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1. Introduction

By a mathematical n-instanton vector bundle (shortly, a n-instanton) on 3-dimensional pro-
jective space P3 we understand a rank-2 algebraic vector bundle E on P3 with Chern classes

(1) c1(E) = 0, c2(E) = n, n ≥ 1,

satisfying the vanishing conditions

(2) h0(E) = h1(E(−2)) = 0.

Denote by In the set of isomorphism classes of n-instantons. This space is nonempty for any
n ≥ 1 - see, e.g., [BT], [NT]. The condition h0(E) = 0 for a n-instanton E implies that E is stable
in the sense of Gieseker-Maruyama. Hence In is a subset of the moduli scheme MP3(2; 0, 2, 0)
of semistable rank-2 torsion-free sheaves on P3 with Chern classes c1 = 0, c2 = n, c3 = 0. The
condition h1(E(−2)) = 0 for [E] ∈ In (called the instanton condition) by the semicontinuity
implies that In is a Zariski open subset of MP3(2; 0, 2, 0), i.e. In is a quasiprojective scheme. It
is called the moduli scheme of mathematical n-instantons.

In this paper we study the problem of the irreducibility of the scheme In. This problem has
an affirmative solution for small values of n, up to n = 5. Namely, the cases n = 1, 3, 3, 4 and
5 were settled in papers [B1], [H], [ES], [B3] and [CTT], respectively. The aim of this paper is
to prove the following result.

Theorem 1.1. For each n = 2m + 1, m ≥ 0, the moduli scheme In of mathematical n-
instantons is reduced and irreducible of dimension 8n− 3.

A guide to the paper is as follows. In section 3 we remind a well-known relation between
mathematical n-instantons and nets of quadrics in arithmetic n-dimensional vector space kn.
The nets of quadrics are considered as vectors of the space Sn = S2(kn)∨ ⊗ ∧2V ∨, where
V = H0(OP3(1))∨, and those nets which correspond to n-instantons (we call them n-instanton
nets) satisfy the so-called Barth’s conditions - see definition (13). Thus the description of the
moduli space In of n-instantons reduces to that of the locally closed subset MIn ⊂ Sn of
n-instanton nets of quadrics which is crucial for our study.

In section 4 we prove one result of general position for the set of (2m + 1)-instanton nets of
quadrics MI2m+1, m ≥ 1. Essentially, this result means that the natural map MI2m+1 → Sm+1

induced by a generic embedding km+1 ↪→ k2m+1 is dominating - see Remark 8.1.
Section 5 is a study of some linear algebra related to a direct sum decomposition ξ : km+1 ⊕

km ∼→ k2m+1 giving the above embedding km+1 ↪→ k2m+1. Using the result of section 4 we
obtain here the relation (61) which is a key instrument for our further considerations. Also, the
decomposition ξ enables us to relate (2m + 1)-instantons E to rank-(2m + 2) symplectic vector
bundles E2m+2 on P3 satisfying the vanishing conditions h0(E2m+2) = h2(E2m+2(−2)) = 0.

In section 6 we introduce a new scheme Xm as a locally closed subset of the vector space
Sm+1 × Hom(km, (km+1)∨ ⊗ ∧2V ∨ which is defined by linear algebraic data somewhat similar
to Barth’s conditions. We prove that Xm as a reduced scheme is isomorphic to a certain dense



2 TIKHOMIROV

open subset MI2m+1(ξ) of MI2m+1 determined by the choice of the direct sum decomposition
ξ above. This reduces the problem of the irreducibility of I2m+1 to that of Xm.

The last ingredient in the proof of Theorem 1.1 is a scheme Zm introduced in section 7
as a closed subscheme of the vector space S∨m × Hom(km, (km)∨) ⊗ ∧2V ∨ defined by explicit
equations. We relate the scheme Zm to the so-called t’Hooft instantons. Using the properties of
t’Hooft instantons (see subsection 5.2) we show that the scheme Zm is reduced and irreducible.

In the last section 8 we finish the proof of Theorem 1.1. The proof is based on a study of
certain scheme Xm containing Xm and fibred over the vector space Hom(k∨,km+1)⊗∧2V . We
show that the zero fibre of this projection is scheme-theoretically isomorphic to a direct product
of Zm and a certain vector space. This together with the irreducibility of Zm and some other
results stated earlier leads to the irreducibility of Xm.

Acknowledgement. The author acknowledges the support and hospitality of the Max
Planck Institute for Mathematics in Bonn where this paper was started during the authors
stay there in Winter 2008.

2. Notation and conventions

Our notations are mostly standard. The base field k is assumed to be algebraically closed
of characteristic 0. We identify vector bundles with locally free sheaves. If F is a sheaf of OX-
modules on an algebraic variety or scheme X, then nF denotes a direct sum of n copies of the
sheaf F , H i(F) denotes the ith cohomology group of F , hi(F) := dim H i(F), and F∨ denotes
the dual to F sheaf, i.e. the sheaf F∨ := HomOX

(F ,OX). If Z is a subscheme of X, by IZ,X

we denote the ideal sheaf corresponding to a subscheme Z. If X = Pr and t is an integer, then
by F(t) we denote the sheaf F ⊗ OPr(t). [F ] will denote the isomorphism class of a sheaf F .
For any morphism of OX-sheaves f : F → F ′ and any k-vector space U (respectively, for any
homomorphism f : U → U ′ of k-vector spaces) we will denote, for short, by the same letter f
the induced morphism of sheaves id⊗f : U ⊗F → U ⊗F ′ (respectively, the induced morphism
f ⊗ id : U ⊗F → U ′ ⊗F).

Everywhere in the paper V will denote a fixed vector space of dimension 4 over k and we
set P3 := P (V ). Also verywhere below we will reserve the letters u and v for denoting the two
morphisms in the Euler exact sequence 0 → OP3(−1)

u→ V ∨ ⊗ OP3
v→ TP3(−1) → 0. For any

k-vector spaces U and W and any vector φ ∈ Hom(U,W ⊗ ∧2V ∨) ⊂ Hom(U ⊗ V,W ⊗ V ∨)
understood as a homomorphism φ : U⊗V → W ⊗V ∨ or, equivalently, as a homomorphism ]φ :

U → W⊗∧2V ∨, we will denote by φ̃ the composition U⊗OP3

]φ→ W⊗∧2V ∨⊗OP3
ε→ W⊗ΩP3(2),

where ε is the induced morphism in the exact triple 0 → ∧2ΩP3(2)
∧2v∨→ ∧2V ∨⊗OP3

ε→ ΩP3(2) →
0 obtained by passing to the second wedge power in the dual Euler exact sequence. Also,
shortening the notation, we will omit sometimes the subscript P3 in the notation of sheaves on
P3, e.g., write O, Ω etc., instead of OP3 , ΩP3 etc., respectively.

Everywhere in the paper for m ≥ 1 we denote by Sm the vector space S2(km)∨ ⊗ ∧2V ∨.
Following W.Barth [B2], [B3] and A.Tyurin [T1], [T2] we call this space the space of nets of
quadrics in the space km.

3. Some generalities on instantons. Set MIn

In this section we recall some well known facts about mathematical instanton bundles - see,
e.g., [CTT].
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For a given n-instanton E, the conditions (1), (2), Riemann-Roch and Serre duality imply

(3) h1(E(−1)) = h2(E(−3)) = n, h1(E ⊗ Ω1
P3) = h2(E ⊗ Ω2

P3) = 2n + 2,

h1(E) = h2(E(−4)) = 2n− 2.

Furthermore, the condition c1(E) = 0 yields an isomorphism ∧2E
'→ OP3 , hence a symplectic

isomorphism j : E
'→ E∨. This symplectic structure j on E is unique up to a scalar, since

E as a stable bundle is a simple bundle, i.e. Hom(E, E) = kid. Consider a triple (E, f, j)

where E is an n-instanton, f is an isomorphism kn '→ H2(E(−3)) and j : E
'→ E∨ is a

symplectic structure on E. We call two such triples (E, f, j) and (E ′f ′, j′) equivalent if there
is an isomorphism g : E

'→ E ′ such that g∗ ◦ f = λf ′ with λ ∈ {1,−1} and j = g∨ ◦ j′ ◦ g,
where g∗ : H2(E(−3))

'→ H2(E ′(−3)) is the induced isomorphism. We denote by [E, f, j]
the equivalence class of a triple (E, f, j). From this definition one easily deduces that the set
F[E] of all equivalence classes [E, f, j] with given [E] is a homogeneous space of the group
GL(kn)/{±id}.

Each class [E, f, j] defines a point

(4) An = An([E, f, j]) ∈ S2(kn)∨ ⊗ ∧2V ∨

in the following way. Consider the exact sequences

(5) 0 → Ω1
P3

i1→ V ∨ ⊗OP3(−1) → OP3 → 0,

0 → Ω2
P3 → ∧2V ∨⊗OP3(−2) → Ω1

P3 → 0, 0 → ∧4V ∨⊗OP3(−4) → ∧3V ∨⊗OP3(−3)
i2→ Ω2

P3 → 0,

induced by the Koszul complex of V ∨ ⊗ OP3(−1)
ev³ OP3 . Twisting these sequences by E and

passing to cohomoligy in view of (2) gives the diagram with exact rows

(6) 0 // H2(E(−4))⊗ ∧4V ∨ // H2(E(−3))⊗ ∧3V ∨ i2 //

A′
²²

H2(E ⊗ Ω2
P3) // 0

0 H1(E))oo H1(E(−1))⊗ V ∨oo H1(E ⊗ ΩP3)
i1oo

∼= ∂

OO

0,oo

where A′ := i1 ◦ ∂−1 ◦ i2. The Euler exact sequence (5) yields the canonical isomorphism
ωP3

'→ ∧4V ∨ ⊗ OP3(−4), and fixing an isomorphism τ : k
'→ ∧4V ∨ induces the isomorphisms

τ̃ : V
'→ ∧3V ∨ and τ̂ : ωP3

'→ OP3(−4). Now the point A = An in (4) is defined as the
composition

(7) A : kn ⊗ V
τ̃
'→ kn ⊗ ∧3V ∨

f
'→ H2(E(−3))⊗ ∧3V ∨ A′→ H1(E(−1))⊗ V ∨

j
'→

j
'→ H1(E∨(−1))⊗ V ∨

SD
'→ H2(E(1)⊗ ωP3)∨ ⊗ V ∨

τ̂
'→ H2(E(−3))∨ ⊗ V ∨

f∨
'→ (kn)∨ ⊗ V ∨,

where SD is the Serre duality isomorphism. One checks that An is a skew symmetric map
depending only on the class [E, f, j] and not depending on the choice of τ , and that this point
An ∈ ∧2((kn)∨ ⊗ V ∨) lies in the direct summand Sn = S2(kn)∨ ⊗ ∧2V ∨ of the canonical
decomposition

(8) ∧2((kn)∨ ⊗ V ∨) = S2(kn)∨ ⊗ ∧2V ∨ ⊕ ∧2(kn)∨ ⊗ S2V ∨.

Here Sn is the space of nets of quadrics in kn. Following [B3], [T1] and [T2] we call A the
n-instanton net of quadrics corresponding to the data [E, f, j].
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Denote WA := kn ⊗ V/ ker A. Using the above chain of isomorphisms we can rewrite the
diagram (6) as

(9) 0 // ker A // kn ⊗ V
cA //

A
²²

WA
//

∼= qA

²²

0

0 ker A∨oo (kn)∨ ⊗ V ∨oo W∨
A

c∨Aoo 0.oo

Here dim WA = 2n + 2 and qA : WA
'→ W∨

A is the induced skew-symmetric isomorphism. An
important property of A = An([E, f, j]) is that the induced morphism of sheaves

(10) a∨A : W∨
A ⊗OP3

c∨A→ (kn)∨ ⊗ V ∨ ⊗OP3
ev→ (kn)∨ ⊗OP3(1)

is an epimorphism such that the composition kn ⊗ OP3(−1)
aA→ WA ⊗ OP3

qA→ W∨
A ⊗ OP3

a∨A→
(kn)∨ ⊗OP3(1) is zero, and E = ker(a∨A ◦ qA)/ Im aA. Thus A defines a monad

(11) MA : 0 → kn ⊗OP3(−1)
aA→ WA ⊗OP3

a∨A◦qA→ (kn)∨ ⊗OP3(1) → 0

with the cohomology sheaf E,

(12) E = E(A) := ker(a∨A ◦ qA)/ Im aA.

Note that passing to cohomology in the monad MA twisted by OP3(−3) and using (12) yields
the isomorphism f : kn '→ H2(E(−3)). Furthermore, the simplecticity of the form qA in the
monad MA implies that there is a canonical isomorphism of MA with its dual which induces
the symplectic isomorphism j : E

'→ E∨. Thus, the data [E, f, j] are recovered from the net A.
This leads to the following description of the moduli space In. Consider the set of n-instanton
nets of quadrics

(13) MIn :=





A ∈ Sn

∣∣∣∣∣∣∣∣∣∣∣∣

(i) rk(A : kn ⊗ V → (kn)∨ ⊗ V ∨) = 2n + 2,
(ii) the morphism a∨A : W∨

A ⊗OP3 → (kn)∨ ⊗OP3(1)
defined by A in (10) is surjective,

(iii) h0(E2(A)) = 0, where E2(A) := ker(a∨A ◦ qA)/ Im aA

and qA : WA
'→ W∨

A is a symplectic isomorphism
defined by A in (9)





The conditions (i)-(iii) here are called Barth’s coditions. These conditions show that MIn is nat-
urally supplied with a structure of a locally closed subscheme of the vector space Sn. Moreover,
the above description shows that there is defined a morphism πn : MIn → In : A 7→ [E(A)],
and it is known that this morphism is a principal GL(kn)/{±id}-bundle in the étale topology
- cf. [CTT]. Here by construction the fibre π−1

n ([E]) over an arbitrary point [E] ∈ In coin-
cides with the homogeneous space F[E] of the group GL(kn)/{±id} described above. Hence the
irreducibility of (In)red is equivalent to the irreducibility of the scheme (MIn)red.

The definition (13) yields the following.

Theorem 3.1. For each n ≥ 1, the space of n-instanton nets of quadrics MIn is a locally
closed subscheme of the vector space Sn given locally at any point An ∈ MIn by

(14)
(

2n− 2

2

)
= 2n2 − 5n + 3

equations obtained as the rank condition (i) in (13).

Note that from (14) it follows that

(15) dim[A] MIn ≥ dimSn − (2n2 − 5n + 3) = n2 + 8n− 3
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at any point An ∈ MIn. On the other hand, by deformation theory for any n-instanton E we
have dim[E] In ≥ 8n− 3. This agrees with (15), since MIn → In is a principal GL(kn)/{±id}-
bundle in the étale topology.

Let Sn = {[E] ∈ In| there exists a line l ∈ P3 of maximal jump for E, i.e. such a line l that
h0(E(−n)|l) 6= 0}. It is known [S] that Sn is a closed subset of In of dimension 6n + 2. Thus,
since dim[E] In ≥ 8n− 3 at any [E] ∈ In, it follows that

(16) I ′n := In r Sn

is an open subset of In and (I ′n)red is dense open in (In)red; respectively,

(17) MI ′n := π−1
n (I ′n)

is an open subset of MIn and we have a dense open embedding

(18) (MI ′n)red
Â Ä dense open // (MIn)red .

For technical reasons we will below restrict ourselves to MI ′n instead of MIn.

4. A result of general position for (2m + 1)-instanton nets

Definition 4.1. Let U and U ′ be two vector spaces of dimensions respectively m and n, where
m ≥ n. Consider the projective space P (U ⊗ U ′). We say that a point x ∈ P (U ⊗ U ′) has rank
r (and denote this as rk(x) = r), if

(i) there exist unique subspaces Ur(x) ⊂ U and U ′
r(x) ⊂ U ′ of dimensions dim Uk(x) =

dim U ′
k(x) = r such that x ∈ P (Ur(x)⊗ U ′

r(x)), and
(ii) there do not exist subspaces Ũ ⊂ U and Ũ ′ ⊂ U ′ of dimension dim Ũ = dim Ũ ′ < r such

that x ∈ P (Ũ ⊗ Ũ ′).
It is well known that each point x ∈ P (U ⊗ U ′) has a uniquely defined rank 1 ≤ rk(x) ≤ n.

Fix a positive integer m ≥ 3 and a (2m+1)-instanton vector bundle E such that [E] ∈ I ′2m+1

and denote H2m+1 = H2(E(−3)) and H4m = H2(E(−4)). The Euler Exact sequence induces
the exact triple 0 → E ⊗ ΩP3 → V ∨ ⊗ E(−1) → E → 0 which gives a natural multiplication
map in the first cohomology:

(19) H∨
2m+1 ⊗ V ∨ mult→ H∨

4m → H2(E ⊗ ΩP3).

Passing to cohomology of the exact triple 0 → E ⊗Ω2
P3 → ∧2V ∨ ⊗E(−2) → E ⊗ΩP3 → 0 and

using standard equalities 0 = h2(E(−2)), h3(E ⊗ Ω2
P3) = h0(E ⊗ ΩP3) ≤ h0(E(−1)⊗ V ∨) = 0

for the instanton bundle E, we obtain: H2(E ⊗ ΩP3) = 0. Hence (19) gives the exact triple

(20) 0 → W∨
4m+4 → H∨

2m+1 ⊗ V ∨ mult→ H∨
4m → 0

where

(21) W∨
4m+4 := H1(E ⊗ ΩP3).

We now prove the following main result of this section.

Theorem 4.2. Let m ≥ 3 and let E be a (2m + 1)-instanton, [E] ∈ I ′2m+1. Consider the
spaces H2m+1 = H2(E(−3)) and W4m+4 = H1(E ⊗ΩP3)∨ together with the injection W∨

4m+4 ↪→
H∨

2m+1⊗ V ∨ defined in (20). Then for a generic m-dimensional subspace Vm of H∨
2m+1 one has

W∨
4m+4 ∩ Vm ⊗ V ∨ = {0}.
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Доказательство. According to Definition 4.1 in which we put U = H∨
2m+1, U ′ = V ∨, each

point x ∈ P (H∨
2m+1 ⊗ V ∨) has rank 1 ≤ rk(x) ≤ dim V ∨ = 4. Thus

(22) P (W∨
4m+4) =

4∪
r=1

Zr,

where
Zr := {x ∈ P (W∨

4m+4) | rk(x) = r}, 1 ≤ r ≤ 4,

are locally closed subsets of P (W∨
4m+4). Consider the Grassmannian

G := G(m,H∨
2m+1)

and its locally closed subsets

(23) Σr = {Vm ∈ G | Vm ⊃ Ur(x) for some point x ∈ Zr}, 1 ≤ r ≤ 4.

The condition that Zr ∩ P (Vm ⊗ V ∨) 6= ∅ means that there exists a point x ∈ P (Ur) ∩ Zr for
some r-dimensional subspace Ur ⊂ Vm. This together with (22) implies that

{Vm ∈ G | P (Vm ⊗ V ∨) ∩ P (W∨
4m+4) 6= ∅} =

4∪
r=1

Σr.

Thus, to prove the Theorem, it is enough to show that

(24) dim Σr < dim G, 1 ≤ r ≤ 4.

We are starting now the proof of (24) for r = 4, 3, 2, 1.
(i) r = 4. Set Γ4 := {(x, U) ∈ P (W∨

4m+4) × G(4, H∨
2m+1) | rk(x) = 4 and U = U4(x)} and

let P (W∨
4m+4)

p4← Γ4
q4→ G(4, H∨

2m+1) be the projections. By construction, p4(Γ4)) = Z4 and the
morphism p4 : Γ4 → Z4 is an isomorphism. Hence

dim q4(Γ4) ≤ dim Γ4 = dim Z4 ≤ dim P (W∨
4m+4) = 4m + 3.

By construction we have the graph of incidence

Π4 = {(U, Vm) ∈ q4(Γ4)× Σ4 | U ⊂ Vm}
with surjective projections q4(Γ4)

pr1← Π4
pr2→ Σ4 and a fibre

pr−1
1 (U) = G(m− 4, H∨

2m+1/U)

over an arbitrary point U ∈ q4(Γ4). Hence

dim Σ4 ≤ dim Π4 = dim q4(Γ4)+dim G(m−4, H∨
2m+1/U) ≤ 4m+3+(m−4)(m+1) = m(m+1)−1 =

= dim G− 1 < dim G, i.e. (24) is true for r = 4.

(ii) r = 3. Consider a morphism f3 : Z3 → P (V ∨)∨ = P3 : x 7→ V3(x), where the pair of
spaces (U3(x), V3(x)), U3(x) ⊂ H∨

2m+1 and V3(x) ⊂ V ∨, is determined uniquely by the point
x via the condition x ∈ P (U3(x)⊗ V3(x)), since rk(x) = 3 (see Definition 4.1). Now for a given
subspace V3 ⊂ V ∨ set

(25) Σ3(V3) = {Vm ∈ G | Vm ⊃ U3(x) for some point x ∈ f−1
3 (V3)}.

Comparing this with (23) for r = 3 yields

(26) Σ3 = ∪
V3⊂V ∨

Σ3(V3).

Hence,

(27) dim Σ3 ≤ dim Σ3(V3) + 3.
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We are going to obtain an estimate for the dimension of Σ3(V3) for an arbitrary 3-dimensional
subspace V3 in V ∨. This subspace defines a commutative diagram

(28) 0

²²

0

²²

0

²²
0 // F //

²²

ΩP3 //

²²

Ix(−1) //

²²

0

0 // V3 ⊗OP3(−1) //

²²

V ∨ ⊗OP3(−1) //

²²

OP3(−1) //

²²

0

0 // Iz
//

²²

OP3 //

²²

kz
//

²²

0

0 0 0,

where z = P (ker : V ³ V ∨
3 ) is a point in P3 and the sheaf F has an OP3-resolution 0 →

OP3(−2) → 3OP3(−1) → F → 0. Twisting this resolution by the vector bundle E and passing
to cohomology we obtain the equalities H1(F ⊗ E) ' H2(E(−3)) = H2m+1, H2(F ⊗ E) = 0.
Respectively, passing to cohomology in diagram (28) twisted by E and using the above equalities
and evident relations H0(E ⊗ kz) ' k2, H1(E ⊗ kz) = 0 implies the diagram

(29) 0

²²

0

²²

k2
²²

²²

0 // H2m+1
//

²²

W∨
4m+4

//

²²

H1(E ⊗ Iz(−1))

²²

0 // H∨
2m+1 ⊗ V3

λ //

²²

H∨
2m+1 ⊗ V ∨ //

mult
²²

H∨
2m+1

²²
k2 // // H1(E ⊗ Iz) //

²²

H∨
4m

//

²²

0

0 0.
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In this diagram the composition ε := mult ◦ λ is surjective. Hence, setting W2m+3(V3) := ker ε,
where dim W2m+3(V3) = 2m + 3, we obtain a commutative diagram

(30) 0

²²

0

²²

0 // W2m+3(V3)
j //

²²

W∨
4m+4

//

²²

H∨
2m+1

0 // H∨
2m+1 ⊗ V3

λ //

ε

²²

H∨
2m+1 ⊗ V ∨ //

mult
²²

H∨
2m+1

H∨
4m

²²

H∨
4m

²²
0 0.

Set
Z3(V3) := {x ∈ P (W2m+3(V3)) | rk(x) = 3}.

The inclusion j in diagram (30) yields the bijection

(31) Z3(V3)
'→ f−1

3 (V3).

Consider the graph of incidence Γ3(V3) := {(x, U) ∈ Z3(V3) × G(3, H∨
2m+1) |U = U3(x)} with

projections Z3(V3)
p3← Γ3(V3)

q3→ G(3, H∨
2m+1). By construction, p3(Γ3(V3)) = Z3(V3) and the

morphism p4 : Γ3(V3) → Z3(V3) is an isomorphism. Hence

(32) dim q3(Γ3(V3)) ≤ dim Γ3(V3) = dim Z3(V3) ≤ dim P (W2m+3(V3)) = 2m + 2.

Consider the graph of incidence

Π3(V3) = {(U, Vm) ∈ q3(Γ3(V3))× Σ3(V3) | U ⊂ Vm}
with projections q3(Γ3(V3))

pr1← Π3(V3)
pr2→ Σ3(V3) and a fibre

pr−1
1 (U) = G(m− 3, H∨

2m+1/U)

over an arbitrary point U ∈ q3(Γ3(V3)). The projection Π3(V3)
pr2→ Σ3(V3) is surjective in view

of (31). Hence, using (32), we obtain

dim Σ3(V3) ≤ dim Π3(V3) = dim q3(Γ3(V3))+dim G(m−3, H∨
2m+1/U) ≤ 2m+2+(m−3)(m+1) =

= m2 − 1. This together with (27) and the assumption m ≥ 3 yields dim Σ3 ≤ m2 + 2 =
dim G + 2−m < dim G, i.e. (24) holds for r = 3.

Before proceeding to the case r = 2 we need to make a small digression on jumping lines of E.
Introduce some more notation. For a given line l ⊂ P3 we have E|l ' OP1(d)⊕OP1(−d) for a well-
defined nonnegative integer d called the jump of E|l and is denoted dE(l); respectively, the line l
is called a jumping line of jump d of E. Set G2,4 := G(2, V ∨) and Jk(E) := {l ∈ G2,4 | dE(l) ≤ k},
J∗k (E) := Jk(E) r Jk+1(E), 0 ≤ k. From the semicontinuity of E|l, l ∈ G2,4, it follows that
Jk(E) (resp., J∗k (E)) is a closed (resp., locally closed) subset of G2,4, k ≥ 0. Moreover, by
Theorem of Grauert-Mülich, J∗0 (E) is a dense open subset of G2,4. Next, since E ∈ I ′2m+1, it
follows that J2m+1(E) = ∅, so that J2m−1(E) = J∗2m−1(E) t J∗2m(E). We will use below the
following lemma.

Lemma 4.3. (1) dim J2m−1(E) ≤ 1.
(ii) dim J∗k (E) ≤ 3 for 1 ≤ k ≤ 2m− 2.
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Proof of Lemma.
(1) Suppose the contrary, i.e. dim J2m(E) ≥ 2. Take any irreducible surface S ⊂ J2m(E) and

let D be the degree of S with respect to the sheaf OG2,4(1). Fix an integer r ≥ 5 and take
any irreducible curve C belonging to the linear series

∣∣OG2,4(r)|S
∣∣. Then the degree deg C w.r.t.

OG2,4(1) equals to Dr, hence deg C ≥ 5. Hence by [C, Lemma 6] there exist two distinct lines,
say, l1, l2 ∈ C, which intersect in P3. Let the plane P2 be the span of l1 and l2 in P3. Now the
exact triple 0 → E(−2)|P2 → E|P2 → E|l1∪l2 → 0 implies

(33) H0(E|P2) → H0(E|l1∪l2) → H1(E(−2)|P2).

Next, as [E] ∈ I2m+1, we have h0(E(−1)) = h1(E(−2)) = 0, hence the exact triple 0 →
E(−2) → E(−1) → E(−1)|P2 → 0 implies

(34) H0(E(−1)|P2) = 0.

Now assume h0(E|P2) > 0. Then a section 0 6= s ∈ H0(E|P2) defines an injection OP2

s
↪→ E|P2 .

This injection and (34) show that the zero-set Z of section s is 0-dimensional and the injection
s extends to a triple 0 → OP2

s→ E|P2 → IZ,P2 → 0. Whence

(35) h0(E|P2) ≤ 1.

Furthermore, equality together with Riemann-Roch and Serre duality for the vector bundle
E(−1)|P2 shows that h1(E(−2)|P2) = 2m + 1. Whence in view of (33) and (34) we obtain

(36) h0(E|l1∪l2) ≤ 2m + 2.

On the other hand, let x := l1∩ l2. Since by construction l1, l2 ∈ J2m−1(E), it follows that either
E|li ' OP2(2m − 1) ⊕ OP2(1 − 2m), or E|li ' OP2(2m) ⊕ OP2(−2m), hence h0(E ⊗ Ix,li) ≥
2m−1, i = 1, 2. This clearly implies h0(E|l1∪l2) ≥ h0(E⊗Ix,l1∪l2) ≥ h0(E⊗Ix,l1)+h0(E⊗Ix,l2) =
4m− 2. Comparing this with (36) we obtain the inequality 2m + 2 ≥ 4m− 2, i.e. m ≤ 2. This
contradicts to the assumption m ≥ 3. Hence, the assertion (1) follows.

(2) This is an immediate corollary of Theorem of Grauert-Mülich. Lemma is proved. ¤

(iii) r = 2. Our notation and argument is completely parallel to that in the case
r = 3. Consider a morphism f2 : Z2 → G2,4 : x 7→ V2(x), where the pair of spaces
(U2(x), V2(x)), U2(x) ⊂ H∨

2m+1 and V2(x) ⊂ V ∨, is determined uniquely by the point x
via the condition x ∈ P (U2(x)⊗ V2(x)), since rk(x) = 2 (see Definition 4.1).

According to the above remarks on jumping lines of E we may assume that l ∈ J∗k (E) for
some 0 ≤ k ≤ 2m, i.e.

h0(E|l) = 2, h1(E|l) = 0, if l ∈ J∗0 (E),

respectively,

h0(E|l) = k + 1, h1(E|l) = k − 1, if l ∈ J∗k (E), 1 ≤ k ≤ 2m.

Now for 1 ≤ k ≤ 2m and a given subspace V2 ∈ J∗k set

(37) Σ2,k(V2) = {Vm ∈ G | Vm ⊃ U2(x) for some point x ∈ f−1
2 (V2)}.

Then similarly to (26) we have

Σ2 =
2m∪
k=0

∪
V2∈J∗k

Σ2,k(V2).

Hence, in view of Lemma 4.3

(38) dim Σ2 ≤ max
V2∈J∗

k
0≤k≤2m

(dim Σ2,k(V2) + dim J∗k ).
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We are going to obtain an estimate for the dimension of Σ2,k(V2) for an arbitrary 2-dimensional
subspace V2 in J∗k , 0 ≤ k ≤ 2m. This subspace defines a commutative diagram

(39) 0

²²

0

²²

0

²²
0 // OP3(−2)

s //

²²

ΩP3 //

²²

F //

²²

0

0 // V2 ⊗OP3(−1) //

²²

V ∨ ⊗OP3(−1) //

²²

V ′
2 ⊗OP3(−1) //

²²

0

0 // Il
//

²²

OP3 //

²²

Ol
//

²²

0

0 0 0,

where l = P (ker V ³ V ∨
2 ) is a line in P3, V ′

2 := V ∨/V2, and F := coker s. Passing to cohomology
in diagram (39) twisted by E, we obtain the diagram

(40) 0

²²

H0(E|l)
²²

²²
W∨

4m+4

²²

H1(E ⊗ F )

²²

0 // H∨
2m+1 ⊗ V2

// H∨
2m+1 ⊗ V ∨ //

mult
²²

H∨
2m+1 ⊗ V ′

2

²²
H0(E|l) // // H1(E ⊗ Il) // H∨

4m
//

²²

H1(E|l)

0.

Assume for definiteness that 1 ≤ k ≤ 2m. (The case k = 0 is treated in a similar way.) In
this case diagram (40) leads to a diagram

(41) 0

²²

0

²²

0

²²

0 // Wk+1(V2)
j //

²²

W∨
4m+4

//

²²

H∨
4m−k+3

²²

0 // H∨
2m+1 ⊗ V2

//

²²

H∨
2m+1 ⊗ V ∨ //

mult
²²

H∨
2m+1 ⊗ V ′

2

²²
0 // V4m−k+1

//

²²

H∨
4m

²²

// Wk−1

²²
0 0 0.

where we set Wk+1(V2) := H0(E|l), Wk−1 := H1(E|l), V4m−k+1 := H∨
2m+1 ⊗ V2/Wk+1(V2).
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Set

Z2,k(V2) := {x ∈ P (Wk+1(V2)) | rk(x) = 2}.

The inclusion j in diagram (41) yields the bijection

(42) Z2,k(V2)
'→ f−1

2 (V2).

Consider the graph of incidence Γ2,k(V2) := {(x, U) ∈ Z2,k(V2) × G(2, H∨
2m+1) | U = U2(x)}

with projections Z2,k(V2)
p2← Γ2,k(V2)

q2→ G(2, H∨
2m+1). By construction, p2(Γ2,k(V2)) = Z2,k(V2)

and the morphism p4 : Γ2,k(V2) → Z2,k(V2) is an isomorphism. Hence

(43) dim q2(Γ2,k(V2)) ≤ dim Γ2,k(V2) = dim Z2,k(V2) ≤ dim P (Wk+1(V2)) = k.

Consider the graph of incidence

Π2,k(V2) = {(U, Vm) ∈ q2(Γ2,k(V2))× Σ2,k(V2) | U ⊂ Vm}

with projections q2(Γ2,k(V2))
pr1← Π2,k(V2)

pr2→ Σ2,k(V2) and a fibre

pr−1
1 (U) = G(m− 2, H∨

2m+1/U)

over an arbitrary point U ∈ q2(Γ2,k(V2)). The projection Π2,k(V2)
pr2→ Σ2,k(V2) is surjective in

view of (42). Hence using (43) we obtain

dim Σ2,k(V2) ≤ dim Π2,k(V2) = dim q2(Γ2,k(V2))+dim G(m−2, H∨
2m+1/U) ≤ k+(m−2)(m+1) =

= m2 −m− 2 + k = dim G− (2m− k + 2), 1 ≤ k ≤ 2m.

In a similar way we obtain for k = 0

dim Σ2,0(V2) ≤ 1 + (m− 2)(m + 1) = m2 −m− 1 = dim G− (2m + 1).

The last two inequalities together with (38), Lemma 4.3 and the assumption m ≥ 3 yield
dim Σ2 < dim G, i.e. (24) is true for r = 2.

(ii) r = 1. Consider a morphism f1 : Z1 → P (V ∨) = (P3)∨ : x 7→ V1(x), where the pair of
spaces (U1(x), V1(x)), U1(x) ⊂ H∨

2m+1 and V1(x) ⊂ V ∨, is determined uniquely by the point
x via the condition x ∈ P (U1(x)⊗ V1(x)), since rk(x) = 1 (see Definition 4.1). Now for a given
subspace V1 ∈ (P3)∨ set

Σ1(V1) := {Vm ∈ G | Vm ⊃ U1(x) for some point x ∈ f−1
1 (V1)}.

Then similar to (26) we have

(44) Σ1 = ∪
V1∈(P3)∨

Σ1(V1).

Hence,

(45) dim Σ1 ≤ dim Σ1(V1) + 3.
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We are going to obtain an estimate for the dimension of Σ1(V1) for an arbitrary 1-dimensional
subspace V1 in V ∨. This subspace defines a commutative diagram

(46) 0

²²

0

²²
ΩP3

²²

ΩP3

²²
0 // V1 ⊗OP3(−1) // V ∨ ⊗OP3(−1) //

²²

V3 ⊗OP3(−1) //

²²

0

0 // OP3(−1) // OP3 //

²²

OP2 //

²²

0

0 0.

Note that to the point V1 ∈ (P3)∨ there clearly corresponds a projective plane P (V1) in P3. Set
B(E) := {V1 ∈ (P3)∨ | h0(E|P (V1)) 6= 0}. It is known that, for m ≥ 1,

dim B(E) ≤ 2.

(see [B1]). Moreover, in view of (35)

h0(E|P (V1)) = 1, V1 ∈ B(E).

Passing to cohomology in diagram (46) twisted by E and using the equality h0(E) = 0 for
[E] ∈ I2m+1 we obtain the diagram

(47) 0

²²

H0(E|P (V1))
²²

²²
W∨

4m+4

²²

W∨
4m+4

²²

0 // H∨
2m+1 ⊗ V1

λ // H∨
2m+1 ⊗ V ∨ //

mult
²²

H∨
2m+1 ⊗ V3

²²
H0(E|P (V1)) // // H∨

2m+1
// H∨

4m
//

²²

H1(E|P (V1))

²²
0 0.
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Let V1 ∈ B(E). Setting ε := mult◦λ and W1(V1) := ker ε = H0(E|P (V1)), where dim W1(V1) = 1,
we obtain from (47) a commutative diagram

(48) 0

²²

0

²²

0

²²

0 // W1(V1)
j //

²²

W∨
4m+4

//

²²

W∨
4m+4/W1(V1)

²²

0 // H∨
2m+1 ⊗ V1

λ //

ε

²²

H∨
2m+1 ⊗ V ∨ //

mult
²²

H∨
2m+1 ⊗ V3

²²

0 // H∨
2m+1/W1(V1) //

²²

H∨
4m

//

²²

H1(E|P2(V1))

²²
0 0 0.

Set
Z1(V1) := ∅ if V1 6= B(E), resp., Z1(V1) := j(W1(V1)) if V1 ∈ B(E).

The diagrams (47) and (48) yield the bijection

(49) Z1(V1)
'→ f−1

1 (V1), V1 ∈ (P3)∨.

The rest argument is completely the same as in cases r = 3 and r = 2 above. Consider the
graph of incidence Γ1(V1) := {(x, U) ∈ Z1(V1) × P (H∨

2m+1) | U = U1(x)} with projections
Z1(V1)

p1← Γ1(V1)
q1→ P (H∨

2m+1). By construction, p1(Γ1(V1)) = Z1(V1) and the morphism p4 :
Γ1(V1) → Z1(V1) is an isomorphism. Hence

(50) dim q1(Γ1(V1)) ≤ dim Γ1(V1) = dim Z1(V1) ≤ 0.

Consider the graph of incidence

Π1(V1) = {(U, Vm) ∈ q1(Γ1(V1))× Σ1(V1) | U ⊂ Vm}
with projections q1(Γ1(V1))

pr1← Π1(V1)
pr2→ Σ1(V1) and a fibre

pr−1
1 (U) = G(m− 1, H∨

2m+1/U)

over an arbitrary point U ∈ q1(Γ1(V1)). The projection Π1(V1)
pr2→ Σ1(V1) is surjective in view

of (49). Hence in view of (50) we have

dim Σ1(V1) ≤ dim Π1(V1) = dim q1(Γ1(V1)) + dim G(m− 1, H∨
2m+1/U) ≤ 0 + (m− 1)(m + 1) =

= m2 − 1. This together with (45) and the assumption m ≥ 3 yields dim Σ ≤ m2 + 2 =
dim G + 2−m < dim G, i.e. (24) holds for r = 1. Theorem is proved. ¤

5. Decomposition k2m+1 ' km+1 ⊕ km and related constructions

5.1. Decomposition k2m+1 ' km+1 ⊕ km.
Fix an isomorphism

(51) ξ : km+1 ⊕ km '→ k2m+1

and let

(52) km+1 im+1

↪→ km+1 ⊕ km im←↩ km
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be the injections of direct summands. For a given (2m + 1)-instanton vector bundle E, [E] ∈
I ′2m+1, fix an isomorphism f : k2m+1 '→ H2(E(−3)) = H2m+1 and a symplectic structure
j : E

'→ E∨. The data [E, f, j] define a net of quadrics A ∈ MI ′2m+1 (see section 3), and the exact
triple (20) is naturally identified with the dual to the triple 0 → ker A → k2m+1⊗V → WA → 0
and fits in diagram (9) for n = 2m + 1

(53) 0 // ker A // k2m+1 ⊗ V
cA //

A
²²

WA
//

∼= qA

²²

0

0 ker A∨oo (k2m+1)∨ ⊗ V ∨oo W∨
A

c∨Aoo 0.oo

Consider the composition

(54) jξ,A : km+1 ⊗ V
im+1

↪→ km+1 ⊗ V ⊕ km ⊗ V
ξ'→ k2m+1 ⊗ V

cA→ WA.

Under these notations Theorem 4.2 can be reformulated in the following way:

(*) Assume m ≥ 3 and let A be an arbitrary (2m + 1)-net from MI ′2m+1. Then for a generic
isomorphism ξ : k2m+1 '→ km+1 ⊕ km one has

(55) ker A ∩ ξ ◦ im+1(k
m+1 ⊗ V ) = {0}.

Equivalently, jξ,A : km+1 ⊗ V → WA is an isomorphism.

Consider the direct sum decomposition corresponding to the isomorphism (51)

(56) ξ̃ : Sm+1 ⊕ (km)∨ ⊗ (km+1)∨ ⊗ ∧2V ∨ ⊕ Sm
∼→ S2m+1

and let

(57) ξ1 : S2m+1 ³ Sm+1,

ξ2 : S2m+1 ³ (km)∨ ⊗ (km+1)∨ ⊗ ∧2V ∨,
ξ3 : S2m+1 ³ Sm

be projections onto summands. By definition, ξ1(A) considered as a skew-symmetric homomor-
phism km+1 ⊗ V → (km+1)∨ ⊗ V ∨ coincides with the composition

(58) ξ1(A) : km+1 ⊗ V
jξ,A→ WA

qA→
'

W∨
A

j∨ξ,A→ (km+1)∨ ⊗ V ∨.

This means that assertion (*) can be reformulated as:

(**) Assume m ≥ 3 and let A be an arbitrary (2m+1)-net from MI ′2m+1. Then for a generic
isomorphism ξ in (51) the skew-symmetric homomorphism ξ1(A) : km+1⊗ V → (km+1)∨⊗ V ∨

is invertible.

For A and ξ from (**) we have the commutative diagram
(59)

km+1 ⊗ V
ξ1(A)

'
//

jξ,A '

²²

im+1

uullllllllllllll
(km+1)∨ ⊗ V ∨

km+1 ⊗ V ⊕ km ⊗ V
ξ(A)

//

ξ '
²²

(km+1)∨ ⊗ V ∨ ⊕ (km)∨ ⊗ V ∨

i∨m+1

jjUUUUUUUUUUUUUUUUU

k2m+1 ⊗ V
A //

cA

))RRRRRRRRRRRRRRRR
(k2m+1)∨ ⊗ V ∨

ξ∨'
OO

WA

qA

'
// W∨

A ,

j∨ξ,A'

OO

c∨A

44iiiiiiiiiiiiiiiiiiii
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where ξ(A) is the matrix
(

ξ1(A) ξ2(A)∨

ξ2(A) ξ3(A)

)
. As jξ,A in this diagram is invertible, the compo-

sition
gξ,A = j−1

ξ,A ◦ cA ◦ ξ ◦ im

is well-defined, and we obtain a commutative diagram

(60) km ⊗ V
ξ3(A)

//

gξ

²²

ξ2(A)∨

%%LLLLLLLLLLLLLLLLLLLLLL (km)∨ ⊗ V ∨

km+1 ⊗ V
ξ1(A)

'
//

ξ2(A)

99rrrrrrrrrrrrrrrrrrrrrr
(km+1)∨ ⊗ V ∨.

g∨ξ

OO

In particular,

(61) ξ3(A) = ξ2(A)∨ ◦ ξ1(A)−1 ◦ ξ2(A).

For m ≥ 1 let
Isom2m+1

be the set of all isomorphisms ξ in (51). Consider the open subset MI ′2m+1 of MI2m+1 defined
in (17) and set

(62) MI2m+1(ξ) := {A ∈ MI ′2m+1 | the skew − symmetric homomorphism ξ1(A) in (58)

is invertible}, ξ ∈ Isom2m+1.

The relation (61) together with (**) implies the following corollary of Theorem 4.2.

Theorem 5.1. Fom m ≥ 3 the following statements hold.
(i) The sets MI2m+1(ξ), ξ ∈ Isom2m+1, are dense open subsets of the set MI ′2m+1 constituting

its open cover.
(ii) For any ξ ∈ Isom2m+1 and any A ∈ MI2m+1(ξ) the relation (61) is true.

We will need below the following lemma.

Lemma 5.2. Let ξ and A ∈ MI2m+1(ξ) be as in Theorem 5.1 and set

(63) B := ξ1(A), C := ξ2(A).

Then the following statements hold.
(i) Consider a subbundle morphism

(64) αξ,A := j−1
ξ ◦ aA ◦ ξ : (km+1 ⊕ km)⊗OP3(−1) → km+1 ⊗ V ⊗OP3 .

Then there exists an epimorphism

(65) λξ,A : coker(B ◦ αξ,A) ³ (km+1)∨ ⊗OP3(1).

making commutative the diagram

(66) (km+1)∨ ⊗ V ∨ ⊗OP3
can //

u∨ **TTTTTTTTTTTTTTTT
coker(B ◦ αξ,A)

λξ,A

²²
(km+1)∨ ⊗OP3(1),

where can is a canonical surjection.
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(ii) Consider the commutative diagram
(67)

km ⊗OP3(−1)

0 // (km+1 ⊕ km)⊗OP3(−1)
B◦αξ,A//

OOOO

(km+1)∨ ⊗ V ∨ ⊗OP3
can // coker(B ◦ αξ,A) // 0

0 // km+1 ⊗OP3(−1)
B◦u //

OO
im+1

OO

(km+1)∨ ⊗ V ∨ ⊗OP3
v◦B−1

// km+1 ⊗ TP3(−1) //

εξ,A

OOOO

0

km ⊗OP3(−1),
OO
τξ,A

OO

where τξ,A and εξ,A are the induced morphisms. Then the morphism τξ,A is a subbundle morphism
fitting in a commutative diagram

(68) (km+1)∨ ⊗ V ∨ ⊗OP3
v◦B−1

// km+1 ⊗ TP3(−1)

km ⊗OP3(−1)

C◦u
OO

km ⊗OP3(−1).
OO
τξ,A

OO

Доказательство. (i) Consider the commutative diagram
(69)

k2m+1 ⊗O(−1) // aA // WA ⊗O qA

'
// W∨

A ⊗O
a∨A // //

j∨ξ,A'
²²

(k2m+1)∨ ⊗O(1)

ξ∨'
²²

(km+1 ⊕ km)⊗O(−1) //
αξ,A //

ξ '
OO

(km+1)⊗ V ⊗O B

'
//

jξ,A '
OO

(km+1)∨ ⊗ V ∨ ⊗O
α∨ξ,A// //

u∨ **UUUUUUUUUUUUUUUU
(km+1 ⊕ km)∨ ⊗O(1)

i∨m+1²²²²
km+1 ⊗O(−1)

OO
im+1

OO

u

44jjjjjjjjjjjjjjjj

(km+1)∨ ⊗O(1)

Here the upper triple is the monad (11) for n = 2m + 1. Whence the statement (i) follows.
(ii) Standard diagram chasing using (63) and diagrams (59) and (67). ¤

5.2. Remarks on t’Hooft instantons.
Consider the set

I tH
2m+1 := {[E] ∈ I2m+1 | h0(E(1)) 6= 0},

of t’Hooft instanton bundles and the corresponding set of t’Hooft instanton nets

MI tH
2m+1 := π−1

n (I tH
2m+1).

We collect some well-known facts about I tH
2m+1 in the following lemma - see [BT], [NT], [T2,

Prop. 2.2].

Lemma 5.3. Let m ≥ 1. Then the following statements hold.
(i) I tH

2m+1 is an irreducible (10m + 9)-dimensional subvariety of I2m+1. Respectively, MI tH
2m+1

is an irreducible (4m2 + 14m + 10)-dimensional subvariety of I2m+1.
(ii) I tH∗

2m+1 := I tH
2m+1 ∩ I ′2m+1 is a smooth dense open subset of I tH

2m+1 and

(70) h0(E(1)) = 1, [E] ∈ I tH∗
2m+1.
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(iii) MI tH
2m+1 is a smooth dense open subset of the set

(71) TH2m+1 := {A ∈ S2m+1|A =
2m+2∑
i=1

h2 ⊗ w, where h ∈ (k2m+1)∨, w ∈ ∧2V ∨, w ∧ w = 0}.

We are going to extend the statement of Theorem 5.1 to the cases m = 1 and 2. To this end,
for m = 1, 2 and ξ ∈ Isom2m+1 consider the sets MI2m+1(ξ) defined in (62) and set

(72) MI ′′2m+1 := ∪
ξ∈Isom2m+1

MI2m+1(ξ), m = 1, 2.

For m ≥ 1 let ξ0 ∈ Isom2m+1 be the standard isomorphism km+1 ⊕ km ∼−→ km+1 :
((a1, ..., am+1), (am+2, ..., a2m+1)) 7→ (a1, ..., a2m+1). Let {h1 = (1, 0, ..., 0), ..., h2m+1(0, ..., 0, 1)
be the standard basis in (k2m+1)∨ and let e1, ..., e4 be some fixed basis in V ∨. Consider the nets
A(m) ∈ TH2m+1, m = 1, 2, defined as follows

(73) A(1) = h2
1 ⊗ (e1 ∧ e2 + e3 ∧ e4) + h2

2 ⊗ (e1 ∧ e3 + e4 ∧ e2),

A(2) = h2
1 ⊗ (e1 ∧ e2 + e3 ∧ e4) + h2

2 ⊗ (e1 ∧ e3 + e4 ∧ e2) + h2
3 ⊗ (e1 ∧ e4 + e2 ∧ e3).

It is an exercise to show that the homomorphisms

ξ0
1(A(m)) : km+1 ⊗ V → (km+1)∨ ⊗ V ∨, m = 1, 2,

are invertible. On the other hand, for a given ξ ∈ Isom2m+1 the condition that a homomorphism
ξ1(A) : km+1 ⊗ V → (km+1)∨ ⊗ V ∨ is invertible is an open condition on the net A ∈ TH2m+1.
Hence, since the sets MI ′2m+1, m = 1, 2, are irreducible, Lemma 5.3 yields the following corol-
lary.

Corollary 5.4. Let 1 ≤ m ≤ 2.
(i) For m = 1, 2 the set MI ′′2m+1 is a dense open subset of MI ′2m+1 and of MI2m+1, and the

statement of Theorem 5.1 extends to the cases m = 1 and 2, with MI ′2m+1 being substituted by
MI ′′2m+1.

(ii) Let m ≥ 1. The set

MI tH∗∗
2m+1 :=

{
MI tH∗

2m+1, m ≥ 3,
MI ′′2m+1 ∩MI tH∗

2m+1, m = 1, 2,

is a dense open subset of MI tH∗
2m+1 and of MI tH

2m+1 covered by dense open subsets

(74) MI tH
2m+1(ξ) := MI tH∗∗

2m+1 ∩MI2m+1(ξ), ξ ∈ Isom2m+1.

Note that (18), Theorem 5.1 and Corollary 5.4 yield

Corollary 5.5. Let m ≥ 1. Then for any ξ ∈ Isom2m+1 the scheme (MI2m+1(ξ))red is dense
open in (MI2m+1)red. In particular,

(75) dim MI2m+1(ξ) = dim MI2m+1.

5.3. Invertible nets of quadrics from Sm+1 and symplectic rank-(2m + 2) bundles.
Introduce more notations. Set

(76) Nm+1 := {B ∈ Sm+1 | B : km+1 ⊗ V → (km+1)∨ ⊗ V ∨ is an invertible homomorphism}.
The set Nm+1 is a dense open subset of the vector space Sm+1, and it is easy to see that for
any B ∈ Nm+1 the following conditions are satisfied.
(1) The morphism B̃ : km+1 ⊗ OP3(−1) → (km+1)∨ ⊗ ΩP3(1) induced by the homomorphism
B : km+1 ⊗ V → (km+1)∨ ⊗ V ∨ is a subbundle morphism, i.e.

(77) E2m+2(B) := coker(B̃)
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is a vector bundle of rank 2m + 2 на P3. This follows from the diagram
(78)

0

²²

0

²²

0 // km+1 ⊗OP3(−1)
B̃ //

u

²²

(km+1)∨ ⊗ ΩP3(1)
e //

v∨
²²

E2m+2(B) // 0

km+1 ⊗ V ⊗OP3
B

'
//

v

²²

(km+1)∨ ⊗ V ∨ ⊗OP3

u∨
²²

0 → E2m+2(B)∨ // km+1 ⊗ TP3(−1)
B̃∨ //

²²

(km+1)∨ ⊗OP3(1) //

²²

0

0 0

(2) The homomorphism ]B : km+1 → (km+1)∨⊗∧2V ∨ induced by B : km+1⊗V → (km+1)∨⊗V ∨

is injective. This follows from the commutative diagram extending the upper horizontal triple
in (78)

(79) 0

²²

0

²²
(km+1)∨ ⊗ TP3(−2)

²²

(km+1)∨ ⊗ TP3(−2)

²²

0 // km+1 ⊗OP3

]B // (km+1)∨ ⊗ ∧2V ∨ ⊗OP3
can //

w

²²

H0(E2m+2(B)(1))⊗OP3 //

ev

²²

0

0 // km+1 ⊗OP3
B̃ // (km+1)∨ ⊗ ΩP3(2)

e //

²²

E2m+2(B)(1) //

²²

0

0 0,

where w is the morphism induced by the morphism v from the Euler exact sequence in (78).
From this diagram we obtain the isomorphism

(80) coker(]B) ' H0(E2m+2(B)(1)).

(3) Diagram (78) and the Five-Lemma yield an isomorphism

(81) θ : E2m+2(B)
∼→ E2m+2(B)∨

which is in fact symplectic,

θ∨ = −θ,
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since the homomorphism B : km ⊗ V → (km)∨ ⊗ V ∨ is skew-symmetric. The isomorphism θ
together with the upper triple from (78) and its dual fits in the commutative diagram

(82) 0

²²

0

²²
0 // km+1 ⊗OP3(−1)

B̃ // (km+1)∨ ⊗ ΩP3(1)
e //

v∨
²²

E2m+2(B) //

e∨◦θ
²²

0

0 // km+1 ⊗OP3(−1)
B◦u // (km+1)∨ ⊗ V ∨ ⊗OP3

v◦B−1
//

u∨
²²

km+1 ⊗ TP3(−1) //

B̃∨
²²

0

(km+1)∨ ⊗OP3(1)

²²

(km+1)∨ ⊗OP3(1)

²²
0 0.

Note that this diagram immediately implies that

(83) h0(E2m+2(B)) = hi(E2m+2(B)(−2)) = 0, i ≥ 0.

Let ξ and A ∈ MI2m+1(ξ) be as in Theorem 5.1 for m ≥ 3, respectively, in Corollary 5.4 for
m = 1, 2. Then the homomorphism B : km+1⊗V → (km+1)∨⊗V ∨ defined in (63) by definition
lies in Nm+1. Hence by Lemma 5.2 diagrams (66) and (66) hold. These diagrams together with
(82) imply B̃∨ ◦ τξ,A = 0, so that there exists a morphism

(84) ρξ,A : km ⊗O(−1) → E2m+2(B)

such that τξ,A = e∨ ◦ θ ◦ ρξ,A. Since τξ,A is a subbundle morphism, ρξ,A is also a subbundle
morphism. Moreover, diagrams (68) and (82) yield the commutative diagram

(85) (km+1)∨ ⊗ ΩP3(1)
e //

v∨

²²

E2m+2(B)

e∨◦θ

²²

km ⊗O(−1)
ii

]C
iiSSSSSSSSSSSSSS

uu
C̃

uukkkkkkkkkkkkkk

66

ρξ,A
66lllllllllllll

((
τξ,A

((RRRRRRRRRRRRR

(km+1)∨ ⊗ V ∨ ⊗O v◦B−1
// km+1 ⊗ TP3(−1).

Diagrams (82) and (85) yield the commutative diagram

(86) km ⊗O(−1)
C̃ //

((

ρξ,A ((PPPPPPPPPPPP ++
]C

++WWWWWWWWWWWWWWWWWWWWWWWWW

DC

²²

(km+1)∨ ⊗ V ∨ ⊗O

B−1'

²²

E2m+2(B)

θ'
²²

ΩP3(1)e
oooo

e∨◦θ◦e
²²

66

v∨
66mmmmmmmmmmmmm

E2m+2(B)∨ // e∨ //

ρ∨ξ,A

vvvvnnnnnnnnnnnn
TP3(−1)

]C∨ssssgggggggggggggggggggggggg

(km)∨ ⊗O(1) km+1 ⊗ V ⊗O,
C̃∨

oo

v
hhhhQQQQQQQQQQQQQ
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where DC := C̃∨ ◦B−1 ◦ C̃ = u∨ ◦ (C∨ ◦B−1 ◦C) ◦ u is the zero map. In fact, by (61) and (63)
we have DC = p2(ξ3(A)), where p2 : ∧2((kn)∨ ⊗ V ∨) → ∧2(kn)∨ ⊗ S2V ∨ is the projection onto
the second direct summand of the decomposition (8). Since by (57) ξ3(A) lies in the first direct
summand of (8) it follows that DC = 0. We thus obtain the monad

(87) 0 → km ⊗O(−1)
ρξ,A−→ E2m+2(B)

θ◦ρ∨ξ,A−→ (km)∨ ⊗O(1) → 0

with the cohomology sheaf

(88) E2(ξ, A) := ker(θ ◦ ρ∨ξ,A)/ Im ρξ,A

which is a vector bundle since ρξ,A is a subbundle morphism. Furthermore, by (83) it follows
from the monad (87) that E2(ξ, A) is a (2m + 1)-instanton,

(89) [E2(ξ, A)] ∈ I2m+1.

Lemma 5.6. E2(ξ, A) ' E(A), where the sheaf E(A) is defined in (12).

Доказательство. Diagram chasing using (59), (60), (67)-(69), (78)-(79) and (82). ¤

6. Scheme Xm. An isomorphism between Xm and an open subset of the space
MI2m+1

6.1. Space Xm. Consider the vector space Sm+1, respectively, its dual space S∨m+1 and set

(90) (S∨m+1)
0 := {B ∈ S∨m+1 | D : (km+1)∨⊗V ∨ → km+1⊗V is an invertible homomorphism},

(91) Σm+1 := Hom(km, (km+1)∨ ⊗ ∧2V ∨)

According to our convention on notations we will understand an arbitrary point C ∈ Σm+1

either as a homomorphism
C : km ⊗ V → (km+1)∨ ⊗ V ∨,

or as a homomorphism
]C : km → (km+1)∨ ⊗ ∧2V ∨,

or as an induced morphism

C̃ : km ⊗O(−1) → (km+1)∨ ⊗ Ω(1).

Note also that the set (S∨m+1)
0 is a dense open subset of the vector space S∨m+1.

Consider the set
(92)

Xm :=





(D, C) ∈ (S∨m+1)
0 ×Σm+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i) (C∨ ◦D ◦ C : km ⊗ V → (km)∨ ⊗ V ∨) ∈ Sm,

(ii) the map (km+1 ⊕ km)⊗O (D−1,C)◦u−→ (km+1)∨ ⊗ V ∨ ⊗O(1)
is a subbundle morphism,

(iii) the composition Ĉ : km
]C→ (km+1)∨ ⊗ ∧2V ∨ can³

(km+1)∨ ⊗ ∧2V ∨/ Im(]D−1) ' H0(E2m+2(D
−1)(1)) yields

a subbundle morphism

km ⊗OP3(−1)
ρD,C→ E2m+2(D

−1),
i.e. ρ∨D,C is surjective and E2(D,C) := Ker(tρD,C)/ Im(ρD,C)

is locally free





.
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By definition Xm is a locally closed subset of (S∨m+1)
0 × Σm+1. Hence it is naturally supplied

with the structure of a reduced scheme.
Note that in the condition (iii) of the definition of Xm we set tρD,C := θ ◦ ρ∨D,C , where

θ : E2m+2(D
−1)

∼→ E∨
2m+2(D

−1) is a natural symplectic structure on E2m+2(D
−1) defined in

(81).

Theorem 6.1. Let m ≥ 1 and let ξ be as in Theorem 5.1 and Corollary 5.4.
(i) There is an isomorphism of reduced schemes

(93) fm : (MI2m+1(ξ))red
'→ Xm : A 7→ (ξ1(A)−1, ξ2(A)).

(ii) The inverse isomorphism is given by the formula

(94) gm : Xm
'→ (MI2m+1(ξ))red : (D, C) 7→ ξ̃(D−1, C, C∨ ◦D ◦ C).1

Доказательство. (i) We first show that the image of the map fm : (MI2m+1(ξ))red →
(S∨m+1)

0 × Σin
m,m+1 lies in Xm, i.e. satisfies the conditions (i)-(iii) in the definition of Xm.

Indeed, the condition (i) is automatically satisfied, since (57) and (61) give C∨ ◦ D ◦ C =
ξ2(A)∨ ◦ ξ1(A)−1 ◦ ξ2(A) = ξ3(A) ∈ S2(km)∨ ⊗ ∧2V ∨. Next, the morphism ρD,C defined in (iii)
above coincides by its definition with the morphism ρξ,A defined in (84). In fact, the upper
triangle of the diagram (85) twisted by O(1) and the lower part of the diagram (79) in which
we put

(95) B = D−1

(note that D is invertible) fit in the diagram
(96)

0 → km+1 ⊗O
]D−1

// (km+1)∨ ⊗ ∧2V ∨ ⊗O can //

w

²²

H0(E2m+2(D
−1)(1))⊗O //

ev

²²

0

km ⊗O
ii

]C
iiRRRRRRRRRRRRRR 55

Ĉ
55kkkkkkkkkkkkkk

))
ρξ,A

))SSSSSSSSSSSSSSuu
C̃

uullllllllllllll

0 → km+1 ⊗O D̃−1
// (km+1)∨ ⊗ Ω(2)

e // E2m+2(D
−1)(1) // 0,

where the composition Ĉ = can ◦ C is defined in the condition (iii) of the definition of Xm.
Whence

(97) ρD,C = ρξ,A.

Since ρξ,A is a subbundle morphism, the condition (iii) is satisfied and, moreover, Ĉ is a sub-
bundle morphism as well. Thus, the lower part of the diagram (96) shows that the morphism
(D̃−1, C̃) : (km+1⊕km)⊗O → (km+1)∨⊗Ω(2) is a subbundle morphism. Hence its composition
with the subbundle morphism v∨ : (km+1)∨⊗Ω(2) ↪→ (km+1)∨⊗V ⊗O(1) is a subbundle mor-
phism as well. By definition, this composition coincides with (D−1, C) ◦ u. Hence the condition
(ii) in the definition of Xm is satisfied.

This shows that fm((MI2m+1(ξ))red) lies in Xm. Last, the equality gm ◦ fm = id follows
directly from (57) and (61).

(ii) We first prove that the image of the map

(98) gm : Xm → S2m+1 : (D,C) 7→ (D−1, C, C∨ ◦D ◦ C) 2

1Here we use the decomposition (56) fixed by the choice of ξ.
2We identify here the triple (D−1, C, C∨ ◦D ◦C) with a point in S2(k2m+1)∨⊗∧2V ∨ via the decomposition

(56).
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lies in (MI2m+1(ξ))red. In fact, the subbundle morphism A := (D−1, C)◦u : (km+1⊕km)⊗O →
(km+1)∨ ⊗ V ∨ ⊗O(1) and its dual extend to the right and left exact sequence

(99) 0 → (km+1 ⊕ km)⊗O(−1)
A→ (km+1)∨ ⊗ V ∨ ⊗O A∨◦D→ (km+1 ⊕ km)∨ ⊗O(1) → 0.

Furthermore, by definition A∨◦D◦A = u∨◦A◦u, where A is the matrix
(

D−1 C
C∨ C∨ ◦D ◦ C

)
.

Since the condition (i) is satisfied, under the direct sum decomposition (56) this matrix A can
be treated an element of S2m+1. Hence u∨ ◦ A ◦ u = 0, i.e. (99) is a monad. Show that its
cohomology bundle

E(D,C) := ker(A∨ ◦D)/ ImA
is an (2m + 1)-instanton, this giving the desired inclusion g(Xm) ⊂ (MI2m+1(ξ))red. For this,
consider the diagram (67) in which we substitute B ◦αξ,A by A, respectively, B by D−1, denote
G := cokerA, and change the notation for τξ,A and εξ,A, respectively, to τD,C and εD,C

(100)
km ⊗OP3(−1)

0 // (km+1 ⊕ km)⊗OP3(−1)
A //

OOOO

(km+1)∨ ⊗ V ∨ ⊗OP3
can // G // 0

0 // km+1 ⊗OP3(−1)
D−1◦u //

OO
im+1

OO

(km+1)∨ ⊗ V ∨ ⊗OP3
v◦D // km+1 ⊗ TP3(−1) //

εD,C

OOOO

0

km ⊗OP3(−1).
OO
τD,C

OO

In these notations the diagram (82) becomes the display of the antiselfdual monad

(101) 0 → km+1 ⊗O(−1)
D−1◦u→ (km+1)∨ ⊗ V ∨ ⊗O u∨→ (km+1)∨ ⊗O(1) → 0

with the symplectic cohomology sheaf E2m+2(D
−1):

(102) E2m+2(D
−1) = ker(u∨)/ Im(D−1 ◦ u).

Moreover, as in (84) and (85) we obtain a subbundle morphism

(103) ρD,C : km ⊗O(−1) → E2m+2(D
−1)

such that

(104) τD,C = e∨ ◦ θ ◦ ρD,C ,

where θ : E2m+2(D
−1)

'→ E2m+2(D
−1) is a symplectic structure on E2m+2(D

−1). Besides, as in
(83) we have

(105) h0(E2m+2(D
−1)) = hi(E2m+2(D

−1)(−2)) = 0, i ≥ 0.

Furthermore, as before, the antiselfdual monads (99) and (101) imply the (antiselfdual) monad
(87)

(106) 0 → km ⊗O(−1)
ρD,C−→ E2m+2(D

−1)
θ◦ρ∨D,C−→ (km)∨ ⊗O(1) → 0

with the cohomology sheaf E(D,C),

(107) E(D, C) = ker(θ ◦ ρ∨D,C)/ Im(ρD,C).

Now (105) and (106) yield h0(E(D,C)) = hi(E(D, C)(−2)) = 0, i ≥ 0, i.e. E(D, C) is an
(2m + 1)-instanton.

Thus Im gm ⊂ I2m+1(ξ). The fact that fm ◦ gm = id follows directly from (93) and (94). ¤
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7. Variety Zm

7.1. Scheme Zm. Set

(108) Λm := ∧2(km)∨ ⊗ S2V ∨, Φm := Hom(km, (km)∨)⊗ ∧2V ∨,

and consider the set

(109) Zm :=



(D,φ) ∈ S∨m ×Φm

∣∣∣∣∣∣

Θm(D, φ) := φ∨ ◦D ◦ φ : km ⊗ V →
→ (km)∨ ⊗ V ∨ satisfies the condition

Θm(D,φ) ∈ Sm



 .

(Here, as in (90), we understand a point D ∈ S∨m as a homomorphism (km)∨⊗ V ∨ → km⊗ V .)
Consider the standard decomposition

∧2((km)∨ ⊗ V ∨) = Sm ⊕Λm

with the induced projections

Sm
pr1← ∧2((km)∨ ⊗ V ∨)

pr2→ Λm.

We have a morphism hm : Sm × Φm → Λm : (Am, φm) 7→ pr2(Θ(Am, φm)). By the definition
Zm we have

(110) Zm = h−1
m (0).

Convention: If Zm is nonempty, we supply Zm with a scheme structure of a scheme-theoretic
fibre h−1

m (0) of the morphism hm.
Assume that

(111) Zm 6= ∅.
Then from the definition of Zm we obtain the estimate for the dimension of Zm at each point
z ∈ Zm

(112) dimz Zm = dim h−1
m (0) ≥ dim(Sm × Φm)− dim∧2(km)∨ ⊗ S2V ∨ =

= 3m(m + 1) + 6m2 − 5m(m− 1) = 4m(m + 2).

Consider the open dense subset Φ0
m := {φ ∈ Φm|]φ : km → (km)∨ ⊗ ∧2V ∨) is injective} of

Φm and set
(113)

Z ′
m :=

{
(D,φ) ∈ Zm ∩ (S∨m)0 ×Φ0

m

∣∣ Im(]φ) ∩ Im(](D−1) : km → (km)∨ ⊗ ∧2V ∨) = {0} }

The set Z ′
m is by definition an open subset in Zm.

Assume Z ′
m 6= ∅. Pick a point z = (D,φ) ∈ Z ′

m and set

W5m := (km)∨ ⊗ ∧2V ∨/ Im(](D−1)), dim W5m = 5m.

Let i(z) be the composition in the diagram

(114) km
²²

φ
²²

''
i(z)

''NNNNNNNNNNNNN

0 // km
](D−1)

// (km)∨ ⊗ ∧2V ∨ can // W5m
// 0

The lower horizontal triple in (114) yields the diagram

(115) 0 // km ⊗OP3

](D−1)
// (km)∨ ⊗ ∧2V ∨ ⊗OP3

can //
²²

ev

²²

W5m ⊗OP3 //
²²

ev

²²

0

0 // km ⊗OP3
D̃−1

// (km)∨ ⊗ ΩP3(2)
can // E2m(D−1)(1) // 0,
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where E2m(D−1) is a symplectic bundle (see (81)). From this diagram we deduce the equalities

(116) hi(E2m(D−1)(−2)) = 0, i ≥ 0,

and the isomorphism

(117) h0(ev) : W5m
∼→ H0(E2m(D−1)), i ≥ 0,

Moreover, the diagrams (114) and (115) define the composition

(118) iz : km ⊗OP3(−1)
i(z)→ W5m ⊗OP3(−1)

ev³ E2m(D−1).

Note that from the definition of the set Zm it follows that

(119) tiz ◦ iz = 0,

where tiz := i∨z ◦ θ and θ : E2m((D−1))
∼→ E2m((D−1))∨ is the symplectic structure on

E2m((D−1)) mentioned above, i.e. we have an antiselfdual complex

(120) 0 → km ⊗OP3(−1)
iz→ E2m(D−1)

tiz→ (km)∨ ⊗OP3(1) → 0.

(Warning: this complex is not right exact.)
Twisting the sequence (118) by OP3(1) and passing to sections, we obtain in view of
Furthermore, the standard embedding

(121) j : km−1 ↪→ km : (a1, ..., am−1) 7→ (a1, ..., am−1, 0)

and the morphism iz from (118) define the composition

(122) jz : km−1 ⊗OP3(−1)
j→ km ⊗OP3(−1)

iz→ E2m(D−1)

7.2. Varieties Z∗
m and N tH

2m−1.
Assume, as above, that Z ′

m 6= ∅ and set

(123) Z∗
m = {z = (D, φ) ∈ Z ′

m | jz : km−1⊗OP3(−1) → E2m(D−1) is a subbundle morphism}.
By definition, Z∗

m is an open subset of Z ′
m, hence also of Zm. If Z∗

m 6= ∅, then for any point
z = (D, φ) ∈ Z∗

m we obtain from (119) that tjz ◦ jz = 0, where tjz := j∨z ◦ θ. Thus jz defines a
monad

(124) 0 → km−1 ⊗OP3(−1)
jz→ E2m(D−1)

tjz→ (km−1)∨ ⊗OP3(1) → 0,

and in view of (116) the cohomology sheaf of this monad is an instanton bundle

(125) E2(z) := Ker(tjz)/ Im(jz), [E2(z)] ∈ I(2m− 1).

Consider the subvariety I tH
2m−1 ⊂ I2m−1 of t’Hooft instanton bundles

I tH
2m−1 := {[E] ∈ I2m−1 | h0(E(1)) 6= 0}.

Lemma 7.1. Assume Z∗
m 6= ∅. Then for any z = (D, φ) ∈ Z∗

m the bundle E2(z) is a t’Hooft
instanton bundle, i.e. [E2(z)] ∈ I tH

2m−1.

Proof. Consider the complexes (120) and (124) and set

Hm−1 := km−1 ⊗OP3(−1), Hm := km ⊗OP3(−1), Km+1 := coker jz, Km := coker iz.
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The complexes (120) and (124) are antiselfdual, hence they extend to a commutative diagram
(126)

E2(z)
²²

τ

²²

OP3(−1)
yy

α

yytttttttttt

soo

Hm−1
// jz //

xx
j

xxrrrrrrrrrrr
E2m(D−1) // //

ppppppppppp

ppppppppppp

tjz

²²²²

Km+1

β

||||yy
yy

yy
yy

y

δ

²²²²

Hm
// iz //

yyyyssssssssss
E2m(D−1) // //

tiz

²²

Km

γ

²²

OP3(−1)

H∨
m−1 H∨

m−1

H∨
m

j∨
77 77pppppppppppp

H∨
m

j∨ << <<xxxxxxxx

OP3(1)
88

88rrrrrrrrrrr
OP3(1),

99

99tttttttttt

in which α, β, γ, δ and τ are the induced morphisms. In this diagram we have β ◦ α = 0 and
j∨ ◦ γ ◦ β = δ. Hence δ ◦ α = 0. This implies that α factors through the morphism τ , i.e. there
exists an injection s : OP3(−1) → E2(z) such that α = τ ◦ s. This injection s is a nonzero
section s ∈ H0(E2(z)(1)). Hence E2(z) is a t’Hooft bundle. ¤

We will show that Z∗
m is an irreducible variety of dimension 4m(m+2), hence it is nonempty.

For this, fix an isomorphism

(127) ξ : km ⊕ km−1 '→ k2m−1

and consider the variety MI tH
2m−1(ξ) defined in (74). Take an arbitrary point A ∈ MI tH

2m−1(ξ).

The point A defines a point B = ξ1(A) and a monad 0 → km−1 ⊗ OP3(−1)
ρξ,A→ E2m(B)

tρξ,B→
(km−1)∨ ⊗ OP3(1) → 0 with the cohomology bundle [E2(A)] = π2m−1(A) (see subsection 5.3).
The display of this monad twisted by OP3(1) is

(128) E2(A)(1)
²²

²²
km−1 ⊗OP3

//
ρξ,A // E2m(B)(1)

ε // //
tρξ,A

(( ((RRRRRRRRRRRRR
Km+1(A)(1)

²²²²
(km−1)∨ ⊗OP3(2),

where Km+1(A) := coker ρξ,A.
Note that from (70) and the definition of MI tH

2m−1(ξ) it follows that h0(E2(A)(1)) = 1. Hence,
passing to sections in the diagram (128) we obtain a well defined epimorphism
(129)

b(ξ, A) : H0(E2m(B)(1))
h0(ε)

// // H0(Km+1(A)(1))
can // // H0(Km+1(A)(1))/H0(E2(A)(1)) ' k4m.
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On the other hand, similar to (115) and (117) we obtain the exact triple

(130) 0 → km
]B−1−→ (km)∨ ⊗ ∧2V ∨ c(A)−→ H0(E2m(B)(1)) → 0.

Denote by c(A) the epimorphism (km)∨ ⊗ ∧2V ∨ ³ H0(E2m(B)(1)) in this triple and set

(131) V2m(ξ, A) := c(A)−1(ker b(ξ, A)) ' k2m,

V ∗
2m(ξ, A) := {v ∈ V2m(ξ, A) | Span(Im ](ξ1(A)−1), Im ](ξ2(A)),kv) = V2m(ξ, A)},

(132) V2m(ξ) := {(A, v) | A ∈ MI tH
2m−1(ξ), v ∈ V2m(ξ, A)}.

Here the projection V2m(ξ) → MI tH
2m−1(ξ) : (A, v) 7→ A is a k2m-bundle over MI tH

2m−1(ξ), hence
by Lemma 5.3 and Corollary 5.4 V2m(ξ) is irreducible of dimension

(133) dim V2m(ξ) = dim MI tH
2m−1(ξ) + 2m = 4m(m + 2).

Besides, V ∗
2m(ξ, A) is a dense open subset of V2m(ξ, A) for each A ∈ MI tH

2m−1(ξ),

(134) V ∗
2m(ξ, A) Â Ä dense open // V2m(ξ, A) ' k2m .

Next, set Πm := Hom(km, (km)∨ ⊗ ∧2V) and
(135)

N(ξ, A) :=



(φ : km ⊗ V

∼→ (km)∨ ⊗ V ∨) ∈ Πm

∣∣∣∣∣∣

(i) Span(Im ](ξ1(A)−1), Im ]φ) = V2m(ξ, A),
(ii) φ ◦ j = ξ2(A),
(iii) φ∨ ◦ (ξ1(A)−1) ◦ φ ∈ Sm





,

(136) N tH
2m−1(ξ) := {(A, φ) | A ∈ MI tH

2m−1(ξ), φ ∈ N(ξ, A)}.
Consider the standard decomposition km = km−1 ⊕ k, so that the injection j in (121) is

an embedding of the left direct summand of this decomposition. Then each monomorphism
(]φ : km → (km)∨ ⊗ ∧2V ∨) ∈ N(ξ, A) in view of the conditions (i)-(iii) of (135) is uniquely
determined by its restriction onto the right direct summand k of the standard decomposition,

]φ|k : k → V2m(ξ, A) ⊂ (km)∨ ⊗ ∧2V ∨ : 1 7→ v

satisfying the conditions

Span(Im ](ξ1(A)−1), Im ]φ) = Span(Im ](ξ1(A)−1), Im ](ξ2(A)),kv) = V2m(ξ, A).

and
(ξ2(A) + φ|k⊗V )∨ ◦ (ξ1(A)−1) ◦ (ξ2(A) + φ|k⊗V ) ∈ Sm.

These conditions and the definition of V ∗
2m(ξ, A) mean that N(ξ, ) is a closed subset of V ∗

2m(ξ, A),
hence by (134) it is a locally closed subset of V2m(ξ, A). As a result, we have

(137) N tH
2m−1(ξ)

Â Ä locally closed // V2m(ξ) .

In particular,

(138) dim N tH
2m−1(ξ) ≤ dim V2m(ξ) = 4m(m + 2).

Now consider the map

(139) hm : N tH
2m−1(ξ) → Z∗

m : (A, φ) 7→ (D := ξ1(A)−1, φ).

This map is well defined. In fact, take any point (A, φ) ∈ N tH
2m−1(ξ). Since A ∈ MI tH

2m−1(ξ), we
have D ∈ (S∨m)0, so that the vector bundle E2m(D−1) is well-defined. Next, since φ ◦ j = ξ2(A)
(see condition (ii) in (135)), it follows from Theorem 6.1 that the morphism

jz : km−1 ⊗O(−1) → E2m(D−1)
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for z = (D, φ) coincides with the subbundle morphism ρξ,A satisfying diagram (96). Note that
in view of (97) we can rewrite this also as

(140) jz = ρD,C , C = φ ◦ j.

The diagram (96), in turn, implies that the condition Im(]D) ∩ Im(]φ) = {0} is satisfied. This
together with the injectivity of jz and the condition (iii) in (135) precisely means that z ∈ Z∗

m.
As a result, it follows that Z∗

m and, respectively, Zm is nonempty. Moreover, since Z∗
m is

supplied with the structure of a reduced scheme and N tH
2m−1(ξ) is smooth (hence reduced) it

follows that the map hm given by formula (139) is a morphism of reduced schemes. Next,
consider the set

Z∗
m(ξ) := {z ∈ Z∗

m | z = (D, φ) satisfies the condition (∗)}
where

(D−1, φ ◦ j) ◦ u : (km ⊕ km−1)⊗O(−1) → (km)∨ ⊗ V ∨ ⊗O is a subbundle morphism. (∗)
Since the condition (*) is open and Z∗

m(ξ) contains a subset hm(N tH
2m−1(ξ)), it follows that Z∗

m(ξ)
is a nonempty open subset of Z∗

m.
Consider the map

(141) λm : Z∗
m(ξ) → S2m−1 : z = (D, φ) 7→ A := ξ̃(D−1, φ ◦ j, (φ ◦ j)∨ ◦D ◦ (φ ◦ j)).

Since (φ∨ ◦D ◦ φ) ∈ Sm by the definition of Zm, it follows that

(142) (φ ◦ j)∨ ◦D ◦ (φ ◦ j) ∈ Sm−1,

i.e. the map λm in (141) is well-defined. Moreover, since Z∗
m(ξ) is a reduced scheme, the map

λm is a morphism of reduced schemes.

Theorem 7.2. Let m ≥ 1 and ξ be a fixed isomorphism (127). Then Z∗
m(ξ) is a smooth

irreducible variety of dimension 4m(m + 2) and there is an isomorphism of smooth varieties

(143) νm : Z∗
m(ξ)

∼→ N tH
2m−1(ξ) : (D, φ) 7→ (A, φ),

where A is given by (141).

Proof. Consider the set Xm−1 defined in (92) and the morphism of reduced schemes

(144) ηm : Z∗
m(ξ) → Xm−1 : z = (D,φ) 7→ (D, φ ◦ j).

This morphism is well-defined since (142), (*) and (140) are precisely the conditions (i), (ii)
and (iii) of the definition of Xm−1. Next, comparing (94), (141) and (144) we obtain that
λm = gm−1 ◦ ηm for m ≥ 1. Whence Im λm ⊂ MI2m−1(ξ). Moreover, for any point z = (D, φ)
the diagram (126) defines a section s ∈ E2(A)(1) for A = λm(z), so that [E2(A)] ∈ I tH

2m−1,
i.e. A ∈ MI tH

2m−1(ξ). Hence (A, φ) ∈ N tH
2m−1(ξ), and the morphism νm in (143) is well-defined.

Comparing now (139) and (143), we obtain that hm = ν−1
m , i.e. νm is an isomorphism of reduced

schemes.
Next, since by definition Z∗

m(ξ) is an open subset of Zm, it follows from (112) that
dim Z∗

m(ξ) ≥ 4m(m + 2). This together with (138) and the isomophism νm shows that

dim Z∗
m(ξ) = dim N tH

2m−1(ξ) = dim V2m(ξ) = 4m(m + 2).

Whence by (137) and the irreducibility and smoothness of V2m(ξ) we obtain that Z∗
m(ξ) '

N tH
2m−1(ξ) is a dense open subset of V2m(ξ), so that Z∗

m(ξ) is smooth and irreducible of dimension
4m(m + 2). ¤
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7.3. Irreducibility of Zm.
Consider the standard isomorphism

(145) km−1 ⊕ k
∼→ km : ((a1, ..., am−1), am) 7→ (a1, ..., am).

Under this isomorphism any homomorphism

(146) φ : km ⊗ V → (km)∨ ⊗ V ∨, φ ∈ Hom(km, (km)∨)⊗ ∧2V ∨.

can be represented as a homomorphism

(147) φ : km−1 ⊗ V ⊕ k⊗ V → (km−1)∨ ⊗ V ∨ ⊕ k∨ ⊗ V ∨,

i.e. as a matrix

(148) φ =

(
φ1 χ1

ψ1 θ1

)
,

where

(149) φ1 ∈ Hom(km−1, (km−1)∨)⊗∧2V ∨ = Φm−1, ψ1 ∈ Ψm−1 := Hom(km−1, (k)∨)⊗∧2V ∨,

χ1 ∈ Bχ := Hom(k, (km−1)∨)⊗ ∧2V ∨, θ1 ∈ Bθ := Hom(k,k∨)⊗ ∧2V ∨ = S1.

Respectively, a homomorphism

(150) D ∈ S∨m ⊂ Hom((km)∨ ⊗ V ∨,km ⊗ V )

can be represented as a matrix

(151) D =

(
D1 a1

−a∨1 α1

)
,

where

(152) D1 ∈ S∨m−1 ⊂ Hom((km−1)∨ ⊗ V ∨,km−1 ⊗ V ),

a1 ∈ Hom((k)∨,km−1)⊗ ∧2V = Ψ∨
m−1, α1 ∈ Hom((k)∨,k)⊗ ∧2V = B∨

θ .

From (148) and (151) it follows that the homomorphism

Θ(D, φ) := φ∨ ◦D ◦ φ : km ⊗ V → (km)∨ ⊗ V ∨, Θ(D, φ) ∈ ∧2((km)∨ ⊗ V ∨),

can be represented as a matrix

(153) Θ(D,φ) =

(
Θ1(D, φ) b1(D, φ)
−b1(D, φ)∨ β1(D,φ)

)
,

where

(154) Θ1(D, φ) := φ∨1 ◦D1 ◦ φ1 + φ∨1 ◦ a1 ◦ ψ1 − ψ∨1 ◦ a∨1 ◦ φ1 + ψ∨1 ◦ α1 ◦ ψ1 ∈
∈ ∧2((km−1)∨ ⊗ V ∨) ⊂ Hom((km−1)∨ ⊗ V ∨,km−1 ⊗ V ),

b1(D, φ) := φ∨1 ◦D1 ◦ χ1 + φ∨1 ◦ a1 ◦ θ1 − ψ∨1 ◦ a∨1 ◦ χ1 + ψ∨1 ◦ α1 ◦ θ1 ∈
∈ Hom(km−1 ⊗ V,k∨ ⊗ V ∨),

β1(D, φ) := χ∨1 ◦D1 ◦ χ1 + χ∨1 ◦ a1 ◦ θ1 − θ∨1 ◦ a∨1 ◦ χ1 + θ∨1 ◦ α1 ◦ θ1 ∈ Bθ.

In these notations Zm can be described as

(155) Zm =

{
(D, φ) ∈ S∨m ×Φm

∣∣∣∣
(i) Θ1(D,φ) ∈ Sm−1,
(ii) b1(D, φ) ∈ Ψm−1

}
.

Let Z0
m be any irreducible component of (Zm)red. Take an arbitrary point

(156) z = (D, φ) = (D1, a1, α1, φ1, χ1, ψ1, θ1) ∈ Z0
m

and consider the morphism

(157) fm : A1 → Z0
m : t 7→ (tD1, ta1, tα1, φ1, tχ1, ψ1, tθ1).
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This morphism is well-defined in view of (152) and (154)-(155). We have

(158) fm(0) = (0, 0, 0, φ1, 0, ψ1, 0).

Consider the projection

(159) πm : Zm → B∨
ψ ×B∨

θ ×Bχ ×Bθ :

(D1, a1, α1, φ1, χ1, ψ1, θ1) 7→ (a1, α1, χ1, θ1).

The equality (158) means that there is a scheme-theoretic inclusion

(160) ∅ 6= Y 0
m := (πm|Z0

m)−1(0, 0, 0, 0) ⊂ Ym := π−1
m (0, 0, 0, 0),

where by (154)-(155) and (109)

(161) Ym = {(D1, φ1, ψ1) ∈ S∨m−1 ×Φm−1 ×Ψm−1 | φ∨1 D1φ1 ∈ Sm−1} =

= Zm−1 ×Ψm−1.

Now let (Zm)red = ∪
j
Zj

m be the decomposition of Zm into irreducible components. The inclu-

sion (160) means that
(i) Zj

m ∩ Ym 6= ∅ for any irreducible component Zj
m of Zm, and

(ii) set-theoreticlly Ym = ∪
j
(Ym∩Zj

m), where the union is taken over all irreducible components

Zj
m of Zm.
We now proceed to the proof of the irreducibility of Zm by increasing induction on m. For

m = 1 clearly Λm = 0, so that the equations {Θ1(D1, φ1) ∈ S1} of Z1 in ∧2((k1)∨ ⊗ V ∨) are
empty, i.e. scheme-theoretically we have

Z1 = ∧2(k∨ ⊗ V ∨) ' k6.

Thus Z1 ' A6 is reduced and irreducible.
To perform the induction step, assume that Zm−1 is an irreducible and reduced scheme given

by definition via the equations {φ∨1 ◦ D1 ◦ φ1 ∈ Sm−1} in S∨m−1 × Φm−1. Comparing this with
(161) we see that Ym = Zm−1 × Ψm−1 is reduced and irreducible as a scheme-theoretic fibre
π−1

m (0, 0, 0, 0). Hence the properties (i) and (ii) above clearly imply that
(a) (Zm)red is irreducible and
(b) Zm is generically reduced in the sense that

Nil(Zm) := {x ∈ (Zm)red | Zm is not reduced at the point x}
is a proper closed subset of (Zm)red, i.e.

(162) Nil(Zm) ⊂
6=

(Zm)red.

On the other hand, by Theorem 7.2 (Zm)red contains an open subset Z∗
m(ξ) of dimension

4m(m+2). This together with (110) and (112) implies that Zm is a locally complete intersection
subscheme of dimension 4m(m+2) of the smooth variety S∨m×Φm. Now we invoke the following
easy lemma from commutative algebra.

Lemma 7.3. Let X be a locally complete intersection subscheme of a smooth irreducible variety
such that

(a) Xred is irreducible and
(b) Nil(X ) := {x ∈ (X )red | X is not reduced at x} ⊂

6=
(X )red.

Then X is irreducible and reduced.

Applying this Lemma to X = Zm we obtain that Zm is irreducible and reduced. Hence we
obtain the following result.

Theorem 7.4. Zm is irreducible and reduced locally complete intersection scheme of dimension
4m(m + 2).
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8. Irreducibility of I2m+1

In this section we give the proof of Theorem 1.1. Set

(163) X̃m := {(D, C) ∈ S∨m+1 ×Σm+1 | (C∨ ◦D ◦ C : km ⊗ V → (km)∨ ⊗ V ∨) ∈ Sm}.
The set X̃m has a natural structure of a closed subscheme of S∨m+1 × Σm+1 defined by the
equations

(164) C∨ ◦D ◦ C ∈ Sm.

Since (S∨m+1)
0 is a dense open subset of S∨m+1 and the conditions (ii) and (iii) in the definition

(92) of Xm are open and Xm is nonempty (see Theorem 6.1) it follows immediately that Xm is
a nonempty open subset of X̃m,

(165) ∅ 6= Xm

open
↪→ (X̃m)red.

Thus, to prove the irreducibility of Xm it is enough to prove the irreducibility of X̃m.
For this, consider the standard direct sum decomposition

km+1 ∼→ km ⊕ k : (a1, ..., am+1) 7→ ((a1, ..., am), am+1).

Under this isomorphism any homomorphism

(166) C ∈ Σm+1 = Hom(km, (km+1)∨)⊗ ∧2V ∨, C : km ⊗ V → (km+1)∨ ⊗ V ∨,

can be represented as a homomorphism

(167) C : km ⊗ V ⊕ k⊗ V → (km)∨ ⊗ V ∨ ⊕ k∨ ⊗ V ∨,

i.e. as a matrix

(168) C =

(
φ
ψ

)
,

where

(169) φ ∈ Hom(km, (km)∨)⊗ ∧2V ∨ = Φm, ψ ∈ Ψm := Hom(km, (k)∨)⊗ ∧2V ∨.

Respectively, any homomorphism D ∈ (S∨m+1)
0 ⊂ S2(km+1)⊗ ∧2V = S∨m+1 ⊂ Hom((km+1)∨ ⊗

V ∨,km+1 ⊗ V ) can be represented as a matrix

(170) D =

(
D1 λ
−λ∨ µ

)
,

where

(171) D1 ∈ S∨m ⊂ Hom((km)∨ ⊗ V ∨,km ⊗ V ),

λ ∈ Lm := Hom(k∨,km)⊗ ∧2V, µ ∈ Mm := Hom(k∨,k)⊗ ∧2V.

From (168) and (170) it follows that the homomorphism

C∨ ◦D ◦ C : km ⊗ V → (km)∨ ⊗ V ∨, C∨ ◦D ◦ C ∈ ∧2((km)∨ ⊗ V ∨),

can be represented as

(172) C∨ ◦D ◦ C = φ∨ ◦D1 ◦ φ + φ∨ ◦ λ ◦ ψ − ψ∨ ◦ λ ◦ φ + ψ∨ ◦ µ ◦ ψ.

Let Xm be the closure of (X̃m)red in S∨m+1 ×Σm+1. and let X0 be any irreducible component
of Xm. By (168)-(171) we have

S∨m+1 ×Σm+1 = S∨m ×Φm ×Ψm × Lm ×Mm,

and we have well-defined projections

pm : X̃m → Lm ×Mm : (A, φ, ψ, λ, µ) 7→ (λ, µ).
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and
pm := pm|Xm : Xm → Lm ×Mm.

Take an arbitrary point z = (D1, φ, ψ, λ, µ) ∈ X0 and consider the morphism

(173) f 0 : A1 → X0 : t 7→ (tA, φ, ψ, tλ, tµ).

(This morphism is well-defined by (172.) By definition, the point f 0(0) = (0, φ, ψ, 0, 0) lies in
the fibre p−1

m (0, 0). Hence,

(174) p−1
m (0, 0) ∩X0 6= ∅.

Now from (172) and the definition of X̃m it follows that

(175) p−1
m (0, 0) = {(D1, φ, ψ) ∈ S∨m ×Φm ×Ψm | φ∨ ◦ A ◦ φ ∈ Sm}.

Comparing this with the definition (109) of Zm we see that, set-theoretically,

(176) p−1
m (0, 0)

sets
= p−1

m (0, 0)
sets
= Zm ×Ψm.

Respectively, scheme-theoretically we have the inclusion of schemes

(177) p−1
m (0, 0)

schemes⊂ p−1
m (0, 0)

schemes
= Zm ×Ψm.

Assume now that Xm is not irreducible and let

(178) Xm = ∪r
i=1X

i, r ≥ 2,

be its decomposition into irreducible components. In view of (174) each irreducible component
X i of Xm has a nonempty intersection with p−1

m (0, 0). Hence, since r ≥ 2, p−1
m (0, 0) as a scheme-

theoretic fibre is either reducible or non-reduced. Hence by (176) and (177) Zm ×Ψm is either
reducible or nonreduced. This, however, contradicts to Theorem 7.4. Thus Xm is irreducible.

Moreover, Theorem 7.4 implies that the scheme-theoretic inclusion of fibres in (177) becomes
an isomorphism of reduced irreducible schemes

(179) p−1
m (0, 0)

schemes
= p−1

m (0, 0)
schemes

= Zm ×Ψm.

In particular, p−1
m (0, 0) is a reduced and irreducible scheme and, since Xm is reduced, X̃m is

generically reduced. Furthermore, applying theorem on fibres of a morphism to the projection
pm : Xm → Lm ×Mm and using (179) and Theorem 7.4, we obtain

(180) dim X̃m = dim Xm ≤ dim p−1(0, 0) + dim(Lm ×Mm) = dim Zm + dimΨm+

+ dimLm + dimMm = 4m(m + 2) + 6m + 6m + 6 = 4m2 + 20m + 6.

On the other hand, formula (15) for n = 2m + 1, equality (75), Theorem 6.1 and the open
inclusion (165) show that

(181) 4m2 + 20m + 6 = (2m + 1)2 + 8(2m + 1)− 3 ≤ dim MI2m+1 = dim MI2m+1(ξ) =

= dim Xm = dim X̃m.

Comparing (180) with (181) we see that all inequalities here are equalities. In particular, Xm

is a (4m2 + 20m + 6)-dimensional locally closed locally complete intersection subscheme of
S∨m+1 ×Σm+1 and (Xm)red is irreducible as an open part of the irreducible scheme Xm. Hence
by Lemma 7.3 Xm is reduced and irreducible. It follows now from Corollary 5.5 and Theorem
6.1 that (MI2m+1)red is irreducible of dimension 4m2 + 20m + 6 = n2 + 8n− 3 for n = 2m + 1,
i.e. the inequality (15) becomes the strict equality. This together with Theorem 3.1 implies that
MI2m+1 is a locally complete intersection subscheme of the vector space S2m+1. As a result, by
Lemma 7.3 MI2m+1 is reduced. Since π2m+1 : MI2m+1 → I2m+1 : A 7→ [E(A)] is a principal
GL(k2m+1)/{±id}-bundle in the étale topology (see section 3), it follows that I2m+1 is reduced
and irreducible of dimension 16m+5 = 8n−3 for n = 2m+1. This finishs the proof of Theorem
1.1.
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Remark 8.1. Note that Theorem on fibres of a morphism together with the fact that all
inequalities in (180) with (181) are equalities also implies that the projection Xm → S∨m+1 :
(D, C) 7→ D is dominating. In view of Theorem 6.1 this is equivalent to the fact that that the
restriction onto MI2m+1 of the linear projection S2m+1 → Sm+1 induced by a generic embedding
km+1 ↪→ k2m+1 is dominating.
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