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ABSTRACT. For a closed manifold M let R}, (M) (resp. m}‘iic(M)) be the space of Riemann-
1an metrics on M with positive sectional (resp. Ricei) curvature and let Dif f( M) be the diffeo-
morphism group of M, which acts on these spaces. We construct examples of 7-dimensional
manifolds for which the moduli space Rf,.(M)/Dif f(M) is not connected and others for
which m;;c(M)/Diff(M) has infinitely many connected components. The examples are ob-
tained by analyzing a family of positive sectional curvature metrics on homogeneous spaces
constructed by Aloff and Wallach, on which SU(3) acts transitively, respectively a family of
positive Einstein metrics constructed by Wang and Ziller on homogeneous spaces, on which
SU(3) x SU(2) x U(1) acts transitively.

§1. INTRODUCTION

Very little is known about the question of existence and classification of Riemannian
metrics of positive sectional curvature on a closed manifold M. The only known simply
connected manifolds of dimension > 24 admitting such a metric are the spheres and projec-
tive spaces over C or H. On the other hand the only known obstructions are the vanishing
of the fl—genus [Li], or more generally the vanishing of the a-invariant [Hit], and the Betti
number bound [Gr].

As far as classification is concerned, the first question is about the number of connected
components of the moduli space of such metrics. We denote the space of Riemannian
metrics on M with positive sectional curvature by RY,.(M). The group of diffeomorphisms
Dif f(M) acts on this space by pulling back metrics. The orbit space R, .(M)/Dif f(M)
is the moduli space of Riemannian metrics with positive sectional curvature. In dimensions
2 and 3 this space is connected. In dimension 2 this follows from uniformization theory.
Also in dimension 3 this is related to a sort of geometrization theory. Hamilton [Hal] has
studied the so called Ricci flow, which has the remarkable property of deforming a positive
Ricci curvature metric into a metric of constant positive sectional curvature. If the original
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2 MATTHIAS KRECK AND STEPHAN STOLZ

metric has positive sectional curvature, it stays in this category during the deformation
[Ha2, compare section 5.2]. Combined with the classification of 3-dimensional Euclidean
space forms [CS, p.778] this implies that the space is connected.

In this paper we will prove that corresponding results about R}, (M)/Dif f(M) don’t
hold in higher dimensions in general.

Theorem 1.1. There are closed manifolds for which R

aec

(M)/Dif f(M) is not connected.

Similarly, we will investigate the moduli space R}, (M)/Dif f(M) of Riemannian met-
rics with positive Riccl curvature. Again in dimension < 3 this space is connected by the
same argument as above. We will prove that in higher dimensions this moduli space can
even have infinitely many components.

Theorem 1.2. There are closed manifolds for which R}, (M)/Dif f(M) has infinitely
many connected components. '

Comparing these results with the situation in dimensions 2 and 3 there are two possible
reasons why the moduli space is not connected in higher dimension. Either one cannot
deform the metric into a ‘standard’ form or there is a discrepancy between the isome-
try classification of these standard metrics and the diffeomorphism classification of the
underlying manifolds.

To obtain the manifolds of Theorems 1.1 and 1.2 we study two well known families of
Riemannian manifolds of dimension 7 with positive sectional resp. Ricci curvature. The
first are the Wallach spaces, homogeneous spaces of the form G/H, where G 2 5U(3) and
H = U(1), which carry homogeneous positive sectional curvature metrics by a result of
Aloff and Wallach [AW]. The second family consists of homogeneous spaces of the form
G/H, where G = SU(3)x SU(2)xU(1) and H = SU(2) x U(1) x U(1), which were studied
by Witten [Wi]. Both classes of homogeneous spaces are total spaces of S bundles, in the
first case over the flag manifold SU(3)/T, T the maximal torus, and in the second case
over CP? x CP! where CP™ is the complex projective n-space. Wang and Ziller showed that
the latter total spaces admit metrics of positive Ricci curvature, in fact Einstein metrics
with positive Einstein constant [WZ].

In both theorems we actually prove a stronger result, namely we find positive sec-
tional (resp. Ricci) metrics which are in different components of RF_(M)/Dif f(M),
the moduli space of positive scalar curvature metrics. We distinguish these components
by a Q-valued invariant s which is defined for positive scalar curvature metrics on closed
(4k—1)-dimensional spin manifolds M with vanishing real Pontrjagin classes. As a corollary
of the construction of s we see that for every such M (k > 1) with vanishing H'(M;Z/2)
the moduli space R}, ,(M)/Dif f(M) has infinitely many components (Cor. 2.15), pro-
vided that ﬁ;a,(M ) is not empty. We note that by a result of the second author the
space iR;"m (M) for a simply connected closed spin manifold M of dimension > 5 is not
empty if and only if the Atiyah invariant a(M) vanishes [St]. This invariant vanishes for
(4k — 1)-dimensional manifolds and hence for every closed simply connected spin mani-
fold of dimension 4k — 1, k£ > 1, with vanishing real Pontrjagin classes the moduli space
Rt (M)/Dif f(M) has infinitely many components. Previous work of Hitchin [Hi, Thm.
4.7] and Carr [Ca, Thm. 4] shows that R} _,(M) is not connected in many cases, but the
result about the moduli space is new as far as we know. We want to stress that in our
opinion in particular Theorem 1.1 is deeper than the last mentioned result since it is much
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harder to compute the s-invariant for the positive sectional curvature metrics of Aloff and
Wallach.

The organization of the paper is as follows. In §2 we define the invariant s for positive
scalar curvature metrics on certain (4k — 1)-dimensional manifolds. This invariant is an
absolute version of a relative invariant introduced by Gromov and Lawson. In §3 we
describe the two families of positive sectional (resp. Ricci) curvature manifolds mentioned
above and use the invariant of §2 to prove Theorems 1.1 and 1.2. The main technical tool
is the calculation of our invariant for S!-equivariant metrics with totally geodesic fibres
on total spaces of principal S!-bundles (Theorem 3.11). This result is proved in §§4 and
5, with §5 providing the calculation of the fl—genus of fibre bundles with fibre CP? and
structure group U(3).

We would like to thank Rainer Jung for numerous useful discussions.

§2. AN INVARIANT FOR POSITIVE SCALAR CURVATURE METRICS

In this chapter we define a Q-valued invariant s(M,g) (cf. 2.12) for positive scalar
curvature metrics ¢ on closed (4k — 1)-dimensional spin manifolds M with vanishing real
Pontrjagin classes. This invariant is related to an integer valued invariant ¢(go, g1) defined
by Gromov and Lawson [GL2, Def. 3.13] for pairs of positive scalar curvature metrics g;
on a (4k — 1)-dimensional spin manifold. More precisely, if the real Pontrjagin classes of
M vanish then

(2.1) i(g0,91) = 8(M, go) — s(M,g1).

These invariants are closely related to the Dirac operator on manifolds with boundary and
hence we begin with a discussion of this operator and its index.

Let W be a 4k-dimensional compact spin manifold with boundary 8W. Let gw be a
Riemannian metric which coincides with a product metric on 0W x I in a collar neighbour-
hood of the boundary and let gaw be its restriction to OW. Let D+ (W, g ) be the (chiral)
Dirac operator with respect to the metric gw from the positive to the negative spinors on
W. This becomes a Fredholm operator if we impose the Atiyah-Singer-Patodi boundary
condition, i.e. if we restrict to spinors on W whose restriction to W is in the kernel of P,
where P is the spectral projection corresponding to eigenvalues > 0 of the (total) Dirac
operator D(OW, gow ) on OW [APS1, §3 and §4]. We denote by ind D* (W, gw) the index
of this Fredholm operator.

We recall that if gw(?) is a continuous family of metrics on W then the corresponding
family of spectral projections P(t) is not continous for those parameter values t where
an eigenvalue of D(OW, gsw(t)) crosses the origin. If gaw(t) has positive scalar curva-
ture then Lichnerowicz’s argument using the Weitzenbock formula shows that the kernel
of D(OW, gaw(t)) is trivial [Li]. Hence DT(W, gw(t)) is a continous family of Fredholm
operators and thus ind D¥ (W, gw(t)) is independent of t. We note that if gw, g}y are two
metrics on W whose restrictions to the boundary are in the same component of ®¥, (6W)
and which are product metrics near the boundary then they can be connected by a con-
tinuous family of such metrics. This implies the first of the following two remarks which
we state for future reference.

Remark 2.2.
(i) If gw is a metric on W whose restriction to the boundary gsw has positive scalar
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curvature then ind D (W, gw) depends only on the connected component of ggw
in R} _,(6W).

scal

(i) If gw has positive scalar curvature then ind D+ (W, gw) vanishes [APS2, p. 417].

The index theorem of Atiyah-Patodi-Singer [APS1, Thm. 4.2] gives the following formula
for the index of D (W, gw):

h(OW) + n(D(OW, gaw'))
2

.

(2.3) ind DH(W, gw) = /w A(pi(W, gw)) —

Here p;(W, gw ) are the Pontrjagin forms of W (with respect to the Levi-Civita connection
determined by gw) and A is Hirzebruch’s A-polynomial. Moreover, D(OW, gaw) is the
Dirac operator on W, h(OW) is the dimension of its kernel {which consists of the har-
monic spinors on 0W) and n(D(3, gaw)) is the n-invariant of Atiyah-Patodi-Singer, which
measures the asymmetry of the spectrum of the selfadjoint operator D(OW, gaw ).

Remark 2.4. If we glue (W,gw) and (W', g}, ) along isometric boundary components
then the index formula shows that the index of the Dirac operator behaves additively,
provided that there are no harmonic spinors on that comumon boundary component, e.g.
if the scalar curvature on that piece of the boundary is positive.

Next we recall the definition of the Gromov-Lawson invariant ¢(go, g1) using a slightly
different (but completely equivalent [APS1, Cor. 3.14]) formulation. Let M be a closed
spin manifold of dimension 4k — 1 and let go and g; be positive scalar curvature metrics on
M. In this situation Gromov and Lawson [GL2, Def. 3.13| define an invariant :(go, ¢, )€ %
by

(2.5) i(g0,91) = ind DY (M x I,G),

where G is any metric on M x I which restricts to g; on M x 1 for 2 = 0,1 and which is
a product metric in a collar neighbourhood of the boundary. The first part of remark 2.2
shows that i(go, 1) depends only on the components of g, g1 in R}, (M). The second
part implies that :(go, g1 ) vanishes if gq, ¢; are in the same component (the path connecting
go and ¢; defines a metric h on M x I which after shrinking in M-direction has positive
scalar curvature [GL1, Lemma 3)).

We show below (cf. 2.16) that it is not possible to define an invariant s(M,g) € Q
depending only on the spin isometry class of (M,g) (a spin isometry is a spin structure
preserving isometry) and satisfying (2.1) for all (4k — 1)-dimensional spin manifolds M.
However, we define such an invariant for spin manifolds M satisfying the following

Assumption 2.6. All real Pontrjagin classes of M vanish.

The idea behind the definition of s(M,g) is to rewrite the right hand side of the index
formula (2.3) as a sum of two terms, one depending only on the geometry of OW, the
other depending only on the topology of W. Assuming that the real Pontrjagin classes
of OW vanish this can be done. The following lemma shows how the integral over the
decomposable summands in [}, A(p;(W, g)) can be written as such a sum.
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Lemma 2.7. Let a and § be closed differential forms of positive degree on W whose
restrictions to OW are coboundaries; i.e. there are forms &, § on OW such that dé = cjaw

and df = Pjsw. Then

fa/\ﬁ:/ &A B+ (7 ] U8, [W,0W)),
w ow

where ;7' [a] € H*(W,0W;R) is any preimage of the deRham cohomology class [a] €
H*(W;R) under the natural map j: H*(W,0W;R) — H*(W;R), j~![B] is defined analo-
gously, and { ,{W,0W]) is the Kronecker product with the fundamental class.

The proof is an easy consequence of Stokes’s Theorem (compare [KS1, p. 380]). We
note that the integral on the right hand side is independent of the choice of & and that
the Kronecker product is independent of the choice of the preimages j ~![a] and j71[4].
Slightly abusing language we define

(2.8) dHaAB):= [‘BW&/\ﬁ.

W

To get rid of the indecomposable summand in fi(p,-(W, g)) (which is a non-trivial mul-
tiple of the Pontrjagin form pi(W, ¢g)) we observe that a suitable linear combination of the
fi-polynomial and Hirzebruch’s L-polynomial, namely A + apL with a; = mly,:ij;,
is in degrees < 4k a polynomial in the p;’s for 1 < k; i.e. it does not involve p; [Hir]. The
signature Theorem for manifolds with boundary [APS1, Thm. 4.14] gives

(2.9) sign(W) = /W L(pi(W, 9)) — n(B(OW, gjow)),

where B is the signature operator. This can be interpreted as a formula expressing the
integral as a sum of two terms, one involving only the geometry of the boundary, the other
only the topology of W.

Assuming that the real Pontrjagin classes of W vanish and combining (2.3), (2.7), and
(2.9) we obtain

ind DY (W, gw) = /; . d™ (A + arL)(p:i(OW, gjow))

_ h(@W) + n(D(OW, gow))
2

(2.10)

— axn(B(W, gjow)) — t(W),
where the ‘topological’ term ¢(W) is given by
(2.11) t(W) = —((A+ axL)(G ' pi(W)), [W, 0W]) + ay sign(W).

Here p;(W) denotes the i-th real Pontrjagin class of W and j ~'p;(W) is any preimage under
the natural map j: H*(W,0W;R) — H*(W;R) (which exists due to the assumption that
pi(OW) vanishes).

In particular, if all real Pontrjagin classes of M vanish we can apply (2.10) to W = M x[I.
In this case t(W) vanishes and thus we define
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Definition 2.12. Given a closed (4k — 1)-dimensional spin manifold M with vanishing
real Pontrjagin classes and positive scalar curvature metric ¢ on M we define

(M,9) = =5 7(DOM,) - ecn(BO,0) + [ a7 (A +aL)(pu(M,9)

Next we summarize some basic properties of the s-invariant. If M and M' are manifolds
of dimension > 4 and g, ¢’ are positive scalar curvature metrics on M resp. M', then there
is a positive scalar curvature metric g#g¢' on the connected sum M#M' [GL1]. The metric
g#¢' depends on some choices but it is not hard to see that different choices lead to metrics

in the same connected component of ER;"CG,(M F#M").

Proposition 2.13. Let M, M' be (4k — 1)-dimensional closed spin manifolds with van-
ishing real Pontrjagin classes and let g, ¢' be positive scalar curvature metrics on M resp.
M'.
(i) Ff:(M,g) — (M',¢") is a spin isometry (i.e. a spin structure preserving isome-
try), then s(M, g) = s(M',¢").
(1) s(M,g) depends only on the connected component of g in R} (M).
(iii) If M bounds a spin manifold W and gw Is a metric on W extending g, which is
a product metric near the boundary then

s(M,g) = ind DY (W, gw) + t(W).

(iv) s(M#M' g#q¢')=s(M,g)+ s(M',¢").

Proof. The parts (i) — (iil) are immediate consequences of the definition of s and the
discussion above. For (iv) we note that the connected sum M#M' is obtained from the
disjoint union M [[ M’ by a 0-surgery. Let W denote the trace of this surgery, which is a
bordism between M [ M’ and M#M' obtained by attaching a 0-handle to (M [ M')x I.
By results of [Ga] or [Ca, Lemma 10] there is a positive scalar curvature metric gw on W
which restricts to g resp. g’ resp. g##¢’ on the boundary components of W and is a product
metric near the boundary. From 2.13 (iii) and 2.2 (ii) we conclude

s(M#M', g#¢") — s(M,g) —s(M',¢') = ind DY (W, gw) + (W) =0,

which proves part (iv). O

Since the disjoint union of two copies of every (4k—1)-dimensional spin manifold bounds
[ABP] we can take 2.13 (iii) as a definition of s(M, ¢). Also, 2.13 (iii) implies that s(M, ¢)
is a rational number. Reducing s modulo Z (for k even) respectively 2Z ( for k odd)
we get an invariant depending only on the diffeomorphism type of M (considered as spin
manifold), since ind D*(W, gw ) is an integer (resp. even integer for k odd; cf. the remarks
following Proposition 2.16). For k = 2 this is (up to a sign) the invariant s; used in [KS1]
and {KS2] for the diffeomorphism classification of certain 7-manifolds (cf. Theorems 3.4
and 3.9).

The invariant s should be seen in analogy to invariants defined in [APS2], like the invari-
ant fa(o), [APS2, p. 414]. As there, definition 2.12 should be viewed as the fundamental
one since it is intrinsically defined on M whereas 2.13 (iii) involves an auxiliary manifold
W. On the other hand, the latter definition has the merit of being easier to compute
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as we will demonstrate in the next chapters, where we calculate the invariant for princi-
pal S'-bundles with $'-equivariant positive scalar curvature metric with totally geodesic
fibres.

We will see in Theorem 3.11 that the s-invariant depends on the spin structure. To
get an invariant of the moduli space we have to worry about diffeomorphisms which do
not preserve the spin structure. We recall that after fixing an orientation of M the spin
structures compatible with that orientation are parametrized by H'(M;Z/2). In partic-
ular, the spin structure is determined by the orientation if we assume that H'(M;Z/2)
vanishes. If we change the orientation, the s-invariant changes its sign. Summarizing we
conclude:

Proposition 2.14. If M is a closed connected spin manifold of dimension 4k — 1 with
vanishing real Pontrjagin classes and H'(M;Z/2) = 0, then s induces a map

ls| : mo(R701(M)/Dif f(M)) — Q.

Corollary 2.15. Let M be a closed connected spin manifold of dimension 4k — 1, for
k > 1, with vanishing real Pontrjagin classes and H'(M;Z/2) = 0. If R} (M) is

not empty (which is the case for a simply connected M by [St]), then the moduli space
T _(M)/Dif f(M) has infinitely many connected components.

Proof. By the proposition it suffices to construct infinitely many positive scalar curvature
metrics on M whose |s|-invariants are mutually different. Below we show that for £ > 1
there is an ‘exotic’ positive scalar curvature metric e on $4*~1 with s(S%%=1 e) = 1 (resp.
2) for k even (resp. odd). We note that the standard metric on S$**~! has vanishing
s-invanant since it extends to a positive scalar curvature metric on the 4k-disk. Then by
2.13 (iv) the connected sum of a fixed metric on M and a number of copies of e gives an
infinite family of metrics on M#S** 14 ... #8541 = M with different s-invariant.

The construction of e is due to Carr [Ca, Proof of Thm. 4]. For the convenience of the
reader and in order to calculate its s-invariant we recall the construction of e. Let W be
a closed 4k-dimensional spin manifold with A(W) = 1 (resp. 2) for k even (resp. k odd).
Such a manifold can be constructed for example by plumbing as in [Ca], and hence we can
assume that W has a handle decomposition consisting of one 0-handle and one 4k-handle
and a number of 2k-handles. We decompose W in the form W = W_ Ugu-1 W, where
W_ consists of the 0-handle and the 2k-handles and W consists of the 4k-handle. We pick
a positive scalar curvature metric on the 0-handle which is a product near the boundary.
According to [Ga] or [Ca, Lemma 10] this metric can be extended over the 2k-handles to
give a positive scalar curvature metric on W_ which is a product metric near the boundary.
Finally, this can be extended to a metric gw on all of W (we are not asserting that gw
has positive scalar curvature). Let e be the restriction of g to S**~1 = W_ N W,. Then

s(S*%*~1 e) = ind DM (W4, gw, ) + t(W4) = ind DH (W, gw, ) + ind DH(W_, gw_)
= ind D¥(W, gw) = A(W)
Here gw, denotes the restriction of gw to Wi. The second equality holds since t(W,)
vanishes (this follows directly from the definition of ¢ (2.11) since W is a disk) and

ind D*(W_, gw_) = 0 by 2.2(ii) since gw_ has positive scalar curvature. The third equality
follows from the additivity of the index (cf. 2.4). O
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We end this section by showing that an invariant s(M,g) with the property (2.1) de-
pending only on the spin isometry class of (M), g) cannot be defined without extra as-
sumptions on M. Suppose M is a (4k — 1)-dimensional spin manifold for which we can
define a Q-valued invariant s(M, g) with the property (2.1) for all positive scalar curva-
ture metrics on M. If f: M — M is a spin structure preserving self diffeomorphism then
i(g,f*g) = s(M,g) — s(M, f*g) = 0, since f is a spin isometry from (M, f*g¢) to (M, g)
and hence their s-invariants agree.

Gromov and Lawson show that the map

i Dif f(M) > Z

defined by 7,(f) = i(g, f*¢) is a group homomorphism which factors through the compo-
nent group mo(Dif f(M)) of the diffeomorphism group of M [GL2, 4.48 and 4.49)].

Proposition 2.16. For k > 1 there is a closed spin manifold M of dimension 4k — 1 and
a positive scalar curvature metric ¢ on M such that the image of i, restricted to the spin
structure preserving diffeomorphisms is Z for k even and 2Z for k odd.

We remark that 7,(f) for k£ odd is always an even integer since the space of spinors on a
4k-dimensional spin manifold W has the structure of a quaternionic vector space and the
Dirac operator as well as the Atiyah-Patodi-Singer boundary condition is H-linear.

Proof. Recall that i(g, f*g) = ind D¥(M x I,G), where G is a metric on M x I which
restricts to g resp. f*¢ on the boundary and is a product metric in a collar neighbourhood.
Now we apply the index theorem (2.3) and note that h = 0 (since the metric on the
boundary has positive scalar curvature) and that the n-invariant is zero, provided that f
is spin structure preserving (since the n-invariants of both boundary components are the
same up to a minus sign). Hence if we assume that f is spin structure preserving then

i(g,f*g) = indD“'(M x I,G) = ]

Mx

Iﬁ(p;(M xI),G) = / A(pi(My),G) = A(My),

M,

where My is the mapping torus of f (obtained by identifying in M x I every point (z,1)
with (f(2),0)). A

We recall that for k > 1 there is a spin manifold N of dimension 4k with A(N) =1
for k even and A(N) = 2 for k odd. We can assume in addition that the signature of N
vanishes, since if necessary we can replace N by the disjoint union of N and copies of the
quaternionic projective space HP? (for k = 21) or HP* x K (for k = 21 + 1), where K is
the Kummer surface, a 4-dimensional spin manifold with signature 16. This replacement
doesn’t change the A-genus, since A(HP?) = 0 [BH] (this also follows from the fact that
the standard metric on HP? has positive scalar curvature), but a disjoint union with a
suitable number of copies (possibly with reversed orientation) has vanishing signature,
since sign(HP?') = 1, sign(HP? x K) = 16 and the signature of (8! + 4)-dimensional spin
manifolds is divisible by 16 [Oc]. A result of the first author implies that N is spin bordant
to the mapping torus My of a spin structure preserving diffeomorphism on a zero bordant
spin manifold M [Kr, Thm. 9.9]. The proof of the result shows that we can choose M
to be simply connected. This implies that M carries a positive scalar curvature metric g
[GL1, Thm. B] and finishes the proof of the proposition. [
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§3. THE EXAMPLES

In this section we discuss families of positive sectional (resp. Ricci) curvature met-
rics on 7-manifolds constructed by Aloff and Wallach resp. Wang and Ziller. Then we
use the s-invariant in conjunction with results from [KS1], [KS2] to find manifolds M
in these families, for which R}, (M)/Diff(M) is not connected , respectively for which
RE..(M)/Dif f(M) has infinitely many components. We start with the discussion of the
Wang-Ziller family.

The underlying manifolds are certain homogeneous spaces of the form G/H, where
G = SU(3) x SU(2) x U(1) and H = SU(2) x U(1) x U(1), which were considered by
Witten [Wi]. Equivalently they can be described as follows. For integers k, [ let M ; be
the principal $'-bundle over CP? x CP?! classified by Iz + ky € H2(CP? x CP*; Z), where
z and y are the generators of H2(CP?;Z) resp. HX(CP; Z).

Theorem 3.1 (Wang-Ziller [WZ]). M, ; admits an Einstein metric gy ; with positive
Finstein constant.

Their construction is the following. Let # be the unique connection on My ; whose
curvature is the harmonic form representing Iz + ky (with respect to the standard metric
on CP? x CP'). For positive real numbers z;, z; let g be the metric on CP? x CP!
obtained from the standard metric by rescaling by z; in the CP2?-direction and z, in the
CP!-direction. Let gk, be the S1_equivariant metric on M with totally geodesic fibres
determined by 8, g and the standard metric on the fibres (cf. 4.3). Wang and Ziller show
that for x1, 2 chosen suitably g ; is an Einstein metric with positive Einstein constant and
hence in particular g ; is a metric with positive Ricci curvature. Since there might be more
then one tupel (z1,z2) such that the corresponding metric satisfies the Einstein equation,
the metric gi,; might not be determined by k, . But we observe that the component of
gk, in %jca,(Mk,g) is determined by k and [ since independent of (zy, ) the metric g has
positive scalar curvature and hence so does gz after rescaling the fibres if necessary (cf.
remarks following 4.4).

We recall that M ; is simply connected if k and [ are coprime and admits a spin structure
if k is even. Moreover, H*(My ;; Z) is a finite cyclic group of order 2. In particular, the
real Pontrjagin classes of My ; vanish. The following theorem is a consequence of our main

technical result Theorem 3.11 below and the calculations in [KS1, §4].

Theorem 3.2. Let k,l be coprime integers with k even. Then

3k +3)(P-1)
2771 '

$( M1, gr,1) =

Corollary 3.3. Let (M,g) and (M', g') be the total spaces of S'-bundles over CP? x CP!
given by coprime numbers (k,1) resp. (k',l') with k, k' even and I,I' # +1. Then the
following are equivalent:

(1) There is an orientation preserving diffeomorphism f: M — M’ such that ¢ and

f*¢' are in the same component of mj;a,(M).
(2) ' =+l and k' = k.

Proof. (1) implies (2) since the order of H*(M, Z) determines [ up to sign and then s(M, ¢)
determines k. (2) implies (1) since complex conjugation on CP? induces a fibre and orien-
tation preserving isometry (Mg ¢, gk 1) — (M —t,9x,—1). O
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Now we compare (3.3) with the diffeomorphism classification of the My i’s.

Theorem 3.4 [KS1]. Let (k,!) and (¥',1") pairs of coprime integers with k, k' even. Then
M. ; is orientation preserving diffeomorphic to My p if and only if I' = !l and k' = k
mod 2*:(D . 727D .12 where

for 1=2,6 mod8
for 1=1,7 mod 8
for 1=3,5 mod8
for 1=0,4 mod8

0 for 1=1,2,5,6 mod?7

A =
2(!) 1 for 1=0,3,4 mod7

M(l) = {

W N = O

Combining (3.3) and (3.4) we see that for [ # 0,1 leaving ! unchanged and adding
multiples of 222() . 7A7(D . 12 t6 & gives infinitely many diffeomorphic Einstein manifolds
with positive Einstein constant and different |s|-invariant. Hence each M = M ; with k
even and ! # 0, 1 carries infinitely many Einstein metrics, which lie in different components
of B _,(M)/Dif f(M). This proves Theorem 1.2.

scal
Next we discuss the Aloff-~Wallach family of positive sectional curvature manifolds. Let

k and ! be coprime integers and let
ixg: ST — SU(3)

be the inclusion which maps z € S! to the diagonal matrix with entries 2¥, z¢, 2= (*+)_ The
Wallach spaces are the homogeneous spaces

Niy = SU(3)/ix(SY).

These manifolds are simply connected. Let g ; be the normal homogeneous metric on Ny ,
which is unique modulo scaling (the normal homogeneous metric on Ny ; with respect to
a biinvariant metric on SU(3) is defined by the property that it makes the projection map
SU(3) — N, a Riemannian submersion).

The normal homogeneous metric has positive scalar curvature, but the sectional cur-
vature vanishes in certain tangent planes. Aloff and Wallach showed that one can get a
metric with positive sectional curvature as follows. Consider Ny ; as the total space of the

bundle
(3.5) U(2)/ik1(S") — SU(3)/ix(S*) — SU(3)/U(2),

where U(2) is embedded in SU(3) by mapping A € U(2) to the block matrix with A in the
upper left corner, (det 4)™! in the lower right corner and zeroes everywhere else. Aloff and
Wallach show that rescaling the metric gx ; in vertical directions (with respect to (3.5)) by
some 0 < t < 1 one gets a homogeneous metric of positive sectional curvature, provided
that kli(k +1) # 0 and kI > 0 [AW, 3.1]. We call any such metric an Aloff — Wallach
metric. Since for t = 0 we get the normal homogeneous metric each Aloff-Wallach metric
is in the same connected component of R, _ (Ny ;) as the normal homogeneous metric. We
observe that permuting &, [ and —(k + ) leads to embeddings S! — SU(3) conjugate to
tx,1 and hence to homogeneous spaces isometric to (Ny 1,9k ). Doing such permutations
if necessary we can always assume k! > 0 and hence we can formulate the result of Aloff
and Wallach as follows.



NONCONNECTED MODULI SPACES OF POSITIVE SECTIONAL CURVATURE METRICS 11

Theorem 3.6 (Aloff-Wallach [AW]). If ki(k+1) # 0, the Aloff-Wallach metrics on Ni
have positive sectional curvature. They are in the same connected component of the space
of positive scalar curvature metrics as the normal homogeneous metric gi ;.

Now we want to compare the isometry classification of the Nj;’s with their diffeo-
morphism classification. As noted above permuting k, [ and —(k + !) leads to conjugate
embeddings. The simplest numerical functions of k¥ and ! which are invariant under these
substitutions are

Nk, =k +ki+0? and  T(k1)=ki(k+1).

Observing that the Weyl group of SU(3) is the permutation group of three letters we
conclude that ig; is conjugate to iy if and only if N(k,!) = N(¥' ') and T(k,]) =
T(k',l'). We recall that N(k,!) is the order of H*(Ny ;; Z) [AW].

The following calculation of the s-invariant follows again from our main technical result
Theorem 3.11 and computations in [I{S2, §4].

Theorem 3.7. For any Aloff-Wallach metric g

1

$(Niki,9) = s(Nig,95,1) = 557 T(k,1),

where gy ; 1s the normal homogeneous metric.

Corollary 3.8. Let (k,!) resp. (k',I') be pairs of coprime numbers and (N, g) resp. (N', ¢')
the Wallach space together with its normal homogeneous metric determined by (k, ) resp.
(k',1"). Then the following are equivalent:

(1) There is an orientation preserving diffeomorphism f: N — N' such that ¢ and
f*g' are in the same component of R _,(N).

(2) The subgroups ix1(S?) and iy 1(S*) are conjugate in SU(3).
(3) N(k,1) = N(k', ') and T(k,1) = T(K', I").

Next we recall the diffeomorphism classification of the Wallach spaces.

Theorem 3.9 [KS2, p. 466]. Two Wallach spaces Ni; and Ny i are orientation preserving
diffeomorphic if and only if

N(k,0)= N(¥',I') and T(k,1)=T(k',l') mod2°.3.7AM.N,

where N = N(k,1) and A(N)=0if N =0 mod 7 and A(N) = 1 otherwise.

To finish the proof of our main result Theorem 1.1 we want to find diffeomorphic Wallach
spaces with different |s|-invariants. This is not easy since the corresponding number theory
is ugly and not understood. By a computer search Don Zagier and Andrew Odlyzko found
three solutions [KS2, p. 479]. The smallest one (in the sense that H* is minimal) is the
following:

Example 3.10. N_4533551,532556 is dlﬂ'eomorphlc to N_259414g,5052935, but the |.s|-1'nva—
riants of any Aloff-Wallach metrics on these spaces are different.

The order of H* is 19153920223641. The order in the two other known cases are:
411358875444559 and 2738819764243641. This finishes the proof of Theorem 1.1.
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To prove Theorems 3.2 and 3.7 we note that both families considered above are total
spaces of principal $’-bundles and that the Wang-Ziller metrics as well as the normal
homogeneous metric on SU(3)/S? are S'-equivariant metrics with totally geodesic fibres.
Hence we will derive below a general formula for the s-invariant of such a positive scalar
curvature metric ¢ on the total space of a principal S!-bundle p: P — B. It turns out
that the answer depends on which spin structure we choose on P and so we begin with a
discussion of these choices.

Note that the tangent bundle T'P is isomorphic to p*(TB) @ Trp P and that the tangent
bundle along the fibres TrP is trivial (the vector field generating the S!'-action on P
provides a trivialization of TrP). Hence a spin structure on B (which exists if the second
Stiefel Whitney class w,(B) vanishes) induces a spin structure on P which we denote by
é.

If we(B) = ¢ mod 2, where ¢ = ¢;(E) is the first Chern class of the complex line bundle
E associated to p: P — B, then TB @ E admits a spin structure. The choice of such a
spin structure gives a spin structure on the disk bundle DE whose restriction to the sphere
bundle SE = P we denote by ¢'. Note that if w(B) =0 and ¢ = 0 mod 2, then ¢ and
¢' are different spin structures on P, since the restriction of ¢ to a fibre S! is the non
trivial spin structure, which doesn’t extend over D?, whereas the restriction of ¢' extends
by construction.

Now we assume that the real Pontrjagin classes p;(P) € H¥(P;R) vanish (recall that
the invariant s(P, g) is only defined under this assumption). Then the isomorphism T'P &
p*(TB) ® TpP and the triviality of TP imply p*(p:(B)) = pi(P) = 0. Hence the Gysin
exact sequence

— HY"%(B;R) — H*(B;R) ~ H*(P;R) —

implies that p;(B) is divisible by c; i.e. there are elements p; € H*~%(B;R) such that
pi(B) =P;c

Theorem 3.11. Suppose k > 1. Let p: P — B be a principal S'-bundle over a closed
oriented manifold B of dimension 4k — 2 classified by ¢ € H*(B;Z); i.e. c is the first Chern
class of the complex line bundle E associated to P. Let g be a S'-equivariant positive
scalar curvature metric on P with totally geodesic fibres and let ¢, ¢' be the spin structures
on P described above (which exist if wy(B) = 0 resp. if wo(B) = ¢ mod 2). Assume that
the real Pontrjagin classes p;(P) € H*(P;R) vanish (so that s(P,g) is defined). Then

s(P,¢,g) = ——(:’i(TB)m + ag L(TB) [B]) + ay sign(B,)
(P, ¢',9) = ~(A(TB) s + a4 LTB) g, B)) + a sign( B

Here A(TB) (resp. L(TB)) are the usual polynomials in the Pontrjagin classes of B,
ax = m}pl_—ﬁ, { ,[B)) is the evaluation on the fundamental class of B and sign(B.)

is the signature of the bilinear form B,: sz_2(B)®H2k‘2(B) — R defined by B.(zQy) =
(zye,[B)).

We remark that the expressions 2sinhl(c T3y 2tan}11(c7§5 and 2y~ in the above formulas

have to be interpreted as (Laurent) series of the form 1/c+ ko + kyc + k2c® + ..., where
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the coefficients k; can be expressed in terms of Bernoulli numbers (cf. [MS, App. B]).
The number ay is chosen such that the linear combination A + aiL in degrees < 4k
is a polynomial in the Pontrjagin classes p;(B) for ¢ < k. Recall that the Pontrjagin
classes p;(B) for ¢ < k can be written in the form p;{B) = P; ¢ and hence the expressions
A(TB)W + ax L{TB) 2 and A(TB)W + ax L(TB)'{#M are polynomials
in c. For example, for k = 2 we get the following explicit formulas:

1
SP:¢1 Sl a—
(3.12) B0 = g5

5(P.4',9) = g (~Pr(B)F1 — 2m(B)c — &, [B]) +

We note that Theorem 3.11 also holds for ¥ = 1 but we only have a rather indirect proof
for this.

1
~3p1(B)Py + 8p1(B)c + 46, [B]) + 55— siga(Bo)

1
57 sign(B.)

§4. THE s-INVARIANT FOR S'-BUNDLES

The goal of this section and the next section is to provide the proof of Theorem 3.11,
i.e. to calculate s(P,g) where P is the total space of a principal S'-bundle p: P — B over
a closed oriented manifold B of dimension 4k — 2 and ¢ is a §'-equivariant metric with
totally geodesic fibres. Recall that the invariant s(P, g) can be determined alternatively
by using Definition 2.12 calculating integrals and 5-invariants on P, or by using formula
2.13 (iii) calculating characteristic numbers and the index of the Dirac operator on a spin
manifold W which bounds P:

s(P,g) = ind DY (W, gw) + (W) where

@D UW) = —((A + L) pi(W), [, OW1) + a sign(WW).

Here D*(W, gw) is the Dirac operator on W with respect to a metric g on W which
restricts to g on the boundary and is the product metric in a collar neighbourhood of the
boundary. Recall that the index of DY (W, gw) depends only on the connected compo-
nent of the positive scalar curvature metric g. In general it is very difficult to compute
ind D*(W, gw), but if gw has positive scalar curvature then ind D¥(W,gw) = 0 (cf.
2.2(11)).

I(n )3ur situation there is an obvious manifold with boundary P, namely the disk bundle
DE. Recall from §3 that DFE is a spin manifold if and only if w,(B) = ¢ mod 2 and that
in that case the induced spin structure on 0 DE = P is ¢'.

Lemma 4.2.

(1) Fwy(B)=c mod 2 thenind D*(DE, gpg) = 0 for any metric gpg on DE which
restricts to g on the boundary and is a product metric in a collar neighbourhood
of the boundary.

(2) HDE) = —(A(TB)gmmnersy + @ L(TB) gz, [BY) + ax sign(B.).

Proof. For the first part it suffices to construct a positive scalar curvature metric gpg on
DE which restricts to ¢ on the boundary (or to a positive scalar curvature metric in the
same connected component as ¢) and is a product metric in a collar neighbourhood of
the boundary. For this it is convenient to consider DE as the total space of a D%-bundle
associated to the S'-principal bundle P — B, and to use the following result of Vilms.
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Proposition 4.3 (cf. [Be, 9.59]). Let G be a compact Lie group and let F' be a manifold
with a smooth G-action. Let P — B be a principal G-bundle and let m: M = PxgF — B
be the associated bundle with fibre F'. Given a Riemannian metric gp on B, a G-invariant
Riemannian metric gr on F' and a principal connection 8 on P, there exists one and only
one Riemannian metric ¢ on M such that 7 is a Riemannian submersion from (M, gar)
to (B,gp) with totally geodesic fibres isometric to (F,gr) and horizontal distribution
associated to 0.

Rescaling ¢ in fibre direction, i.e. replacing gF by tgg for some ¢t > 0, we get a family of
Riemannian metrics g; on M. The scalar curvature s; of this family is given by [Be, 9.70]

1
(4.4) se=3sp+spom—tAl,

where sp, sp is the scalar curvature of F' resp. B and A is a tensor defined by O’Neill
(essentially the curvature of 8 [Be, 9.54¢]). It follows that for sp > 0 and sp > 0, decreasing
t increases the scalar curvature of g; and for sufficiently small ¢ the scalar curvature of ¢,
is positive. In particular, in this case the connected component of ¢, € ER;"M,(M ) depends
only on gg, not on # or the scaling ¢ (provided that ¢ is small enough to make the scalar
curvature of g, positive).

Now we specialize to the situation where P ~» B is our principal S'-bundle. Let gp
the metric on B and let 8 be the connection on P determined by the metric g. The scalar
curvature of gp is positive by (4.4) since the scalar curvature of the fibres is zero. Let
gp2 be a S'-equivariant metric on the disk D? which has non-negative scalar curvature,
restricts to the standard metric on the boundary and is a product near the boundary. We
note that the induced metric of D? when considered as a hemisphere in S$? has all these
properties except the last one, but this can be achieved as follows. In polar coordinates
around the north pole the standard metric on $? has the form dr? + sin’rd¢?. Now
replace sinr by a function f(r) with f' > 0 which agrees with sinr for small r and is
identically equal to 1 for r close to m/2. The resulting metric on the upper hemisphere has
the required properties.

Let g, be the family of metrics on the associated bundle DE = P x g1 D? determined
by ¢gB, 8 and tgp: via (4.3). The metric g; restricts to a product metric in a collar
neighbourhood of the boundary. For sufficiently small ¢ the metric g, has positive scalar
curvature by (4.4) and hence ind DY(DE, g;) = 0 by 2.2 (ii). Restricted to the boundary
g: agrees with the original metric g rescaled in fibre direction. Again by (4.4) the metric
g and this rescaled metric are in the same connected component of R, ,(P). By 2.2 (i)
this implies the first part of Lemma 4.2.

For the proof of the second part recall from the definition of the A-class resp. the L-class
(Hir] that for a complex line bundle E with first Chern class ¢ we have

A(E)zm and L(E)= —

tanhe¢’

To evaluate (A4 ar L)(7 ~'pi(DE)) we note that j: H*(DE, 8) — H*(DE) = H*(B) maps
the Thom class U € H?(DE,8) to ¢ and hence p; U to P; ¢ = p;(B). Using the bundle
equation TDE = p*(TB @ E) we get

+ axL(TB)—2—

(A+aL)(i"'pi( DE)) = A(TB) —

2 sinh(U/2)
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which by the remarks following Theorem 3.11 can be written in the form ¢(p;,U)U U,
where ¢(p;,U) is a polynomial in the B,’s, : < k and U. It follows that

t(DE) = (Q(ﬁi:U) U U’ [DE1 a]) = (Q(I_)i’c)?U n [DE:B]) = <Q(ﬁi,c)a [B])

Finally we note that via Thom isomorphism the cup product form on H**(DE,8DE)

corresponds to the form B;. Hence sign(DE) = sign(B.) which finishes the proof of the
second part of (4.2). O

Now, we assume that B admits a spin structure and want to calculate s(P, ¢, ¢). This
is more difficult since there is no obvious spin manifold W bounding P with the spin
structure ¢. Our proof is more indirect and consists of a number of steps. The strategy is
to show that it is possible to reduce the calculation for a general (B, E) to a special case
where we do have an explicit spin zero bordism W.

Suppose that W is some spin zero bordism for P equipped with the spin structure ¢.
For the calculation of s(P, ¢, g) via (4.1) it is useful to compare the topological correction
term ¢(W) to t(DE), which we computed above. So we glue DE and —W along their
common boundary P to get a closed manifold DE Up —W (—W stands for the manifold
W with its orientation reversed), which is oriented, but not spin. By a well known result
of Novikov the signature and hence the ¢ behave additively when glueing manifolds along
their boundaries. The signature theorem implies ¢(N) = —A(N) for a closed manifold N.
Hence

s(P,g) = ind DY (W, gw) + (W) = ind D* (W, gw) — t(DE Up —W) + t(DE)
= ind D*(W, gw) + A(DE Up —W) + t(DE).

We observe that ind D*(W, gw) and A(DE Up —W) are well defined without the as-
sumption that the rational Pontrjagin classes of P vanish. Also, the sum ind DY(W, gw) +
A(DE Up —W) is independent of the choice of W. For those manifolds P with vanishing
rational Pontrjagin classes this follows from (4.5), since s(P, g) is independent of W. For
a general P suppose that W, W' are two spin manifolds bounding P. Then the following

equation shows the independence of W.
ind D+(VV, gw) — ind D+(W', gw) = ind D+(W Up —W' gw U gwr)
= A(WUp -W')= —A(DEUp —W) + A(DE Up —W")
Here the first equality follows from remark 2.4 and the second equality from the index
theorem for closed manifolds. The third equality holds since W Up —W' is bordant to the
disjoint union of —~(DEUp —W) and DEUp —-W'.

Below we show that ind D¥(W,gw) + A(DE Up —W) depends only on the class of
(B, E) in a suitable bordism group. For a space X let 22P'"*(X) be the bordism group of
pairs (M, f) consisting of a n-dimensional closed spin manifold M and a map f: M — X.
Identifying the complex line bundle E with its classifying map B — BS? the pair (B, E)

represents an element of Q2'",(BSY).

Lemma 4.6. If k > 1, ind DY(W, gw) + A(DE Up —W) depends only on the bordism
class of (B,E) in Q5",(BS') and hence it defines a homomorphism from the bordism
group Q7" (BS!) to Q.

We observe that this result implies that ind D*(W, gw) is in fact independent of g =
(9w)jew (which is assumed to be S'-equivariant and to have totally geodesic fibres). We

(4.5)
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also note that the formula also holds for ¥ = 1, but we only have a more complicated and
indirect proof for this fact, which we don’t use in this paper.

Proof. We note that ind DY(W,gw) and fi(DE Up —W) behave additively under the
disjoint union of manifolds. Hence we can always replace (B, E) by a disjoint union of
copies of (B, E) and it suffices to show that ind D¥(W,gw) + A(DE Up —W) vanishes
if (B, E) is zero bordant. So assume that there is a spin manifold N with boundary B
such that E extends to a complex line bundle En over N. We choose W to be the sphere
bundle S(Exn). Then fl(DE Up —W) = 0 since DE Up —W is the boundary of the disk
bundle D(Ey). Moreover, if we can extend gp to a positive scalar curvature metric gy
on N (product metric near the boundary) then the metric gy on W = S(En) determined
according to (4.3) by gn and a connection on Exn has positive scalar curvature by (4.4),
provided that the fibres are small enough, and hence ind D* (W, gw) vanishes.

We claim that ind DH(W, gw) + fi(DE' Up —W) vanishes if P is the trivial bundle
P = BxS" and g is a product metric. To prove the claim we note that complex conjugation
on S? gives an orientation reversing isometry of P and hence —W is also a zero bordism for
P, which we could use to calculate ind D+(W,gw) —i—/i(DEUp —W), which is independent
of the choice of W. But replacing W by —W (and DE by —DE) the index and the
A-invariant change sign and hence this sum vanishes.

Thus it suffices to construct a positive scalar curvature metric gy on a bordism N
between (B, E) and (B, C), where C stands for the trivial complex line bundle.

Let N' be the product of B with the unit interval I and let gn+ be the product metric
on N'. Then N’ is a spin bordism between B and itself (of course there is no complex
line bundle over N' restricting to E on one boundary component and the trivial bundle
on the other unless E is trivial). Our goal is to use the positive scalar curvature metric
gn+ to produce a positive scalar curvature metric gy on N. We note that the group Q%'
consists entirely of 2-torsion [ABP]. This implies that (possibly after replacing (B, E) by
two disjoint copies) N and N' are spin bordant relative boundary, i.e. there is a spin
manifold V' with boundary N U N’ (glued along their common boundary). This implies
that N can be obtained from N’ by surgeries in the interior and hence by the surgery
results of [GL1] resp. [SY] the manifold N admits a positive scalar curvature metric gy,
provided that the surgeries needed are all of codimension > 3.

We observe that a surgery of codimension ¢ correponds to an (n — 7)-handle of the pair
(V,N") with n = dim V. There is a handle decomposition of (V, N') without (n—1)-handles
for i < 2, provided that H,_;(V,N'; Z) & H*(V, N; Z) vanishes for i < 2 [Mi]. This is the
case if the inclusion N — V is a 2-equivalence; i.e. it induces an isomorphism on homotopy
groups 7y, m; and a surjection on ;. We claim that we can always modify (N, Ex)and V
such that the inclusion is a 2-equivalence. First we do 0- and 1-surgeries on N in order to
make the map N — BS? classifying En a 2-equivalence. Then we make V 2-connected by
i-surgeries, ¢ < 2 (here it is important that V' is spin since otherwise there might be a class
in m3(V') which we can’t kill by surgery since it is represented by an embedded 2-sphere
with non-trivial normal bundle). After these modifications the inclusion N — V is clearly
a 2-equivalence and this finishes the proof of lemma 4.6. O

Our next goal is to show that a multiple of each class in Q:’;i_".z( B.S'l) can be represented
by total spaces of fibre bundles with fibre CP!. More precisely, let

(4.7) CP' = SU(2)/S! — BS' 5 BSU(2)
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be the fibre bundle with fibre CP' induced by the standard embedding of S! as diagonal
matrices in SU(2). Let 7 be the tangent bundle along the fibres. We note that 7 is spin
since its restriction to a fibre is spin. Hence there is a corresponding transfer homomor-
phism of spin bordism groups [Bo]

(4.8) QPN (BSU(2)) — QR (BSY),

defined geometrically as follows. Given a closed spin manifold X and a map h: X —
BSU(2) let X — X be the pull back of the bundle (4.7) via h and let 2: X — BS! be
the map covering h. The transfer map 7' maps the bordism class of (X, k) to the bordism
class of (X, k) (note that a spin structure on X induces a spin structure on X since the
tangent bundle along the fibres is spin).

Lemma 4.9. In degrees n =0 mod 4 the transfer 7' is a rational isomorphism.

Proof. In homotopy theoretic terms the transfer map 7' can be described as follows [Bo].
Let M(—7) be the Thom spectrum of the inverse of 7. Associated to the fibre bundle (4.7)
there is a ‘“Thom’ map T'(7) from the suspension spectrum of BSU(2) to the desuspension
$~2M(—7). Then 7' is the composition

. T(). . @ i
QP(BSU(2)) —— Q™(S72M(~r)) = Q2 (BSY),

where & is the Thom isomorphism in spin bordism. Hence it suffices to show that T'(7).
1s a rational isomorphism for n = 0 mod 4. We note that there is a natural isomorphism

QPin(X) @ Q X H,(X;Q)® QP",

Moreover, Q" @ Q is a polynomial ring with generators of degree 0 mod 4. This im-
plies that it suffices to show that the map induced by T'(7) in rational homology is an
isomorphism in degrees n = 0 mod 4. Dually, it suffices to show that the cohomology
transfer

T(m)*
m: H™(BSY; 2) — H™(272M(~7); Z) I, g (BSU(2);2)

is a rational isomorphism for n = 0 mod 4 (& is here the Thom isomorphism in cohomol-
ogy). This transfer can be described explicitely as follows. Recall that H*(BSY; Z) = Z[z),
where z is an element of degree 2 which restricts to a generator of the second coho-
mology of the fibre of (4.7). Hence the Leray Hirsch theorem implies that each ele-
ment z in H*(BS';Z) can be written uniquely in the form z = 7*(a) + 7*(b) U z with .
a,be H*(BSU(2);Z) = Zy] (y has degree 4).

It follows from the Serre spectral sequence description of =, [Bo, Ch. V, 6.14] that
m(z) = b. Hence m(z?**1) = y* which proves lemma 4.9. O

Lemma 4.9 shows that it suffices to determine ind D¥(W, gw) +A(DE Up —W) for pairs
(B, E) in the image of 7'. So we can assume that B is the total space of a CP!-bundle
X — X which is the pull back of (4.7) via a map h: X — BSU(2) and that E is classified



18 MATTHIAS KRECK AND STEPHAN STOLZ

by h: X — BS'. In more concrete terms: Let V be the quaternionic line bundle classified
by h. Then

(1) B is the complex projective bundle CP(V).

(2) E is the tautological complex line bundle over CP(V) (whose fibre over a point in
CP(V), i.e. a complex line in V, consists of all vectors in that line).

(3) P is the sphere bundle SE which can be identified with the sphere bundle SV.

(4) W can be chosen to be the disk bundle DV (this is spin!)

(5) DE Up —W can be identified with the complex projective bundle CP(V & C),
where C is the trivial complex line bundle.

(6) The Riemannian metric ¢ on P = SV can be chosen to be the $3-equivariant
metric with totally geodesic fibres associated by (4.3) to a metric gx on X, a
connection 8 on V and the standard metric (suitably scaled) on the fibre S°.

Lemma 4.10.

(1) ind D*(DV,gpv) = 0 for any metric gpy on DV which restricts to g on the
boundary and is a product metric in a collar neighbourhood of the boundary.
(2) ACP(V & ©) = (ATCH(Y) (samerss — rromicersy ) [CBOV).

The proof of the first part is completely analogous to the proof of the first part of (4.2).
We defer the characteristic class calculation necessary for the proof of the second part to
the next section.

Formula (4.5) shows that combining this lemma with the calculation of {(DE) in (4.2)
gives the desired formula for s(P, ¢,g). This finishes the proof of Theorem 3.11.

85. MULTIPLICATIVE GENERA AND FIBRE BUNDLES

The goal of this section is to prove the second part of (4.10), i.e. to calculate the A-genus
of the complex projective bundle CIP(V @C). Here V@ C is a 3-dimensional complex vector
bundle over a spin manifold X, namely the sum of a quaternionic line bundle V' and the
trivial complex line bundle C. We remark that CP(V @ C) has a positive scalar curvature
metric, but this does not imply the vanishing of the fl-genus, since it is not a spin manifold.
Likewise, the multiplicativity of the A-genus for fibre bundles [AH] does not apply in our
situation since the fibre CP? is not spin. In the following calculation of A(CP(V @ C))
we don’t use special properties of the /i—genus and so we consider a general multiplicative
genus K [MS, §19]. Also, we first discuss the J-genus of a general bundle with fibre a
homogeneous space G/H and structure group G and then specialize to CP2-bundles.

Let G be a compact connected Lie group and let i: H — G be the inclusion of a closed

connected subgroup. This inclusion induces a projection map of classifying spaces and we
denote by 7 the tangent bundle along the fibres of the fibre bundle

(5.1) G/H — BH = BG.

Lemma 5.2. Let K be a multiplicative genus, let X be an oriented manifold and let
7: X — X be the pull back of (5.1) via a map g: X — BG. Then

K(X) = (K(TX) g"(Bi). K (r), [X)).
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Proof. The tangent bundle TX is isomorphic to 7*TX @ §*(r), where X — BH is
the map covering g. The multiplicativity of K then implies K (TX )=7*K(TX)§*K(r).
Hence R .

K(X) = (mK(TX),[X]) = (K(TX)m(§"K(r)), [X]),

where the second equality follows from the fact that m(7*z 2) =  m(&) for elements z, &
in the cohomology of X, respectively X. This implies the lemma, since m(§*K(r)) =
g*(BiyK(7) by the naturality of the transfer homomorphism. [

To use (5.2) we need to determine (Bz)) K (1) which is the ‘equivariant K-genus’ of G/H.
Recall that the inclusion of a maximal torus 7: T — G induces an injective homomorphism
(cf. [BH])

Bj*: H*(BG;Q) — H*(BT; Q).

Moreover, the image is the fixed point set H*(BT;Q)"(? of the action of the Weyl
group W(G). We will use Bj* to identify elements of H*(BG;Q) with their image in
H*(BT;Q). Consequently, the map Bj* (and its analogue for a maximal rank subgroup
H) will be suppressed in the formulas below. Recall that the cohomology of BT is a
polynomial ring. It is convenient to construct explicit generators in the following way. Let
o be a homomorphism from the torus to S1. Then & determines a complex line bundle over
BT (the vector bundle associated to o regarded as 1-dimensional complex representation
of T') and a cohomology class in HZ(BT;2) (the first Chern class of that line bundle).
Abusing notation we will again write o for this cohomology class. If zy,... ,z; is a basis
of Hom(T, S') then H*(BT;Q) is the polynomial ring generated by z,,... ,z.
The proof of the next proposition is based on results of Borel and Hirzebruch [BH].

Proposition 5.3. Let K be a multiplicative genus with characteristic power series Q(z) =
z/f(x), where f(z) = = + ... is an odd power series. Let G be a compact connected Lie
group and let i: H — G be the inclusion of a closed connected subgroup of maximal
rank. Let ay,...,0m4+n be a set of roots of G which contains for each root o exactly
one of the roots o, —«. Assume that ay,...,q,, are roots of H and &m41,... ,0m4n are
complementary roots, i.e. roots of G which are not roots of H. Then

(1) Bixw) = > w Y __)  for yeH*(BH;Q)

weW(G)w(H)y Mt Gmen

@ (BiE(r) . S sga(w)w(f(a) - f(am)),

= Flo) f(@man) weW(G)/W(H)

where sgn(w) € {£1} is defined by w(ay * - @myn) = sgn(w) a1+ Amen.

Here the fractional expressions are to be considered as elements in the ring obtained
from the polynomial ring H*(BT; Q) by adjoining the inverses of the roots of G. We note
that (B1): (‘integration over the fibre’) on the left hand side of the above equations depends
on the choice of an orientation for 7, while the right hand side depends on the choice of
signs for ayn41,... ,@m4n. The orientation convention making the above formulas correct
is the same as in [BH], namely we have to pick the orientation of 7 such that its Euler
class is @41 - @myn (it is not hard to see that the Euler class of 7 is amq1 -+ @man;
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cf. proof of part (2) of the proposition). We observe that the Euler class of 7 is an element
of H*(BH) and hence invariant under W{(H) which shows that the right hand sides are

well defined, i.e. independent of the choice of coset representatives for W(G)/W(H).

Proof of 5.8. Let Bj: BT — BG be the projection map induced by the inclusion of a
maximal torus of G. Then by [BH, Thm. 20.3]

Z sgn(w)w(z) = (Bjpi(z)ay - omen  for z € H*(BT).
weW(G)

Dividing by a; - - am4n and using the definition of sgn(w) we get

. T .
(5.4) (Bin(z)= w(m) for = € H*(BT).
weEW(G)
In particular,
(5.5) (Bi)(zar: - amyn) = |W(G)| 2 for z e H*(BG),

where [W(G)| is the order of W(G). Our assumption that G and H have the same

k L
rank implies that the inclusion j: T — G factors in the foorm T' — H — G and hence
(Bj) = (Bi) (Bk). Applying (5.4) to the element x =y oy -+ @y with y € H*(BH) we
get

. Y
(Bi)(yen-—am)= D )
wew(q) (Ml Gmitn

=wE Y “ )

o Y
wEW(G)/W(H) m+1 m+n

The second equality follows from the fact that elements of W(H) act trivially on y and
Om41 - * ¥pptn. On the other hand,

(Bi)i (BE)(y e - am) = [W(H)[(Bi)(y)

by applying (5.5) to the subgroup H, which proves part (1).

To prove part (2) we decompose the Lie algebra of G in the form g = h @ h=, where
h is the Lie algebra of H and h* is an H-invariant complement. We note that 7 is the
vector bundle associated to §+. In particular, (Bj)*(7) is isomorphic to the sum of the

complex line bundles over BT associated to @pm41,... ,@m4n. It follows that the Euler
;:llass of (Bj)*(7) is £&m41 -+ myn € H*(BT). Moreover, (1) = f(ac:::l);&t:,n) and
ence

(Bz)'(I{(T)) - Z: w( f(am) T 'lf(am+n))

weW(G)/W(H)

- flay) - -1f(0’m+n) Z sgn(w) w(f(ea) - flam)),

weW(G)/W(H)
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which proves the second part of (5.3). O

Now we specialize to the case where G/H is CP?, i.e. we consider the fibre bundle

(5.6) CP? = U(3)/(U(2) x U(1)) — BU(2) x U(1)) — BU(3),

where the inclusion i: H — G maps (4,B) € U(2) x U(1) to the three by three block
matrix with A in the upper left, B in the lower right corner and zeroes everywhere else.

The maximal torus of U(3) is 3-dimensional. The inclusion j:7T — U(3) is given by
mapping (21,22,23) € T to the diagonal matrix with entries (21, 22,23). Let z;:T — S!
be the projection on the :-th factor, ¢ = 1,2,3. The Wey!l group of U(3) is the symmetric
group X3 which acts on the z;’s by permuting them. The Weyl group of U(2) x U(1) is
the subgroup I, fixing z3. The roots of U(2) x U(1) are &(z; — z2) and the roots of U(3)
are +(z; —z;) for 1 <7 < j £ 3. So we can choose the a’s to be of the form z; — z;,
1 <1 < j < 3. Moreover we can choose the coset representatives w of the quotient of the
Weyl groups to be the cyclic permutations of 1,2,3. Then sgn(w) = 1 and using part (2)
of (5.3) we get

flz1 —z2) + f(z2 — 23) + f(z3 — 1)
f(Il - mz)f(ﬂ?z - -'83)f(-'b‘1 - -’173)

(5.7) (Bin(K (7)) =

Now we want to apply this to the complex projective bundle CP(V @ C) — X, where
V is a quaternionic line bundle classified by h: X — BSU(2). Combining (5.2) and (5.7)
we get a calculation of the K-genus of CP(V @ C) in terms of characteristic numbers of
X. For the proof of the second part of (4.10), however, we need a calculation in terms of
characteristic numbers of CP(V). The answer is the following,.

Lemma 5.8. Let I be a multiplicative genus with characteristic power series z/f(z).
Then

K(CR(Y ©.0)) = (K(TCR(V)) (775 = L), SRV,

where c Is the first Chern class of the canonical complex line bundle over CP(V).

Specializing K to the A-genus for which f(z) = 2 sinh(z/2) we get part (2) of lemma
4.10.

Proof of 5.8. We note that the CP?-bundle CF(V @ C) — X is the pull back of the bundle
(5.6) via the composition of the map h: X — BSU(2) classifying V and Bk: BSU(2) —
BU(3), where k maps A € SU(2) to the block matrix with A in the upper left comner, 1
in the lower right corner and zeroes everywhere else.

Applying (5.2) we get

K(CE(V & C)) = (K(TX) h* (Bk)" (Bi).K (), [X])

(5.9) e e e o
= (¢* (K(TX) b* (BE)* (Bi)K(r)) o, [CB(V)),

where ¢ is the projection map ¢: CP(V) — X and ¢ is the first Chern class of the tauto-

logical complex line bundle over CP(V'). The second equation follows from the fact that

gi(c) = 1 and hence qi(¢*z c) = z for all elements z in the cohomology of X.
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We note that the CP!-bundle ¢: CP(V) — X is the pull back via h: X — BSU(2) of
the bundle

(5.10) CP' = SU(2)/$" — BS' 25 BSU(2),

where ¢ maps z € S! to the diagonal matrix in SU(2) with entries z,z7!'. Hence the
tangent bundle TCP(V') is isomorphic to ¢*TX @ h*(r'), where 7' is the tangent bundle
along the fibres of (5.10) and h: CP(V) — BS! is the map covering h. It follows that
K(TCP(V)) = ¢*K(TX) h*K(r') and hence
(5.11)

¢*(K(TX)h*(Bk)*(Bi) K(r)) = K(TCP(V)) h* (K(r")~* (B')*(Bk)*(Bi) K (1)).

If z is the generator of H*(BS?;Z) the homomorphism (Bi')*(Bk)* maps z; to z, 7 to
—z and z3 to zero. Using (5.7) and the fact that f is an odd power series we obtain

(Bi'Y*(Bk)*(Bi) K (r) = f_ffj‘(’;m‘)f(fx()"‘;) .

The tangent bundle along the fibres of (5.10) is a complex line bundle with first Chern
class 2z and hence K(r') = ﬁgz"’—z-)- It follows that

K(r')—l (Bz')-h(Bk)*(Bz)fK(‘r) = :cf]&x) _ 255?(2))2 )

Putting this together with (5.9) and (5.11) and noting that 2* maps z to c finishes the
proof of (5.8). O
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