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1 Introduction

1.1 The object of study

Let g be a complex semisimple Lie algebra and U = U(g) its enveloping
algebra. On any U-bimodule M € U — mod ~ U we define the adjoint g-
action ad : g — FEndcM via (adX)m = Xm — mXVX € gom € M. A
bimodule is called “locally adg-finite” if and only if any m € M is “adg-
finite”, i.e. contained in a finite dimensional adg-stable subspace.

In this article we study the category HC of all U-bimodules M € U —
mod — U which are (1) locally adg-finite and (2) of finite lenght as bimodules.
These are the Harish-Chandra bimodules of the title.

1.2 Motivation

The representation theory of complex semisimple Lie groups like G = S L(n, C)
leads one naturally to study such bimodules with g = LieG = si(n,C). In
the following discussion of how this comes about we will often want to forget



the complex structure on g and regard it just as a real Lie algebra. In these
instances we denote it by g'.

Let 7 : G = AutcFE be an admissible representation of G in a complex
Banach space E. We choose a maximal compact subgroup K in G, like K =
SU(n), with Lie algebra k = Lie/{ C g". On the K-finite vectors

Ex = {v € E | dimCKv < oo}

of £ acts g™ in a natural way. This space Fx with the actions of K and g~
is called the Harish-Chandra module of E. The R-linear action of g" on Ex
leads to a C-linear action of g" ®r C on Ex whose restriction to k @r C is
locally finite.

Now k C g™ consists just of the fixed points in g" of some Cartan invo-
lution 0 : g" — g, given in our example by §(A) = —A*. We may choose an
isomorphism of complex Lie algebras g"®r C = g x g such that §@r C corre-
sponds to switching the two components (X,Y) — (Y, X) of (X,Y) € g x g.
Then k ®p. C corresponds to the diagonal in g x g. Now U(g xg) = U® U
canonically (we always write @ = ®) and the principal antiautomorphism
X — —X of g leads to an isomorphism U — U°?. Thus we have canonically

g" ®@r C —mod g xg—mod
U® U - mod
U ® U°P? — mod
U—-mod—-U

W IR IR

and clearly via this equivalence k ®g C-locally finite g” @r C-modules cor-
respond to adg-locally finite U-bimodules.

The reason we prefer to work with U-bimodules rather than with g"®@r C-
modules is that such bimodules can be tensored with each other as well as
with arbitrary U-modules. These operations are of great importance and
would look awkward when expressed in terms of g" ® g C-modules.

So from any admissible representation £ of G we obtain via a differenti-
ation process followed by some algebraic manipulations a locally adg-finite
U-bimodule Ef. One shows that E is irreducible if and only if Ex is, and
that for £ a principal series still £k has finite lenght, i.e. is an object of HC.

Consider for example the action of G = §L(n, C) on the full flag variety
F={Cr=Vrn DVl >...DV?=0]|dimV"'=1}. It induces an action
of G on the Banach space E = L®(F) of continuous functions F* — C. This
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is a principal series representation. The corresponding bimodule Eg is the
“adg-finite dual of U/Z*U” which we define presently. Namely we denote
by Z C U the center and let Z+ = AnnzC be the central annihilator of the
trivial representation C of g. Then U/Z*U is a U-bimodule, and so is its
(algebraic) dual. The adg-finite dual is now the subspace of all adg-finite
vectors in the algebraic dual space.

Certainly a central problem in representation theory is to compute the
composition factors of principal series representations or, equivalently, of
their duals, i.e. of U-bimodules like U/Z+U. This problem is solved by the
Kazhdan-Lusztig conjectures, which by now are a theorem due to Beilinson-
Bernstein and Brylinski-Kashiwara [BB, BK, Sp].

We approach this problem from another side, translating it down roughly
speaking to a statement on Z-bimodules. Although this translated problem
looks much easier than the original one, we have to invoke the Kazhdan-
Lusztig conjectures to solve it. Nevertheless the method has the benefit of
allowing deeper insight in the structure of the category HC and thus ulti-
mately of principal series representations.

1.3 Example

Take g = si(2, C) and consider in HC the subcategory
H={MecHC|(Z*)"M =M(Z*)" =0 for n > 0}.

Our dual principal series U/Z*U lies in this category as well as the trivial
bimodule C. There is an obvious surjection ¢ : U/Z*+*U — C, whose kernel
L = ker¢ can be shown to be irreducible. In fact, up to isomorphism £ and
C are the only irreducible objects in H.

As was shown by Gelfand-Ponomarev [GP], the C-category H is equiv-
alent to the category of finite dimensional complex representations of the
quiver

¢
. L D’?
¥

with relations 51 = 0 = ¢n and 7, ¢ nilpotent. This approach to the com-
binatorics of H is certainly most clear and beautiful. It has been generalized
to Lie algebras of rank two by Irving [Ir], but it seems hard to go further.
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The approach followed in this paper does not look quite as neat for g =
sl(2,C) but generalizes to arbitrary g. The description of H looks now as
follows: We consider the complex plane C? with coordinate functions X
and Y, so that the ring of all regular functions on C? is R(C?) = C[X,Y].
Then inside C? we consider the diagonal A. = {(z,z)}, the other diagonal
A, = {(z,—=z)} and their union A,UA,. The regular functions RB(A.), R(A,)
and R(A.U A,) on these sets are modules over R(C?) = C[X,Y] and we
form

A= Endepx y)(R(A.) @ R(A. UA,)).

Obviously C[X,Y] C A. We will show that M is equivalent to the category
of all finite dimensional A-modules on which X and Y act nilpotently. To
explain how this generalizes to arbitrary g, we need some results on Hecke
algebras.

1.4 Hecke algebras and bimodules

Let (W, S) be any Coxeter system. For simplicity assume S to be finite. We
have the Hecke algebra H = HW,S) = @ ew Z[t,t7YT; as in [KL]. The
multiplication is given by the formulas T,T, = T, for all z,y € W such
that I(z) + I(y) = {(zy) and T? = t2 4 (12 ~1)T, for all s € S. Let E be
the geometric representation of the Coxeter group W defined in [Bou], Ch.5,
§4, and let V = E ®Rr C be its complexification. Let S = §(V*) = R(V) be
the symmetric algebra in V" alias the regular functions on V. This is given
a grading such that degV* = 2, thus § = @;5¢ 5" with $* = 0 for odd i,
§09=C, §2=V* B

For any additive category A form the split Grothendieck group < 4 > .
This is the free abelian group on the objects modulo the usual relations
for each split short exact sequence. Any A € A defines < A >e< A >
. We consider the category § — Molf — § of graded S-bimodules which
are finitely generated as left S-modules and write Homggs for bimodule
homomorphisms. The group < § — Molf —5 > forms even a ring under ®s.

For any graded object M = @ M* define the shifted objects M(n) by
(M(n))' = M*—". For any s € S consider the s-invariants §° C S.

Theorem 1 There is a ring homomorphism £ : H < § — Molf - § >
such that £(t) =< §(1) >, E(T, +1) =< 5 Q@5 S > Vs € S.



Remember Kazhdan and Lusztig [KL] defined a new basis {C.L},ew of H
over Z[t,17!]. The following theorem is one of the main results. It is proved
in section 4.

Theorem 2 Suppose W 1s cristallographic [Bou], i.e. a Weyl group.

1. For all z € W there are objects B, € § — Molf — S, well defined up to
isomorphism, such that E(CL) =< B, > .

2. The B, are indecomposable.

3. Form the graded algebra A = AW, S;V) = Endsgs(@®, B:). Then
A=Diso A’ lives only in positive degrees. Furthermore the projections
1 onto the B, form a basis of A°.

4. The Homggs(B,, B,) are graded free right S-modules of finite rank, via
the right action of S on B, or B, equivalently. For any commutative
(not necessarily graded) S-algebra §' the canonical map

JHOTRS@S(B:E, By) ®S S’ - HmnS®S’(BJ: ®S S'-; By ®S SI)

is an isomorphism. Analoguous statements hold from the left.

Remarks:

1. To see that the B, are well defined the reader should prove a Krull-
Remak-Schmidt theorem for finitely generated graded modules over
polynomial rings.

2. Together 3.) and 4.) imply even a much stronger statement than 2.).
Namely, if we consider the S-algebra C = S° then B, ®s C is an
indecomposable S-module even if we forget about grading.

3. The theorem would imply the Kazhdan-Lusztig conjectures. Thus it is
a pity we need these conjectures to prove it. In fact I conjecture the
theorem to hold without the assumption that W is a Weyl group.

4. In case C,, = 7@ ¥ ., T, the bimodule B, has a very simple de-
scription. Namely consider for any y € W the twisted diagonal A, =
{(yv,v)} in V x V. The regular functions R(A¢,) on Agp = Uye A,
form a graded module over R(V x V) = S ® §. If we consider this as
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an S-bimodule and shift the grading down by {(z) we obtain B;. In
formulas, B, 2 R(A<.)(—I(z)). For arbitrary z still B, has support in
the closed reduced subscheme A<, CV x V.

5. In general, C, === & . P, ,(1*)T; and Homsgs(B:,B,) is free as
a right S-module of rank ¥, P, .(1)P,,(1).

6. The last point of the theorem can be interpreted as follows: Consider
A as an algebra over C® S = S, i.e. as a family of algebras over
SpecS. Then the family A is flat and over the generic point it is just a
sum of |W| matrix algebras of various sizes. On the contrary over the
closed point 0 € h* C SpecS our family A specializes to “the algebra
of category O, as section 1.6 will show.

1.5 Notations for categories of modules

For any C-algebra Rlet R—mod O R—mof O R—mod® denote the categories
of all R-modules, finitely generated R-modules and finite dimensional R-
modules respectively. If R is graded, we denote by R — Mod D R — Mof O
R — Mod® the analoguous categories of graded modules. These notations
generalize in an obvious way to bimodules. We often identify S — mod ~ R
and S ® R°P? — mod etc. If we require bimodules to be finitely generated
from the left, we write S — molf — R etc.

1.6 Harish-Chandra bimodules

Let us again go into the general situation. Let g D b D h be a complex
semisimple Lie algebra, a Borel and a Cartan and (W,S) the associated
Coxeter system. Let U D Z D Zt be the enveloping algebra, its center and
the kernel of the trivial central character. We will restrict our attention to
the direct summand H of HC given by

H={MeHC|(Z*)*M = M(Z*)" =0 for n>> 0}.

At the center of our interest is an exact functor V : H — C — mod. It
can be characterized (up to nonunique isomorphism) by the property that
it annihilates all irreducibles except those with maximal Gelfand-Kirillov
dimension, and maps those (i.e. the irreducible principal series module L €
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H) to a onedimensional vector space. Certainly the Z-actions on X € H
give rise to a Z-bimodule structure on VX. We can (and will) thus always
regard V as a functor V: H — Z — mod — Z. We prove

Proposition 1 There is a natural equivalence V(XQuY) = V(X)@zV(Y)
of functors H x H — Z — mod — Z.

The category H has not enough projectives. However let I C Z be a Z*-
primary ideal. Then the category H! = {X € H | XI = 0} has enough
projectives and one of our main results is:

Theorem 3 Let Q € H! be projective. Then for any M € H the functor V
induces an isomorphism Homy(M,Q) — Homzez(VM,VQ).

Remark: Certainly the same holds when we replace H! by "H = {X € H |
IX = 0}. It does not hold however if we restrict the Z-actions on both sides
simultaneously, i.e. for categories /H!" with general I, 1.

Let us consider S = S(h) = R(h*) and denote by £ : Z — S be the
Harish-Chandra homomorphism, characterized by é(z) — 2 € Un where n is
the nilradical of b. 1If we apply the preceding section with V = h* it produces
for us certain S-bimodules B, z € W. Via the isomorphisms Z/(Z*)* =
S/(S*)* induced by £ our ideal T C Z with I D (Z*)" produces an ideal
Is ¢ § with Is O (S§*)". In the following theorem we use £ to quietly restrict
S-bimodules to Z-bimodules.

Theorem 4 Let P! be the indecomposable projectives of H', suitably para-
metrized by x € W. Then VP! 2 B, /B.Is as Z-bimodules.

The reason we are so interested in homomorphisms between projectives is
that for any artinian C-category A with a projective generator P € A actu-
ally Hom (P, ) : A = mod® — End4P is an equivalence of categories. Now
recall the S® S-algebra A = A(W, S; h*) from theorem 2. The two preceding
theorems establish an equivalence of categories H! & mod® — A/(S ® Is). If
we put [ = Z* the above theorems specialize to results of [So3].

1.7 Reformulation in the setup of projective functors

I want to rephrase these theorems in terms of projective functors. Put M =
{M € g —mod | Ym € M,3n > 0 such that (Z*)"m = 0} and consider
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the category P of projective functors F : M — M in the sense of [BG].
Let £, £ € W be the indecomposable ones, suitably parametrized such that
F, = id and F,, corresponds to the antidominant projective. Let Z be the
completion of Z at Z*. It acts on M. Thus a right and a left action of Z on
P. :
For any graded object M (bounded below) let M be its completion “along
the graduation”. For example S is the completion of S at S+. Certainly ¢
induces an isomorphism Z = §.

Theorem 5  [. EndpF,, = S ®sw S canonically. _Namely the mullipli-
cation 2@ Z — EndpF,, and the obvious map 2@ 7 — S @gw S are
both surjections with the same kernel.

2. Identify Sé;w S —mod C §— moii ~Sasa full subcategory. The
functor V.= Homp(Fy,, ): P — S—mod— 5 is fully faithful. We
have V(F o G) 2 VF @3 VG for all F,G € P.

3. For a suitable parametrization of the F, we have VF, = ﬁ;

This theorem is merely a reformulation of the theorems in the preceding
section and will not be proved.

1.8 Some extensions of perverse sheaves

For any complex algebraic variety X let D(X) be the derived category with
bounded algebraically constructible cohomology of sheaves of complex vector
spaces on X°", For F,G € D(X) define the graded vector space Hom}(F,G)
with Hom%(F,G) = Homp(F,G[1]). Let H(X) be the cohomology ring of
X with complex coefficients. We have the hypercohomology H : D(X) —
H(X) — Mod. Now let G O B be connected complex algebraic groups with
Lie algebras g O b. On X = G/B x G/B consider the diagonal G-action.
The following theorem will be proved at the very end of this paper.

Theorem 6 Let F,G € D(X) be both the intersection cohomology complex
of the closure of some G-orbit. Then the canonical map

Homy(F,G) —» Hompx)(HF,HG)

is an isomorphism of graded vector spaces.

9



Remarks:

1. The theorem will hold as well for X = G/P x G/Q with P,Q C G any

two parabolic subgroups.

2. In [So3] we computed the HF € H(X) — Mod. I describe the result
in the notations of this paper. Let us put R = R(h) = S(h*) and
C = C(h*,W) = R/(R*)"R. The section on Hecke algebras produces
for us certain B, € R—Mod— R. The Borel picture gives us a surjection
R®R — H(X). Then B,®rC = C ®rB, = HF as R-bimodules, for
suitable £ € W depending on F.

1.9 A duality conjecture

I want to state a duality conjecture closely related to Beilinson-Ginsburg
duality and motivated by unpublished work of Ginsburg. First some gener-
alities. For any additive category B let K®(B) be the homotopy category of
bounded complexes. For any abelian category A let D?(.A) be the bounded
derived category. Let p(A) C A be the full additive subcategory of projective
objects. Under suitable hypothesis canonically K*(p(A)) = D(A).

Now let X C Z be the kernel of the composition Z — § — C(h,W).
Then HX = KHK = KN Let B C C —mod® — C (resp. B C C — Mod® —C)
be the full additive subcategory generated by the B, = B, ®sC withz € W
(resp. the B; ®s C(z) with z € W,1 € Z). Then V induces an equivalence
p(FHK) = B and we get an equivalence D*(RHK) = K*(B) where @,y
corresponds to ®c¢.

Now as we know already KHKX = mod® — A with A = Endggce (P, B:).
This is a graded algebra and we put KHX = Mod® — A. 1 regard it as a
mixed version of KHKX. Again D*(K'HK) & K*B) and the tensor product is
a functor ®¢ : K¥(B) x K*(B) — K*B). I want to simplify notation and set
T = K*(B) the “bounded derived category of mixed Harish-Chandra bimod-
ules” (with suitable restriction on the action of the center). It is equipped
with shifts of complex-degree [n], shifts of grading of graded modules (z) and
convolution ®. to be denoted * from now on.

On the dual side there ought to exist a triangulated (but not full) subcat-
egory G in the bounded derived category D(G/B x G/B) of all mixed Hodge
modules on this space (for more canonicity we should take here in fact the
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flag manifold of the Langlands dual group) such that (1) if we restrict ob-
jects of G to G-orbits we get semisimple complexes consisting of sums of Tate
sheaves only and (2) G is stable under convolution and Tate twist. For M
I denote by M(2) the once Tate twisted object usually denoted by M(1).
Now construct G by formally adding a root of the Tate twist. Namely put
G = G x G and set (M, N)(1) = (N(2), M). This is a triangulated category

with automorphisms (z), [n] and convolution o.

Conjecture 1 There should be an equivalence of triangulated categories  :
T = G such that k(M[n]) = (sM)[n), &(M(3)) = («M)[—i](=7) and x(M *
N) = (kM) o (,kN). It should transform suitably shifted projective mized
Harish-Chandra bimodules to intersection cohomology complezes of closures
of G-orbits.

The equivalent categories 7 and G with convolution could be regarded as
something like a ring. Then the representation theory of real reductive Lie
groups should be investigated as something like a module over this ring. This
would lift the actions of Hecke algebras via projective functors or dually via
convolution with intersection cohomology complexes to a higher structural
level, and one may hope to be able to identify these two actions or, more pre-
cisely, their mixed versions, via some “Koszul duality” similar to the duality
conjectured above.

Dreaming in another direction I want to mention that may-be (cf. [BGi])
even A = A(W,S;h*) itself is a Koszul algebra, however with a grading
different from the one we defined on it. In the sl(2)-case our grading gives
on the quiver the loop arrow degree two and the two other arrows degree
one, whereas in case we give all three arrows degree one we obtain a Koszul
algebra.

1.10 Generalizations

To save time and indices | have not written this paper in the maximal possible
generality. Let me nevertheless formulate the (slightly conjectural) results
in full generality. One may define an exact functor V. : HC — C — mod
characterized (up to non-unique isomorphism) by the property that it anni-
hilates all irreducibles except those of maximal Gelfand-Kirillov dimension,
and maps those to a onedimensional vector space.
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Again this can and will be regarded as a functor V: HC — Z —mod - Z
and proposition 1 continues to hold with H replaced by HC, i.e. V(X ®u
Y) = V(X) ®z V(Y) naturally. Theorem 3 continues to hold as well when
we take for H any block of HC and for I C Z any ideal of finite codimension.
To generalize theorem 4 to the case of regular (but possibly non-integral)
central character is also rather straightforward. Basically we ought to replace
W by the integral Wey! group. To include singular central characters into
the picture as well, we ought to first generalize the section on Hecke algebras
and bimodules, but I think the paper is alrecady thick enough.

1.11 Thanks

I thank Jens Carsten Jantzen and Henning Haahr Andersen for pointing out
errors in a preliminary version.

2 Hecke algebras and bimodules

2.1 Realization of the Hecke algebra via bimodules

For any Coxeter system (W,S) the Hecke algebra

fl = AW,S) = @ Zlo, ¢
TEW

is defined over Z[q, ¢~'] by generators {T,},cs and relations T? = (¢—1)T,+
¢gv¥s € §,T,T,...T, = T,/T,... T, (resp. T,T;...T, —-TT .. T;) with
n factors on both sides in case s,t € § are distinct, st is of order n and n is
even (resp. odd). Later we set H = H ®zy,,-1) Z[t,t™"] with ¢ = t2.

We assume from now on that § is finite. As in the introduction let V
be the complexified geometric representation of W, but since we work with
H we have to grade S as usual, S = V*. So we are interested in the split
Grothendieck group of left S-finite graded S-bimodules < § — Molf — S > .
This group is even a ring under ®5. We want to prove:

Theorem 7 There is a ring homomorphism £ : H =< S — Molf — § >
such that £(q) =< S(1) >, (T, +1) =< S@s: S > Vs € S.
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Proof: Let us interpret S — mod — S as the category of all quasicoherent
sheaves on V x V. Consider in V x V the twisted diagonals A, = {(zv,v) |
v € V} for all z € W. For any subset A C W define Ay = UzeaA, and
consider the ring of regular functions R(A) = R(A4) € S — Molf — S on
A 4. For example, R(z)®s R(y) = R(zy)Vz,y € W. The proof of the theorem

relies on the following proposition:

Proposition 2 Suppose S = {s,t} and W < oo, t.e. W is a finite dihedral
group. Choosexz € W and set A = {w <z} C W. Thenin § — Molf — §
there is an isomorphism

S ®s» R(A) = R(AU sA) ® R(AN sA)(1).

Remark: The assumption W < oo should be superfluous.

Proof: Postponed to the next subsection.

We deduce the theorem. Without restriction of generality we assume that W
is a dihedral group. Let us abbreviate notation and set R(< z) = R({w < z})
for any z € W. Certainly we can define an homomorphism of abelian groups
£:H 5< S — Molf — § > by the prescription

E(@" Y Tu)=< R(<z)(n)>Vz € W,neZ.

w<z

Then £(q) =< S(1) > and &(T, 4+ 1) =< R(< s) >=< 5 Q5. S > for all
s € 8§, the latter equality by the proposition with £ = e the identity of W.

We just have to show that this € is an algebra homomorphism. For this
it 1s sufficient to check for all z € W, s € § the equality

E(T,+1) Y. T,) =< § ®ss R(< 7) > .

w<r

Now set again A = {w < z}. A short calculation in H shows that

(T, + 1) Tu= 3 Tu+qg 3 T

w<zr wEAUSA vEAMsA

We compare with the above proposition and are through. q.e.d.
Further remarks to the theorem:

1. Suppose fW < oo. As above let R(W) denote the ring of regular
functions on the union of all twisted diagonals. Then £ factors over

< R(W) = Mof > .
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2. Consider for any 7 € § —mof — S and z € W the dimension d,(F) of
its (geometric) stalk at the generic point of A; and define the “cycle
map” C :< § —mof — S >— Z[[W]] by F — Y d(F)z. Then the
composition Co € : H — Z[[W)]] is the evaluation at ¢ = 1 (and factors
in particular over Z[W] C Z[[W]]).

2.2 Deformation of Schubert calculus

In this subsection I suppose always §W < oo. To prove the proposition we
first have to develop some generalities. Any reflection s : V — V gives
s: S5 — 5. If we choose an equation o € V* of the reflecting hyperplane V',
we may define the “twisted derivation” 9, = 02 : § —= S, f — (2a)7'(f—sf).
If X C V is closed and s-stable, then 5 : § — § induces s : R(X) —
R(X) and R(X) decomposes into eigenspaces R(X) = R(X)* & R(X)~. If
in addition no irreducible component of X lies inside V* thenevend, : S — §
induces dy : R(X) — R(X) and we see that multiplication by « and 9, are
mutually inverse isomorphisms R(X)~ & R(X)* compatible with the S°-
module structures.

Now instead of V let us consider V x V| with the reflection s € W acting
only on the first factor. The above considerations give us 5,8, : S® S —
S® S and even 5,0, : R(A) — R(A) in case A C W is s-stable. These are
homomorphisms in S* — mod — S.

Lemma 1 Let A C W be s-stable. Then S ®s+ R(A) = R(A)® R(A)(1) in
S —Mod - 5.

Proof: R(A) = R(A)* ® R(A)~, S ®s. R(A)t = R(A) by multiplication and
a: R(A)*(1) — R(A)™ is an isomorphism. ¢.e.d.

Consider the ring R(W) of regular functions on the union of all twisted
diagonals. Obviously the left and right actions of $¥ on R(W) coincide.
Therefore a surjection S @sw § — R(W).

Lemma 2 The surjection S @sw S — R(W) is an isomorphism.

Proof: Let K be the kernel. Since dim(S®gw QuotS) = §W = dim(R(W)Qs
QuotS) we have K ®s QuotS = 0. But S ®sw § is torsionfree as a right S-
module, and so is K. This implies K = 0. g.e.d.

Let w, € W be the longest element.
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Proposition 3 There is ¢ € R(W) homogeneous of degree [{w,) such that
$lAz =08 = # w,.

ProoffProposition]: We start with some preparatory lemmata. For z € W we
choose a reduced expression ¢ = 81+ 3,,8; € S, and form 9, = 0,,...0,, :
R(W) — R(W). Following [BGG] the 0, are well defined up to scalars. They

commute with the right S-action.

Lemma 3 For all f € R(W) the element 9, f belongs to the image of 1Q S
in R(W).

Proof: For all h € R(W) and s € S the element 0,2 € R(W) is fixed by s.
So Oy, f is fixed by all s € S, hence by W. This proves the lemma. g.e.d.

Lemma 4 Let I C R(W) be an ideal. Then I + 0,1 is an ideal as well, for
all s € S.

Proof: We need to show that I + 8,1 is stable under left and right mul-
tiplication by f € S. For the right multiplication this is clear since d,
commutes with (-f). For the left multiplication use the formula 0(fm) =
(G f)m + (s))(Om)VSf € S, m € R(W). g.e.d.

After these preparatory lemmas let us now prove the proposition. It
will be important to distinguish Ag = A(1® g) and gh = (¢ ® 1)k for h €
R(W),g € S. Choose f € R(W) homogencous of degree d such that f|A; =
0Vz # w,. Certainly fS is an ideal of R(W), and using the preceding lemma
repeatedly we find that ¥ .(3,;f)S is an ideal of R(W) as well.

Let i : V — UA; v — (v,v) be the diagonal, i : R(W) — S the
corresponding comorphism. I claim that

(*) 2 (0=} = R(W)i'(Bu, f)-

T

Here the inclusion D is evident since 9y, f = 1-i#(Oy, f) by lemma 3. 1f f =0
equality is evident as well. If not, we need

Lemma 5 Suppose f € R(W) is such that flA; # 0 & = = w,. Then
Oy f1Ayw, # 0 and from 0, f|Azw, # 0 follows z < y.
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Proof: From the definition of 9, we deduce (1) flA; = f|A, = 0 =
Oaf|Az = 0, f|Dsx =0and (2) flAL =0, f|Asy #0=> 0, f|Az # 0,0, f|Asz #
0. The lemma follows by induction. g.e.d.

Soif flA; # 0 & z = w, the 0;f are lincarly independent for the right S-
action on R(W) and the equality (%) follows by counting dimensions in each
degree. Thus indeed 3,(9.f)S = R(W)i*(dy, f). This says in particular that
f = ¢(0u, f) for suitable ¢ = ¢; € R(W). It is immediate that such a ¢ = ¢;
satisfies the conditions of the proposition. g.e.d.

The following proposition should be viewed as a deformation of classical
Schubert calculus [BGG, De].

Proposition 4 1. The space {f € R(W) | flA: = 0 if z # w.} is a
free right S-module of rank one, generated by a homogeneous element
@ € R(W) of degree l{w,).

2. The Oy with x € W form a basis of R(W) when considered as a right
S-module.

Proof[Proposition]: Let ¢ be as in proposition 3. Then d,,¢ is not zero by
lemma 5 and of degree zero, hence a scalar. The J,¢ are linearily independent
for the right S-action, again by lemma 5, and they generate the right S-
module R(W), by equation ().

To establish the proposition, we prove first

Lemma 6 For any y € W, the images in (< y) of the 0,¢,zw, < y form
a basis of this right S-module.

Proof: This follows from three obvious facts: First R(< ) is a quotient
of R(W), second 0,¢ vanishes on A, unless zw, < z and third R(< y) is
generically free of rank |{z < y}| as a right S-module. g.e.d.
Now if f € R(W) vanishes on all A, except Ay,, it is clear that f = @h
for suitable A € § (so in particular we can put ¢ = ¢.) g.e.d.[Proposition]
Finally we get at
Proof[Proposition 2]: Recall that in the proposition W was assumed to be a
dihedral group. If z > sz the proposition follows from lemma 1. If z = e it
follows from lemma 2. So suppose z < sz,x # e. Then A — sA = {z,rz}
with » € W a reflection. Consider the subspace A; + A,z C V x V. This is

a hyperplane. Let 3 € § ® S be its equation. This is well defined up to a
scalar.
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Lemma 7 R(A) is generated as an object of S*-mod-S by (the images of)
and 1.

Proof: R(A) is generated as an object of § —mod — S by 1. So as an object
of §* —mod — S by a = a®1 and 1. Since degf = 1, the only thing we
have to show is that 8 does not lie in the image of (V*)*®1+1® V*. Now
the orthogonal complement of the latter subspace of (V @ V)* is the line
V-®0CV ®V. But this is not contained in A; + A,;. g.e.d.

Now consider the S-subbimodule of R(A) generated by §. Certainly 8|A, =
B|A;z = 0. Remark that 8|A, # 0 for all y other than xz,rz. Indeed it is easy
to see that A, + A, =V XV & A, NA, =0 Vvt = 0 & ylz
is neither the identity nor a reflection & y # z but det(y) = dei(z). So
Ay + Az + Az =V XV for any y other than z,rz and thus 8|A, # 0
for all those y. Thus the S-subbimodule of R(A) generated by # has to be
isomorphic to R(A NsA)(1).

Let M C R(A) be the subobject in $* — mod — S generated by 8 and

consider the short exact sequence
S®se M — § ®s¢ R(A)—»coker.

Using lemma 1 and glancing at its proof, S ®s. M = R(A N sA)(1). Using
lemma 1 again the S®S-action on our three bimodules factors over R(AUsA).
Using lemma 7, coker is a cyclic R(AU sA)-module. Using lemma 6 to count
dimensions in each degree, we see that even coker = R(A U sA). Thus the
sequence splits. g.e.d.[Proposition 2]

3 Deformation of projectives in category O

3.1 Preliminaries concerning differential operators

Recall the notations g D b D h, § = S(h), U D Z. We always write @c = ®
and set g = g ® K for any commutative C-algebra R. In this subsection
only let M = U®y § € gs — mod be the “Verma sheaf on h*”. We want to
prove:

Theorem 8 Let I, F € g — mod be of finite dimension.
1. Homg (E@ M, F ® M) is a free S-module of rank dim(E ® F*)™.
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2. For any commutative S-algebra §' the canonical homomorphism
Homg (EQM,FQM)®sS' — Homg (EQM @55, F@M @5 5")

is an isomorphism.

Proof[Theorem]: For any gs-module N let EndsN be a g-module via the
adjoint action and let EndsN C EndgN be the subspace of adg-finite endo-
morphisms. We deduce the theorem from the following

Proposition 5 For any commutative S-algebra S’ the multiplication induces
an isomorphism U ®z S5’ — Ends (U @y, §7).

Remark: If we put S’ = S/(ker)) with A € h*, we obtain Joseph’s description
of the adg-finite endomorphisms of a Verma module ([Ja}, 7.25).
Before we prove the proposition, let us deduce the theorem. Indeed, we
get ,
Homg (E® M,FQM) = Homg(E® F*, EndsM)
= Homg(E® F*,U®zS)

and thus 1.) follows directly from Kostant’s description of U as an Z-adg-
module. I leave to the reader the (similar) proof that the proposition implies
2.). g.e.d.[Theorem]

Proof[Proposition]: First check that the multiplication U S' — Endg(U®y,
S") factors over U @z §'. We may assume S’ = S and then this follows from
the definition of the Harish-Chandra homomorphism ¢ : Z — S.

To prove that our map is an 1somorphism we need some geometry. Let
G D B D H be connected algebraic groups with Lie algebras g D b D h
and consider the principal H-bundle = : G/(B, B) — G/B, with the right
H-action given by ¢(B, B)t = gt(B,B)Vt € H. Denote it by = : ¥ — X.
This H-bundle is G-equivariant. Let Dy be the sheaf of algebraic differential
operators on Y.

Now the “relative enveloping algebra” U = (m.Dy)¥ is an sheal of S-
algebras on X (see [BB2]) and the operator representation U — I'(Y, Dy )
gives us an algebra homomorphism U — I'(X,U). More generally, Y’ =
URs S’ is an sheaf of §’-algebras on X and we get an algebra homomorphism
a:URS - TI(X,U).

By local considerations the geometric stalk U/ /U'm, of U’ at e = B €
G/B = X is a faithful module over I'(X,U’). The constant differential op-
erator 1 on Y leads to v € U'/U'm,. Restrict U'/U'm, to U ® S’ via a.
Universal properties give us a U ® S’-morphism U ®y, §' — U'/U'm, such
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that 1 ® 1 +— v. This can be checked to be an isomorphism. We deduce that
« factors through 8: U®; §' — I'(X,U’).
To prove the proposition, consider the following commutative diagram:

Uz S — gnds:(U b S')
B |
P(X,U’) 5 gndS:(U'/L{'m,)

with the horizontal arrows given by multiplication. We need only show that
B and v are isomorphisms.

We start out with #. In case S = S’ it is well known to be an iso-
morphism, see e.g. [So02]. To prove the general case we just need to know
that T'(X,U ®s §') = I'(X,U) @s S’. Now for any S-module N the coho-
mology groups H*(X,U ®g N) vanish for v > 0, the argument being the
same as in the special case N = § treated in {So2]. Thus the two functors
N - T(X,U®sN)and N — TI'(X,U)®s N are both exact. Since the natu-
ral transformation from the second to the first is obviously an isomorphism
in case N = §, it has to be an isomorphism in general. So indeed § is an
isomorphism.

Finally we have to show that 4 is an isomorphism. The argument is a
new version of [So2}, 3.4. Consider the commutative diagram

T(X,u") 5 D éplg) = (971 D)(v)
N
vl {¢:G - U /UM, | ¢ regular, ¢(gb) = b~¢(g)Vy € G,b € B}
/
Ends(U' [U'M.) > [ ¢s(9)= (97" f)(v)

Here we have quietly integrated the adjoint g-action on Endg (U’ /U'm,) to
a G-action - to do this without thinking, assume G simply connected.

Certainly g acts on U'/U'm, = U &, §’. On the other hand, B acts on
U'[U'm, as this is the stalk of the G-equivariant right Ox-module &’ at the
point e € X fixed by B. This action is given by b(u® s) = (Ad(b)(u)) ® s, as
the reader may check himself. However on Endg: (U’ /U'm.) the differential of
the B-action coincides with the restriction of the g-action to b. This proves
that ¢; has the correct transformation property.

We have already seen that v is injective. For any G-equivariant right
Ox-module U’ the map D — ¢p is a bijection. To force v to be bijective,
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it suffices to show that f +— ¢, is injective. But ¢; = 0 = (uf)(v) =
(ugy)(e) =0 forallu € U.If f # 0 there is some u € U such that f(uv) # 0,
since f is §’-linear. Assume this u to be of minimum possible degree. Then
(uf)(v) = f(uv) # 0 and this contradiction proves injectivity of f — ¢;.
g.e.d.[Proposition]

3.2 Deformation of projectives

Consider the classical category O = O(g,b) = {M € g — mof | M is
locally finite over b and semisimple over h}. For any A € h* consider the
Verma module M(A) = U ®y, C,, its unique irreducible quotient L()) and
the projective cover P(A) of L(A) in O. Let h* D R > R* O A be the dual
of h, the roots of g, the roots of b and the simple roots. Let P(R) C h* be
the weight lattice.

Under the action of h our category O decomposes into O = @ O, where A
runs over all shifted weight lattices A € h*/P(R). Let p € h* be the half sum
of positive roots. Set A* = {A € A |<A+p,a>¢ {-1,-2,...}Va € Rt}
Under the action of Z C U and using once more the action of h, the Oy
decompose further into Oy = @ Oy where A runs over At.

The O, cannot be decomposed further. Let the dot action of W on h* be
defined by w - A = w(A + p) — p. The simple objects of O, are precisely the
L(p) with p € (W - X)N (A + ZR). For any A, p € A* there is a translation
functor 0% : Oy — O, (see [Ja]).

Now let T' = S(g) be the local ring of SpecS at 0 € h* C SpecS. We are
going to define for any A € h*/P(R) a full additive subcategory Dx C gr —
mof along with a decomposition Dy = @yea+ Da and translation functors
0y : Dy — Dy for any two A, € A*. I think of the objects of D, (resp. D))
as deformations of projectives in Oy (resp. 0,).

Let us give the definitions! I will be rather short, since most of the
material is treated in {So3]. First define for any A € h* the “deformed
Verma” M, € gr — mof by My = U®y, (C, ® T). Here b acts on C, as
usual, on T'viab - h - $ — T and on (C, ® T') via the tensor product
action. Then let D(A) C gr — mof be the full subcategory consisting of all
direct summands of modules of the form £ @ M), with £ € g — mod®.

Now D()) decomposes under the action of ZQT. Namely, for any maximal
ideal x C Z denote by D,(A) the category of all M € D(}) such that
suppM C Spec(Z @ T) has (x, m) as its unique closed point, where m C T'
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is the maximal ideal. On closed points the Harish-Chandra homomorphism
gives £ : h* — MazZ. In this notation D(A) = @,eea)Dx(A) with A =
A+ P(R).

On the other hand D(A) decomposes under the action of h ® 7. Namely,
for any p € h* and M € gr — mod define the p-eigenspace M* C M by
Mt ={veM| Xv=(X+puX))vX € h} where the left hand side
multiplication is to be understood with X € h C g, but the right hand side
with X + u(X) € § C T. Then M* C M is a T-submodule, and for all
¢ € h*/Z R the subspace M® = @, M* C M is a gp-submodule of M.

Now let again A € h* be arbitrary and set A = A + P(R). One verifies
that any M € D()) decomposes as T-module into M = @, M* and as go-
module into M = @.cp/zr M. This gives even a decomposition of categories
D)) = Beerszn DV,

For any x € A denote by 7 its image in A/ZR and set D,(A) = DE(A) N
De(,)(A). With these notations we have the decomposition D(A) = @ ,ea+ Du(A).

Let pr, : D(A) — D,(A) be the projection functors along this decomposi-
tion. For any two i, v € At we define the translation functor 0% : Du(A) —
D,(A) by 84M = pr,(E @ M) where E € g — mod is finite dimensional with
extremal weight v — u. We have the adjointness (8%, 04).

If both A, u € h* are dominant regular and A + P(R) = pu + P(R) then
05 My = M, so in particular D(A) = D(u). For A € h*/P(R) we put Dy =
D(A) with A € A any dominant regular element, and for p € AT we set
D, = D,(}r). These definitions do not depend on the choice of A and the
translation functors 0, : D, — D, are well defined.

Now I want to explain the useful properties which make it worthwhile to
define these deformations.

Theorem 9 1. For any two M,N € Dy the space Homg, (M, N) is a
free T-module of finite rank.

2. For any commutative T -algebra 1" the canonical map
Homg, (M,N)®7T" — Homg, ,(M®7T',NQ7T") is an isomorphism.

Proof: This follows from the definitions and theorem 8. q¢.e.d.

Theorem 10 . The specialization @TC : Dy — O, gives a bijection
between objects of Dy and projectives in Oy (both considered up to
isomorphism).
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2. The translation functors commute with specialization.

Proof: 2.) is clear. 1.) is proved in [So3]. In some sense it is a refined and
disguised version of the “classification of projective functors” theorem from
[BG]. q.e.d.

More generally, let 7 C T be an ideal of finite codimension. Let I as well
denote INS. On any M € g—mod which is locally finite over h the nilpotent
part of the h-action gives rise to a morphism § — EndgM. Let O consist
of all locally b-finite M € g — mof such that this S-action factors over
S/I. We have analoguously to category O (the case I = m) decompositions
Of =@ 0f, Of =@ O and translations 05 : Of — OL. :

Theorem 11 1. The I-specialization @rT /1 : Dy — O} gives a bijection
between objects of Dy and projectives in OL (both considered up to
isomorphism).

2. The translation functors commute with I-specialization.

Proof: 2.) is clear. For 1.) remark that M) ®r T/ is projective in O, for
all dominant A € h*. Thus for all M € D, the object M @1 T/I is projective
in O4. Then the statement follows from the preceding theorem. q.e.d.

On the other hand the situation over the generic point is easy. Put Q =
QuotT. Certainly h* C hp. Consider in hy also the “tautological weight”
7 whose restriction to h C hg is given as the identity to h C § C Q. For
A € h*/P(R) the category Opayr = Oryr(g8g,bg) decomposes as Opy, =
@irea Ortr, and the suinmands are semisimple with only one simple object,
namely the irreducible Verma module M (A + 7) over go.

Theorem 12 . Specialization to the generic point is a functor @7Q :
Dp — Opyr and maps Dy to @, Ouqr where p runs over (ZR+ A)N
(W - A).

2. Under @rQ the translation 03" : Dy — Dy decomposes into the matriz
of functors (T¥) for p € (ZR+A)N(W-A), ' € (ZR+XN)N(W - X)
with T¥ = Oﬂ'f; (resp. T¥ = 0) if there ezists (resp. doesn’t ezist)
weW such thatw- A =pu, w- XN =y

Proof: Left to the reader.
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3.3 Endomorphisms of deformed antidominant pro-
jectives

To save energy and indices, let us henceforth restrict our attention to the
integral case. Let w, € W be the longest element. For A € P(R)* let
P, € D, be the deformation of the antidominant projective P(w, - ) € O,.
Set Wy ={w €W |w-A=2A}.Let hy : ZQT — T®pwT be the composition
70T sor "% s L T @rw T, where (+1) : § — S denotes the
comorphism of (+X) : h* — h*.

Theorem 13 Assume A € P(R)*. Then the multiplication ZQT — EndP)

ts a surjection, hy : ZQ®T — T @pw T has image TY> @pw T and both these
maps have the same kernel. So T"*» @rw T = EndP) canonically.

Now let A,z € P(R)* and assume W, C W,. Then certainly §5P, = P,.
Theorem 14 We have a commutative diagram

T @rw T —  EndPy
| 03 |
T @mw T — EndP,.

where the left vertical arrow is just the tnclusion.

Now let us give the proofs.

Proof[Theorem 13]: For regular A this is just a step in the proof of the
Endomorphismensatz of [So3], although it is not explicitely stated there. We
can however argue in the opposite direction as well. From theorem 12 we
obtain a commutative diagram

20T — EndSTP/\

! !
ZQ — Ende(GBM(p—f-'r)).

If we read it carefully, it proves that kerh, annihilates P,. By some invariant
theory imhy = T™*» @ pw T. Thus a map T"™* @rw T' = EndP,. Since it
induces isomorphisms on the generic point and the closed point of SpecT,
the latter by the Endomorphismensatz of [So3], it has to be an isomorphism.
g.e.d.[Theorem 13]

Proof[Theorem 14]: It certainly suffices to check commutativity over the
generic point, i.e. after applying ®7Q. But then this follows from some
thinking and theorem 12. q.e.d.[Theorem 1{]
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3.4 Homomorphisms between deformed projectives

Let us fix A € P(R)*. Let us abreviate T"» = T*. Remember P, € D,
and the surjection 7% ® T—+EndPy. Thus we have a functor V = V, =
Homg, (P, ): gr — mod — T —mod — T.

Theorem 15 For any two M, N € D, the canonical map
V: Homg, (M,N}) —» Hompigr(VM,VN)
s an isomorphism.

We will start out proving approximations to this theorem. Remark first that
for any commutative T-algebra 7V and M € D, we have canonically

V(ﬁf 7 T') HO‘rngT (P,\, M @7 T’)

HOTngT, (P,\ ®T T', M ®T T')
Homg, (P\, M) @7 T' by theorem 9
(VM)@r T'.

|

Choose now an ideal I C T of finite codimension and set D{ = D, @rT/I C
gr — mod. By theorem 11 the category D! consists just of the projective
objects in O and certainly Homg, (M, N) = Homg(M,N)YM,N € Di. We

show as a first approximation to our theorem:
Proposition 6 For any M,N € D! the canonical map

V: Homg(M,N) — Hompgr(VM,VN)
ts an isomorphism.

Proof: We make an induction on the codimension of I. For ] = m the

proposition reduces to the “structure theorem” of [So3]. So suppose I C J C

T are two different ideals, J/J = C and the theorem is known for J already.
Since N is free over T'/I, there is a short exact sequence

E= {N®T.]/I‘—'>N-——»N®TT/J}

in OF. Since M is projective in Of, the sequence Homg(M, E) is exact as
well. On the other hand the preceding remarks show that VE is the sequence

VN@rJ/[I—>VN>VNQrT/J
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By theorem 9 the right T-module VN is free over T'/I, thus V E is also exact.
So Hompagr(VM, VE) is left exact.

Consider the obvious map of sequences
Homg(M,E) = Hompgr(VM,VE).

It is an isomorphism on both ends, by the structure theorem and the induc-
tion hypothesis. It is an injection in the middle, since N has a Verma flag, so
socNN is a direct sum of copies of the irreducible Verma module. We conclude
by a diagram chase that our map of sequences is also an isomorphism in the
middle. g.e.d.

Let O C g—mod be the full subcategory of modules of finite lenght with
all composition factors in Oy. In other words, O3 = |J O4. The nilpotent part
of the h-action on objects of Of° gives rise to an S-action which extends to
a T-action. Thus O embeds as a {ull subcategory in gy — mod.

Corollary 1 Let Q € Of be projective. Then for any M € OF the canonical
map
V : Homg(M,Q) = Hompagr(VM,VQ)

is an isomorphism.

Proof: For M € O projective this is the proposition. For M € O} arbitrary
use a projective resolution. For M € O arbitrary one restricts to M//M.
q.e.d.
Proof[Theorem]: In the following discussion we will concentrate on the right
T-module structures of all our objects. At the generic point of SpecT our
map V of the theorem is an isomorphism, since there by theorem 12 all
objects of Dy decompose into sums of irreducible Verma modules. Thus V
1s injective and its cokernel cokerV is torsion.

Now consider for any ideal I C T of finite codimension the commutative
diagram

Homg (M,N)@rT/1 - Hompsgr(VM,VN)@r T/I

! !
HomKT(M oy T/I:N®T T/I) — HomT.\®T(VM QT T/I,VN QT T/[)

The left vertical and lower horizontal are already known to be isormorphisms,
by theorem 8 and the preceding proposition. Thus V : Homg (M, N) —
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Hompagr(VM, VN) induces a split injection on the completions at m €
SpecT. Now completion is exact on noetherian T-modules, thus (cokerV)* =
coker(V*). This is a submodule of Hompagr(VM, VN)* via the splitting
and is torsion over T since cokerV is. But Hompmgr(VM, VN) clearly is
torsion free as a T-module, thus its completion is torsion free over T' as well.

These statements together show cokerV = 0, i.e. V is an isomorphism.
g.e.d.[Theorem]

3.5 Relation with translations

For any A € P(R)* let us denote C* = EndPy, = T™* @ w T'. We thus have
the functor Vy : Dy — C* — mod. Now suppose u € P(R)* as well and
W, C W,. Let resﬁ : C* — mod — C* — mod be the restriction.

Theorem 16 The following diagrams commule:

D, — C*—mod Dy — C*—mod
Hﬁ 1 l resﬁ 05 1 L Homea (C*,) )
Dy — C*—~mod D, — C*—mod

It is useful to have in mind as well:

Proposition 7 There is an equivalence of functors
C'@cr & Homea(C*, ): C* —mod = C* — mod.

ProoffTheorem]: Certainly 05:P, = P, and by theorem 14 the induced map
on endomorphisms is just the inclusion C* — C*. Thus for any Q € D, we
have
VOﬁQ = Hom(P,\,O,’) )
Hom(05 Py, Q)
HO?;%(P,‘, Q)
= resp(VQ),

and the first diagram commutes.

In particular VO3 P, = C* as C*-module and also as C#-module, where
the latter action comes from the C#-action on P,. Thus

VEQ = Hom(P,0Q)
Hom(0)P,,Q)
Homex (VO,P,, VQ)
= Homg (CH,VQ).

il
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g.¢.d.[Theorem]

Proof[Proposition]: Both functors are exact and strongly additive, thus we
need only check C* = Homga(C#,C*) as C#-modules. A silly but quick
way to see this is to put ¢ = P, in the preceding sequence of equations.
g.e.d.[Proposition]

For any s € § we have the wall crossing functor 8, : Dy — D, defined
by 6, = 036, where A € P(R)* has stabilizer Wy = {e,s}. Remark that
EndPy=C°=T ®¢wT = S ®rw T. Thus we may interpret V as a functor
V :Dy —= S —mod—T. Certainly VMg = T. Furthermore

Lemma 8 V0,2 S®s V:Dy =S5 —mod—T.

Proof: This follows from the above theorem and proposition. ¢.e.d.

4 Hecke algebras and bimodules, revisited

In this section W is always a Weyl group. It acts on h by the reflection
representation and we set § = S(h).

4.1 Some results on bimodules

Let Bo,Bg € § — Mod — S be both of the form S®g. S ... Qs S for suitable
3,...,t € § depending on a, .

Proposition 8 Homggs(B,,Bp) is a free right (and left) S-module of finite

rank.

Proof: By lemma 8§ of the preceding subsection there are objects P, P € Dy
such that VP, 2 B, ®s T, VP; =2 Bs®sT. But

IfO’(ngT(Pa,Pﬁ) = H0m5®T(VPa,V.P3)
= Homsgs(Be,Bp) ®@s T

is a free right T-module of finite rank by theorem 9. Since Homggs(Ba, Bs)
is graded and finitely generated, this proves the proposition. q.e.d.

Proposition 9 For any commutative (not necessarily graded) S-algebra S’

the canonical map Homggs(Bo, Bg) ®s S' — Homsgs(Ba ®s S, B ®5 5”)

is an isomorphism.
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Proof: We first show this for §' = §° = C. Indeed

Homsgs(Ba,Bg) ®s S° = Homsegr(Ba ®sT,Bg®sT) ®r S°
= Homg,(Ps, Ps) @r S° by theorem 15
= Homg(P, ®r 5° Ps ®r §°) by theorem 9
= Homggso(Ba @1 S° Bg @7 5°) by proposition 6.

Now we want to deduce the case of arbitrary S’. We need

Lemma 9 Let f : H — H be a morphism of graded free S-modules of finite
rank and suppose the specialized map H' Q¢ S° — H ®5 S° is an injection.
Then f is a split injection.

Proof[Lemma]: First specialize to the generic point. Put @ = QuotS. Then
dimg(coker f)®@sQ > rk(H)—rk(H’). By the assumptions dimc(coker f)®s
SO = rk(H) — rk(H"). But for general reasons '

dimg(cokerf) ®s Q < dimcg(cokerf) ®s S°

and since cokerf is graded equality implies it is free. Hence coker f is free
over S and dimg(coker f) ®s Q = dimg(H @5 Q) — dimg(H' ®s Q). This in
turn implies that f induces an injection H' ®s Q) — H ®s @, and since H' is
torsion free f has to be an injection itsell. But cokerf is free, thus f is split.
g.e.d.[Lemma]

Using this lemma, we show

Lemma 10 Let H' — H — H" be a complex of graded free S-modules of
finite rank and suppose the specialized complez H' ®5 S° — H @5 5° —
H" @¢ SO left exact. Then the complez itself is left exact and split, i.e.
isomorphic to a complex H' — H' @& H{ — H| @ H{ with the obvious maps.

Proof: Apply the preceding lemma twice. g.e.d.
Now we prove the proposition for & arbitrary. Indeed, we just have to
show that for all M € § — mod the canonical map

can : Homggs(Ba,Bg) ®s M — Homggs(By, Bg ®s M)
is an isomorphism. Let F'= {(S® 5)™ — (S ® S)" — B, } be a graded free

resolution of B,. We get a morphism of sequences

can : fIOTnS&g(F,Bp) Qs M — ffom‘g@,g(F,Bﬁ Rs M)
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By the case §' = S° which we did already, this is an isomorphism for
M = S§° In particular Homggs(F,Bg) ®s S° is left exact. Thus by the
preceding lemma Homggs(F,Bg) is left exact and split as a sequence of
right S-modules, thus Homgsgs(F, Bg) ®s M is left exact for any M. This in

turn shows that can is always an isomorphism. g.e.d.

4.2 Realization of the Kazhdan-Lusztig basis via bi-
modules

We now prove theorem 2 from the introduction. Basically we showed part
4.) in the preceding subsection. In addition to this information we have to
use theorem 7 and the results of [So3].
Proof{Theorem 2]: 1.) We establish the existence of the B,. This is done
by an induction on the lenght of z, the case z = e being trivial. Recall the
coinvariants C = S/(S+)WS. In [So3] we defined certain B, € C — Mod® — C
and Dy-y = B, @c C € C — Mod®. 1t is clear from the definitions that
B, = B, ®s C and D1 = B, ®s S° if B, happens to exist. I simplily
notation and put D, = D, 1.
Now suppose B, is already constructed and sz > z for some s € S.
Then C,C, = C, + Ty<z (s, ,y)C), with n(s,z,y) suitable integers > 0.
Consider the graded ring End$gs(S(—1) ®ss B;). We have

Endses(S(—1) ®s: B:) ©s 5° = Endy(5(-1) ®s B, s 5°)
= End%(S(-1) ®s. D.).

By [So3] we know that 5(—1) ®s: D; = D,; @ @, <. n(s,2,y)D,. By the Er-
weiterungssatz of [So3] the endomorphisms of this object live only in degrees
> 0. Thus the same is true for Endygo(S(—1) ®ss B;) and in degree zero we
get a ring isomorphism Endggyo(S(—1)®s:B;) — End3(S(-1)®s:D,). Let p
be the projection onto D,, on the right hand side, and denote its preimage by
p as well. This idempotent induces a decomposition S ®g. B, = imp @ kerp
such that imp ®s S® = D,, and kerp @s S° = @, n(s,z,y)D,. Now if
M,N € § — Molf — S are such that < M >, < N >€ E(H) we know
that M ¢ S° @ N ®5 S® implies M = N, say since under the action of
H on < C — Mod® > the annihilator in H of < C > is zero. In particu-
lar kerp = @, ., n(3, z,y)B,, and it follows that £(C/,) =< imp > . Thus
B,; = imp does the job.
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2.) By construction B, ®s $° = D, and D, is indecomposable.

4.) is clear from the preceding subsection.

3.) Remark that by 4.) Endgs(, B:) ®s S° = End$(@, D:). By the
Erweiterungssatz the latter ring lives only in positive degrees and its degree
zero part is the span of the projections along the direct sum. From this 3.)
follows immediately. g.e.d.[Theorem 2]

4.3 Deformations of projectives, revisited

The L, = L{z~!-0) € O for £ € W represent the simple objects of this
category. For any ideal I C T of finite codimension let P! € Of be the
projective cover of L, in O'.

Proposition 10 We have VP! 2B, ®s T/l for allz € W.

Proof: Let PP € Dy be the deformation of the above projective. We
proceed by induction on the lenght of z, the case £ = e being trivial.
Suppose the theorem is established for z and sz > z for s € S. Cer-
tainly 0,P? = PL ® @,<,n(s,2,y)P] with the above notations, by the
Kazhdan-Lusztig conjectures and theorem 10. On the other hand S®g: B, =
B,: ® ®,<: n(s,z,y)B, when we forget about grading. If we apply V to
the first equation and @sT to the second, the left hand sides are isomor-
phic by lemma 8. Thus the right hand sides are isomorphic as well. If
we then apply ®77/I to them and use the induction hypothesis, indeed
VPL =VP2@rT/I =B, @rT/I. q.e.d.

5 Harish-Chandra bimodules

5.1 Construction and uniqueness of V

Recall from the introduction the category H of Harish-Chandra bimodules
with generalized trivial central character from both sides. We want to estab-
lish the existence and unicity of an exact functor V : H — C —mod such that
V annihilates all irreducibles except the irreducible principle series L € H
and dimVL = 1. This should be clear for general reasons. In our special
situation we can procede as follows: Choose projective covers P in H(ZH)"
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of L, choose surjections P™+1—»P" and set VX = lim Homy (P, X) for
X € 'H. There is our functor.

If V' is another one, choose v € V'L, a compatible system of surjections
P*— [ and a compatible system of preimages v* € V'P" of v. Then the
maps VX = §m Homy(P", X) — V'X given by {f*} — (V'f™)(v") for

n > 0 are easily seen to define an equivalence of functors.

5.2 Homomorphisms to projective objects

To establish certain properties of V we give another construction. Recall
the category OF° from subsection 3.4. In [Sol] I construct an equivalence
H = OF. This commutes with the left Z-actions on these categories. On the
other hand £ : Z — S induces an isomorphism Z”* = 5" of the completions
at Zt (resp. S*) of Z (resp. §) and this way the right Z”-action on H
corresponds to the S*-action on OF° given by the nilpotent part of the h-
action.

Now remember our deformed antidominant projective Py, € D, with
Endg, Po = T ®pw T and the functor Vo = Homg, (Fo, ) : gr — mod —
T @rw T — mod. Consider the composition H = O — T Qrw T — mod® —
T —mod®* —T — Z — mod® — Z, the last arrow given by restriction via
¢ : Z — T. This functor has the characterizing properties, so we just con-
structed our old V: H = Z —mod — Z in a rather akward way. However we
get directly for any Z*-primary ideal I C Z:

Theorem 17 Let Q € H! be projective. Then for any M € H the functor
V induces an isomorphism Homy(M,Q) - Homzez(VM,VQ).

Proof: Translate corollary 1 from subsection 3.4. g.e.d.

Theorem 18 Let P! be the indecomposable projectives of H!, suitably para-
metrized by £ € W. Then VP! = B, /B.Is as Z-bimodules, where Is C S
denotes the S*-primary part of £(1)S.

Proof: Translate proposition 10 from subsectionDpr. ¢.e.d.
Proposition 11 H/kerV =T Q7w T — mod®.
Proof: Clear. q.e.d.
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5.3 The functor V commutes with tensor products
Let GKdim : H — {—00,0,1,2,...} be the Gelfand-Kirillov dimension.
Lemma 11 GKdimX > GKdimX QuY < GKdimY for all XY € H.

Proof: [Ja)], 10.3. g.e.d.

Let I C Z be a Z*-primary ideal. All projectives of H' are direct sum-
mands of U-bimodules of the form E ® U/IU for E € g — mod®. Here
the left g-action is the tensor product action, but the right g-action is
just the action on the second factor. So all projectives of H! (resp. H)
are projective as right (resp. left) U/JU-modules. Consider the bifunctor
®u = Qu/u : H! x 'H — H. We note Tor' its higher derived functors.
They depend on I. The Tor' can be computed using a projective resolution
in either variable. Thus the preceding lemma generalizes to

Lemma 12 GKdimX > GKdimTor'(X,Y) < GKdimY for all X € H/!,
YelH,i>0.

Proof: Already given. q.e.d.
Now consider the irreducible principal series L = soc{U/Z*+U). The short
exact sequence L — U/Z*U-»coker gives us an exact sequence

Tor'(coker, L) = L Qu L — L—»coker @y L
and applying V to it, we see

Lemma 13 The composition L @y L — U/ZYU Qu L = L induces an
isomorphism V(L ®u L) 2 V(L).

Proof: Already given. q.e.d.

Remember the projective system P™ from subsection 5.1 giving rise to V.
Choose a nonzero map P' — U/Z*U. Using universal properties choose a
map ¢, : P! — P! ®yu P! such that the diagram

Pl N Pl ®U Pl

! 1
U/Z+*U = U/2+*U @y U/Z*U
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commutes. Using universal properties again, choose inductively maps ¢, :
P — P* @y P™ for all n such that

pn — § 240 ®U pP»
! !
Pn—l N Pﬂ.—l ®U Pn—l

commutes. These choices give us a natural transformation ¢ : V(X) ®
V({Y) = V(X ®u Y) between functors H X H — C — mod, by setting
$({fn} @ {g2}) = {$n 0 (fn @ ga)}.

By naturality this induces a natural transformation ¢ : V(X)®;V(Y) —
V(X @u Y) between functors H x H — Z — mod — Z.

Proposition 12 For all X|Y € M this map ¢xy : V(X)®z V(Y) —
V(X ®@uY) is an isomorphism.

Proof: First we show surjectivity. Let X” — X-—»X’ be right exact. If
for some Y both ¢x/y and ¢x»y are surjections, then ¢x y is surjective as
well by a diagram chase. With the same argument on the other side, we
are reduced to show ¢x y is surjective for simple X|Y. This in turn is clear
from lemma 11 if (X,Y) # (L, L) and from lemma 18 if (X,Y) = (L, L). So
indeed ¢x v is always a surjection.

To prove bijectivity, we may without restriction assume X € H' projec-
tive and Y € !H for some Z*-primary ideal I C Z. For X projective in H/
we know it is projective in mod — U/JTU. We also know V(X)) is a free right
Z/I-module, by theorem 18. Thus for projective X € H! both the functors
V(XQ®uY)and V(X)®z V(Y) are exact for Y € /H. We just have to show
equality of dimensions for simple Y. For Y simple, Y # L both sides vanish
and there is no problem. To show equality for Y = L then is equivalent to
showing equality for Y = U/JIU. In this case it is clear. g.e.d.

5.4 Some extensions of perverse sheaves

For any complex algebraic variety X let D(X) be the bounded derived cate-
gory of the category of mixed Hodge modules [Sa] on X and let D(X) be as
in the introduction. Let now X = U,ew Xu be stratified, W some finite set.
Suppose (1) the strata are irreducible and smooth and (2) their cohomology
is pure. Let C,, € D(X,,) be the intersection cohomology complex, i.e. the

33



constant variation R placed in degree —dimcX,. Let £, € D(X) be its
middle extension. Both these objects are pure of weight dimcX,,. Suppose
(3) that for any inclusion 7 : X, — X the object :*L,, € D(X,) is pure of
the same weight and further that (4) i*L, = @, n¥ ,Cu[v] in D(X,).

Proposition 13 Suppose the stratified space X satisfies (1) through (4).
Then (1) the hypercohomology induces an injection

Hom$(Ly, Ly) — Homg(HL,, HL,,)
and (2)
dimcEzth(Ly, L) = Y. nl nl dimcH*(X,).

v,z fw,z

a+iti=v €W

Proof: Certainly Ezt4(L,,L,) = B*RHom(L,,L,). Now this hypercoho-
mology is the limit of a spectral sequence with Ey-term

EP? = HP*9 R Hom(Ly, Lu)

where 2, denotes the inclusion of the union X, of all strata of codimension
p. But . RHom(L,, L) = RHom(i3L,,i,L,,) and thus by our purity as-
sumptions the spectral sequence degenerates at the Ey-term. This proves
the formula 2.).

To prove statement 1.) remark that also H”L, is the limit of a spectral

sequence BT = HP¥9 L, which also degenerates at this term for reasons of
purity. We just have to show that any nonzero morphism f : £, — £,{v]
in D(X) induces a nonzero morphism i, f : i\.£, — i,L,[v] for some p. But
let u, be the inclusion of X5, = >, X into X. Now Xy, = X, U X5,
is a decomposition into an open and a closed subset. We denote by u and
¢ the inclusions. Then we have a distinguished triangle (2,',1d, u,u‘)u; =
(Zettyp1, Upy Uaty) Which says that i) f = 0 and u},; = 0 imply u,f = 0. So if
all i f =0 then uyf = f =0. g.e.d.
Proof[Theorem 6]: The preceding proposition applies. Part 1.) shows the
canonical map of the theorem to be an injection. Part 2.) computes the
dimension of the left hand side of the canonical map. Using the second
remark following theorem 6 together with remark 5 to theorem 2 allows us
to compute the dimension of the right hand side of the canonical map. They
turn out to be equal. g.e.d.[Theorem 6]
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