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ABSTRACT. For a closed manifold Miet 9ttec(M) (resp. 9t~ic(M)) be the space of Riemann­
ian metrics on M with positive sectional (resp. Ried) curvature and let Dij j(M) be the diffeo­
morphism group of M, which acts on these spaces. We construct examples of 7-dimensional
manifolds for which the moduli space 9ttec(M)/Dij j(M) is not connected and others for
which 9t~ic(M)/Dij f(M) has infinitely many connected components. The examples are ob-­
tained by analyzing a family of positive sectional curvature metrics on homogeneous spaces
constructed by Aloff and Wallach, on which SU(3) acts transitively, respectively a family of
positive Einstein metrics constructed by Wang and Ziller on homogeneous spaces, on which
SU(3) x SU(2) x U(l) acts transitively.

§l. INTRODUCTION

Very little is known about the question of existence and classification of Riemannian
metries of positive sectional curvature on a closed manifold M. The only known simply
connected manifolds of dimension> 24 admitting such ametrie are the spheres and projec­
tive spaces over C or lHI. On the other hand the only knawn obstructions are the vanishing
of the A-genus [Li], or more generally the vanishing of the Q-invariant [Hit], and the Betti
number bound [Gr].

As far as classification is concerned, the first question is about the number of connected
components of the moduli space of such metries. We denote the space of Riemannian
metries on M with positive sectional curvature by 9ttc(M). The group of diffeomorphisms
DiJJ(M) acts on this space by pulling back metries. The orbit space 'ft."!"ec(M)jDiJJ(M)
is the moduli "Jpace 0/ Riemannian metries with pOJitive sectional curvature. In dimensions
2 and 3 this space is eonnected. In dimension 2 this follows from uniformization theory.
Also in dimension 3 this is related to a sort of geometrization theory. Hamilton [HaI] has
studied the so called Ried flow, which has the remarkable property of deforming a positive
Ried curvature metrie into a metr-ie of constant positive sectional eurvature. If the original
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metric has positive sectional curvature, it stays in this category during the deformation
[Ha2, eompare seetion 5.2]. Combined with the classifieation of 3-dimensional Euelidean
space forms [eS, p.778] this implies that the space is connected.

In this paper we will prove that eorresponding results about fJttc(M)/Dif f(M) don't
hold in higher dimensions in general.

Theorem 1.1. There are c10sed maniIolds for whicb 9ttc(M)/Dif f(M) is not connected.

Similarly, we will investigate the moduli spaee 9tkic(M)/Diff(M) of Riemannian met­
ries with positive Ricei eurvature. Again in dimension ~ 3 trus spaee is eonneeted hy the
same argument as above. We will prove that in higher dimensions this moduli spaee ean
even have inßnitely many eomponents.

Theorem 1.2. Tbere are c10sed manifolds for which 9tkic(M)/Diff(M) has infinitely
many connected components.

Comparing these results with the situation in dimensions 2 and 3 there are two possible
reasons why the moduli spaee is not eonneeted in higher dimension. Either one eannot
deform the metrie ioto a 'standard' form or there is a discrepaney between the isome­
try classmeation of these standard metries and the diffeomorphism classifieation of the
underlying manifolds.

To ohtain the manifolds of Theorems 1.1 and 1.2 we study two well known families of
Riemannian manifolds of dimension 7 with positive seetional resp. Ried eurvature. The
first are the Wallach spaees, homogeneous spaees of the form G/ H, where G e:.c SU(3) and
H I'V U(I), whieh earry homogeneous positive sectional eurvature metries by a result of
Aloff and Wallach [AW]. The second family eonsists of homogeneous spaces of the form
G/ H, where G I'V SU(3) x SU(2) x U(I) and H I'V SU(2) x U(I) x U(I), which were studied
by Witten [Wi]. Both classes of homogeneous spaces are total spaces of SI hundles, in the
first ease over the flag manifold SU(3)/T, T the maximal torus, and in the seeond case
over Cp2 X Cpl where cpn is the eomplex projeetive n-spaee. Wang and Ziller showed that
the latter total spaces admit metrics of positive Ried curvature, in fact Einstein metrics
with positive Einstein eonstant [WZ].

In both theorems we aetually prove a stronger result, namely we find positive see­
tional (resp. Ried) metrics which are in different eomponents of 9t;cal(M)/Dil f(M),
the moduli spaee of positive scalar curvature metries. We distinguish these eomponents
by a Q-valued invariant s which is defined for positive scalar eurvature metries on closed
(4k-l )-dimensional spin manifolds M with vanishing real Pontrjagin classes. As a corollary
of the eonst ruction of s we see that for every such M (k > 1) with vanishing H I ( M; Z/ 2)
the moduli spaee SJ{~cal(M)/Dif f(M) has infinitely many components (Cor. 2.15), pro­
vided that 9t~cal(M) is not empty. We note that hy a result of the second author the
space 9t~cal(M) for a simply eonneeted closed spin manifold M of dimension 2:: 5 is not
empty if and oo1y if the Atiyah invariant a(M) vanishes [St]. This invariant vanishes for
(4k - 1)-dimensional manifolds and henee for every closed simply eonneeted spin mani~

fold of dimension 4k - 1, k > 1, with vanishing real Pontrjagin classes the moduli space
9t;ca/(M)/Diff(M) has infinitely many components. Previous work of Hitehin [Hi, Thm.
4.7] and Carr [Ca, Thm. 4] shows that SJ{~cal(M) is not eonnected in many eases, hut the
result about the moduli spaee is new as far as we know. We want to stress that in our
opinion in particular Theorem 1.1 is deeper than the last mentioned result since it is much
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harder to compute the .s-invariant for the positive sectional curvature metries of Aloff and
Wallach.

The organization of the paper is as follows. In §2 we define the invariant s for positive
scalar curvature metries on certain (4k - 1)-climensional manifolds. This invariant is an
absolute version of a relative invariant introduced by Gromov and Lawson. In §3 we
describe the two families of positive sectional (resp. Rlcci) curvature manifolds mentioned
above and use the invariant of §2 to prove Theorems 1.1 and 1.2. The main technical tool
is the calculation of our invariant for Sl-equivariant metries with totally geodesie fibres
on total spaces of prindpal Sl-bundles (Theorem 3.11). This result is proved in §§4 and
5, with §5 provicling the calculation of the A-genus of fibre bundles with fibre CIP2 and
structure group U(3).

We would like to thank Rainer Jung for numerous useful discussions.

§2. AN INVARIANT FOR POSITIVE SCALAR CURVATURE METRICS

In this chapter we define a Q-valued invariant seM, g) (cf. 2.12) for positive scalar
curvature metries 9 on closed (4k - 1)-dimensional spin manifolds M with vanishing real
Pontrjagin classes. This invariant is related to an integer valued invariant i(go, gl) defined
by Gromov and Lawson [GL2, Def. 3.13] for pairs of positive scalar curvature metries gi
on a (4k - 1)-climensional spin manifold. More predsely, if the real Pontrjagin classes of
M vanish then

(2.1)

These invariants are closely related to the Dirac operator on manifolds with boundary and
hence we begin with a discussion of this operator and its index.

Let W be a 4k-dimensional compact spin manifold with boundary aw. Let gw be a
Riemannian metric which coincides with a product metric on aw x I in a collar neighbour­
hood of the boundary and let gaw be its restrietion to aw. Let D+(W, gw) be the (chiral)
Dirac operator with respect to the metric gW from the positive to the negative spinors on
W. This becomes a Fredholm operator if we impose the Atiyah-Singer-Patodi boundary
condition, i.e. if we restrict to spinoTS on W whose restrietion to aw is in the kernel of P,
where P is the spectral projection corresponding to eigenvalues :2: 0 of the (total) Dirac
operator D(aw, gaw) on aw [APS1, §3 and §4]. We denote by ind D+(W, gw) the index
of this Fredholm operator.

We recall that if gw(t) is a continuous family of metrics on W then the corresponding
family of spectral projections pet) is not continous for those parameter values t where
an eigenvalue of D(aw, gaw(t)) crosses the origin. If ga~v(t) has positive scalar curva­
ture then Lichnerowicz's argwnent using the Weitzenböck formula shows that the kernel
of D(a~g8W(t)) is trivial [Li]. Hence D+(W,gw(t)) is u. continous family of Fredholrn
operators and thus ind D+(W, gw(t)) is independent of t. We note that if gw, g~ are two
metries on W whose restrietions to the boundary are in the same component of 91~al(aW)
and which are product metrics near the boundary then they can be connected by a con­
tinuous family of such metrics. This implies the first of the following two remarks which
we state for future reference.

Remark 2.2.

(i) JE gw is a metl'ic on W whose restriction to the boundary gaw has positive scalar
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curvature then indD+(~gw) depends only on the connected component of 9aw
in 91;-cal(aW).

(ii) H gw bas positive scalar curvature then ind D+(~9W) vanisbes [APS2, p. 417].

The index theorem of At iyah-Patadi-Singer [APS1, Thm. 4.2] gives the following fonnula
for the index of D+(W, 9w):

(2.3) indD+(W,gw) = LA(Pi(W,9W)) - h(8W) + 7)(~(8W,gaw)).

Here pi(W, gw) are the Pontrjagin farms of W (with respect to the Levi-Civita connection
determined by 9W) and A is Hirzebruch's A-polynomial. Moreover, D(aw, 9aw) is the
Dirac operator on aw, h(aW) is the dimension of its kernel (which consists of the har­
monie spinors on 8W) and 1J(D(8, 9aw)) is the 1J-invariant of Atiyah-Patodi-Singer, which
measures the asymmetry of the spectrum of the selfadjoint operator D(aw, 9aw).

Remark 2.4. H we glue (W, 9tV) and (W', 9w) along isometrie boundary companents
then tbe index fonnula shows that the index of tbe Dirac operator behaves additively,
provided tbat there are na barmonie spinoTS on that common boundary component, e.g.
if the scalar eurvature on that piece of the boundary is positive.

Next we recall the definition of the Gromov-Lawson invariant i(90,91) using a slightly
different (but completely equivalent [APS1, Cor. 3.14]) fonnulation. Let M be a closed
spin manifold of dimension 4k -1 and let 90 and 91 be positive sealar eurvature metries on
M. In this situation Gromov and Lawson [GL2, Def. 3.13] define an invariant i(90, 9l )'E Z
by

(2.5)

where G is any metric on ]v[ x I which restriets to 9i on M x i for i = 0,1 and which is
a produet metric in a collar neighbourhood of the boundary. The first part of remark 2.2
shows that i (90 , 9l) depends only on the components of 90, 91 in !R;ca I ( M). The second
part implies that i(90, 91) vanishes if 90, 91 are in the same component (the path connecting
go and gl defines ametrie h on M x I which after shrinking in M -direction has positive
sealar curvature [GL1, Lemma 3]).

We show below (cf. 2.16) that it is not possible to define an invariant s(M,g) E Q
depending only on the spin isometry class of (M, g) (a spin isometry is a spin strueture
preserving isometry) and satisfying (2.1) for all (4k - 1)-dimensional spin manifolds M.
However, we define such an invariant for spin manifolds M satisfying the following

Assumption 2.6. All real Pontrjagin classes of M vanish.

The idea behind the definition of seM, g) is to rewrite the right hand side of the index
fonnula (2.3) as a SUffi of two terms, one depending only on the geometry of aw, the
other depending only on the topology of W. Assuming that the real Pontrjagin classes
of aw vanish this cau be done. The following lemma shows how the integral over the
decomposable summands in fw A(Pi(W, g)) cau be written as such a su~.
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Lemma 2.7. Let a and ß be c10sed differential forms of positive degree on W wbose
restrietions to aw are coboundaries; i.e. tbere are forms a, /J on aw such that da = QJ8W

and dß = ßI8W' Tben

r aAß= r aAß+(j-l[a]Uj-l[ß],[W,aW]),
Jw lew

wbere j-l [al E H"'(W, aw; IR) is 8JlY preimage of tbe deRham cohomology dass [al E

H"'(W; IR) under tbe natural map j: H"'(W, aw; R) -+ H"'(W; IR), j-l [ß] is denned analo­
gously, and ( ,[~ aw]) is the Kronecker product with tbe fundamental dass.

The proof is an easy consequence of Stokes's Theorem (compare [1<S1, p. 380]). We
note that the integral on the right hand side is independent of the choice of &- and that
the I<ronecker product is independent of the choice of the preimages j -1 [a] and j -1 [ß] .
Slightly abusing language we define

(2.8)

To get rid of the indecomposable smnmand in A(Pi(W, g)) (which is a non-trivial mul­
tiple of the Pontrjagin form Pk(W, g)) we observe that a suitable linear combination of the
A-polynomial and Hirzebruch's L-polynomial, oamely A+ ak L with ak = 22JJ+1 (211:-1-1)'

is in degrees ~ 4k a polynomial in the Pi'S for i < kj i.e. it does not involve Pk [Hir]. The
signature Theorem for manifolds with boundary [APSl, Thm. 4.14] gives

(2.9) sign(W) = fw L(Pi(W,g)) - 'l(B(8W, 918W )),

where B is the signature operator. This can be interpreted as a formula expressing the
integral as a surn of two terms, one involving only the geometry of the boundary, the other
ooly the topology of W.

Assumiog that the real Pontrjagin classes of aw vanish and combining (2.3), (2.7), and
(2.9) we obtain

(2.10)

where the 'topologieal' term t(W) is given by

(2.11 )

Here Pi (W) denotes the i-th real Pontrj agio class of W and j -1 Pi (W) is any preimage under
the natural map j:H"(W,8W;lR) -+ H"'(WjIR) (which exists due to the assumption that
Pi (aW) vanishes).

In particular, if all real Pontrjagin classes of M vanish we can apply (2.10) to W = MxI.
In this case t(W) vamshes and thus we defl.ne
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Definition 2.12. Given a c10sed (4k - 1)-dimensional spin manifold M witb vanishing
real Pontrjagin c1asses and positive scalar eurvature metrie 9 on M we define

Next we summarize sorne basic properties of the s-invariant. H M and M' are manifolds
of dimension ~ 4 and g, g' are positive scalar curvature metrics on M resp. M', then there
is a positive scalar curvature metric g#g' on the connected surn M#M' [GLl]. The rnetric
g#g' depends on same choices but it is not hard to see that different choices lead to metries
in the same connected cornponent of r.R~cal(M#M').

Proposition 2.13. Let M, M' be (4k - 1)-dimensional closed spin manifolds witb VaD­

ishing real Pontrjagin c1asses and let g, g' be positive sealar curvature metries on M resp.
M'.

(i) Hf: (M, g) -+ (M', g') is a spin isometry (i.e. a spin structure preserving isome­
try), tben seM, g) = s(M', g').

(ii) seM, g) depends only on the connected component oE 9 in ~;cal(M).

(iii) H M bounds a spin manifold W and gw is ametrie on W extending g, whicb is
a product metric near the boundary then

s(M,g) = indD+(W,gw) + t(W).

(iv) s(M#M',g#g') = s(M,g) + s(M',g').

Proof. The parts (i) - (iii) are immediate consequences of the definition of s and the
discussion above. For (iv) we note that the connected surn M #M' is obtained from the
disjoint union M IJ M' by a O-surgery. Let W denote the trace of this surgery, which is a
bordism between M Il M' and M#M' obtained 9Y attaching a O-handle to (M II M') x I.
By results of [Ga] or [Ca, Lemma 10] there is a positive scalar curvature metric gW on W
which restriets to 9 resp. g' resp. g#g' on the boundary components of W and is a product
metric near the boundary. Prom 2.13 (iii) and 2.2 (ii) we conclude

s(M#M', g#g') - seM, g) - seM', g') = ind D+(W, gw) + t(W) = 0,

which proves part (iv). 0

. Since the disjoint union of two copies of every (4k -1)-dimensional spin manifold bounds
[ABP] we can take 2.13 (iii) as a definition of s(M,g). Also, 2.13 (iii) implies that s(M,g)
is a rational number. Reducing s modulo Z (for k even) respectively 2Z ( for k odd)
we get an invariant depenmng only on the diffeomorphism type of M (considered as spin
manifold), since ind D+(~gw) is an integer (resp. even integer for k odd; cf. the remarks
following Proposition 2.16). For k = 2 this is (up to a sign) the invariant SI used in [KSl]
and [KS2] for the diffeomorphism classmcation of certain 7-manifolds (cf. Theorems 3.4
and 3.9).

The invariant s should be seen in analogy to invariants defined in [APS2], like the invari­
ant ta(O), [APS2, p. 414]. As there, definition 2.12 should be viewed as the fundamental
one since it is intrinsically defined on M whereas 2.13 (iii) involves an auxiliary manifold
W. On the other hand, the latter definition has the merit of being easier to cornpute
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as we will demonstrate in the next chapters, where we calculate the invariant for princi­
pal SI-bundles with SI-equivariant positive scalar curvature metric with totally geodesie
fibres.

We will see in Theorem 3.11 that the s-invaxiant depends on the spin structure. To
get an invariant of the moduli space we have to worry about diffeomorphisms which do
not preserve the spin structure. We recall that after fixing an orientation of M the spin
structures compatible with that orientation axe parametrized by H I (Mj Z/2). In partic­
ular, the spin structure is determined by the orientation if we assume that HI(Mj Z/2)
vanishes. H we change the orientation, the s-invariant changes its sign. Swnmarizing we
conclude:

Proposition 2.14. H M is a c10sed eonnected spin manifold of dimension 4k - 1 with
vanishing real Pontrjagin c1asses and HI(M; Z/2) = 0, tben s induces a map

Isl : 7rO(9l~cal(M)/niff(M)) -+ Q.

Corollary 2.15. Let M be a c10sed conneeted spin manifold of dimension 4k - 1, for
k > 1, with vanishing real Pontrjagin classes and HI(M; Z/2) = O. If 9l~cal(M) is
not empty (which is the ease for a simply eonnected M by [St]), then the moduli spaee
~~cal(M)/niJJ(M) bas inB.nitely many conneeted eompo~ents.

Proof. Ey the proposition it suffices to construct infinitely many positive scalar curvature
metrics on M whose Isl-invariants are mutually different. Below we show that for k > 1
there is an 'exotic' positive scalar curvature metric e on S4k-1 with S(S4k-I, e) = 1 (resp.
2) for k even (resp. odd). We note that the standard metric on S4k-1 has vanishing
s-invariant since it extends to a positive scalar curvature metric on the 4k-disk. Then by
2.13 (iv) the connected surn of a fixed metric on M and a number of copies of e gives an
infinite family of metries on M #S4k-1 # ... #S4k-1 = M with different s-invariant.

The construction of e is due to Carr [Ca, Proof of Thm. 4]. For the convenience of the
reader and in order to calculate its s-invariant we recall the construction of e. Let W be
a c10sed 4k-dimensional spin manifold with A(lV) = 1 (resp. 2) for k even (resp. k odd).
Such a manifold can be constructed for example by plumbing as in [Ca], and hence we can
assurne that W has a handle decomposition consisting of one O-handle and one 4k-handle
and a number of 2k-handles. We decompose W in the form W = W_ USU:-l W+ 1 where
W_ consists of the O-handle and the 2k-handles and W+ consists of the 4k-handle. We pick
a positive scalar curvature metric on the O-handle which is a product near the boundary.
According to [Ga] or [Ca, Lemma 10] this metric can be extended over the 2k-handles to
give a positive scalar curvature metric on W_ which is a product metric near the boundary.
Finally, trus can be extended to ametrie gw on all of W (we are not asserting that g~v

has positive scalar curvature). Let e be the restrietion of gw to S4k-1 = W_ n W+. Then

S(S4k-l, e) = ind n+(w+, gw+) + t(W+) = ind n+(w+, gw+) + ind n+(W_, gW_)

= indD+(W,gw) = A(W)

Here gW± denotes the restrietion of gW to W±. The second equality holds since t(W+)
vanishes (this follows directly from the definition of t (2.11) since W+ is a disk) and
ind n+(w_,9w_) == 0 by 2.2(ii) since 9w_ has positive scalax curvature. The t hird equali ty
follows from the adclitivity of the index (cf. 2.4). 0
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We end this section by showing that an invariant s(M, g) with the property (2.1) de­
pending only on the spin isometry dass of (M, g) cannot be defined without extra as­
sumptions on M. Suppose M is a (4k - 1)-dimensional spin manifold for which we can
deBne a Q-valued invariant s (M, g) wi t h the property (2.1) for all positive scalar curva­
ture metries on M. If f: M --+ M is a spin structure preserving self diffeomorphism then
i(g,f*g) = s(M,g) - s(M,f·g) = 0, since f is a spin isometry from (M,f·g) to (M,g)
and hence their s-invariants agree.

Gromov and Lawson show that the map

defined by ig(f) = i(g, f·g) is a group homomorphism which factors through the compo­
nent group 7ro(Dif f(M)) of the diffeomorphism group of M [GL2, 4.48 and 4.49].

Proposition 2.16. For k > 1 there is a c10sed spin manifold M of dimension 4k - 1 and
a positive scalar curvature metric 9 on M such that the image of ig restricted to the spin
structure preserving diffeomorphisms is Z for k even and 2Z for k odd.

We remark that ig(f) for k odd is always an even integer since the space of spinors on a
4k-dimensional spin manifold W has the structure of a quaternionic vector space and the
Dirac operator as well as the Atiyah-Patodi-Singer boundary condition is IHI-linear.

Proof. Recall that i(g, f·g) = ind D+(M x I, G), where G is a metric on M x I which
restricts to 9 resp. f·g on the boundary and is a product metric in a collar neighbourhood.
Now we apply the index theorem (2.3) and note that h = 0 (since the metric on the
boundary has positive scalar curvature) and that the t]-invariant is zero, provided that f
is spin structure preserving (since the 1]-invariants of both boundary components are the
same up to a minus sign). Hence if we assume that f is spin structure preserving then

i(g,f·g) = indD+(M x I,G) = [ A(Pi(M x I),G) = [ A(Pi(Mf),G) = A(Mf ),
. JMX[ JM/

where M f is the mapping torus of f (obtained by identifying in M X I every point (x, 1)
with (f(x), 0)).

We recall that for k ;::: 1 there is a spin manifold N of dimension 4k with A(N) = 1
for k even and A(N) = 2 for k odd. We can assurne in addition that the signature of N
vanishes, since if necessary we can replace N by the disjoint union of N and copies of the
quaternionic projective space EIF'21 (for k = 21) or 1illF21 x ]( (for k = 21 + 1), where I{ is
the Kummer surface, a 4-dimensional spin manifold with signature 16. This replacement
doesn't change the A-genus, since A(EIlP'21) = 0 [BH] (this also follows from the fact that
the standard metric on EIp21 has positive scalar curvature), but a disjoint lilion with a
suitable number of copies (possibly with reversed orientation) has vanishing signature,
since sign(IHIlP'21) = 1, sign(IHIp21 x K) = 16 and the signature of (81 + 4)-dimensional spin
manifolds is divisible by 16 [Oc]. A result of the first author implies that N is spin bordant
to the mapping torus Mf of a spin structure preserving diffeomorphism on a zero bordant
spin manifold M [I(r, Thm. 9.9]. The proof of the result shows that we can choose M
to be simply connected. This implie$ that M carries a positive scalar'curvature metric g
[GLl, Thm. B] and finishes the proof of the proposition. D
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§3. THE EXAMPLES

In this section we discuss families of positive sectional (resp. Ricci) curvature met­
ries on 7-manifolds construeted by Aloff and Wallach resp. Wang and Ziller. Then we
use the s-invariant in conjunction with results from [KS1], [1(S2] to find manifolds M
in these families, for which 'Jl~ec(M)/Dil f(M) is not connected , respectively for which
fR.~ic(M)/Dilf(M) has infinitely many components. We start with the discussion of the
Wang-Ziller farnily.

The underlying manifolds are eertain homogeneous spaces of the form G/ H, where
G = SU(3) x SU(2) x U(1) and H I'V SU(2) x U(l) x U(l), which were considered by
Witten [Wi]. Equivalently they can be described as follows. For integers k, I let Mk,l be
the prindpal Sl-bundle over CIP2 X Cpl classmed by Ix + ky E H2(CP2 X Cpl; Z), where
x and y are the generators of H2(CP2; Z) resp. H2(CPI; Z).

Theorem 3.1 (Wang-Ziller [WZ]). Mk,l admits an Einstein metric 9k,l with positive
Einstein constant.

Their construction is the following. Let (J be the unique connection on Mk,l whose
curvature is the harmonic form representing Ix + ky (with respect to the standard metrie
on CIP2 x CIP'I). For positive real numbers xl, X2 let 9 be the metric on Cp2 X CIPI

obtained from the standard metric by resealing by Xl in the Cp2-direction and X2 in the
CIP'I-direction. Let 9k,l be the Sl-equivariant metrie on Mk,l with totally geodesic fibres
determined by (J, 9 and the standard metric on the fibres (cf. 4.3). Wang and Ziller show
that for Xl, X2 chosen suitably 9k,l is an Einstein metric with positive Einstein constant and
hence in particular 9k,1 is a metric with positive Ried curvature. Since there might be more
then one tupel (Xl, X2) such that the corresponding metric satisfies the Einstein equation,
the metric 9k ,l might not be detennined by k, 1. But we observe that the component of
9k,1 in fR.~cal(Mk,l) is determined by k and 1since independent of (Xl, X2) the metric 9 has
positive scalar curvature and hence so does 9k,1 after rescaling the fibres if necessary (cf.
remarks following 4.4).

We recall that M k I is simply eonnected if k and 1are coprime and admits a spin structure
if k is even. Moreov~r, H4 (Mk ,l; Z) is a finite cyclic group of order 12. In particular, the
real Pontrjagin classes of M k,l vanish. The following theorem is a consequenee of our main
technical result Theorem 3.11 below and the calculations in [1(81, §4].

Theorem 3.2. Let k, 1 be coprime integers with k even. Then

Corollary 3.3. Let (M, 9) and (M' ,g') be the total spaces of Sl-btmdles over CIP2 X CIP]
giyen by coprime numbers (k, 1) resp. (k', 1') with k, k' even and 1, I' t=- ±1. Then the
following are equivalent:

(1) There is an orientation preserving diffeomorphism f: M --4 M' such that 9 and
f*9' are in the same component offR.~cal(M).

(2) I' = ±1 and k' = k.

Proof. (1) implies (2) since the order of H4(M, Z) determines 1up to sign and then seM, 9)
determines k. (2) implies (1) since complex conjugationon Cp2 induees a fibre and orien­
tation preserving isometry (MI;: ,I, 91;:,/) -t (Mk,-I, 9k,-1)' D
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Now we compare (3.3) with the diffeomorphism classification of the Mk,I'S,

Theorem 3.4 (KS1]. Let (k, 1) and (k' , I') pairs of coprime integers with k, k' even. Tben
Mk,l is orientation preserving diffeomorphic to M k, ,1' if and only if l' = ±1 and k' =k
mod 2A2 (1) • 7A7(1) • 12 where,

° for 1-26 mod8- ,
1 for 1= 1,7 mod8

>'7(1) = { ~
for I = 1,2,5,6 mod 7

A2(1) =
2 for 1= 3,5 mod 8 for 1= 0, 3,4 mod 7

3 for 1= 0,4 mod 8

Combining (3.3) and (3.4) we see that for I :f 0,1 leaving I unchanged and adding
multiples of 2A2 (1) . 7)..7(1) . r to k gives infinitely many diffeomorphic Einstein manifolds
with positive Einstein constant and different Isl-invariant. Hence each M = Mk,1 with k
even and 1:f 0, 1 cames infinitely many Einstein metrics, which lie in different components
of fJt~cal(M)/Diff(M). This proves Theorem 1.2.

Next we discuss the Aloff-Wallach family of positive sectional curvature manifolds. Let
k and I be coprime integers and let

ik,l : SI -+ SU(3)

be the inclusion which maps z E SI to the diagonal matrix with entries zk, zl, z-(k+I). The
Wallach spaces are the homogeneous spaces

These manifolds are simply connected. Let 9k,1 be the normal homogeneous metric on Nk,l,
which is unique modulo scaling (the normal homogeneous metric on Nk,1 with respect to
abiinvariant metric on SU(3) is defined by the property that it makes the projection map
SU(3) -. Nk,1 a lliemannian submersion).

The normal homogeneous metric has positive scalar curvature, hut the sectional cur­
vature vanishes in certain tangent planes. Aloff and Wallach showed that one cau get a
metric with positive sectional curvature as folIows. Consider Nk,l as the total space of the
bundle

(3.5)

where U(2) is embedded in SU(3) by mapping A E U(2) to the block matrix with A in the
upper left corner, (det A)-1 in the lower right corner and zeroes everywhere else. Aloff and
Wallach show that rescaling the metric 9k,I in vertical directions (with respect to (3.5)) by
some 0 < t < 1 one gets a homogeneous metric of positive sectional curvature, provided
that kl(k + I) f; 0 and kl > 0 [AW, 3.1]. We call any such metric an Alof f - Wallach
metric. Since for t = 0 we get the normal homogeneous metric each Aloff-Wallach metric
is in the same conneeted component of fJt~cal(Nk,l) as the normal homogeneous metric. We
observe that permuting k, 1 and -(k + 1) leads to embeddings SI -. SU(3) conjugate to
ik,l and hence to homogeneous spaces isometrie to (Nk,I,91.:,I). Doing such permutations
if necessary we can always assume kl > 0 and hence we can formulate the result of Aloff
and Wallach as follows.
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Theorem 3.6 (Aloff..Wallach [AW]). H kl(k+ I) # 0, the Aloff-Wallach metrics on Nk,l
have positive sectional Clli"vature. They are in tbe same connected component of the space
of positive scalar curvature metrics as the normal bomogeneous metric gk,l'

Now we want to compare the isometry classification of the Nk I'S with their diffeo-,
morphism classification. As noted above permuting k, 1 and -(k + 1) leads to conjugate
embeddings. The simplest numerical functions of k and 1 which are invariant under these
substitutions are

N(k,l) = k2 + kl + 12 and T(k, 1) = kl(k + I).

Observing that the Weyl group of SU(3) is the permutation group of three letters we
conclude that ik,l is conjugate to ik',l' if and only if N(k,l) = N(k',II) and T(k,l) =
T( k' ,1'). We recall that N( k, I) is the order of H 4

( N k,l; Z) [AW].
The following calculation of the s-invariant follows again from our main technical result

Theorem 3.11 and computations in [1(82, §4].

Theorem 3.7. For any Aloff-Wallacb metric 9

where gk,l is the normal homogeneous metric.

Corollary 3.8. Let (k, 1) resp. (k', 11
) be pairs of coprime numbers and (N, g) resp. (N', g')

tbe Wallach space together witb its nonnal homogeneous metric determined by (k,/) resp.
(k',I I

). Then the following are equivalent:

(1) There is an orientation preserving diffeomorpbism I: N ~ N' such that g and
I·g' are in tbe same component of9l~cal(N).

(2) The subgroups ik,I(Sl) and ik',I,(Sl) are conjugate in SU(3).
(3) N( k, 1) = N( k l

, 11
) and T( k, 1) = T(k l

, 1').

Next we recal! the diffeomorphism classification of the Wallach spaces.

Theorem 3.9 [K82, p. 466]. Two Wallach spaces N k,I and NI.' ,1' are orientation preserving
diffeomorphic if and only if

N(k,l) = N(k /,I') and T(k,l) =T(k' , 1' ) mod 25 ·3· 7)..(N) . N,

where N = N(k, 1) and >"(N) = 0 if N _ 0 mod 7 and >"(N) = 1 otherwise.

To finish the proof of our main result Theorem 1.1 we want to find diffeomorphic Wallach
spaces with different Isl-invariants. This is not easy since the corresponding number theory
is ugly and not understood. By a computer search Don Zagier and Andrew Ocllyzko found
three solutions [KS2, p. 479]. The smallest one (in the sense that H 4 is minimal) is the
following:

Example 3.10. N-4638661,S82656 is diffeomorpmc to N-2594149,505296S, but the Isl-inva­
riants of any Aloff-Wallach metries on these spaces are different.

The order of H 4 is 19153920223641. The order in the two other known cases are:
411358875444559 and 2738819764243641. This finishes the proof of Theorem 1.1.
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To prove Theorems 3.2 and 3.7 we note that both families considered above are total
spaces of principal SI-bundles and that the Wang-Ziller metries as well as the normal
homogeneous metrie on SU(3)/SI are SI-equivariant metrics with tota1ly geodesic fibres.
Hence we will derive below a general formula for the s-invariant of such a positive sealar
eurvature metric 9 on the total space of a principal SI-bundle p: P -+ B. It turns out
that the answer depends on which spin structure we choose on P and so we begin with a
discussion of these choices.

Note that the tangent bundle T P is isomorphie to p*(TB) EB TFP and that the tangent
bundle along the fibres TFP is trivial (the veetor field generating the SI-action on P
provides a trivialization of TFP). Hence a spin structure on B (which exists if the seeond
Stiefel Whitney dass w2(B) vanishes) induees a spin structure on P which we denote by
4>.

H W2 (B) = c mod 2, where c = Cl (E) is the first ehern dass of the complex Une bundle
E assoeiated to p: P -+ B, then TB EB E aclmits a spin strueture. The choice of such a
spin structure gives a spin structure on the disk bundle DE whose restrietion to the sphere
bundle SE = P we denote by <p'. Note that if W2 ( B) = 0 and c = 0 mod 2, then 4> and
<p' are different spin structures on P, since the restrietion of cjJ to a fibre SI is the non
trivial spin structure, which doesn't extend over D 2 , whereas the restriction of cjJ' extends
by construction.

Now we assume that the real Pontrjagin dasses Piep) E H 4i (P; R) vanish (recall that
the invariant s(P, g) is only defined under this asslUIlption). Then the isomorphism T P ~

p·(TB) EB TFP and the triviality of TFP imply p*(Pi(B» = Piep) = O. Hence the Gysin
exact sequence

-+ H 4i- 2 (B; IR)~ H4i(B; IR) -.:: H 4i(p; IR) -+

implies that pi(B) is divisible by C; Le. there are elements Pi E H 4 i-2(Bj:IR) such that
pi(B) =Pi c.

Theorem 3.11. Suppose k > 1. Let p: P -+ B be a principal SI-bundle over a closed
oriented manifold B of dimension 4k - 2 classiJied by c E H 2 (B; Z); i.e. cis tbe first ehern
dass of the complex line bundle E associated to P. Let 9 be a SI-equivariant positive
scalar curvature metric on P witb tota1ly geodesie fibres 8JJd let rP, cjJ' be the spin structures
on P described above (which exist jf w2(B) = 0 resp. if w2(B) = c mod 2). Assume tbat
the real Pontrjagin dasses Piep) E H4i(Pj IR) vanisb (so that s(P, g) is defined). Then

All
s( P, <p, g) = -(A(TB) nh( / ) + ak L(TB) h' [BD + ak sign(Be)

2 ta c 2 tan c

s(P, ,j/, g) = -(A(TB) 2 Si~(c/2) + ak L(TB)t~hc' [BI) + ak sign(Bc )

Here A(TB) (resp. L(TB») are the usual polynomials in tbe Pontrjagin classes of B,
ak = 22:t+i(2~"-i_l)' ( ,[BD is the evaluation on tbe fundamental dass of B and sign(Be )

is tbe signature oftbe bilinear form Be: H2k-2(B)®H2k-2(B) -+ IR defined by Be(x®y) =
(xyc,[BD·

We remark that the expressions 2sln~(e72)' 2 tan~(e72) and ta~h e in the above formulas
have to be interpreted as (Laurent) series of the fonn 1/c + ko + k l C + k2c2 + ... , where
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the coeffieients k i cau be expressed in terms of Bernoulli numbers (d. [MS, App. B)).
The number ak is chosen such that the linear combination A + akL in degrees ::; 4k
is a polynomial in the Pontrjagin classes Pie B) for i < k. Recall that the Pontrjagin
classes pi(B) for i < k cau be written in the form pi(B) = Pi c and heuce the expressions

'" 1 1 '" 1 1 .
A(TB) 2 tanh(c/2) + ak L(TB) tanh c and A(TB) 2 sinh(c/2) + ak L(TB) tanh c are polynomlaLs
in c. For example, for k = 2 we get the following explicit fonnulas:

(3.12)
s(P, 4>, g) = 27 .1

3
. 7 (-3pI (B)PI + 8pI(B) c + 4c3

, [BJ) + 25\ sign(Bc )

s(P, 4>', g) = 27\ (-PI(B) PI - 2pI(B) c - c3
, [BJ) + 25\ sign(Bc )

(4.1)

We note that Theorem 3.11 also holds for k = 1 ~ut we only have a rather indirect proof
for trus.

§4. THE s-INVARIANT FOR Sl-BUNDLES

The goal of this section and the next section is to provide the proof of Theorem 3.11,
i.e. to calculate s(P, g) where P is the total space of a principal Sl-bundle p: P -+ B over
a closed oriented manifold B of dimension 4k - 2 and 9 is a Sl-equivariant metric with
totally geodesie fibres. Recall that the invariant s(P, g) cau be determined alternatively
by using Definition 2.12 calculating integrals and 7]-invariants on P, or by using fonnula
2.13 (iii) calculating characteristic numbers and the index of the Dirac operator on a spin
manifold W which bounds P:

s(P,g) = indD+(W,gw) + t(W) where

t(lV) = -((A + akL)(j-1pi(W)), [W,8W]) + ak sign(W).

Here D+(W, gw) is the Dirac operator on W with respect to a metric gw on W which
restricts to 9 on the boundary and is the product metric in a collar neighbourhood of the
boundary. Recall that the index of D+(W, gw) depends only on the connected compo­
nent of the positive scalar curvature metric g. In general it is very difficult to compute
ind D+ (W, 9w ), but if 9 w has positive scalar curvature then iod D +(W, 9w) = 0 (cf.
2.2(ii)).

In our situation there is an obvious manifold with boundary P, namely the disk bundle
DE. Recall from §3 that DE is a spin manifold if and only if w2(B) = c mod 2 and that
in that case the induced spin structure on 8 DE = P is q;'.
Lemma 4.2.

(1) HW2(B) = c mod 2 then indD+(DE,gDE) = 0 for any metric gDE on DE which
restriets to 9 on tbe boundary and is a product metric in a collar neighbourhood
oE the boundaIJ'.

'" 1 1 .
(2) t(DE) = -(A(TB) 2 sinh(c/2) + ak L(TB) tanh c' [B]) + ak slgn(Bc )'

Proof. For the first part it suffices to construct a positive scalar curvature metric gDE on
DE which restriets to g on the boundary (or to a positive scalar curvature metric in the
same connected component aB g) and is a product metric in a collar neighbourhood of
the boundary. For trus it is convenient to consider DE as the total space of a D 2 -bundle
associated to the Sl-principal bundle P -+ B, and to use the following result of Vilms.
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(4.4)

Proposition 4.3 (cf. [Be, 9.59]). Let G be a compact Lie group and let F be a manifold
with a smooth G-action. Let P -Jo B be a principal G-bundle and let 1r: M = P X G F -Jo B
be tbe associated bundle with fibre F. Given a lliemanman metrie gB on B, aG-invariant
Riemannian metrie 9F on F and a principaJ conneetion () on P, there exists one and only
one Riemannian metric 9 on M such that 1r is a Riemannian submersion {rom (M, 9M)
to (B, 9B) witb totally geodesic fi bres isometrie to (F, 9F) and horizontal dis tri bu tion
associated to ().

Rescaling 9 in fibre direction, i.e. replaeing 9F by t9F for sorne t > 0, we get a family of
Riemanman metrics gt on M. The scalar curvature 8t of this family is given by [Be, 9.70]

1 2
8t = -8F + 8B 01r - tlAI ,

t

where 8F, 8B is the scalar curvature of F resp. B and A is a tensor defined by Q'Neill
(essentially the curvature of () [Be, 9.54c]). It follows that for SF 2: 0 and 8B > 0, decreasing
t increases the scalar curvature of 9t and for sufficiently small t the scalar curvature of 9t

is positive. In particular, in this case the connected component of 9t E 9l~al(M) depends
only on 9B, not on () or the scaling t (provided that t is small enough to make the scalar
curvature of 9t positive).

Now we speeialize to the situation where P -Jo B is our prineipal Sl-bundle. Let 9B
the metric on B and let () be the cOIUlectiqn on P determined by the metric 9. The scalar
curvature of 9B is positive by (4.4) since the scalar curvature of the fibres is zero. Let
9D2 be a 5 1-equivariant metric on the disk D 2 which has non-negative scalar curvature,
restricts to the standard metric on the boundary and is a product near the boundary. We
note that the induced metric of D2 when considered as a hemisphere in 52 has all these
properties except the last one, but this can be achieved as follows. In polar coordinates
around the north pole the standard metric on 52 has the form dr2 + sin2 r dq;2 . Now
replace sin r by a flUlction J(r) with fIt 2: 0 which agrees with sin r for small r and is
identically equal to 1 for r dose to 1r/2. The resulting metric on the upper hemisphere has
the reqillred properties.

Let gt be the family of metrics on the associated bundle D E = P X 51 D 2 determined
by 9B, B and t 9D2 via (4.3). The metric 9t restricts to a produet metric in a collar
neighbourhood of the boundary. For sufficiently small t the metric 9t has positive sealar
curvature by (4.4) and hence indD+(DE,gd = 0 by 2.2 (ii). Restricted to the boundary
9t agrees with the original metric 9 rescaled in fibre direction. Again by (4.4) the metric
9 and this rescaled metric are in the same connected component of 91~cal(P). By 2.2 (i)
this implies the first part of Lemma 4.2.

For the proof of the second part recal! from the definition of the A-class resp. the L-class
[Hir] that for a complex !ine bundle E with first ehern dass c we have

Ace
A(E) = 2 sinh(c/2) and L(E) = tauh c'

To evaluate (A+akL)(j-1pi(DE)) we note that j: H*(DE, 8) -Jo H*(DE) '" H*(B) maps
the Thom dass U E H 2 (DE,8) to c and hence Pi U to Pi C = pi(B). Using the bundle
equation TDE = p*(TB EB E) we get

A --I "U U
(A + ak L)(] pi(DE)) = A(TB)2 sinh(U/2) +akL(TB)tanhU'
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which by the remarks foIlowing Theorem 3.11 can be written in the fonn q(Pi, U) U U,
where q(Pi, U) is a polynomial in the 1\'S, i < k and U. It follows that

t(DE) = (q(Pi' U) U U, [DE, a]) = (q(Pi' c), U n [DE, 8]) = (q(Pi' c), [B]).

Finally we note that via Thom isomorphism the cup product fonn on H 2k (DE, aDE)
corresponds to the fonn Be. Hence sign(DE) = sign(Be ) which finishes the proof of the
second part of (4.2). 0

Now, we assume that B admits a spin structure and want to calculate s(P, </>, g). This
is more difficult since there is no obvious spin manifold W bounding P with the spin
structure </>. Our proof is more indirect and consists of a number of steps. The strategy is
to show that it is possible to reduce the calculation for a general (B, E) to a special case
where we do have an explicit spin zero bordism W.

Suppose that Wis some spin zero bordism for P equipped with the spin structure </>.
For the calculation of s( P, ifJ, g) via (4.1) it is useful to compare the topological correction
tenn t(W) to t(DE), which we computed above. So we glue DE and -W along their
common boundary P to get a closed manifold D E Up - W (-W stands for the rnanifold
W with its orientation reversed), which is oriented, but not spin. By a weIl known result
of Novikov the signature and hence the t behave additively when glueing manifolds along
their boundaries. The signature theorem implies t(N) = -J(N) for a closed manifold N.
Hence

s(P, g) = indD+(W, gw) + t(W) = ind D+(W, gw) - t(DE Up -W) + t(DE)

= indD+(W, gw) + A(DE Up -W) + t(DE).

We observe that indD+(W,gw) and J(DE Up -W) are weH defined without the as­
sumption that the rational Pontrjagin classes of P vanish. Also, the surn ind D+(W, gw) +
.J(DE Up -W) is independent of the choice of W. For those manifolds P with vanishing
rational Pontrjagin classes this foIlows from (4.5), since s(P, g) is independent of W. For
a general P suppose that W, W' are two spin manifolds bounding P. Then the following
equation shows the independence of W.

indD+(W, gw) - indD+(W', gW') = indD+(W Up -W',9W U gW')

= .J(W Up -W') = -A(DE Up -W) + A(DE Up -W')

Here the first equality follows from remark 2.4 and the second equality from the index
theorem for closed manifolds. The third equality holds since W Up - W' is bordant to the
disjoint union of -(DE Up - W) and DE Up - W'.

Below we show that ind D+(W, gw) + ACD E Up - W) depends only on the dass of
(B, E) in a suitable borrusm group. For aspace X let n:rin(X) be the bordism group of
pairs (M, f) consisting of an-dimensional closed spin manifold M and a map f: M -+ X.
Identifying the complex line bund.le E with its cIassifying map B -+ BSl the pair (B, E)
represents an element of n:~~2(BSl).

Lemma 4.6. Hk> 1, indD+(W,gw) + A(DE Up -W) depends only on the bordism
dass of (B, E) in n:~~2(BS1) and bence it defines a bomomorphism from tbe bordism

group n~~~2(BSI) to Q.

We observe that this result implies that ind D+(W, gw) is in fact independent of 9 =
(gW)18W (which is assumed to be Sl-equivariant and to have totally geodesic fibres). We
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also note that the formula also holds for k = 1, but we only have a more complicated and
indirect proof for this fact, which we don't use in this paper.

Proof. We note that indD+(W,gw) and A(DE Up -W) behave additively under the
disjoint union of manifolds. Hence we can always replace (B, E) by a disjoint union of
copies of (B, E) and it suffices to show that ind D+(W, 9W) + A(D E U p - W) vanishes
if (B, E) is zero bordant. So assume that there is a spin manifold N with boundary B
such that E extends to a complex line bundle E N over N. We choose W to be the sphere
bundle S(EN)' Then A(DE Up -W) = 0 since DE Up -W is the boundary of the disk
bundle D(EN ). Moreover, if we can extend 98 to a positive scalar curvature metric gN
on N (product metric near the boundary) then the metric gw on W = S(EN) detennined
according to (4.3) by gN and a connection on EN has positive scalar curvature by (4.4),
provided that the fibres are small enough, and henee ind D+(~ 9w) vanishes.

We claim that ind D+(ll1, gw) + A(DE Up - W) vanishes if P is the trivial bundle
P = B X SI and 9 is a product metric. To prove the claim we note that complex conjugation
on Sl gives an orientation reversing isometry of P and henee - W is also a zero bordism for
P, whieh we eould use to calculate ind D+ (W, 9w ) +A(D EU p - W), whieh is independent
of the choiee of W. But replacing W by - W (and D E by - D E) the index and the
A-invariant change sign and henee this SUffi vanishes.

Thus it suffices to construct a positive scalar curvature metric gN on a bordism N
between (B, E) and (B, C), where C stands for the trivial eomplex !ine bundle. .

Let N' be the produet of B with the unit interval I and let 9N' be the product metric
on N'. Then N' is a spin bordism between B and itself (of course there is uo eomplex
line bunclle over N' restrieting to E on one boundary eomponent and the trivial bundle
on the other unless E is trivial). Dur goal is to use the positive sealar curvature metric
gN' to produce a positive scalar curvature metric gN on N. We note that the group n:~~~.\
consists entirely of 2-torsion [ABP]. This implies that (possibly after replacing (B, E) by
two disjoint eopies) N and N' are spin bordant relative boundary, Le. there is a spin
manifold V with boundary NUN' (glued along their eommon boundary). This implies
that N ean be obtained from N' by surgeries in the interior and henee by the surgery
results of [GLl] resp. [SY] the manifold N admits a positive scalar eurvature metric gN,
provided that the surgeries needed are all of eodimension ~ 3.

We observe that a surgery of codimension i correponds to an (n - i)-handle of the pair
(V, N') with n = dim V. There is a handle decomposition of (V, N') without (n-i)-hanclles
for i ::; 2, provided that Hn-i(V, N'; Z) ~ Hi(V, Nj Z) vanishes for i ::; 2 [Mi]. This is the
case if the inclusion N ~ V is a 2-equivalencej i.e. it induees an isomorphism on homotopy
groups 7ro, 7rl and a surjection on 7r2' We claim that we can always modify (N,EN) and V
such that the inclusion is a 2-equivalence. First we do 0- and l-surgeries on N in order to
make the map N ~ BSI classifying EN a 2-equivalenee. Then we make V 2-conneeted by
i-surgeries, i ::; 2 (here it is important that V is spin since otherwise there might be a class
in 7r2(V) which we can't kill by surgery sinee it is represented by an embedded 2-sphere
with non-trivial normal bundle). After these modifications the inclusion N ~ V is clearly
a 2-equivalenee and this finishes the proof of lemma 4.6. 0

Dur next goal is to show that a multiple of each class in n:1~2(BSI ) can be represented
by total spaees of fibre bundles with fibre elFl . More precisely, l~t

(4.7)
1r

CIPI = SU(2)jSl ~ BS1 -+ BSU(2)
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be the fibre bundle with fibre epl incluced by the standard embedding of SI a.s diagonal
matrices in SU(2). Let T be the tangent bundle along the fibres. We note that T is spin
since its restriction to a fibre is spin. Hence there is a corresponding transfer homomor­
phism of spin bordism groups [Bo]

(4.8)

defined geometrically as follows. Given a closed spin manifold X and a map h: X ~

BSU(2) let X ~ X be the pull back of the bundle (4.7) via h and let h: X ~ BS1 be
the map covering h. The transfer map 1r! maps the bordism class of (X, h) to the bordism
class of (....Y, h) (note that a spin structure on X induces a spin structure on .Y since the
tangent bundle along the fibres is spin).

Lemma 4.9. In degrees n == 0 mod 4 tlle transfer 1r! is a rational isomozphism.

Prao/. In homotopy theoretic terms the transfer map 1r! can be described as follows [Bo].
Let M(-T) be the Thom spectrum of the inverse of T. Associated to the fibre bundle (4.7)
there is a 'Thom' map T(7f') from the suspension spectrum of BSU(2) to the desuspension
E-2 M(-I). Then tr' is the composition

where ~ is the Thom isomorphism in spin bordism. Hence it suffices to show that T( tr)",
is a rational isomorphism for n =0 mod 4. We note that there is a natural isomorphism

Moreover, n:pin ~ Q is a polynomial ring with generators of degree 0 moel 4. This im­
plies that it suffices to show that the map induced by T(1r) in rational homology is an
isomorphism in degrees n _ 0 fiod 4. Dually, it suffices to show that the cohomology
transfer

is a rational isomorphism for n =0 fiod 4 (<p is here the Thom isomorphism in cohomol­
ogy). This transfer can be described explicitely as follows. Recall that H"'(BSl ; Z) C:i Z[x],
where x is an element of degree 2 which restricts to a generator of the second coho­
mology of the fibre of (4.7). Hence the Leray Hirsch theorem implies that each ele­
ment z in H"'(BS1;Z) cau be written uniquely in the fonn z = tr*(a) + 1r*(b) U x with.
a, b E H"'(BSU(2); Z) ~ Z[y] (y has degree 4).

It follows from the SeITe spectral sequence description of 1r! [Bo, eh. V, 6.14] that
1r1(Z) = b. Hence 1r,(x2k+1

) = yk which proves lenuna 4.9. 0

Lemma 4.9 shows that it suffices to detennine ind D+(TV, gw )+A(DEUp -W) for pairs
(B ,E) in the image of 7r!. So we can assume that B is the total space of a Cpl_bundle
X ~ X which is the pull back of (4.7) via a map h: X ~ BSU(2) and that E is classified
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by h: X --+ ES1. In more concrete tenns: Let V be the quaternionie line bundle classified
by h. Then

(1) B is the complex projective bundle CIP(V).
(2) E is the tautological complex line bundle over CIP(V) (whose fibre over a point in

CP(V), Le. a complex line in V, consists of all vectors in that line).
(3) P is the sphere bundle SE which can be identified with the sphere bundle SV.
(4) W can be chosen to be the disk bundle D V (trus is spin!)
(5) DE Up - W can be identified with the complex projective bundle ClP(V EB C),

where C is the trivial complex line bundle.
(6) The lliemannian metric 9 on P = SV cau be chosen to be the 5 3 -equivariant

metric with totally geodesic fibres associated by (4.3) to a metric gx on X, a
connection () on V and the standard metric (suitably scaled) on the fibre 53.

Lemma 4.10.

(1) ind D+(DV, gDV) = 0 for any metric gDV on DV whicb restriets to 9 on the
boundary and is a product metric in a collar neighbourbood oE the boundary.
.. .. (1 1)(2) A(CIP(V EB C)) = (A(TCIP(V)) 2 sinh(c/2) - 2 tanh(c/2) ,[CIP(V)J).

The proof of the first part is completely analogous to the proof of the first part of (4.2).
We defer the characteristic class calculation necessary for the proof of the second part to
the next section.

Formula (4.5) shows that combining this lemma with the calculation of t(DE) in (4.2)
gives the desired formula for sC P, ifJ, g). This finishes the proof of Theorem 3.11.

§5. MULTIPLICATIVE GENERA AND FIBRE BUNDLES

The goal of trus section is to prove the second part of (4.10), i.e. to calculate the A-genus
of the complex projective bundle ClP(V EBC). Here V ffiC is a 3-dimensional complex vector
bundle over a spin manifold X, namely the SUffi of a quaternionic line bundle V and the
trivial complex line bundle C. We remark that ClP(V EB C) has a positive scalar curvature
metric, hut this does not imply the vanishing of the A-genus, since it is not a spin manifold.
Likewise, the multiplicativity of the A-genus for fibre bundles [AH] does n~t apply in our
situation since the fibre CIP2 is not spin. In the following calculation of A(ClP'(V ED C))
we don't use special properties of the A-genus and so we consider a general multiplicative
genus I( [MS, §19]. Also, we first discuss the I(-genus of a general bundle with fibre a
homogeneous space G / H and structure group G and then specialize to Cp2-bundles.

Let G be a compact connected Lie group and let i: H ~ G be the inclusion of a closed
connected subgroup. This inclusion induces a projection map of classifying spaces and we
denote by r the tangent bundle along the fibres of the fibre bundle

(5.1)
Bi

G/H~BH~BG.

Lemma 5.2. Let I( be a multiplicative genus, let X be an oriented manifold and let
1r: g ~ X be the pull back oE (5.1) via a map g: X ~ BG. Then

I«(X) = (I«TX) g*(Bi)!I«r), [Xl).
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Proof. The tangent bundle TX is isomorphie to 1r"'TX ffi g"'(r), where g: X ~ EH is
the map covering g. The multiplicativity of K then implies K(TX) = 1r'"K(TX) g'" J{(r).
Hence

K(X) = (1r!K(TX), [Xl) = (I{(TX) 1rl(§'" J{(r», [X]),

where the second equality follows from the fact that 1r!(1r"'X x) = X 1r!(x) for elements x, x
in the cohomology of X, respectively X. This implies the lemma, since 1r! (9'" !((r» =
g"'(Bi)!K( r) by the naturality of the transfer homomorphism. 0

To use (5.2) we need to determine (Bi)!I{(r) which is the 'equivariant K-genus' of G/H.
Recall that the indusion of a maximal torus j: T ~ Ginduces an injective homomorphism
(cf. [BHD

Bj"': H"'(BG; Q) ~ H"'(BTj Q).

Moreover, the image is the fixed point set H· (BTj Q)W( G) of the action of the Weyl
group WeG). We will use Bj· to identify elements of H"'(BG; Q) with their image in
H"'(BTj Q). Consequently, the map Bj'" (and its analogue for a maximal rank subgroup
H) will be suppressed in the fonnulas below. Recall that the cohomology of BT is a
polynomial ring. It is convenient to construct explicit generators in the following way. Let
Q' be a homomorphism from the torus to SI. Then 0' determines a complex line bundle over
BT (the vector bundle associated to 0' regarded as I-dimensional cornplex representation
of T) and a cohomology dass in H 2 (BTj Z) (the first Chern dass of that line bundle).
Abusing notation we will again write Q' for this cohomology dass. If XI, , XI is a basis
of Horn(T, SI) then H*(BT; Q) -is the polynomial ring generated by Xl, ,XI'

The proof of the next proposition is based on resuIts of Borel and Hirzebruch [EH].

Proposition 5.3. Let]( be a multiplicative genus with characteristic power series Q(x) =
x / f (x), where f (x) = x + ... is an odd power series. Let G be a compact connec ted Lie
group and let i: H ~ G be tbe inc1usion of a c10sed connected subgroup of maximal
rank. Let 0'1, ... ,O'm+n be a set of roots of G whicb contains for each root 0' exactly
one of the roots 0', -0'. Assume that 0'1, ... ,am are roots of H and O'm+l, ... ,O'm+n are
complementary roots, i.e. roots of Gwhich are not roots of H. Then

(1) (Bi)!(y) = L w( y )
wEW(G)jW(H) O'm+l ... O'm+n

for y E H*(BHj Q)

(2) (BiHJ((r» = f(a ) .. \(a ) L sgn(w)w(f(al)··· f(a m »,
1 m+n wEW(G)jW(H)

where sgn(w) E {±1} is defined by w(al ... O'm+n) = sgn(w) 0'1 ..• a m+n.

Here the fractional expressions are to be considered as elements in the ring obtained
from the polynomial ring H*(BT; Q) by adjoining the inverses of the roots of G. We note
that (Bi)! ('integration Qver the fibre') on the left hand side of the above equations depends
on the choice of an orientation for r, while the right hand side depends on the choice of
signs for O'm+l, ... ,O'm+n. The orientation convention making the above formulas correct
is the same as in [BH], namely we have to pick the orientation of r such that its Euler
dass is O'm+l ... O'm+n (it is not hard to see that the Euler dass of r is ±O'm+l .•. O'm+n;
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cf. proof of part (2) of the proposition). We observe that the Euler class of r is an element
of H*CBH) and hence invariant under WeH) which shows that the right hand sides are
weH defined, Le. independent of the choice of coset representatives for lV(G)/lV(H).

Proof of 5.9. Let Bj: BT --+ BG be the projection map induced by the inclusion of a
maximal torus of G. Then by [BH, Thm. 20.3J

L sgn(w)w(x) = (Bj)I(X)O'l' ··am+n
wEW(G)

for x E H*(BT).

Dividing by 0'1 ... O'm+n and using the definition of sgn(w) we get

(5.4)

In particular,

(5.5)

(Bj)I(X) = L w( x )
wEW(G) 0'1 •.. a m +n

for x E H*(BT).

for z E H*(BG),

where IlV(G)1 i8 the order of WeG). Our assumption that G and H have the same
k i

rank implies that the inclusion j: T --+ G factors in the form T --+ H --+ G and hence
(Bi)! = (Bi), (Bk)!" Applying (5.4) to the element x = y 0'1 ... O'm with y E H*(BH) we
get

(Bj)!(y 0'1 ... O'm) = L W( Y )
wEW(G) a m +1 ... a m +n

= IW(H)I L W( Y ).
wEW(G)jW(H) a m +1 ... a m +n

The second equality foHows from the faet that elements of lV(H) aet triviallyon y and
O'm+1 ... a m +n . On the other hand,

by applying (5.5) to the subgroup H, whieh proves part (1).
To prove part (2) we decompose the Lie algebra of G in the form g = l) EB l).L, where

l) is the Lie algebra of H and l).l is an H-invariant complement. We note that r 1S the
vector bundle assoeiated to f).L. In partieular, (Bj)*(r) is isomorphie to the surn of the
eomplex Ene bundles over BT assoeiated to O'm+1, ..• ,G'm+n' It follows that the Euler
eIass of (Bj)*(r) is ±am +1" ·am +n E H·(BT). Moreover, J((r) = f( Om±j""";f±n ) andOm+l ".. Om+n
hence

(BiHK(r» = L w(!(a ) .. ~!(a »
wEW(G)jW(H) m m+n

1
- I(G' ) ... f(a ) L sgn(w)w(f(a1)'" f(a m )),

1 m+n wEW(G)jW(H)
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which proves the second part of (5.3). 0

Now we specialize to the case where G/ H is CIP2 , Le. we consider the fibre bundle

(5.6)
Bi

Cp2 = U(3)/(U(2) x U(l)) ~ B(U(2) x U(l)) -t BU(3),

where the inclusion i: H ----+ G maps (A, B) E U(2) x U(l) to the three by three block
matrix with A in the upper left, B in the lower right corner and zeroes everywhere else.

The maximal torus of U(3) is 3-dimensional. The inclusion j: T ~ U(3) is given by
mapping (ZI, Z2, Z3) E T to the diagonal matrix wi th entries (ZI, Z2, za). Let Xi: T ----+ SI

be the projeetion on the i-th faetor, i = 1,2,3. The Weyl group of U(3) is the symmetrie
group ~a which acts on the Xi'S by permuting them. The Weyl group of U(2) X U(l) is
the subgroup ~2 fixing X3' The roots of U(2) x U(l) are ±(XI - X2) and the roots of U(3)
are ±(Xi - Xj) for 1 ::; i < j :::; 3. So we can choose the a's to be of the form Xi - xj,

1 :::; i < j :::; 3. Moreover we ean choose the coset representatives W of the quotient of the
Wey1 groups to be the eyelic pennutations of 1, 2, 3. Then sgn(w) = 1 and using part (2)
of (5.3) we get

(5.7)

Now we want to apply this to the complex projective bundle ClF(V EB C) ----+ X, where
V is a quatemionic line bundle classified by h: X ----+ BSU(2). Combining (5.2) and (5.7)
we get a calculation of the K-genus of ClF(V EI;) C) in terms of characteristic numbers of
X. For the proof of the second part of (4.10), however, we need a caleulation in terms of
characteristic numbers of CP(V). The answer is the following.

Lemma 5.8. Let J( be a multiplicative genus with characteristic power series xl fex).
Then

K(CIP(V (Jl C)) = (K(TCIP(V)) (f~c) - :X:i2)' [CIP(V))),

where c is the first ehern class oE the c8nonical complex line bundle over ClF(V).

Specializing J( to the li-genus for which fex) = 2 sinh(xI2) we get part (2) of lemma
4.10.

Proo/ 0/ 5.8. We note that the CP2-bundle CIP(V EB C) ----+ X is the puH back of the bundle
(5.6) via the composition of the map h: ..J{ --+ BSU(2) classifying V and Bk: BSU(2) --+

BU(3), where k maps A E SU(2) to the block matrix with A in the upper left corner, 1
in the lower right corner and zeroes everywhere else.

Applying (5.2) we get

(5.9)
K(CIP(V EB C» = (J(TX) h· (Bk)· (Bi),J(r), (X])

= (q·(J(TX) h* (Bk)· (Bi),K(T)) c, [CIP(V)J),

where q is the projection map q: CP(V) ~ X and C is the first ehern dass of the tauto­
logical complex line bundle over CIP(V). The second equation follows from the fact that
q, (c) = 1 and hence q! (q* xc) = x for all elements x in the cohomology of X.
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We note that the CIP1-bundle q: CP(V) ----? X is the pull back via h: X ----? BSU(2) of
the bundle

(5.10)
Bi'

CIP1 = SU(2)/Sl ----? BS1 --+ BSU(2),

where i' maps z E Sl to the diagonal matrix in SU(2) with entries z, Z-l. Hence the
tangent bundle TC1F(V) is isomorphie to q*TX EB h*(T'), where T' is the tangent bundle
along the fibres of (5.10) and h: C1F(V) ----? BS1 is the map eovering h. It follows that
I«(TC1F(V)) = q*K(TX) h*1«(T') and hence
(5.11)

q*(I«TX) h*(Bk)*(Bi)!I«T)) = I«(TC1F(V)) 'h*(K(T')-l (Bi')*(Bk)*(Bi)!I«T)).

H x is the generator of H*(BS1j Z) the homomorphism (Bi')*(Bk)* maps Xl to X, X2 to
-x and X3 to zero. Using (5.7) and the faet that f is an odd power series we obtain

The tangent bundle along the fibres of (5.10) is a complex line btmdle with first ehern
class 2x and henee K (T') = /(':1:)' It follows that

K(r')-l (Bi')*(Bk)*(Bi),K(r) = _1__ f(2x)
x/ex) 2x/(X)2

Putting this together with (5.9) and (5.11) and noting that h* maps x to c finishes the
proof of (5.8). 0
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