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1.

The present paper is concerned to the theory of continuation of solutions to
elliptic differential equations. This theory, originated by the classical works
by H. A. Schwarz [1] and G. Herglotz [2] and others, is now very intensively
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developed. The remarkable papers by H. S. Shapiro and D. Khavinson (see
(3], [4]) and their collaborators and students as well as the powerful meth-
ods of complex analysis worked out recently by the authors (see [5], [6], [7])
allowed to obtain the essential progress in this theme. In particular, the
practically complete results in the localization of singularities for balayage
problems were obtained [8] and the investigation of singularities for continu-
ation of solutions to two-dimensional boundary value problems based on the
general reflection formula is given (see [9], [10]). These results have found an
important application in a sery of the applied problems of electrodynamics
(see [11], [12]).

We remark that, up to the present time, there were no general and ef-
fective methods of investigation (localization) of singularities of solutions to
boundary value problems for elliptic equations on manifolds of the arbitrary
dimension. The aim of the present paper is to fill this blank. Namely, we re-
duce the boundary value problem to a Fredholm integral equation using the
potential theory. Then we investigate the analytic continuation of solutions
to this integral equation.

An attempt of using integral equations for analytic continuation of so-
lutions to boundary value problems was done by R. Millar (see [13], [14]).
Unfortunately, his method of investigation of integral equations does not give
an effective method of calculation of singularities of the continued solution.

In the present paper we propose an algorithm of computation of singu-
larities for continuations of solutions to Fredholm integral equation. This
method gives, in particular, the solution of the problem of localization of
singularities for boundary value problems in spaces of arbitrary dimension.

2 Statement of the problem and preliminary
considerations

The aim of this section and the subsequent two ones is to investigate the
analytic continuations of solutions to integral equations of the form

wa) = [ Kiep)uty)dy = 1(2) (1)
M



where A is a complex parameter, z 1s a point on some smooth compact
manifold M and the kernel K(z,y) is an integrable function on M x M
(more exactly, K(z,y) is a function with respect to the first variable z and
a density of form of the maximal degree with respect to the second variable
y)-

Let us formulate the exact requirements on the objects included into
equation (1) under which we shall perform the further investigations.

First of all, we suppose that the manifold M is a real part of some com-
plex manifold M¢. This means that M is a submanifold of Mc : M C Mc
and that in a neighbourhood of any point z € M there exists a (complex) co-
ordinate system' z = (z',...,2") on Mc (where n is the complex dimension
of the manifold M¢) such that the equations of the submanifold A read

Im(:z:j) =0,7=1,...,n

Moreover, we suppose also that the manifold M can be embedded into the
Cartesian complex space CV in such a way that it is an intersection of some
analytic set in compactification CPY of CV and the space CV itself.

Later on, we suppose that the kernel K{z,y) extends up to an analytic
function on M¢ x M¢c which can have ramification only on an analytic subset
UK ¢ Mc x Mc. To begin with, we suppose also for simplicity that all
singularities of the kernel are bounded, that is,

|K(z,y)| £ C

in a neighbourhood of any point of singularity of K (z,y) with some positive
constant C' (for generalization to the case of integrable kernels see Remark
3.1 below).

At last, we suppose that the function f(z) in (1) can be extended up to
the (ramified, in general) function on the manifold Mc.

Thus, the first main aim of this paper can be formulated as follows:

investigate if the extension of the solution u(z) to equation (1) up to a
(ramifying) analytic function on Mc is possible and to give the algorithm of
computing the singularity set ¥* of such an extension.

THere and below we denote the real objects and their complexifications by one and the
same letter. So, (z!,...,z") can denote, depending of the context, the real coordinates
on M or the complex coordinates on M. Similar, the kernel of the integral equation and
its analytic continuation will be both denoted by K(z, y) (see below). In what follows this
does not lead to misunderstanding.



Before examining the possibility of an analytic extension, let us determine
the singularity set of the extension. We shall do this by the method of
successive approximations provided that the number A is small enough. It
is well-known that, for sufficiently small values of A the solution to equation
(1) can be calculated in the form of the series

u(z) =Y Mu(z) (2)

k=0

where

uo(z) = f(=),

wn(s) = [ Klo)udy)di, k=0,1,.... 3)
M

To extend series (2) to the complex manifold M¢ one has to replace the
integration over M in formula (3) by the integration over the homology class

h(z) € Ha(Mc \ (E7 N ™)) (4)

which is realized by the real manifold M for real values of z. Here by & we
denote the intersection

2K = ¥ n {z = const}.

Evidently, the series (2) will still converge in the complex manifold M¢ after
such a modification for sufficiently small values of A.

Thus, for extending the solution u(z) to the complex manifold Mc it is
sufficient to extend the homology class (4) to the corresponding values of
z € Mc. This can be done with the help of the Thom theorem (see [15], {7])
in the following way.

Consider the projection of the pair

(Mg x Mc , 2% U1 (E%)) ™5 Mc (5)

where 7; : Mg x Mg — Mg, 1 = 1,2 is the projection on the 2-th factor.

Suppose that
N

eRuriE=) = 4;

i=1



is a stratification of the union £¥ U x7'(EZ¥*). Then, by the Thom theorem,
the projection (5) determines a locally trivial fibered pair outside projections
of points (z,y) € A; where the mapping of tangent spaces

(’“'A,-), Ty A — T Mc

is not epimorphic. The collection of such points is called the Landau manifold
corresponding to projection (5) [16] and we denote it by £ (E). Thus, we
determined a mapping £ which takes an analytic set £** into the analytic set
L (Z*). Now the singularity set of function (2) can be described as follows.

First of all, it is evident that the singularity set of the function wug(z)
coincides with the singularity set of f(z). Then the singularity set of the
function u,(z) can be determined as

o = £ (Bf), (6)
and, generally,

D = £(5%) ™
for £k = 0,1,2,... . Hence, one can expect that the solution to (1) given by

(2) will be regular outside the union
=)o (8)
k=1

where the sets ¥ are determined by the recurrent procedure (6), (7). One
can see that the operator £ defined above is the operator which describes the
propagation of singularities of solutions to equation (1) just like the Hamilton
flow describes the propagation of singularities of solutions to partial differ-
ential equations.

Certainly, in this section we had shown only that the singularity set of
the solution u contains (at least for small values of A) the set £*. In the
subsequent sections we shall show that there exists the extension of solution
to equation (1) to the whole manifold M¢ except for points of (8) not only
for small values of A but for all A which are not eigenvalues of equation (1).
Thus, we shall prove that, inversely, the set £* contains the singularity set
of solution. We shall also present the more geometrical description of the
mapping L.



Finally, in the last two sections of this paper we shall consider the appli-
cation of the introduced theory to the problem of localization of singularities
of solutions to elliptic boundary value problems.

3 Analytic continuation of solutions

In this section we shall prove the existence of the analytic continuation of so-
lutions to equation (1) as a (ramifying) analytic function with the singularity
set described in the previous section. The main tool for the proof will be
the representation of solution to the integral equation via Fredholm determi-
nants. Let us briefly recall the corresponding statements (see, for example,

R. Courant and D. Hilbert [17], p.121).

The function
o k/\k
D()) = Z (9)
k=1

where dg = 1 and

K(zy,z1) K(z2,21) ... K(zg,z1)
& = / K(z\,z2) K(z2,22) ... K(zk, 1) dzy..de,  (10)
Mo K(,o) K(zno) .. K(seo)
k=1,2,...1s called a Fredholm denominator of equation (1).

To write down the explicit formula for solution of equation (1) we need
also the function
e k/\k
D(z,y,) = do(z,y) + Z

»9) (11)

where do(z,y) = K(z,y) and the rest of the functions di(z,y) are:

K(z,y) K(zi1,y) ... K(z,y)

d(z,y) = K(z,z;) K(zi,z1) ... K(z,21) doydo, (12)
MM | K(mm) K(zoz) ... K(ze )

k = 1,2,.... It is well-known that, under the conditions of the previous

section, the series (9) and (11) converge for any values of A and the following
statement holds.



Theorem 3.1 Let A be a complez number such that D()\) # 0. Then for
any f(z) the solution to equalion (1) is given by the formula

u(z) = A f R(z,y, M) f(y)dy + ()

where the function R(z,y,A) is equal to

D(z,y,A)

R(z,y,\) = D) (13)

The function R(z,y,A) is called a resolvent kernel of equation (1).

Remark 3.1 Theorem 3.1 remains valid also for kernels having integrable
singularities. However, in this case the definitions of the numbers di and the
functions dy(z,y) must be modified. Namely, for this case d; and di(z,y)
must be determined by the same formulas (10) and (12) but one must replace
all terms of the form K(z;, z;) by zero.

Proof. 1t suffices to verify that the resolvent kernel given by (13) satisfies
the integral equation

R(z,y,A) = K(z,y)+ A / K(z,z)R(z,y,A) d=.
M

It can be easily seen that for R(z,y,A) to be a solution to this equation the
functions dy(z,y) must satisfy the following recurrent relations

e

do(:l’:, y) = K (SC, y)1

das(ey) = Klo)den + (k+1) [ Ko 2)d(z,0)ds
M

k=0,1,.... However, the first relation follows directly from the definitions
(11), (12) and the second can be obtained by the decomposition of the de-
terminants (12) with respect to the first its row. This proves the stated
affirmation.

Now it is evident that in order to extend the solution to equation (1)
to the complex domain it suflices to carry out such an extension for the

7



resolvent kernel R(z,y,A) of this equation. However, the extension of the
function D(z,y,A) can be given by formula (11) if the functions dy(z,y) are
determined by the following recurrent procedure?

do(z,y) = K(z,y),

dn(e,9) = K@+ (+1) [ K@ hEnd 00

h(z,y)

where h(z,y) is an extension of the homology class of M which can be con-
structed with the help of the Thom theorem similar to the considerations of
the previous Section. The singularity set ©®* ¢ Mg x Mg of the function
R(z,y,A) can be determined by formulas (6) - (8) of the previous section for
the right-hand part f(z) being equal to K(z,y).

It is also easy to see that the functions di(z,y) satisfying (14) can be
computed in the explicit way with the help of the formula

K(z,y) K(a,y) ... K(2,y)
dk(I,y) — I((I,Zl) I((Z], Zl) .. I{(Zk, 2[) (121...d2k (15)
He=w) | K(z,2:) K(zi,21) ... K(z,2)

where Hi(z,y) is an skew product of the homology classes h in variables

(z1,..,21),2; E Mg, 7 =1,... k.
The following statement takes place.

Theorem 3.2 The extension of the resolvent kernel R(z,y, ) of equation
(1) to the complez domain (Mg x Mc) \ L is given by the formula (13) if
the functions di(z,y) are given by (15).

Proof. To prove the statement of the Theorem, it suffices to prove the
convergence of the series (11) for any (z,y) € (M¢c x M¢g) \ .

Let ©? be the arbitrary compact domain in M¢c x Mc. It is easy to see
that the minimal length I(A{z,y)) of a contour representing the homology

2We remark that the functions di(z,y) determined by relation (12) satisfy recurrent
system (14) with h(z) replaced by M.



class h(z,y) is semi-continuous from the above. Hence, for some positive
constant C' we have
(h(z,y)) < C

for any point (z,y) € Q. From this it also follows that there exists a compact
subset {1} C M such that some representative of the homology class Hi(z,y)
lyes in
Ql X ... X Ql
(k factors). Let now
C,= sup |K(z,y)|.
€0 X

Then, due to the usual estimates of the determinant, the functions (15)
satisfy the estimate

|di(z,y)| < k2CECH

and, hence, each term of the series (11) can be estimated by the constant

k
AL & vk i
Fk’ Cl C*.
The latter estimate completes the proof.
As a consequence of this theorem we obtain the following result.

Theorem 3.3 Under the conditions of Section 2 for any complex X such that
D(X) # 0 there exists the analytic extension of solutions to equation (1) to
Mc \ ¥ where E* is given by formula (8).

Proof. The analytic continuation of the solution to equation (1) is given
by the formula

ww) = [ RGauNS0)dy+ @)
h(z)
Hence, due to expression (11) for the resolvent kernel R(z,y, A), to complete

the proof of this Theorem it is sufficient to verify that the singularities of the
integrals

mn:/mumnw@

h(z)



coincide with the singularities of the functions ui(z) determined by formulas
(3). This fact, however, can be verified with the help of the Thom theorem
similar to the considerations of the previous Section. One must just take into
account the recurrent relations (14) for the functions di(z,y). We leave to
the reader the corresponding standard considerations.

4 Propagation of singularities

In this section we shall give the geometrical treatment of the mapping L
determined in Section 2. We recall that for each analytic set ¥ C Mc¢ the
set L(X) is defined as follows.

Consider the projection of the pair
(Mc x Mc , =¥ un7{(2) IS Mc (16)

where 7; : Mc x Mc — Mc is the projection on the i-th factor. Then
by £(X) we denote the Landau manifold corresponding to this projection.
Thus, we determined a mapping £ which takes an analytic set ¥ into the
analytic set £(X).

First of all we emphasize that the set £(X) is not empty even in the
case when the initial set ¥ is empty. Hence, to begin the description of the
mapping £ we must describe the set £(@) which is a subset of £ (%) for any
analytic set ¥. To do this we consider the projection

(Mc x Mc ,2%) 2% Mg (17)

which is a specification of projection (16) to the case when & = §.

The set £() is now simply the Landau manifold of projection (17) (the
geometrical description of the Landau manifold for a projection was presented
in Section 2).

Now we denote by Aj(z), j =1,2,..., N the strata of the analytic set

SE =K n{z = const}.

We suppose that these strata are (open) analytic manifolds analytically de-
pendent on x in Mc \ £(8).

10



Now we are able to present a geometrical description of the set £L(X) for
any analitic set ¥. To do this we consider a stratification

M
Y= U B
k=1

where By are strata of this stratification. For any j =1,..,N, k=1,...M
we denote by £;(By) the collection of points of Mg such that the manifold
Aj(z) is tangent to the stratum By at some its point. Further, we put

N
L(By) = U L;(Bx).

It is evident that projection (16) is locally trivial outside the union

M
L(P)u (U E(Bk)) .

Thus, the latter union can be treated as the set £(X):

L() = L(D)U (U .C(B,,)) . (18)

To conclude this section we shall make some remarks. First of all, it is
clear that the mapping L for integral equations is similar to the shift along
the Hamiltonian vector field for differential equations in the following sense.
For differential equations the singularity set of solution is invariant with re-
spect to this shift. In other words, if some point is a point of singularity of
a solution, then any shift of this point along the trajectories of the corre-
sponding Hamiltonian vector field is also a singular point of this solution (of
course, for strict considerations one has to pass to the phase space T*M).
Similar to this situation if some analytic set ¥’ is a subset of the singularity
set of a solution to integral equation (1), then the ’shift’ £(X) of this set
"along the mapping £’ is also a subset of the singularity set of this solution.
Moreover, the mapping £ can be ’decomposed’ to the family of mappings £;
parametrized by strata A; of the analytic set £ similar to the fact that for
differential equations the propagation of singularities is determined by each

11



strata of the characteristic set of the corresponding operator. Certainly, this
concluding considerations do not have a strict character, but they can help
to understang the role of the introduced notions in the theory of analytic
continuation of solutions to integral equations.

5 Application to the boundary value
problem '

In this section we apply the above technique to the localization of singu-
larities of continuation of solutions to the Helmholtz equation in the three-
dimentional space. To be definite, we consider the interior Neumann bound-
ary value problem for the Helmholtz equation®

du (19)

{ Au+k?>v=0, z€D,
on

=v
r
where D is a compact domain in R® |, I' = 3D is the boundary of the domain
D which is supposed to be algebraic. The latter affirmation means that the
equation of the boundary I" is given by

P(z)=0 (20)
where P(z) is a polynomial in the variables (z',z% z°) € R® with non-
vanishing gradient on its (real) zeroes. We suppose also that the following
condition is valid.

Condition 5.1 The number —k? is not an eigenvalue of the Neumann prob-
lem for the Laplace operator in the domain D.

We remark that, due to the explicit formulas for solution of the Cauchy
problem in the complex domain (see [18], [7]), in order to find the singulari-
ties of the analitic continuation of the solution it is sufficient to construct the
analytic continuation of the Cauchy data for equation (19} or, at least, to

3The reader can easily see the natural framework of applicability of the above theory.
We remark here only that the only thing we need is that the equation involved to the
considered boundary value problem has a fundamental solution.

12



localize singularities of this continuation. By the Cauchy data we mean, as
usual, the values of the solution and of its normal derivative on the boundary.
Since the value of the normal derivative is already given by the Neumann con-
ditions of problem (19), we must localize singularities of the second Cauchy
data, namely, of the restriction u|. of the solution to the boundary.

First of all, we shall derive the integral equation for the second Cauchy
data for boundary value problem (19). To do this, we write down the Green’s
formula for the solution u(z) of problem (19) and for the fundamental solution

eikr

dzr’

G(z,y) =

where r is a distance between points z and y of the space R3:
r= \/(zl —y)2 4 (22 — y2)? + (23 — y3)2.

This formula reads

u2) = [ (s 3ee.0) - Gle o)) ds

r

for any z € D where ds, is a plane element of the surface I'.
If the point z tends to some point lying on the boundary [ then, due to
the well-known properties of the potential, we obtain the relation

1 9G 5}

we) =3 [w)g @) ds, ~ [ Clepg-w)ds, =eT.

¥ Yy
r r

The latter formula allows us to derive an integral equation for the second
Cauchy data on the manifold I':

u@) = [ KEDu@ dsy+ 1) (21)

r

where T and T, § are points of I and K(Z,7) and f(Z) are given by the
relations

; (22)




/Gmy y)ds,. (23)

As it is known from the potential theory, the kernel (22) has a weak
singularity at z = y and we can apply the results of the preceding sections.
However, we can also work with continuous kernels. To do this it is sufficient
to pass to the second iteration of equation (21).

If Condition 5.1 is fulfilled, then equation (21) is equivalent to the follow-
ing equation

u(T) = / KOE, Du(@) dsy + A3 (24)
r

where K®(Z,7) is a second iterated kernel for (22) and the function f(z)
is given by the relation

SO = ] KO, 7)f(7) dsy + / K(E /() dss + /().

r r

Here K)(Z,%) is the first iterated kernel for (22):

mwi@=fﬁﬁaﬁﬁj@;
r

Equation (24) can be compexified with the help of the formula

apdm A dz3 + d:z: Adz! + apd.r; A dz?
\/(3—:.-) () () ]

The form w(y) can be treated as the form on the complexification I'c of the
manifold T which is determined as an algebraic submanifold in C* with the
equation (20). The complexification has the form

dsg = w(y) =

u@ = [ KOG DuD) + IO E)

h(z)

This equation will be the basic one for the construction of the extension
of the second Cauchy data to the complex manifold I'c. For simplicity we

14



shall consider the case when the Neumann data v(z) is an entire function on
C3. The function (23) can be extended to the complex manifold I'c with the
help of the formula

r@=- [ G(z,y)f,—:(yw(y)-

h(z)

The considerations similar to those in the previous Section allows us to claim
that the function f(z) has singularities exactly at characteristic points of the
manifold I'c. This fact can be verified with the help of the Thom theorem
if we take into account that the singularity set of the kernel K(7,%) lyes in
the intersection of the characteristic cone

@ =y + (=) + (P -y") =0 (25)

and the manifold 'c.

Thus, we had shown that the technique developed in the previous sec-
tions is applicable to the investigation of the singularity set of the analytic
continuation of solutions to boundary value problem (19). To formulate the
corresponding affirmation we must only to describe the mapping £ intro-
duced in the previous section in terms of the Hamilton flow corresponding to
the Laplace operator.

First of all, we note that the set £(@) determined as the Landau manifold
of projection (17) in the considered case exactly coincides with the set of
characteristic points of the boundary I' since this set consists of poins at
which the characteristic cone (25) is tangent to I'. Later on, outside the set
L(®) the intersection of the characteristic cone (25) with I' has exactly two
strata: the vertex of the cone A,(z) and the stratum A,(z) consisting of all
other points. To describe the set £(X) for an arbitrary stratified set

one must determine in what cases the strata Ai(z) are tangent to the strata
B;.

It is easy to see that the stratum A,(z) is tangent to any stratum B; if
and only if the point z belongs to this stratum. Let us derive the conditions

15



under which the stratum A,(z) is tangent to B;. To do this we suppose that
the parametric equations of B; are

v =y (a), j=1,2,3

where a = (ay, ..., ax) are local coordinates on B;. Then the stratum A,(z)
is tangent to B; if and only if the function

(a' = y}(@)* + (2* —*(e)" + (=° ~ ()
has a critical point. The corresponding equations are

(z! - y'(a)) a%i?)%—(x? - y*(a)) ?%%4_(:53 - y¥(a)) Ta_,- =0, (26)

7

7 =1,...,k. Denoting by
pe=1" —y*a), k=1,2,3 (27)
we see that the condition y(a) € Aq(x) yields
Pi+pr+pi=0

and the relation (26) shows that p = (p, p2,p3) is a conormal vector to B;
at the point y{«). Later on, relation (27) means that the point z lyes on
the characteristic ray emanated from the point y(a) along the characteristic
covector p. Thus, the set of points of £(X) originated due to the tangency
between Ap(z) and B; is the intersection of the characteristic conoid of B;
and the boundary TI.

Thus, we have proved the following affirmation.

Theorem 5.1 Let ¥ be an analytic subset of I'c such that it includes all the
characteristic points and the intersection between the characteristic conoid of
Y and T'¢ lies inside ¥ (this means that ¥ 1s invariant with respect to the
mapping L). Then there ezists an analytic continuation of the restriction u|.
to the set I'c \ L. Later on, the singularities of the analylic continuation of
u to C® lye inside the characteristic conoid of X.

16



This Theorem (or its generalizations) allows one to compute the singu-
larities of continuation of solutions to boundary value problems outside their
initial domain of definition, at least in the case when the singularity set of the
fundamental solution for the operator included in the considered boundary
value problem is known.

The following affirmation, which is due to D. Khavinson and H. S. Shapiro
[19] (see also [20]) is a direct consequence of the theorem stated above.

Corollary 5.1 If the equation of the boundary I' is given by a second-order
polynomial in variables (z',...,z™), then the solution of any interior bound-
ary value problem for the Laplace operator (or, more generally, for the op-
erator with the Laplace operator in the principal part) prolongates without
singularities to the ezterior of the domain D.

Indeed, the proof of this affirmation follows from the two facts.

First, the intersection between any characteristic ray emanated from a
characteristic point ¢ € I' and the manifold I itself contains only the initial
characteristic point. Actually, this characteristic ray is a straight line which
is tangent to ' at the point z¢. Since I is a quadratic surface, any srtaight
line which is tangent to it has no intersection points with I' except for the
point of tangency.

In other words, one can claim that in the considered case the equality

L(charT) = charT

and, hence, the Cauchy data are holomorphic on I' \ char[.

Second, it is easy to see that under the above conditions the intersection
between the characteristic conoid of I' and the real space lies inside the
domain D. Therefore, the continuation of solution to the exterior of the
domain D has no singularities.

6 Example

To illustrate the calculations of singularities arising in investigations of boun-
dary value problems, we consider the following Dirichlet problem for the
Laplace operator in the space R? (see [21]):

Au =0,
up=v

17



with the entire function v, where the equation of the boundary T is
' 4yt = 1.
The characteristic set for the Laplace equation is given by:
p'+q¢’ =0,
and, hence, the equations for the characteristic points of the boundary are:

{$4+y4:1,

The set of characteristic points we denote by charl’. The latter system has
the following solutions:

() (i) (e ) (rip i) @

and

T = te'l z=te't T = te i1z = 4e it
y=xeF )\ y=te i ) \y=2eB O\ y=2eH )

(30)
Now let us calculate the set L(charl'). The points of this set originated by
roots (29), (30) are intersections of characteristical rays emanated from these
roots and the surface T'. Let us consider the root

One of the characteristic rays emanated from this point is

(s-75) +i(s-ig5) =0 ore+iv =0 (32)

and the intersection of this ray with I’ is given by the system of equations

(31)



Thus, we see that ray (32) intersects I' at points of charT.
The other ray emanated from point (31) is

(m—%)—q‘(y—i%):ﬂ. (33)

Deriving z from the second equation we obtain
T —1y = V8.

Substituting this expression to the first equation of the last system we obtain
the equation for y:

4
[iy+\'/§] +yt=1,
or

2y* — 43v/8y> ~ 62v2y* + 16:V/2y + 7 = 0. (34)

One of the roots of equation (34} is equal to y = i—;'—2. This follows from

the fact that ray (33) passes through point (31). Therefore, the computation
of the mapping £ is reduced, in the considered case, to solving algebraic
equations of the third order. We shall not carry out this procedure for all
roots (29), (30) because it is rather a long task; the presented calculations
illustrate the general principle well enough.

Thus, we see that, unlike the case of "balayage” problem, each charac-
teristic point (zo,yo) of the boundary originates not a single singularity of
continuation of solution outside the previous domain of definition but an in-
finit sequence of such singularities. These singularities can be obtained as
the intersections of the characteristic rays emanated from the points

C(mo,yo), JC2(3303 yo):

with the real plane. The explicit calculation of these singularities is not a
complicated, but rather long and we omit this calculation.
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