) above coincides by its definition with the morphism $\rho_{\xi, A}$ defined in (84). In fact, the upper triangle of the diagram (85) twisted by $\mathcal{O}(1)$ and the lower part of the diagram (79) in which we put

$$
\begin{equation*}
B=D^{-1} \tag{95}
\end{equation*}
$$

(note that D is invertible) fit in the diagram

where the composition $\widehat{C}=c a n \circ C$ is defined in the condition (iii) of the definition of X_{m}. Whence

$$
\begin{equation*}
\rho_{D, C}=\rho_{\xi, A} . \tag{97}
\end{equation*}
$$

Since $\rho_{\xi, A}$ is a subbundle morphism, the condition (iii) is satisfied and, moreover, \widehat{C} is a subbundle morphism as well. Thus, the lower part of the diagram (96) shows that the morphism $\left(\widetilde{D^{-1}}, \widetilde{C}\right):\left(\mathbf{k}^{m+1} \oplus \mathbf{k}^{m}\right) \otimes \mathcal{O} \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes \Omega(2)$ is a subbundle morphism. Hence its composition with the subbundle morphism $v^{\vee}:\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes \Omega(2) \hookrightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V \otimes \mathcal{O}(1)$ is a subbundle morphism as well. By definition, this composition coincides with $\left(D^{-1}, C\right) \circ u$. Hence the condition (ii) in the definition of X_{m} is satisfied.

This shows that $f_{m}\left(\left(M I_{2 m+1}(\xi)\right)_{r e d}\right)$ lies in X_{m}. Last, the equality $g_{m} \circ f_{m}=i d$ follows directly from (57) and (61).
(ii) We first prove that the image of the map

$$
\begin{equation*}
g_{m}: X_{m} \rightarrow \mathbf{S}_{2 m+1}:(D, C) \mapsto\left(D^{-1}, C, C^{\vee} \circ D \circ C\right)^{2} \tag{98}
\end{equation*}
$$

[^0]lies in $\left(M I_{2 m+1}(\xi)\right)_{\text {red }}$. In fact, the subbundle morphism $\mathcal{A}:=\left(D^{-1}, C\right) \circ u:\left(\mathbf{k}^{m+1} \oplus \mathbf{k}^{m}\right) \otimes \mathcal{O} \rightarrow$ $\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee} \otimes \mathcal{O}(1)$ and its dual extend to the right and left exact sequence
\[

$$
\begin{equation*}
0 \rightarrow\left(\mathbf{k}^{m+1} \oplus \mathbf{k}^{m}\right) \otimes \mathcal{O}(-1) \xrightarrow{\mathcal{A}}\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee} \otimes \mathcal{O} \xrightarrow{\mathcal{A}^{\vee} \circ D}\left(\mathbf{k}^{m+1} \oplus \mathbf{k}^{m}\right)^{\vee} \otimes \mathcal{O}(1) \rightarrow 0 \tag{99}
\end{equation*}
$$

\]

Furthermore, by definition $\mathcal{A}^{\vee} \circ D \circ \mathcal{A}=u^{\vee} \circ A \circ u$, where A is the matrix $\left(\begin{array}{cc}D^{-1} & C \\ C^{\vee} & C^{\vee} \circ D \circ C\end{array}\right)$. Since the condition (i) is satisfied, under the direct sum decomposition (56) this matrix A can be treated an element of $\mathbf{S}_{2 m+1}$. Hence $u^{\vee} \circ A \circ u=0$, i.e. (99) is a monad. Show that its cohomology bundle

$$
E(D, C):=\operatorname{ker}\left(\mathcal{A}^{\vee} \circ D\right) / \operatorname{Im} \mathcal{A}
$$

is an $(2 m+1)$-instanton, this giving the desired inclusion $g\left(X_{m}\right) \subset\left(M I_{2 m+1}(\xi)\right)_{\text {red }}$. For this, consider the diagram (67) in which we substitute $B \circ \alpha_{\xi, A}$ by \mathcal{A}, respectively, B by D^{-1}, denote $\mathcal{G}:=\operatorname{coker} \mathcal{A}$, and change the notation for $\tau_{\xi, A}$ and $\epsilon_{\xi, A}$, respectively, to $\tau_{D, C}$ and $\epsilon_{D, C}$

In these notations the diagram (82) becomes the display of the antiselfdual monad

$$
\begin{equation*}
0 \rightarrow \mathbf{k}^{m+1} \otimes \mathcal{O}(-1) \xrightarrow{D^{-1} \circ u}\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee} \otimes \mathcal{O} \xrightarrow{u^{\vee}}\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes \mathcal{O}(1) \rightarrow 0 \tag{101}
\end{equation*}
$$

with the symplectic cohomology sheaf $E_{2 m+2}\left(D^{-1}\right)$:

$$
\begin{equation*}
E_{2 m+2}\left(D^{-1}\right)=\operatorname{ker}\left(u^{\vee}\right) / \operatorname{Im}\left(D^{-1} \circ u\right) . \tag{102}
\end{equation*}
$$

Moreover, as in (84) and (85) we obtain a subbundle morphism

$$
\begin{equation*}
\rho_{D, C}: \mathbf{k}^{m} \otimes \mathcal{O}(-1) \rightarrow E_{2 m+2}\left(D^{-1}\right) \tag{103}
\end{equation*}
$$

such that

$$
\begin{equation*}
\tau_{D, C}=e^{\vee} \circ \theta \circ \rho_{D, C}, \tag{104}
\end{equation*}
$$

where $\theta: E_{2 m+2}\left(D^{-1}\right) \xrightarrow{\simeq} E_{2 m+2}\left(D^{-1}\right)$ is a symplectic structure on $E_{2 m+2}\left(D^{-1}\right)$. Besides, as in (83) we have

$$
\begin{equation*}
h^{0}\left(E_{2 m+2}\left(D^{-1}\right)\right)=h^{i}\left(E_{2 m+2}\left(D^{-1}\right)(-2)\right)=0, \quad i \geq 0 \tag{105}
\end{equation*}
$$

Furthermore, as before, the antiselfdual monads (99) and (101) imply the (antiselfdual) monad (87)

$$
\begin{equation*}
0 \rightarrow \mathbf{k}^{m} \otimes \mathcal{O}(-1) \xrightarrow{\rho_{D, C}} E_{2 m+2}\left(D^{-1}\right) \xrightarrow{\theta \circ \rho_{D, C}^{\vee}}\left(\mathbf{k}^{m}\right)^{\vee} \otimes \mathcal{O}(1) \rightarrow 0 \tag{106}
\end{equation*}
$$

with the cohomology sheaf $E(D, C)$,

$$
\begin{equation*}
E(D, C)=\operatorname{ker}\left(\theta \circ \rho_{D, C}^{\vee}\right) / \operatorname{Im}\left(\rho_{D, C}\right) \tag{107}
\end{equation*}
$$

Now (105) and (106) yield $h^{0}(E(D, C))=h^{i}(E(D, C)(-2))=0, \quad i \geq 0$, i.e. $E(D, C)$ is an ($2 m+1$)-instanton.

Thus $\operatorname{Im} g_{m} \subset I_{2 m+1}(\xi)$. The fact that $f_{m} \circ g_{m}=i d$ follows directly from (93) and (94).

7. Variety Z_{m}

7.1. Scheme Z_{m}. Set

$$
\begin{equation*}
\boldsymbol{\Lambda}_{m}:=\wedge^{2}\left(\mathbf{k}^{m}\right)^{\vee} \otimes S^{2} V^{\vee}, \quad \boldsymbol{\Phi}_{m}:=\operatorname{Hom}\left(\mathbf{k}^{m},\left(\mathbf{k}^{m}\right)^{\vee}\right) \otimes \wedge^{2} V^{\vee} \tag{108}
\end{equation*}
$$

and consider the set

$$
Z_{m}:=\left\{\begin{array}{l|l}
(D, \phi) \in \mathbf{S}_{m}^{\vee} \times \mathbf{\Phi}_{m} & \begin{array}{c}
\Theta_{m}(D, \phi):=\phi^{\vee} \circ D \circ \phi: \mathbf{k}^{m} \otimes V \rightarrow \\
\rightarrow\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee} \text { satisfies the condition } \\
\Theta_{m}(D, \phi) \in \mathbf{S}_{m}
\end{array} \tag{109}
\end{array}\right\}
$$

(Here, as in (90), we understand a point $D \in \mathbf{S}_{m}^{\vee}$ as a homomorphism $\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee} \rightarrow \mathbf{k}^{m} \otimes V$.) Consider the standard decomposition

$$
\wedge^{2}\left(\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee}\right)=\mathbf{S}_{m} \oplus \boldsymbol{\Lambda}_{m}
$$

with the induced projections

$$
\mathbf{S}_{m} \stackrel{p r_{1}}{\leftarrow} \wedge^{2}\left(\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee}\right) \xrightarrow{p r_{2}} \boldsymbol{\Lambda}_{m}
$$

We have a morphism $h_{m}: \mathbf{S}_{m} \times \boldsymbol{\Phi}_{m} \rightarrow \boldsymbol{\Lambda}_{m}:\left(A_{m}, \phi_{m}\right) \mapsto p r_{2}\left(\Theta\left(A_{m}, \phi_{m}\right)\right)$. By the definition Z_{m} we have

$$
\begin{equation*}
Z_{m}=h_{m}^{-1}(0) . \tag{110}
\end{equation*}
$$

Convention: If Z_{m} is nonempty, we supply Z_{m} with a scheme structure of a scheme-theoretic fibre $h_{m}^{-1}(0)$ of the morphism h_{m}.

Assume that

$$
\begin{equation*}
Z_{m} \neq \emptyset . \tag{111}
\end{equation*}
$$

Then from the definition of Z_{m} we obtain the estimate for the dimension of Z_{m} at each point $z \in Z_{m}$

$$
\begin{align*}
\operatorname{dim}_{z} Z_{m} & =\operatorname{dim} h_{m}^{-1}(0) \geq \operatorname{dim}\left(\mathbf{S}_{m} \times \Phi_{m}\right)-\operatorname{dim} \wedge^{2}\left(\mathbf{k}^{m}\right)^{\vee} \otimes S^{2} V^{\vee}= \tag{112}\\
& =3 m(m+1)+6 m^{2}-5 m(m-1)=4 m(m+2)
\end{align*}
$$

Consider the open dense subset $\boldsymbol{\Phi}_{m}^{0}:=\left\{\left.\phi \in \boldsymbol{\Phi}_{m}\right|^{\sharp} \phi: \mathbf{k}^{m} \rightarrow\left(\mathbf{k}^{m}\right)^{\vee} \otimes \wedge^{2} V^{\vee}\right)$ is injective $\}$ of Φ_{m} and set

$$
\begin{equation*}
Z_{m}^{\prime}:=\left\{(D, \phi) \in Z_{m} \cap\left(\mathbf{S}_{m}^{\vee}\right)^{0} \times \boldsymbol{\Phi}_{m}^{0} \mid \operatorname{Im}\left({ }^{\sharp} \phi\right) \cap \operatorname{Im}\left(\not{ }^{\sharp}\left(D^{-1}\right): \mathbf{k}^{m} \rightarrow\left(\mathbf{k}^{m}\right)^{\vee} \otimes \wedge^{2} V^{\vee}\right)=\{0\}\right\} \tag{113}
\end{equation*}
$$

The set Z_{m}^{\prime} is by definition an open subset in Z_{m}.
Assume $Z_{m}^{\prime} \neq \emptyset$. Pick a point $z=(D, \phi) \in Z_{m}^{\prime}$ and set

$$
W_{5 m}:=\left(\mathbf{k}^{m}\right)^{\vee} \otimes \wedge^{2} V^{\vee} / \operatorname{Im}\left({ }^{\sharp}\left(D^{-1}\right)\right), \quad \operatorname{dim} W_{5 m}=5 m .
$$

Let $i(z)$ be the composition in the diagram

The lower horizontal triple in (114) yields the diagram

where $E_{2 m}\left(D^{-1}\right)$ is a symplectic bundle (see (81)). From this diagram we deduce the equalities

$$
\begin{equation*}
h^{i}\left(E_{2 m}\left(D^{-1}\right)(-2)\right)=0, \quad i \geq 0 \tag{116}
\end{equation*}
$$

and the isomorphism

$$
\begin{equation*}
h^{0}(e v): W_{5 m} \xrightarrow{\sim} H^{0}\left(E_{2 m}\left(D^{-1}\right)\right), \quad i \geq 0 \tag{117}
\end{equation*}
$$

Moreover, the diagrams (114) and (115) define the composition

$$
\begin{equation*}
i_{z}: \mathbf{k}^{m} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \xrightarrow{i(z)} W_{5 m} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \xrightarrow{e v} E_{2 m}\left(D^{-1}\right) \tag{118}
\end{equation*}
$$

Note that from the definition of the set Z_{m} it follows that

$$
\begin{equation*}
{ }^{t} i_{z} \circ i_{z}=0, \tag{119}
\end{equation*}
$$

where ${ }^{t} i_{z}:=i_{z}^{\vee} \circ \theta$ and $\theta: E_{2 m}\left(\left(D^{-1}\right)\right) \xrightarrow{\sim} E_{2 m}\left(\left(D^{-1}\right)\right)^{\vee}$ is the symplectic structure on $E_{2 m}\left(\left(D^{-1}\right)\right)$ mentioned above, i.e. we have an antiselfdual complex

$$
\begin{equation*}
0 \rightarrow \mathbf{k}^{m} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \xrightarrow{i_{z}} E_{2 m}\left(D^{-1}\right) \xrightarrow{t_{i_{z}}}\left(\mathbf{k}^{m}\right)^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}}(1) \rightarrow 0 \tag{120}
\end{equation*}
$$

(Warning: this complex is not right exact.)
Twisting the sequence (118) by $\mathcal{O}_{\mathbb{P}^{3}}(1)$ and passing to sections, we obtain in view of Furthermore, the standard embedding

$$
\begin{equation*}
j: \mathbf{k}^{m-1} \hookrightarrow \mathbf{k}^{m}:\left(a_{1}, \ldots, a_{m-1}\right) \mapsto\left(a_{1}, \ldots, a_{m-1}, 0\right) \tag{121}
\end{equation*}
$$

and the morphism i_{z} from (118) define the composition

$$
\begin{equation*}
j_{z}: \mathbf{k}^{m-1} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \xrightarrow{j} \mathbf{k}^{m} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \xrightarrow{i_{z}} E_{2 m}\left(D^{-1}\right) \tag{122}
\end{equation*}
$$

7.2. Varieties Z_{m}^{*} and $N_{2 m-1}^{t H}$.

Assume, as above, that $Z_{m}^{\prime} \neq \emptyset$ and set

$$
\begin{equation*}
Z_{m}^{*}=\left\{z=(D, \phi) \in Z_{m}^{\prime} \mid j_{z}: \mathbf{k}^{m-1} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \rightarrow E_{2 m}\left(D^{-1}\right) \text { is a subbundle morphism }\right\} \tag{123}
\end{equation*}
$$

By definition, Z_{m}^{*} is an open subset of Z_{m}^{\prime}, hence also of Z_{m}. If $Z_{m}^{*} \neq \emptyset$, then for any point $z=(D, \phi) \in Z_{m}^{*}$ we obtain from (119) that ${ }^{t} j_{z} \circ j_{z}=0$, where ${ }^{t} j_{z}:=j_{z}^{\vee} \circ \theta$. Thus j_{z} defines a monad

$$
\begin{equation*}
0 \rightarrow \mathbf{k}^{m-1} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \xrightarrow{j_{z}} E_{2 m}\left(D^{-1}\right) \xrightarrow{t_{j_{z}}}\left(\mathbf{k}^{m-1}\right)^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}}(1) \rightarrow 0 \tag{124}
\end{equation*}
$$

and in view of (116) the cohomology sheaf of this monad is an instanton bundle

$$
\begin{equation*}
E_{2}(z):=\operatorname{Ker}\left({ }^{t} j_{z}\right) / \operatorname{Im}\left(j_{z}\right), \quad\left[E_{2}(z)\right] \in I(2 m-1) \tag{125}
\end{equation*}
$$

Consider the subvariety $I_{2 m-1}^{t H} \subset I_{2 m-1}$ of t'Hooft instanton bundles

$$
I_{2 m-1}^{t H}:=\left\{[E] \in I_{2 m-1} \mid h^{0}(E(1)) \neq 0\right\} .
$$

Lemma 7.1. Assume $Z_{m}^{*} \neq \emptyset$. Then for any $z=(D, \phi) \in Z_{m}^{*}$ the bundle $E_{2}(z)$ is a t'Hooft instanton bundle, i.e. $\left[E_{2}(z)\right] \in I_{2 m-1}^{t H}$.

Proof. Consider the complexes (120) and (124) and set

$$
H_{m-1}:=\mathbf{k}^{m-1} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1), \quad H_{m}:=\mathbf{k}^{m} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1), \quad K_{m+1}:=\operatorname{coker} j_{z}, \quad K_{m}:=\operatorname{coker} i_{z}
$$

The complexes (120) and (124) are antiselfdual, hence they extend to a commutative diagram (126)

in which $\alpha, \beta, \gamma, \delta$ and τ are the induced morphisms. In this diagram we have $\beta \circ \alpha=0$ and $j^{\vee} \circ \gamma \circ \beta=\delta$. Hence $\delta \circ \alpha=0$. This implies that α factors through the morphism τ, i.e. there exists an injection $s: \mathcal{O}_{\mathbb{P}^{3}}(-1) \rightarrow E_{2}(z)$ such that $\alpha=\tau \circ s$. This injection s is a nonzero section $s \in H^{0}\left(E_{2}(z)(1)\right)$. Hence $E_{2}(z)$ is a t'Hooft bundle.

We will show that Z_{m}^{*} is an irreducible variety of dimension $4 m(m+2)$, hence it is nonempty. For this, fix an isomorphism

$$
\begin{equation*}
\xi: \mathbf{k}^{m} \oplus \mathbf{k}^{m-1} \xrightarrow{\simeq} \mathbf{k}^{2 m-1} \tag{127}
\end{equation*}
$$

and consider the variety $M I_{2 m-1}^{t H}(\xi)$ defined in (74). Take an arbitrary point $A \in M I_{2 m-1}^{t H}(\xi)$. The point A defines a point $B=\xi_{1}(A)$ and a monad $0 \rightarrow \mathbf{k}^{m-1} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \xrightarrow{\rho_{\xi, A}} E_{2 m}(B) \xrightarrow{t^{t} \rho_{\xi, B}}$ $\left(\mathbf{k}^{m-1}\right)^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{3}}(1) \rightarrow 0$ with the cohomology bundle $\left[E_{2}(A)\right]=\pi_{2 m-1}(A)$ (see subsection 5.3). The display of this monad twisted by $\mathcal{O}_{\mathbb{P}^{3}}(1)$ is

where $K_{m+1}(A):=\operatorname{coker} \rho_{\xi, A}$.
Note that from (70) and the definition of $M I_{2 m-1}^{t H}(\xi)$ it follows that $h^{0}\left(E_{2}(A)(1)\right)=1$. Hence, passing to sections in the diagram (128) we obtain a well defined epimorphism (129)

$$
b(\xi, A): H^{0}\left(E_{2 m}(B)(1)\right) \xrightarrow{h^{0}(\epsilon)} H^{0}\left(K_{m+1}(A)(1)\right) \xrightarrow{c a n} H^{0}\left(K_{m+1}(A)(1)\right) / H^{0}\left(E_{2}(A)(1)\right) \simeq \mathbf{k}^{4 m} .
$$

On the other hand, similar to (115) and (117) we obtain the exact triple

$$
\begin{equation*}
0 \rightarrow \mathbf{k}^{m} \xrightarrow{\sharp B^{-1}}\left(\mathbf{k}^{m}\right)^{\vee} \otimes \wedge^{2} V^{\vee} \xrightarrow{c(A)} H^{0}\left(E_{2 m}(B)(1)\right) \rightarrow 0 . \tag{130}
\end{equation*}
$$

Denote by $c(A)$ the epimorphism $\left(\mathbf{k}^{m}\right)^{\vee} \otimes \wedge^{2} V^{\vee} \rightarrow H^{0}\left(E_{2 m}(B)(1)\right)$ in this triple and set

$$
\begin{gather*}
V_{2 m}(\xi, A):=c(A)^{-1}(\operatorname{ker} b(\xi, A)) \simeq \mathbf{k}^{2 m}, \tag{131}\\
V_{2 m}^{*}(\xi, A):=\left\{v \in V_{2 m}(\xi, A) \mid \operatorname{Span}\left(\operatorname{Im}^{\sharp}\left(\xi_{1}(A)^{-1}\right), \operatorname{Im}^{\sharp}\left(\xi_{2}(A)\right), \mathbf{k} v\right)=V_{2 m}(\xi, A)\right\}, \\
V_{2 m}(\xi):=\left\{(A, v) \mid A \in M I_{2 m-1}^{t H}(\xi), v \in V_{2 m}(\xi, A)\right\} . \tag{132}
\end{gather*}
$$

Here the projection $V_{2 m}(\xi) \rightarrow M I_{2 m-1}^{t H}(\xi):(A, v) \mapsto A$ is a $\mathbf{k}^{2 m}$-bundle over $M I_{2 m-1}^{t H}(\xi)$, hence by Lemma 5.3 and Corollary 5.4 $V_{2 m}(\xi)$ is irreducible of dimension

$$
\begin{equation*}
\operatorname{dim} V_{2 m}(\xi)=\operatorname{dim} M I_{2 m-1}^{t H}(\xi)+2 m=4 m(m+2) \tag{133}
\end{equation*}
$$

Besides, $V_{2 m}^{*}(\xi, A)$ is a dense open subset of $V_{2 m}(\xi, A)$ for each $A \in M I_{2 m-1}^{t H}(\xi)$,

$$
\begin{equation*}
V_{2 m}^{*}(\xi, A) \stackrel{\text { dense open }}{\longrightarrow} V_{2 m}(\xi, A) \simeq \mathbf{k}^{2 m} \tag{134}
\end{equation*}
$$

Next, set $\Pi_{m}:=\operatorname{Hom}\left(\mathbf{k}^{\mathrm{m}},\left(\mathbf{k}^{\mathrm{m}}\right)^{\vee} \otimes \wedge^{2} \mathrm{~V}\right)$ and
$N(\xi, A):=\left\{\begin{array}{l|l}\left(\phi: \mathbf{k}^{m} \otimes V \xrightarrow{\sim}\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee}\right) \in \Pi_{m} & \begin{array}{l}(i) \operatorname{Span}\left(\operatorname{Im} \sharp\left(\xi_{1}(A)^{-1}\right), \operatorname{Im}^{\sharp} \phi\right)=V_{2 m}(\xi, A), \\ (i i) \phi \circ j=\xi_{2}(A), \\ (i i i) \phi^{\vee} \circ\left(\xi_{1}(A)^{-1}\right) \circ \phi \in \mathbf{S}_{m}\end{array}\end{array}\right\}$,

$$
\begin{equation*}
N_{2 m-1}^{t H}(\xi):=\left\{(A, \phi) \mid A \in M I_{2 m-1}^{t H}(\xi), \phi \in N(\xi, A)\right\} \tag{136}
\end{equation*}
$$

Consider the standard decomposition $\mathbf{k}^{m}=\mathbf{k}^{m-1} \oplus \mathbf{k}$, so that the injection j in (121) is an embedding of the left direct summand of this decomposition. Then each monomorphism $\left(\not{ }^{\sharp} \phi: \mathbf{k}^{m} \rightarrow\left(\mathbf{k}^{m}\right)^{\vee} \otimes \wedge^{2} V^{\vee}\right) \in N(\xi, A)$ in view of the conditions (i)-(iii) of (135) is uniquely determined by its restriction onto the right direct summand \mathbf{k} of the standard decomposition,

$$
\left.{ }^{\sharp} \phi\right|_{\mathbf{k}}: \mathbf{k} \rightarrow V_{2 m}(\xi, A) \subset\left(\mathbf{k}^{m}\right)^{\vee} \otimes \wedge^{2} V^{\vee}: 1 \mapsto v
$$

satisfying the conditions

$$
\operatorname{Span}\left(\operatorname{Im}^{\sharp}\left(\xi_{1}(A)^{-1}\right), \operatorname{Im}^{\sharp} \phi\right)=\operatorname{Span}\left(\operatorname{Im}^{\sharp}\left(\xi_{1}(A)^{-1}\right), \operatorname{Im}^{\sharp}\left(\xi_{2}(A)\right), \mathbf{k} v\right)=V_{2 m}(\xi, A) .
$$

and

$$
\left(\xi_{2}(A)+\left.\phi\right|_{\mathbf{k} \otimes V}\right)^{\vee} \circ\left(\xi_{1}(A)^{-1}\right) \circ\left(\xi_{2}(A)+\left.\phi\right|_{\mathbf{k} \otimes V}\right) \in \mathbf{S}_{m}
$$

These conditions and the definition of $V_{2 m}^{*}(\xi, A)$ mean that $N\left(\xi\right.$,) is a closed subset of $V_{2 m}^{*}(\xi, A)$, hence by (134) it is a locally closed subset of $V_{2 m}(\xi, A)$. As a result, we have

$$
\begin{equation*}
N_{2 m-1}^{t H}(\xi) \stackrel{\text { locally closed }}{\longrightarrow} V_{2 m}(\xi) \tag{137}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\operatorname{dim} N_{2 m-1}^{t H}(\xi) \leq \operatorname{dim} V_{2 m}(\xi)=4 m(m+2) \tag{138}
\end{equation*}
$$

Now consider the map

$$
\begin{equation*}
h_{m}: \quad N_{2 m-1}^{t H}(\xi) \rightarrow Z_{m}^{*}:(A, \phi) \mapsto\left(D:=\xi_{1}(A)^{-1}, \phi\right) \tag{139}
\end{equation*}
$$

This map is well defined. In fact, take any point $(A, \phi) \in N_{2 m-1}^{t H}(\xi)$. Since $A \in M I_{2 m-1}^{t H}(\xi)$, we have $D \in\left(\mathbf{S}_{m}^{\vee}\right)^{0}$, so that the vector bundle $E_{2 m}\left(D^{-1}\right)$ is well-defined. Next, since $\phi \circ j=\xi_{2}(A)$ (see condition (ii) in (135)), it follows from Theorem 6.1 that the morphism

$$
j_{z}: \mathbf{k}^{m-1} \otimes \mathcal{O}(-1) \rightarrow E_{2 m}\left(D^{-1}\right)
$$

for $z=(D, \phi)$ coincides with the subbundle morphism $\rho_{\xi, A}$ satisfying diagram (96). Note that in view of (97) we can rewrite this also as

$$
\begin{equation*}
j_{z}=\rho_{D, C}, \quad C=\phi \circ j . \tag{140}
\end{equation*}
$$

The diagram (96), in turn, implies that the condition $\operatorname{Im}\left({ }^{\sharp} D\right) \cap \operatorname{Im}\left(\not{ }^{\sharp} \phi\right)=\{0\}$ is satisfied. This together with the injectivity of j_{z} and the condition (iii) in (135) precisely means that $z \in Z_{m}^{*}$.

As a result, it follows that Z_{m}^{*} and, respectively, Z_{m} is nonempty. Moreover, since Z_{m}^{*} is supplied with the structure of a reduced scheme and $N_{2 m-1}^{t H}(\xi)$ is smooth (hence reduced) it follows that the map h_{m} given by formula (139) is a morphism of reduced schemes. Next, consider the set

$$
Z_{m}^{*}(\xi):=\left\{z \in Z_{m}^{*} \mid z=(D, \phi) \text { satisfies the condition }(*)\right\}
$$

where
$\left(D^{-1}, \phi \circ j\right) \circ u:\left(\mathbf{k}^{m} \oplus \mathbf{k}^{m-1}\right) \otimes \mathcal{O}(-1) \rightarrow\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee} \otimes \mathcal{O}$ is a subbundle morphism.
Since the condition $\left(^{*}\right)$ is open and $Z_{m}^{*}(\xi)$ contains a subset $h_{m}\left(N_{2 m-1}^{t H}(\xi)\right)$, it follows that $Z_{m}^{*}(\xi)$ is a nonempty open subset of Z_{m}^{*}.

Consider the map

$$
\begin{equation*}
\lambda_{m}: Z_{m}^{*}(\xi) \rightarrow \mathbf{S}_{2 m-1}: z=(D, \phi) \mapsto A:=\tilde{\xi}\left(D^{-1}, \phi \circ j,(\phi \circ j)^{\vee} \circ D \circ(\phi \circ j)\right) \tag{141}
\end{equation*}
$$

Since $\left(\phi^{\vee} \circ D \circ \phi\right) \in \mathbf{S}_{m}$ by the definition of Z_{m}, it follows that

$$
\begin{equation*}
(\phi \circ j)^{\vee} \circ D \circ(\phi \circ j) \in \mathbf{S}_{m-1}, \tag{142}
\end{equation*}
$$

i.e. the map λ_{m} in (141) is well-defined. Moreover, since $Z_{m}^{*}(\xi)$ is a reduced scheme, the map λ_{m} is a morphism of reduced schemes.

Theorem 7.2. Let $m \geq 1$ and ξ be a fixed isomorphism (127). Then $Z_{m}^{*}(\xi)$ is a smooth irreducible variety of dimension $4 m(m+2)$ and there is an isomorphism of smooth varieties

$$
\begin{equation*}
\nu_{m}: Z_{m}^{*}(\xi) \xrightarrow{\sim} N_{2 m-1}^{t H}(\xi):(D, \phi) \mapsto(A, \phi), \tag{143}
\end{equation*}
$$

where A is given by (141).
Proof. Consider the set X_{m-1} defined in (92) and the morphism of reduced schemes

$$
\begin{equation*}
\eta_{m}: Z_{m}^{*}(\xi) \rightarrow X_{m-1}: z=(D, \phi) \mapsto(D, \phi \circ j) \tag{144}
\end{equation*}
$$

This morphism is well-defined since (142), $\left(^{*}\right)$ and (140) are precisely the conditions (i), (ii) and (iii) of the definition of X_{m-1}. Next, comparing (94), (141) and (144) we obtain that $\lambda_{m}=g_{m-1} \circ \eta_{m}$ for $m \geq 1$. Whence $\operatorname{Im} \lambda_{m} \subset M I_{2 m-1}(\xi)$. Moreover, for any point $z=(D, \phi)$ the diagram (126) defines a section $s \in E_{2}(A)(1)$ for $A=\lambda_{m}(z)$, so that $\left[E_{2}(A)\right] \in I_{2 m-1}^{t H}$, i.e. $A \in M I_{2 m-1}^{t H}(\xi)$. Hence $(A, \phi) \in N_{2 m-1}^{t H}(\xi)$, and the morphism ν_{m} in (143) is well-defined. Comparing now (139) and (143), we obtain that $h_{m}=\nu_{m}^{-1}$, i.e. ν_{m} is an isomorphism of reduced schemes.

Next, since by definition $Z_{m}^{*}(\xi)$ is an open subset of Z_{m}, it follows from (112) that $\operatorname{dim} Z_{m}^{*}(\xi) \geq 4 m(m+2)$. This together with (138) and the isomophism ν_{m} shows that

$$
\operatorname{dim} Z_{m}^{*}(\xi)=\operatorname{dim} N_{2 m-1}^{t H}(\xi)=\operatorname{dim} V_{2 m}(\xi)=4 m(m+2)
$$

Whence by (137) and the irreducibility and smoothness of $V_{2 m}(\xi)$ we obtain that $Z_{m}^{*}(\xi) \simeq$ $N_{2 m-1}^{t H}(\xi)$ is a dense open subset of $V_{2 m}(\xi)$, so that $Z_{m}^{*}(\xi)$ is smooth and irreducible of dimension $4 m(m+2)$.

7.3. Irreducibility of Z_{m}.

Consider the standard isomorphism

$$
\begin{equation*}
\mathbf{k}^{m-1} \oplus \mathbf{k} \xrightarrow{\sim} \mathbf{k}^{m}:\left(\left(a_{1}, \ldots, a_{m-1}\right), a_{m}\right) \mapsto\left(a_{1}, \ldots, a_{m}\right) . \tag{145}
\end{equation*}
$$

Under this isomorphism any homomorphism

$$
\begin{equation*}
\phi: \mathbf{k}^{m} \otimes V \rightarrow\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee}, \quad \phi \in \operatorname{Hom}\left(\mathbf{k}^{m},\left(\mathbf{k}^{m}\right)^{\vee}\right) \otimes \wedge^{2} V^{\vee} . \tag{146}
\end{equation*}
$$

can be represented as a homomorphism

$$
\begin{equation*}
\phi: \mathbf{k}^{m-1} \otimes V \oplus \mathbf{k} \otimes V \rightarrow\left(\mathbf{k}^{m-1}\right)^{\vee} \otimes V^{\vee} \oplus \mathbf{k}^{\vee} \otimes V^{\vee} \tag{147}
\end{equation*}
$$

i.e. as a matrix

$$
\phi=\left(\begin{array}{c|c}
\phi_{1} & \chi_{1} \tag{148}\\
\hline \psi_{1} & \theta_{1}
\end{array}\right)
$$

where
(149) $\phi_{1} \in \operatorname{Hom}\left(\mathbf{k}^{m-1},\left(\mathbf{k}^{m-1}\right)^{\vee}\right) \otimes \wedge^{2} V^{\vee}=\boldsymbol{\Phi}_{m-1}, \quad \psi_{1} \in \boldsymbol{\Psi}_{m-1}:=\operatorname{Hom}\left(\mathbf{k}^{m-1},(\mathbf{k})^{\vee}\right) \otimes \wedge^{2} V^{\vee}$,

$$
\chi_{1} \in \mathbf{B}_{\chi}:=\operatorname{Hom}\left(\mathbf{k},\left(\mathbf{k}^{m-1}\right)^{\vee}\right) \otimes \wedge^{2} V^{\vee}, \quad \theta_{1} \in \mathbf{B}_{\theta}:=\operatorname{Hom}\left(\mathbf{k}, \mathbf{k}^{\vee}\right) \otimes \wedge^{2} V^{\vee}=\mathbf{S}_{1}
$$

Respectively, a homomorphism

$$
\begin{equation*}
D \in \mathbf{S}_{m}^{\vee} \subset \operatorname{Hom}\left(\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee}, \mathbf{k}^{m} \otimes V\right) \tag{150}
\end{equation*}
$$

can be represented as a matrix

$$
D=\left(\begin{array}{c|c}
D_{1} & a_{1} \tag{151}\\
\hline-a_{1}^{\vee} & \alpha_{1}
\end{array}\right)
$$

where

$$
\begin{gather*}
D_{1} \in \mathbf{S}_{m-1}^{\vee} \subset \operatorname{Hom}\left(\left(\mathbf{k}^{m-1}\right)^{\vee} \otimes V^{\vee}, \mathbf{k}^{m-1} \otimes V\right), \tag{152}\\
a_{1} \in \operatorname{Hom}\left((\mathbf{k})^{\vee}, \mathbf{k}^{m-1}\right) \otimes \wedge^{2} V=\mathbf{\Psi}_{m-1}^{\vee}, \quad \alpha_{1} \in \operatorname{Hom}\left((\mathbf{k})^{\vee}, \mathbf{k}\right) \otimes \wedge^{2} V=\mathbf{B}_{\theta}^{\vee}
\end{gather*}
$$

From (148) and (151) it follows that the homomorphism

$$
\Theta(D, \phi):=\phi^{\vee} \circ D \circ \phi: \mathbf{k}^{m} \otimes V \rightarrow\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee}, \quad \Theta(D, \phi) \in \wedge^{2}\left(\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee}\right)
$$

can be represented as a matrix

$$
\Theta(D, \phi)=\left(\begin{array}{c|c}
\Theta_{1}(D, \phi) & b_{1}(D, \phi) \tag{153}\\
\hline-b_{1}(D, \phi)^{\vee} & \beta_{1}(D, \phi)
\end{array}\right),
$$

where

$$
\begin{align*}
\Theta_{1}(D, \phi) & :=\phi_{1}^{\vee} \circ D_{1} \circ \phi_{1}+\phi_{1}^{\vee} \circ a_{1} \circ \psi_{1}-\psi_{1}^{\vee} \circ a_{1}^{\vee} \circ \phi_{1}+\psi_{1}^{\vee} \circ \alpha_{1} \circ \psi_{1} \in \tag{154}\\
\in & \wedge^{2}\left(\left(\mathbf{k}^{m-1}\right)^{\vee} \otimes V^{\vee}\right) \subset \operatorname{Hom}\left(\left(\mathbf{k}^{m-1}\right)^{\vee} \otimes V^{\vee}, \mathbf{k}^{m-1} \otimes V\right), \\
b_{1}(D, \phi): & =\phi_{1}^{\vee} \circ D_{1} \circ \chi_{1}+\phi_{1}^{\vee} \circ a_{1} \circ \theta_{1}-\psi_{1}^{\vee} \circ a_{1}^{\vee} \circ \chi_{1}+\psi_{1}^{\vee} \circ \alpha_{1} \circ \theta_{1} \in \\
& \in \operatorname{Hom}\left(\mathbf{k}^{m-1} \otimes V, \mathbf{k}^{\vee} \otimes V^{\vee}\right), \\
\beta_{1}(D, \phi): & =\chi_{1}^{\vee} \circ D_{1} \circ \chi_{1}+\chi_{1}^{\vee} \circ a_{1} \circ \theta_{1}-\theta_{1}^{\vee} \circ a_{1}^{\vee} \circ \chi_{1}+\theta_{1}^{\vee} \circ \alpha_{1} \circ \theta_{1} \in \mathbf{B}_{\theta} .
\end{align*}
$$

In these notations Z_{m} can be described as

$$
Z_{m}=\left\{\begin{array}{l|l}
(D, \phi) \in \mathbf{S}_{m}^{\vee} \times \boldsymbol{\Phi}_{m} & \begin{array}{c}
(i) \Theta_{1}(D, \phi) \in \mathbf{S}_{m-1} \\
(i i) \\
b_{1}(D, \phi) \in \mathbf{\Psi}_{m-1}
\end{array} \tag{155}
\end{array}\right\}
$$

Let Z_{m}^{0} be any irreducible component of $\left(Z_{m}\right)_{\text {red }}$. Take an arbitrary point

$$
\begin{equation*}
z=(D, \phi)=\left(D_{1}, a_{1}, \alpha_{1}, \phi_{1}, \chi_{1}, \psi_{1}, \theta_{1}\right) \in Z_{m}^{0} \tag{156}
\end{equation*}
$$

and consider the morphism

$$
\begin{equation*}
f_{m}: \mathbb{A}^{1} \rightarrow Z_{m}^{0}: t \mapsto\left(t D_{1}, t a_{1}, t \alpha_{1}, \phi_{1}, t \chi_{1}, \psi_{1}, t \theta_{1}\right) \tag{157}
\end{equation*}
$$

This morphism is well-defined in view of (152) and (154)-(155). We have

$$
\begin{equation*}
f_{m}(0)=\left(0,0,0, \phi_{1}, 0, \psi_{1}, 0\right) \tag{158}
\end{equation*}
$$

Consider the projection

$$
\begin{gather*}
\pi_{m}: Z_{m} \rightarrow \mathbf{B}_{\psi}^{\vee} \times \mathbf{B}_{\theta}^{\vee} \times \mathbf{B}_{\chi} \times \mathbf{B}_{\theta}: \tag{159}\\
\left(D_{1}, a_{1}, \alpha_{1}, \phi_{1}, \chi_{1}, \psi_{1}, \theta_{1}\right) \mapsto\left(a_{1}, \alpha_{1}, \chi_{1}, \theta_{1}\right) .
\end{gather*}
$$

The equality (158) means that there is a scheme-theoretic inclusion

$$
\begin{equation*}
\emptyset \neq Y_{m}^{0}:=\left(\pi_{m} \mid Z_{m}^{0}\right)^{-1}(0,0,0,0) \subset Y_{m}:=\pi_{m}^{-1}(0,0,0,0), \tag{160}
\end{equation*}
$$

where by (154)-(155) and (109)

$$
\begin{gather*}
Y_{m}=\left\{\left(D_{1}, \phi_{1}, \psi_{1}\right) \in \mathbf{S}_{m-1}^{\vee} \times \boldsymbol{\Phi}_{m-1} \times \boldsymbol{\Psi}_{m-1} \mid \phi_{1}^{\vee} D_{1} \phi_{1} \in \mathbf{S}_{m-1}\right\}= \tag{161}\\
=Z_{m-1} \times \boldsymbol{\Psi}_{m-1}
\end{gather*}
$$

Now let $\left(Z_{m}\right)_{\text {red }}=\cup_{j} Z_{m}^{j}$ be the decomposition of Z_{m} into irreducible components. The inclusion (160) means that
(i) $Z_{m}^{j} \cap Y_{m} \neq \emptyset$ for any irreducible component Z_{m}^{j} of Z_{m}, and
(ii) set-theoreticlly $Y_{m}=\bigcup_{j}\left(Y_{m} \cap Z_{m}^{j}\right)$, where the union is taken over all irreducible components Z_{m}^{j} of Z_{m}.

We now proceed to the proof of the irreducibility of Z_{m} by increasing induction on m. For $m=1$ clearly $\boldsymbol{\Lambda}_{m}=0$, so that the equations $\left\{\Theta_{1}\left(D_{1}, \phi_{1}\right) \in \mathbf{S}_{1}\right\}$ of Z_{1} in $\wedge^{2}\left(\left(\mathbf{k}^{1}\right)^{\vee} \otimes V^{\vee}\right)$ are empty, i.e. scheme-theoretically we have

$$
Z_{1}=\wedge^{2}\left(\mathbf{k}^{\vee} \otimes V^{\vee}\right) \simeq \mathbf{k}^{6}
$$

Thus $Z_{1} \simeq \mathbb{A}^{6}$ is reduced and irreducible.
To perform the induction step, assume that Z_{m-1} is an irreducible and reduced scheme given by definition via the equations $\left\{\phi_{1}^{\vee} \circ D_{1} \circ \phi_{1} \in \mathbf{S}_{m-1}\right\}$ in $\mathbf{S}_{m-1}^{\vee} \times \boldsymbol{\Phi}_{m-1}$. Comparing this with (161) we see that $Y_{m}=Z_{m-1} \times \boldsymbol{\Psi}_{m-1}$ is reduced and irreducible as a scheme-theoretic fibre $\pi_{m}^{-1}(0,0,0,0)$. Hence the properties (i) and (ii) above clearly imply that
(a) $\left(Z_{m}\right)_{\text {red }}$ is irreducible and
(b) Z_{m} is generically reduced in the sense that

$$
\operatorname{Nil}\left(Z_{m}\right):=\left\{x \in\left(Z_{m}\right)_{\text {red }} \mid Z_{m} \text { is not reduced at the point } x\right\}
$$

is a proper closed subset of $\left(Z_{m}\right)_{\text {red }}$, i.e.

$$
\begin{equation*}
\operatorname{Nil}\left(Z_{m}\right) \subsetneq\left(Z_{m}\right)_{r e d} . \tag{162}
\end{equation*}
$$

On the other hand, by Theorem $7.2\left(Z_{m}\right)_{\text {red }}$ contains an open subset $Z_{m}^{*}(\xi)$ of dimension $4 m(m+2)$. This together with (110) and (112) implies that Z_{m} is a locally complete intersection subscheme of dimension $4 m(m+2)$ of the smooth variety $\mathbf{S}_{m}^{\vee} \times \boldsymbol{\Phi}_{m}$. Now we invoke the following easy lemma from commutative algebra.
Lemma 7.3. Let \mathcal{X} be a locally complete intersection subscheme of a smooth irreducible variety such that
(a) $\mathcal{X}_{\text {red }}$ is irreducible and
(b) $\operatorname{Nil}(\mathcal{X}):=\left\{x \in(\mathcal{X})_{\text {red }} \mid \mathcal{X}\right.$ is not reduced at $\left.x\right\} \underset{\neq}{\subset}(\mathcal{X})_{\text {red }}$.

Then \mathcal{X} is irreducible and reduced.
Applying this Lemma to $\mathcal{X}=Z_{m}$ we obtain that Z_{m} is irreducible and reduced. Hence we obtain the following result.
Theorem 7.4. Z_{m} is irreducible and reduced locally complete intersection scheme of dimension $4 m(m+2)$.

8. Irreducibility of $I_{2 m+1}$

In this section we give the proof of Theorem 1.1. Set

$$
\begin{equation*}
\widetilde{X}_{m}:=\left\{(D, C) \in \mathbf{S}_{m+1}^{\vee} \times \boldsymbol{\Sigma}_{m+1} \mid\left(C^{\vee} \circ D \circ C: \mathbf{k}^{m} \otimes V \rightarrow\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee}\right) \in \mathbf{S}_{m}\right\} \tag{163}
\end{equation*}
$$

The set \widetilde{X}_{m} has a natural structure of a closed subscheme of $\mathbf{S}_{m+1}^{\vee} \times \boldsymbol{\Sigma}_{m+1}$ defined by the equations

$$
\begin{equation*}
C^{\vee} \circ D \circ C \in \mathbf{S}_{m} . \tag{164}
\end{equation*}
$$

Since $\left(\mathbf{S}_{m+1}^{\vee}\right)^{0}$ is a dense open subset of \mathbf{S}_{m+1}^{\vee} and the conditions (ii) and (iii) in the definition (92) of X_{m} are open and X_{m} is nonempty (see Theorem 6.1) it follows immediately that X_{m} is a nonempty open subset of \widetilde{X}_{m},

$$
\begin{equation*}
\emptyset \neq X_{m} \stackrel{\text { open }}{\hookrightarrow}\left(\widetilde{X}_{m}\right)_{\text {red }} . \tag{165}
\end{equation*}
$$

Thus, to prove the irreducibility of X_{m} it is enough to prove the irreducibility of \widetilde{X}_{m}.
For this, consider the standard direct sum decomposition

$$
\mathbf{k}^{m+1} \xrightarrow{\sim} \mathbf{k}^{m} \oplus \mathbf{k}:\left(a_{1}, \ldots, a_{m+1}\right) \mapsto\left(\left(a_{1}, \ldots, a_{m}\right), a_{m+1}\right) .
$$

Under this isomorphism any homomorphism

$$
\begin{equation*}
C \in \boldsymbol{\Sigma}_{m+1}=\operatorname{Hom}\left(\mathbf{k}^{m},\left(\mathbf{k}^{m+1}\right)^{\vee}\right) \otimes \wedge^{2} V^{\vee}, \quad C: \mathbf{k}^{m} \otimes V \rightarrow\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes V^{\vee} \tag{166}
\end{equation*}
$$

can be represented as a homomorphism

$$
\begin{equation*}
C: \mathbf{k}^{m} \otimes V \oplus \mathbf{k} \otimes V \rightarrow\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee} \oplus \mathbf{k}^{\vee} \otimes V^{\vee} \tag{167}
\end{equation*}
$$

i.e. as a matrix

$$
\begin{equation*}
C=\left(\frac{\phi}{\psi}\right) \tag{168}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi \in \operatorname{Hom}\left(\mathbf{k}^{m},\left(\mathbf{k}^{m}\right)^{\vee}\right) \otimes \wedge^{2} V^{\vee}=\boldsymbol{\Phi}_{m}, \quad \psi \in \boldsymbol{\Psi}_{m}:=\operatorname{Hom}\left(\mathbf{k}^{m},(\mathbf{k})^{\vee}\right) \otimes \wedge^{2} V^{\vee} \tag{169}
\end{equation*}
$$

Respectively, any homomorphism $D \in\left(\mathbf{S}_{m+1}^{\vee}\right)^{0} \subset S^{2}\left(\mathbf{k}^{m+1}\right) \otimes \wedge^{2} V=\mathbf{S}_{m+1}^{\vee} \subset \operatorname{Hom}\left(\left(\mathbf{k}^{m+1}\right)^{\vee} \otimes\right.$ $\left.V^{\vee}, \mathbf{k}^{m+1} \otimes V\right)$ can be represented as a matrix

$$
D=\left(\begin{array}{c|c}
D_{1} & \lambda \tag{170}\\
\hline-\lambda^{\vee} & \mu
\end{array}\right),
$$

where

$$
\begin{gather*}
D_{1} \in \mathbf{S}_{m}^{\vee} \subset \operatorname{Hom}\left(\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee}, \mathbf{k}^{m} \otimes V\right) \tag{171}\\
\lambda \in \mathbf{L}_{m}:=\operatorname{Hom}\left(\mathbf{k}^{\vee}, \mathbf{k}^{m}\right) \otimes \wedge^{2} V, \quad \mu \in \mathbf{M}_{m}:=\operatorname{Hom}\left(\mathbf{k}^{\vee}, \mathbf{k}\right) \otimes \wedge^{2} V .
\end{gather*}
$$

From (168) and (170) it follows that the homomorphism

$$
C^{\vee} \circ D \circ C: \mathbf{k}^{m} \otimes V \rightarrow\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee}, \quad C^{\vee} \circ D \circ C \in \wedge^{2}\left(\left(\mathbf{k}^{m}\right)^{\vee} \otimes V^{\vee}\right)
$$

can be represented as

$$
\begin{equation*}
C^{\vee} \circ D \circ C=\phi^{\vee} \circ D_{1} \circ \phi+\phi^{\vee} \circ \lambda \circ \psi-\psi^{\vee} \circ \lambda \circ \phi+\psi^{\vee} \circ \mu \circ \psi \tag{172}
\end{equation*}
$$

Let \bar{X}_{m} be the closure of $\left(\widetilde{X}_{m}\right)_{r e d}$ in $\mathbf{S}_{m+1}^{\vee} \times \boldsymbol{\Sigma}_{m+1}$. and let X^{0} be any irreducible component of \bar{X}_{m}. By (168)-(171) we have

$$
\mathbf{S}_{m+1}^{\vee} \times \boldsymbol{\Sigma}_{m+1}=\mathbf{S}_{m}^{\vee} \times \boldsymbol{\Phi}_{m} \times \boldsymbol{\Psi}_{m} \times \mathbf{L}_{m} \times \mathbf{M}_{m}
$$

and we have well-defined projections

$$
p_{m}: \widetilde{X}_{m} \rightarrow \mathbf{L}_{m} \times \mathbf{M}_{m}:(A, \phi, \psi, \lambda, \mu) \mapsto(\lambda, \mu)
$$

and

$$
\bar{p}_{m}:=p_{m} \mid \bar{X}_{m}: \bar{X}_{m} \rightarrow \mathbf{L}_{m} \times \mathbf{M}_{m}
$$

Take an arbitrary point $z=\left(D_{1}, \phi, \psi, \lambda, \mu\right) \in X^{0}$ and consider the morphism

$$
\begin{equation*}
f^{0}: \mathbb{A}^{1} \rightarrow X^{0}: t \mapsto(t A, \phi, \psi, t \lambda, t \mu) \tag{173}
\end{equation*}
$$

(This morphism is well-defined by (172.) By definition, the point $f^{0}(0)=(0, \phi, \psi, 0,0)$ lies in the fibre $p_{m}^{-1}(0,0)$. Hence,

$$
\begin{equation*}
\bar{p}_{m}^{-1}(0,0) \cap X^{0} \neq \emptyset . \tag{174}
\end{equation*}
$$

Now from (172) and the definition of \widetilde{X}_{m} it follows that

$$
\begin{equation*}
p_{m}^{-1}(0,0)=\left\{\left(D_{1}, \phi, \psi\right) \in \mathbf{S}_{m}^{\vee} \times \boldsymbol{\Phi}_{m} \times \boldsymbol{\Psi}_{m} \mid \phi^{\vee} \circ A \circ \phi \in \mathbf{S}_{m}\right\} \tag{175}
\end{equation*}
$$

Comparing this with the definition (109) of Z_{m} we see that, set-theoretically,

$$
\begin{equation*}
\bar{p}_{m}^{-1}(0,0) \stackrel{\text { sets }}{=} p_{m}^{-1}(0,0) \stackrel{\text { sets }}{=} Z_{m} \times \Psi_{m} . \tag{176}
\end{equation*}
$$

Respectively, scheme-theoretically we have the inclusion of schemes

$$
\begin{equation*}
\bar{p}_{m}^{-1}(0,0) \stackrel{\text { schemes }}{\subset} p_{m}^{-1}(0,0) \stackrel{\text { schemes }}{=} Z_{m} \times \boldsymbol{\Psi}_{m} \tag{177}
\end{equation*}
$$

Assume now that \bar{X}_{m} is not irreducible and let

$$
\begin{equation*}
\bar{X}_{m}=\cup_{i=1}^{r} X^{i}, \quad r \geq 2, \tag{178}
\end{equation*}
$$

be its decomposition into irreducible components. In view of (174) each irreducible component X^{i} of \bar{X}_{m} has a nonempty intersection with $p_{m}^{-1}(0,0)$. Hence, since $r \geq 2, p_{m}^{-1}(0,0)$ as a schemetheoretic fibre is either reducible or non-reduced. Hence by (176) and (177) $Z_{m} \times \Psi_{m}$ is either reducible or nonreduced. This, however, contradicts to Theorem 7.4. Thus \bar{X}_{m} is irreducible.

Moreover, Theorem 7.4 implies that the scheme-theoretic inclusion of fibres in (177) becomes an isomorphism of reduced irreducible schemes

$$
\begin{equation*}
\bar{p}_{m}^{-1}(0,0) \stackrel{\text { schemes }}{=} p_{m}^{-1}(0,0) \stackrel{\text { schemes }}{=} Z_{m} \times \boldsymbol{\Psi}_{m} \tag{179}
\end{equation*}
$$

In particular, $p_{m}^{-1}(0,0)$ is a reduced and irreducible scheme and, since \bar{X}_{m} is reduced, \widetilde{X}_{m} is generically reduced. Furthermore, applying theorem on fibres of a morphism to the projection $\bar{p}_{m}: \bar{X}_{m} \rightarrow \mathbf{L}_{m} \times \mathbf{M}_{m}$ and using (179) and Theorem 7.4, we obtain

$$
\begin{align*}
& \operatorname{dim} \widetilde{X}_{m}=\operatorname{dim} \bar{X}_{m} \leq \operatorname{dim} \bar{p}^{-1}(0,0)+\operatorname{dim}\left(\mathbf{L}_{m} \times \mathbf{M}_{m}\right)=\operatorname{dim} Z_{m}+\operatorname{dim} \boldsymbol{\Psi}_{m}+ \tag{180}\\
& +\operatorname{dim} \mathbf{L}_{m}+\operatorname{dim} \mathbf{M}_{m}=4 m(m+2)+6 m+6 m+6=4 m^{2}+20 m+6
\end{align*}
$$

On the other hand, formula (15) for $n=2 m+1$, equality (75), Theorem 6.1 and the open inclusion (165) show that

$$
\begin{gather*}
4 m^{2}+20 m+6=(2 m+1)^{2}+8(2 m+1)-3 \leq \operatorname{dim} M I_{2 m+1}=\operatorname{dim} M I_{2 m+1}(\xi)= \tag{181}\\
=\operatorname{dim} X_{m}=\operatorname{dim} \widetilde{X}_{m}
\end{gather*}
$$

Comparing (180) with (181) we see that all inequalities here are equalities. In particular, X_{m} is a $\left(4 m^{2}+20 m+6\right)$-dimensional locally closed locally complete intersection subscheme of $\mathbf{S}_{m+1}^{\vee} \times \boldsymbol{\Sigma}_{m+1}$ and $\left(X_{m}\right)_{r e d}$ is irreducible as an open part of the irreducible scheme \bar{X}_{m}. Hence by Lemma $7.3 X_{m}$ is reduced and irreducible. It follows now from Corollary 5.5 and Theorem 6.1 that $\left(M I_{2 m+1}\right)_{\text {red }}$ is irreducible of dimension $4 m^{2}+20 m+6=n^{2}+8 n-3$ for $n=2 m+1$, i.e. the inequality (15) becomes the strict equality. This together with Theorem 3.1 implies that $M I_{2 m+1}$ is a locally complete intersection subscheme of the vector space $\mathbf{S}_{2 m+1}$. As a result, by Lemma $7.3 M I_{2 m+1}$ is reduced. Since $\pi_{2 m+1}: M I_{2 m+1} \rightarrow I_{2 m+1}: A \mapsto[E(A)]$ is a principal $G L\left(\mathbf{k}^{2 m+1}\right) /\{ \pm i d\}$-bundle in the étale topology (see section 3), it follows that $I_{2 m+1}$ is reduced and irreducible of dimension $16 m+5=8 n-3$ for $n=2 m+1$. This finishs the proof of Theorem 1.1.

Remark 8.1. Note that Theorem on fibres of a morphism together with the fact that all inequalities in (180) with (181) are equalities also implies that the projection $X_{m} \rightarrow \mathbf{S}_{m+1}^{\vee}$: $(D, C) \mapsto D$ is dominating. In view of Theorem 6.1 this is equivalent to the fact that that the restriction onto $M I_{2 m+1}$ of the linear projection $\mathbf{S}_{2 m+1} \rightarrow \mathbf{S}_{m+1}$ induced by a generic embedding $\mathbf{k}^{m+1} \hookrightarrow \mathbf{k}^{2 m+1}$ is dominating.

СПИСОК ЛИТЕРАТУРЫ

[B1] Barth W. Some properties of stable rank-2 vector bundles on $\boldsymbol{\top}_{n}$, Math. Ann. 226 (1977), 125-150.
[B2] W. Barth, Moduli of vector bundles on the projective plane, Inventiones Math. 42 (1977), 63-91.
[B3] W. Barth, Irreducibility of the Space of Mathematical Instanton Bundles with Rank 2 and $c_{2}=4$, Math. Ann. 258 (1981), 81-106.
[BT] Böhmer W., Trautmann G. Special instanton bundles and Poncelet curves, Lecture Notes in Math., 1273 (1987), 325-336.
[C] Coandă I. On Barth's restriction theorem, Journ. reine u. angew. Mathematik 428, 97-110, 1992.
[CTT] Coandă I., Tikhomirov A., Trautmann G. Irreducibility and Smoothness of the moduli space of mathematical 5-instantons over P_{3}, Intern. J. Math., 14, No. 1 (2003), 1-45.
[ES] Ellingsrud G., Strømme S.A. Stable rank-2 bundles on P_{3} with $c_{1}=0$ and $c_{2}=3$, Math. Ann. 255 (1981), 453-463.
[H] Hartshorne R. Stable vector budles of rank 2 on P_{3}, Math. Ann., 238 (1978), 229-280.
[NT] Nüssler Th., Trautmann G. Multiple Koszul structures on lines and instanton bundles. Int. J. Math. 5, No. 3 (1994), 373-388.
$[\mathrm{S}] \quad$ Skiti M. Sur une famille de fibrés instantons, Math. Z. 225 (1997), 373-294.
[T1] A. N. Tjurin, The instanton equations for $(n+1)$-superpositions of marked $\operatorname{ad} T \mathbf{P}^{3} \oplus \operatorname{ad} T \mathbf{P}^{3}$, J. Reine Angew. Math., 341 (1983), pp. 131-146.
[T2] -, On the superpositions of mathematical instantons, in Arithmetic and geometry, Vol. II, vol. 36 of Progr. Math., Birkhäuser Boston, Boston, MA, 1983, pp. 433-450.

Department of Mathematics, State Pedagogical University, Respublikanskaya Str. 108
150000 Yaroslavl, Russia
E-mail address: astikhomirov@mail.ru

[^0]: ${ }^{1}$ Here we use the decomposition (56) fixed by the choice of ξ.
 ${ }^{2}$ We identify here the triple $\left(D^{-1}, C, C^{\vee} \circ D \circ C\right)$ with a point in $S^{2}\left(\mathbf{k}^{2 m+1}\right)^{\vee} \otimes \wedge^{2} V^{\vee}$ via the decomposition (56).

