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Introduction

In this note, I would like to draw attention to an interesting algebra coming
from solvable systems in statistical mechanics, and also its connection with
“rapidity” variable of the high genus Rieman surface in chiral Potts model [2]
[4] [5] [12]. This algebra appeared in the Onsager’s original paper [11] on the
solution of planar Ising model in zero magnetic field. Simplifications of Onsager’s
work were found afterwards by using fermion algebra, a different method with
the original one. However renewed interests on Onsager’s algebra arise in recent
years. Dolan and Grady [6] considered Hamiltonians H of the form

H = An+k’A]

with a parameter k' and given operators Ap, A1. They showed that a pair of
operators Ag and A, which are “self dual” in a certain sense, and satisfy the
Dolan-Grady (DG) conditions, namely

[A4,[A1,[A1, Ad]]] = 16{Aq, Ag) [Aa, [An, [Aa, A1]}] = 16[A0, A1]

generate a infinite sequence of commuting operators for H. This sequence
is in fact the generators of Onsager’s algebra, and the Ising model was the
only realization given by them. Subsequently, von Gehlen and Rittenberg [10]
found that certain Z y symmetric Hamiltonian spin chains have Ising-like spectra
and the operator pair appeared in the Hamiltonian also satisfy DG conditions.
Recently, a new exactly solvable two-dimension lattice model-the chiral Potts
model-has been found {1] {2] [3] [5]). A special case is the superintegrable one
which has much Ising-like structure for the solution even though it is an N-
state model. The corresponding quantum spin chain is the one investigated by
von Gehlen and Rittenberg, and again by Albertini et al . The conclusions they
obtained rely heavily on the numerical computation. Recently B. Davies [8]
[9] gave a mathematical treatment on the study of Onsager’s algebra just from
DG conditions, and also obtained its irreducible representations. It seems as if
in mathematical literature, no reference can be found. However, the Davies’
arguments still lack rigorousness in some respects from the mathematical point
of view. It is one purpose of this note, to put Davies’ treatments on a more firm
mathematical footing. 'We find a realization of Onsager’s algebra inside the loop
algebra L(sly(C)) of sly(C) is easier for the study of representations of Onsager’s
algebra since we have a better understanding of representations of I.(sl;(C)) in
mathematical literature, e.g. [6]. By the structure of irreducible representations of
Onsager’s algebra, one obtains the spectrum of a Hamiltonian of superintegrable
chiral spin chain which depends on an “extra” parameter. We shall examine
the relation between this parameter and the “rapidity” variable appeared in the
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solution of Yang-Baxter equation in chiral Potts model [2] [3] [4]. In particular,
for ground-state sector, the spectrum obtained by Baxter [3] is described by zeros
of a certain polynomial whose variable is related to the “rapidity” curve. These
zeros are the data of representations of Onsager’s algebra. This simply implies
certain representations of 3/2(C) being assigned to given marked points on the
“rapidity” curve. The significance of this interesting phenomenon is still under
investigation.

The plan of this paper is as follows. In section 1, we follows Davies’ argument
[9] to derive the important relations between generators of Onsager’s algebra
from the DG conditions {Theorem 1 below). Using these relations Onsager’s
algebra can be identified with the fixed subalgebra of an involution of 7.(sl3(C)).
In section 2, we describe the basic construction of representations of Onsager’s
algebra through that of 7.(slp(C)), and in Section 3 they are shown to generate
all the irreducible representations of Onsager’s algebra as in [8]. In Section
4, we study the spectrum of the quantum N —state chiral Potts spin chain in
superintegrable case. Using the description of irreducible representations of
Onsager’s algebra, the eigenvalues of Hamiltonian are expressed in an explicit
form involving a parameter, whose relation with “rapidity” curve of chiral Potts
model is also discussed there.

I am greatly pleased to acknowledge many fruitful discussions with Professor
G. von Gehlen and Professor V. Rittenberg during the preparation of this note. I
would like to thank Professor B. Davies for sending me his preprint on Onsager’s
algebra. Furthermore, I would also like to thank Professor F. Hirzebruch for the
opportunity of visiting Max-Planck-Institut where this work was done.

Notation

In this note we shall make much use of the adjoint representation of a Lie
algebra and write

ad4B = [A, B]
for elements A, B in the Lie algebra. The Jacobi identity can be expressed as
adA[B,C) = [ad4 B,C] + [B,adsC].
 We shall always denote

g= sl (C),
E, F, H = the generators of g with

[E,F]=H, [H,E]=2F, |H,F] = =2F,
P = {non — zero integral dominate weight of g },
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V(A) = the irreducible g — module with highest. weight v € P,
1.(g) = the loop algebra C|t,1™] ® g with bracket [ ], given by
C
[f®x, g®@yly = fg ®[x, y]
for f, g €C[t,¢~'] and x, yeg, ( We often think of /.(g) as the space of algebraic
maps C*— g).

1. Onsager's algebra, Loop Algebra of sl(C)

The following notion is defined in [7] [9] :
Definition Two elements A, B in a Lie algebra satisfy Dolan-Grady (DG)
conditions if

adyB=16adsB, adjA=16adgA.

Lemma 1 Let £ be a Lie algebra. For A, B € £, define the elements o,
of £ by

a=A+ %adgadAB , B=B +-]8—ad,1ad3A ;
Then A, B satisfy DG conditions if and only if A, B, o, 3 satisfy the conditions
[8,A] = [A, B] = [B,al.
Proof. As
B+ﬂ=2B—%aﬁB,
the equality of [3, A] = [A, B] is equivalent to ad% B = 16 ad4 B. Similarly,
[A,B] = [B,A] & adhbA=16adpA. qed.

Definition Onsager algebra 2 is the universal complex Lie algebra generated
by two elements Ap, Ay satisfying DG conditions.

Let (G; be the commutator
[ALA(]] =4G, .

and define an infinite sequence of elements A, Gm (meZ) in 2A by

Amst — Amt = %ad(;,Am . CGm= %adAon L)

We shall follow Davies’ argument [9] to show the following relations for the
generators Ap,, Gy, of .



Theorem 1 Ap,, Gy, satisfy the identities:

[AI: Am] = 4Gl——m ) (Qa)
[Gb Am] = 2Al+m - 2Am-l y (2b)
[GI,Gm] =0 . (2¢)

We shall proceed the proof of the above theorem in a number of steps. First we
note that the relation (2,) will imply the following relations:

Angt = A_p_1 = —padp,ada, Acn, 120, (3,)
A,H.] - A_n+1 = %adA,adAuA,,, n 2 . (31,)

The cases (34),_o and (33),,_,; are obvious by (1). The general cases follows
from induction by using the following lemma.

Lemma 2 Let n > 1. (i) If [Ag, Ap) = [A_;, Aq), then
(3a), < (3p), -

(il) If [A1,Arl+1] = [A—n-l-]s Al]! then

(3ﬂ)n—] < (3b)n+1 ot

Proof. Applying fad, to the equality [An, An] = [A_n, Aq), we have
1 1 1
gadA,adAoA,, = —gadAoadA1 A_p— 3

1
= _gad.ﬁnad/h A_p — (A—n-i-l - A—n—])s

hence (i). Similarly we obtain (ii) by applying gadas, to [A1, Ant1] =
[A—ﬂ-H , A1] ch

First we reduce Theorem 1 to the only one relation (2,):

Lemma 3

adg, A—n

(2:) = (2) and (2c).
Proof: Step I. We show
(24) = (%)
By (24) (32) (3), we have forl > 1,
1
[Gh AO] = _ZadAo[A'la A—H-l] = 2(‘41 - A—I)s

1
G, A1) = —Zadm [A1, Ao} = 2(A11 — A_i)-



Therefore (2;) holds for (I,m) = ({,0),(I,1). Applying adg,, on (2,) for
(I,m) = (I,0), we have

4G, Gl) = [adg,, AL, Ad] + [Al, adg,, An] - (4)
By (1) and (4) for (m,l) = (1,1),

4[G1,Gi] = 2[Ar41 — A1, Ao +2[A1, A1 — AL
=8(Giy1 — G11) +8(Gry —~ Giy1) =0 . (by (24))

Hence (2.) holds for I = 1 orm = 1. Applying the relations

Any2 = An + -;—ad(;, An1
repeatedly, we obtain the expression:
Aptt = gi(adg, )An + hi(adg, ) Anyr forl >0,
where g)(z) and hy(z) are polynomials gencrated by the recursion

g =zn+g, g=1,01=0,
hiygv =Fhi+ by, ho=0,h =1.

Then

[Gl, Am] = adg,(gm(adg,) Ao + hm(adg,) A1)
= gm(adg,)adg, Ag + hpy(adg, )adg, Ay
= 2gm(adg,)(A1 — A_D) + 2hm(ada, ) (A1 — A1)

- 2Al+m - 2Am_j' .
Hence we obtain (23).
Step 1L
(24) and (2p) = (2.).
We have
4[{Gm, Gl = [adg,, A1, Aol + [A1, adg,, Ad) (by (4))
= 2[Al+m — Al_m, Aﬂ] + 2[A11 Am — A_m] (by (2h))
= S(Gl-i-m - Gl—m) + S(Gl-—m - GH—m) =0 . (by (2&))
q.e.d.

The Lemma 46 below are for the proof of (2,).
Lemma 4 If Ag, A, satisfy DG conditions, then

[A—2’ AU] = [A—h A‘] = [An, Az] = [Ay, As, (5)
[A_3, Ao] = [A—2, Ai] = [ALs, A2] = [Ao, A3] =[A1, A, (6)
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Proof. By Lemma 1, we have
[A-1, Aol = (A0, A1] = [Ay, Aq].

By Lemma 2, the relations (34),_;, (3s),—, hold. Applying adg, on the above
equalities, we have

[A=1, A1) = [A=2, Ap] = [Aa, A2) — [A, A1] = [A4, As] — [Ae, Ag).
Acting ad4,ad 4, on [Ay, Ag), we have
(A1, [Aa,[Ar, Ad]] = [[A1,[A0, A1]], Aa] = [4adg, Av, Ad] = 8[A2, Aq).
Since the left hand side equals to
[Ar, [-4Gh, Ag]) = 8[Ay, A,

we obtain [Aq, A2] = [A_j, A1}, hence the equalities (5). By Lemma 2, the
relation (35),_, holds.

In order to obtain (6), we must have four equations. Applying adg, on
[A—1, A1] = [Ap, A2] in (5) and cancelling the commutators whose indices differ
by 1, we have

2[A~1, A2] = [A—2, A1] + [Ao, As). (7)
Act adgyada, on [A_g, Ag]) = [A_y, Aj] in (5). The left hand side becomes

[ad agad 4, A2, Ao} — 4{Aqg, ade, A=2]
= —8[A3 — A_3, Ag) — 8[An, Ay — A_3] (by (3a)p=2)
= 8([A0, Aa] +{A-1, Ad]) ,
while the right hand side,

[ad,qﬂad,q, A_q, A]] + [adA, A_],adAoA]]
= —8[Az2 — Az, A1) + 4adg, [A1, A_i] (by (3a) n=1)
= 8([/-1],/42 — A-g] + [Ag — Ay, A-]] + [A],Ao - A_Q])
= 8(2[A—z, Ar] — [A-1, A2] + [A_1, Ad)).

This gives
2[A_z, A1] = [Ay, Ag] + [Ao, As]- (8)
By (7) (8),
[A_2, A1] = [A_, A2] = [As, A3].
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From this it follows adg,[A_1, A1) = 0. Now consider

ad gpadi,ad a,[A_1, A1] = [ad 4, G1, [As, [Aor, AVl + [Gh,ad) [A, Ad]]
= —[ad%,Gh,[A=1, Ai]] + (Ao, [ad 4, Gh, [Ar, A]] — adg,ad’ ada, A

= [4{2(1:;0/41 , [A_1, A1]] — [Aa, [G1 , ad,qo[A_1 , Al
+8adg, adAo(Ag - A__z) (by (3,_) n___1)
= [-16G,[A_1, A1]] — adpgadg, ada,[A—y, A1] +0 (by (5))
= —adp,adg,ada A1, Ar),

hence ad s adgads,[A-1,A1] = 0. Then by (34),1,

1
0 = —ads,[Gh, A2 — A_a) = 2[A0, Az — Ay — Ay + A_3] = 2[Ap, Aa + A_3),

8
[An, A3] = [A_3, Ad]-

Hence we obtain the first three equalities of (6). From [A_;, A2] = [Aq, A3}, there

follows adg,{Ao, A2] = 0. As the computation in the previous case,

ad ,adg,ad, [Ag, Az] = lad 4, Gh,[Av, [Aa, A2]l] + [Gh, ad, [Ao, A2]]
= —[ad%, Gv,[Ao, A2]] + [A1, [ad 4,G1, [ Ao, A]]] — adg, ad% ad 4, A2
= [—-16Gh, [Aa, A2]) — ad 4,adg, ad 4,[ Ag, A2]
+8adg,ads, (A3 — A1) (by (31) n2)
= —ada,adg,ad s, [Ao, A2]

hence

1
0 = gada,adc,ads, Ao, Ao) = ad, (G, Ag — Ai]
= 2{A1, As — A — Ag + A_2] = 2[A1, As + A2,
[A1, A} = [A—z, Ail.

Therefore we obtain (6). q.e.d.

Lemma 5 Every adjacent pair A,,, Anqq satisfiess DG conditions and

[Am, Am+41] = 4Gy for all m.

Proof. Acting ad(;, on the equa]itics [Aﬂ,Azl = [A],A3], [A_-z,An]

[A-1, A1] in (5) and using Lemma 1 and 4 to eliminate [A;, A,,) with[—m = 1,3,

we have

[Ah AZ] = [AZ, A3]7 [A—27 A—1] = [A—la AU]

Applying Lemma 1, we find DG conditions for m=1, —1, and also G,

[A1, A2] = [A_, Ag]. By induction, the conclusions are obvious. g.e.d.
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By Lemma 5, A,,, A4 satisfy DG conditions with [Apq1, Am] = 4G,
for all m. Therefore for a positive integer N, the following statements are
equivalent:

(A1, Am] = [At41, Am4t) for m—1=N
& [AL Am] = A, A for m—1I=N, 0<m < N.

Hence the proof of (2,) is reduced to the following Lemma.
Lemma 6 If Ag, Ay satisfy DG conditions, then for any positive integer N
and all values I,m satisfying m =0,...,N, m — I = N, we have

[Ab Am] = [AI-H y Am+1]-

Proof. By Lemma 4 , the results holds for N = 1,2,3. For the general N,
we shall prove by induction, i.e. for N > 4, the conclusion of all positive
integers < (N —1) will imply the one for N. By Lemma 2, the relations
(3a), (3), for1 <n<(N—-1)hold. Letm=0,.... N-1, m—-I=N-1.
Acting 2ad¢;, on the equation [A;, Am] = [A141, Amy1), and cancelling the terms
of indices different by (N —2), we get

[A1-1, Am] = [AL Ami] = [Al, Amta] — [Arp; Amaa)-
Setting I’ = I — 1, we obtain N equations

[Ar, Am] — [Ar+1, Am1] = [Ars1, Amt1] — [Ars2, Ama],
m=0,...,(N=1), m—F=N.

To find one more equation, we consider the case of even and odd N separately.
For N = 2m, acting ad4,ad s, on the equation [A_gmy2, A1) = [A_mt1, Al
then using the induction assumption and (3a) ,—(2m—2),(m-1)s (38)n=m>» W get

8[A1, A2m—1] + 8[A—2m41, A1]
= [(ldA1 adAoA-m+| , Am] + [ad,qo A_mt, Cl.d',q1 Am]
+Hada, Acmi1,ad po Am| + [A_mi, adp,ad g, Am)
= [4ad(,'l A_m+1 + adAnadA,A_.m+1 s Am] +040+ [A—m+l ,adA,adAoAm]
= 8[A_mt2 — A, Am] = 8[Am — Ay Am] + 8[A—mt1, Amat — A—msi]
= S[A—m-i-?a Am]+8[A—m+1 » Am+‘]7

hence
[A-2m41, A1] = [Ami1, Aman].

Therefore we obtain the result for even V.



For N = 2m + 1, we act adg,ads, and ads,ads, on the equations
[A=2m, Ad] = [A=m, Am), [A—2m+1, A1] = [A—m, Am] tespectively. As before,
we get

8[A—2m+1, Ao] + 8[An, Azm]
= [adAaadA, A_m, Am] + [ad,;, A_m,ad,qn Am]
—}-[a.dADA_m,adA, Am] + [A_m, ﬂdAoadA1 Am]
= 8[A—m—1, Am] + 8[A_m, Am-1]
-i-(ad,q‘ A_m, adAo Am] + [“dADA——m, ad g, Am],

and

S[A], Agm] + S[A_zm, A]]
= [adA‘adAaA_m, Am] + [ad,qu_m,adA, Am]
+lada, Acm,ad 4y Am) + [A—m, ad s, ad 4y Am)
= 8[A—m+1, Am| + 8[A—m, Am41]
+[ad,qn A_pn, ad,.q1 Am] + [adA‘ A_m, ﬂdAoAm]-

Subtract the second from the first of the above equations and drop equalities
belonging to the induction assumption. We have the extra relation

[AO: A2m+1] - [A—Zm'p A]] = [A—m—l ) Am] - [A-—-m, Am+1]7

from which the result follows. q.e.d.

From the above Lemma 3-6, we obtain Theorem 1. Now we can easily
embed Onsager’s algebra into the loop algebra 1(g).

Proposition 1 Onsager’s algebra ¥ is isomorphic to the Lie-subalgebra of
I.(g) generated by elements 24™F + 2t™™F and (™ —t"™)H, m e 1.

Proof. Denote

An =2t"FE +24~™F
Gm = (tm—t-m)H for mel.

Then Ay, G satisfy the relations (24),(2s) and (2.), hence there exists a Lie-
homomorphism
w: A — I{g)

with o(Am) = Am, ©(Gm) = Gm - It is easy to see that Ap,, Gy, (m € Z) are
linearly independent elements in 7.(g). Then the result follows immediately. q.e.d.
Denote the Lie-involutions

9:9—9, OF)=F, 4F)=F, 8(H)=—H,
b0 : L(g) = I(g), 6u(f(t)®x)=f(t"") @6(x).



By the above Proposition, we may regard A as the Lie-subalgebra of .(g) fixed
by f#a. For the rest of this note we shall always make this identification and write

A = 2™E 4+ 2%-m™F
Gm=(tm—t'"')H for mel.

2. Ewvaluation map of Onsager's algebra
Let €D g be the direct sum of n copies of g. The generators £, F, H of g
n
in the i—th factor of €D g are denoted by F;, Fy, H;. Then F;, Fi, H; (1<i < n)

n
form a base of ) g. For a= (ay, ..., a,) € (C*)", the homomorphism

L(g) - @9 -.-fw(f(al)a"'if(“n))a

is a Lie algebra homomorphism. Its restriction on 2 is called the evaluation of
A at a and denoted by
ea A — @ g.

We have
a(Am) =2 3 (a'Fi+a7™F)) (©)

1=1

ea(Gm) =3 (aP—a;™H; , meZ. (i0)

1=1
We shall study the representations of 2 via the above evaluation maps. Introduce
the notation

C=(C—{0,£1})/ ~, here ~ is defined by identifying a with a™'.

Note that C is bijective to the complex plane minus two points. For a €
C—{0,+1}, @ denote the element of C determined by a.

Lemma 7 For a= (m,...,a,) € (C*)", ea is a surjective map if and only
if the conditions

af #1, G £ for i # 7],

hold.
Proof: Denote

r = maz{ i € Z>g|ea(An),...,ea(Ai) are linear independent},
A=< e(Aj)1 1<7<r>c
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Claim: A =<ea(Am), mel 2
There is a polynomial P(t) of degree r + 1
P(t) =po + pit + ... + pryrt™

such that

Poea(A0) + p1ea(A1) + .. + Prorea(Arsr) =0,
which means

P(j) =P(a7") =0 for 1<j<m.

Note that the constant term pg can not be 0, otherwise

P(t) =tQ(t), Qay)=Q(a;') =0 forallj,

which contradicts the linear independence of ea(A1),...,ea(Ar). By pr+1 # 0,
we have e;(Ar41) € A For s € N,

a}P(a;) = a;-'P(a;‘) =0 for 1<j< n,
which implies
ea(Ary14s) €< ea(As), ..., ea(Args) 2
By induction, ea(Am) € A for m > 0. Similarly,
a;"P(aj) = a;P(a;1) =0for 1<j<n,s>0,

By po # 0,ea(A_,) €< €a(A—s41), -sea(A_st14r) E Hence eq(Ar) € A for
m<0, therefore

A=< ca(Am), mEL> .

ea(Am) € i(CE.-JrCF‘.-),

=1

n
ea(Gm) € ZCH; formel,

=1
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the surjectivity of the Lie-homomorphism e, is equivalent to the equality

A= i(CE‘.‘—I—CF;) .

i=1

It is easy to see the following equivalent conditions hold,

A=) "(CF;+CF)
1=1
U T
1 -1

ay ... an a; R

Sdet|] . T . 0 with r=2n—1
ay ... ay a7 ... a7t 7 ’
r r bt —
al ... ap q a,

& al#1, aj#aft forj#k.
There follows the conclusion. q.e.d.
Remark The above polynomial
P(t) =po +pit + ... + prpat"™

has the degree r + 1 = 2n with 2n distinct roots a;, aj' (j =1,..,n) . This
polynomial P(t) ( up to a scalar) is characterized by one of the following equivalent
conditions:

(i) P(t) is the polynomial with the smallest degree such that

poea(An) + prea(A1) + ... + pry1€a(Arpr) = 0.
(ii) P(t) is the polynomial with the smallest degree such that

pﬂea(Am) +p1 ea(Am+1) + -+ Prp ﬂa(Am+r+1) =0 for mel.

n
For non-trivial integrable dominate weights y; in P, 1 <¢ <n, Q@ V() is
i=1
an irreducible @) g—module under action
n

(E];‘-‘;{ﬂ)” = Z(] ® .. ®£s ®.& ])T) .

It defines the A—module V,(x) = @ V(u;) via ex for a= (ay,...,a,) € (C*)"

4
and u = (@1,...,4n) € P". By Lemma 7, Va(u) is an irreducible A—module
when @ (1 <1< n) are distinct elements in C. ,
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Lemma 8 Let a= (@, ..., a,), 8'= (ai,...,a,) be elements in (C*)" with

a? = a/? for all i. Then Va(u) = Var(u) as A—modules for p € P".

Proof. Renumbering the indices, we may assume a; = aﬁ“ for i <m,

a; = a; for i > m. For each i < m, there is an automorphism ¢; of V(y;)
such that
pilkn) = B(E)pi(v) for E€g, v e V().

Let n n
$: ®l V(ui) — ®1 Vim),

1= | 1

B:Pps— Py
n n

be the isomorphisms defined by ® = 1 @ .. Q@ Ym @ 1d. ® ... R id, O =
0. ®0did. @ ... ®id.. It is easy to see that © is a Lie-isomorphism and

O. ;':, = ey. By the relation

®(Xw) = O(X)®(w) for X e Po,we® V(u),

i=1 :

Va(p) ~ Var(p) as A—modules. q.e.d.
For a= (aq,..., @) € (C*)" with a? # 1, the structure of A—module Va(z)
depends only on the elements @; in C and we shall write

Vi(pu) = Va(u) here a=(4y,...,a,) €C” .
Denote
(€)= (= (@,....T) €C [T £ for i #5}.
Proposition 2 For (4,a) € P" x (C"),(u',a") € P! x (C’)',
Vi) = Vo (')

as A—modules if and only if n = I and for some permutation o of {1, ..., n},
pi = p:,_(l-), a; = af,('.) for i=1,.n.

Proof. When Vi{u) is isomorphic to Vo{y'), the polynomials P(t), P'(t)
corresponding to V,(u) and Vas(u') are the same by the remark of Lemma 7.
Then n = [ and for some permutation o of {1,...,n}, af' = a:,('.) ,i=1,...,n.
It follows p; = p:r(‘.). The converse statement is obvious. q.e.d.

3. Representation of Onsager's algebra

In this section we shall give the classification of all the irreducible finite
dimensional representations of 2. Let V be a such A—module with dimcV>1.
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Denote A,,, Gm the linear transformations of V corresponding to the 2A—action
of Am, Gm for m € Z. Since the addition of a constant multiple of the identity
matrix to either ( or both ) to Ao, Ay makes no difference to DG conditions , the
traces of Ag, A1 can be reduced to 0. Hence for the discussion of this section
we shall always assume

Amy G €sl(V) formeZ.

The A,,’s generate a finite dimensional subspace of s/(V). For some positive
integer r, there is a non-trivial linear relation of { Ax|m = 0,...,r+1}, namely

POA_0+ PIA—I+---+Pr+1Ar+1 =0, pj € C.

Claim: We have the more general recurrence relations of length r + 1:

r+1
21 pj;[j-l-s:Or (11)
1
Y piGrn =0 (12)
=t

for s € Z.
The second equality simply follows from (2;). This implies

r+1 r+1 L
ijZ.Hh Ay = ZPjAj+1, Al =0.
j=0 j=0

By Schur’s Lemma,

r+1
E pjAj1 =0.
=0

By (2),

r+1 r<+1 r41
“'d(?a (Z szjﬂ) = 22szj+s+1 -2 ijz.i_{,g_1 for seZ.

=0 =0 j=0
Therefore the equalities (11) hold for s+1, s-2 whenever it holds for s-1 and s.
Hence the conclusions follow from the case s=0, 1.

We now assume the length r + 1 of the above recurrence relation is the
minimal one. By (2;), we also have

r+1
Y piA =0 (13)
j=0

14



The minimal property of r+1 implies either p; = p,41_j foralljorp; = ~pry1-;
for all j. Define the polynomial

P(t) = po +pit + ... + Pr+1 AL

P(t) = it'“PG). (14)

Consequently the zeros of P(t) not equal to 41 occur in reciprocal pairs. This
polynomial is characterized by the following property:

Definition The polynomial P(t) satisfying (11) (12) (14) with the minimal
degree is called the minimal polynomial of the irreducible finite dimensional
2A—module V.

Remark. The minimal polynomial of V4(x) is the one appeared in the proof
of Lemma 7.

Label the zeros ( with multiplicity) of P(t)
Atyennsn,ayan by b (15)
in such way that
al#1, =1 for all i,j ,
and for some finite sequences {k,} , {k;},
l=ki<ky<...<ka<n, 1=ki<ki<...<kh<n', (16)

and

ai=a; & k,<1,j <kyq for some s,
bi=bj & k<i,j <k, for some t.
The linear subspace of sl(V) spanned by A,, (m €Z) has the dimension

r+1(=2n +n') with abase F; ,Fi,e; (i=1,...,n, j=1,...,n') which
are determined by the relations

n n’'
A_m =2 Z (('m,irli + C_m,iﬁ) +2 E d’"’jej

i=1 =1

d I—k, d J—k‘
with s = (E) (™ ema > dmij = (&E) (™=, >
here m € Z, ky<1i<kyyt, k:Sj<k;+,.

15



Then ¢ ,dm; (M€Z,1<i<n 1<j<n')satisfy the assumption of the
following lemma.

_ Lemma 9 Let n, n' be non-negative integers with 2n +n' = r +1. Let
Fi, Fi,e; be elements in s(V) and i, dm; (M€Z,1<i<n,1<;<n")
complex numbers with dy, ; = d_p, ;, such that the following conditions hold:

!

n n
@) EzzZ(%,iﬁ+6_m,iﬁ)+22deq for mel ,

=1 =1

(ii) For { € Z,

( €1 ... Cn €1 - C_ln div ... din )
Cl4rl --- Clgrn Col—rd .-+ C_l—rn dl+r,l .- dl+r,n'
(CO,I v G € ... @a dog ... dﬂ,n’)
= : . []l
Gl - G Cor1 ... Copn dr,l ce dr,u'

for some upper triangular matrix I;, Then e; ,1 < j < n' |, commute with all
the A...

Proof. It suffices to show that for1 < j < n',
[X, ;] =0 for X =F;, F: ex.

By (i), it follows

T = Ao, 0] =23 [em T + comi 5, Ba) 423 o [e5, A0

=1 3=1

= (emi+o-md)[Fi + Fi, A0 + (6mi — c-ms) [Fi — i, Aq]
1=1

n
-l-‘Zde,j[ej,A_g] .

j=1
By dm; = d_p; and Gm = —G—m , We have

G =) (emiThi — comifi) + Y dmjh;
=1

=1

with 4H; = [F; = F5,%q), hj=0.

16



Let (a,) denote the inverse of the matrix

€1 -+ Cn €01 --- Coa  dog .. dog
2 : :
Cr - Crn Coyl ... Cpn dr,1 . dr,n‘
Then _
()
Ao €1 --- Cpn €1 .- Con  do ... dog 7
Ay _of 1 Clpg €1 - C1a diy ... dig 3
- — » ,
\ 7
I oo Crn Oyl - Crn dr,l dr,n‘ "
i)
(7
G €1 - CUn €11 --. Coipn diy ... dia e
al-ﬂ ] G4 - G Cal-11 - Colin diyra - dip n —H
: : i
Z'H-f Cl4r) -2 C4rn Co)erdl --- Colorm dl-l-r,l dl+r.n' 1
\ By /
hence
M
1 F
(as.f) : = : ’ ( 7)
Ar P
\.§ )7r
(7
G A
7} -
Gy 1
2(s1) . = (18)
. —H.
Gl+r ki

\ )

For X = F;, F; or e, by hj = 0 and the upper triangular property of the

matrix {/;, we have

r r
X, €] = E o100tk (AL, AR) = —4 Z 03 109045,k Gl

1Lk=0

17

Lk=0

=-2 Z gl (2 Z 02n+j,kG—l:—;) =0.
=0 k=0



q.e.d.

The above lemma implies that if n’' > 0, the linear subspace of sI(V) spanned
by Am (m € Z) has a non-trivial center, which contradicts the irreducibility of
the A—module V. Hence +1 can not be a zero of P(t), and all the zeros of P(t)
are now labelled by (15) with n' = 0.

Proposition 3 Let V' be a non-trivial irreducible representation of 2. If the
minimal polynomial of V has only simple zeros, then V is isomorphic to Vig{u)
for some (u,a) € P* x (C)'.

Proof. Let P(t) be the minimal polynomial and r + 1 be the degree. Label
its zeros in pairs, i.e. the zeros are

-1 -1
Ql,y..aspy@y ,...,8,

with r+1=2n and a? # £1 for all i.. As before, let

mo @0 .. @

X2n 0 M1 ... X2pr
be the inverse of the non-singular matrix

1T ... 1 1 ... 1
-1 -1

a ... an 4 ce. o ay
9] . : . :

H ] —1 et 2

ay ... a, ai' ... a,

r r —-r —

a ... ap ay ... a,

and F;,T;, 1 <i< n, be the elements of sI(V) defined by

Fi= 3 aijA;, Fi=) anyijA;. (19)
=0 =0
Then n
An=2) (aPFi+a;™F), for mel. (20)

=1
By (17) (18), it follows that for i =1,...,n, [ € Z,

r r
I AN o —
afi =3 0ijAjn, e Fi=) antijAjn
=0 =0

(21)

r r

R

o H; =2 20 @ jGip, —ai Hi=2 ZZO Ontii Gyl -
j= =

18



Claim: F;,F,,H; (: =1,...,n) satisfy the relations
%, ) = [Fs, 73] = [ 75 =0,
— L — —_— 22
I__E,'_, F}]=65JHJ" I,_Fl'a Ej]=26"JF’37 W? Fi]=_26iJFJ" (22)
By the direct computation and using Theorem 1, we have

—_ r —_— r T —_—
[Fi, Fi] = 3 aao[Ar, A =412 105Gl =—220‘uﬂj_lﬂj =0,
LE =0 I=0

[Fi Bi} =4 5 eiese[Gr,Ge] =0,
! =Q' r
m,-ﬁ,r] =4 3 Q0 gk [75,7{:] =4 3 ai,10n+j,kz'l—k
1,k=0 Lk=0

r — —
= 212 a;,;a;- HJ‘ = 6.",' Hj ,
=0

[FiF] =4 3 e [Gr A =4 3 o (Aen — Ae)
k=0 k=0
T T
(A, F5) = 41 kz ook (Gr, Ar] = 4!;;0 ;i 105k (Arpt — Ax)
k=0 =

=4 'E il (a;ﬁ,- - a;rﬁ;) = 25;,,'E .
=0
The same argument for [F;,Fj] =0and [H;,Fj] =—26;;F;. Hence

2A—action of V can be factored through a representation of € g via e,
n

A o slV)
ea "\, 1
Do

The irreducibility of A—module V implies V also irreducible as € g module,
hence corresponds to some g € P". Therefore V is isomorphic "to Va(y) as
2A—modules. q.e.d.

We are going to show the minimal polynomial P(t) of an irreducible repre-
sentation of A always satisfies the assumption of the above Proposition.

Proposition 4 P(t) has no multiple zeros.

Proof. Step I. Claim: 3/—1 are the only possible multiple zeros of P(t), and
in this situation it has the multiplicity 2.

Say a; is a multiple zero , i.e. the difference § := ky — ky in (16) is greater
than 1. Let (a4:) be the matrix in the proof of Lemma 9. Now the formula
(17) (18) give

r R,
Fs—1 =Y 05-14A4,
=0

— r — r
Hs=2Y a5.G,, —H5 =23 onys54Gs.
=0 =0
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The conditions (i) (i} of Lemma 9 and the formula (17) (18) imply

A
()| M [ 20| =], (23)
Ase =
Gy ("
2omg)| T | =11 o8 (24)
G,'J,, _w-

The entries {/..; of the above upper triangular matrix {/; can be calculated from
Leibniz’s formula

n

() =3 (:)(P(T),/,(n—*r)

=0

with o(z) = !, ¥(z) = =*. In particular,

dt! I
T \T <t <
UI;I,: _ { = (:r )Ez=a1 for 1 < t._ 8,
0 otherwise.
GI] for t=6-1,
Us—12={ (§=la}™"  for t=4,
0 otherwise.

Note that F,..., Fn, Fy,..., Fp are linearly independent. We have

r

(A2, Fs1] =2 Y agaa5-14[Ga, Ar] =4 E_:ﬂ 09,5051 1 Atys — At—s)
A, A t=

=0
r —— — ———
=4 E (12’3{0‘.'1' Fs_1+(6— l).s'a';'1 Fs — a,‘" Fs_v— (6 — ])(—s)ar"“ (a]- Fs )}
s=0

=2(6-1)F5 ,
and

[F2,F5-1] =2 Y an2,406-14[Ga, At] =4 Y ang2,405-02(Atrs — Ary)

J,t=ﬂ ")t‘_—ﬂ

=43 ont2a{a]Fs_1 + (6= 1)sa}"Fs — a7 Fsg_y — (6 — 1)(—s)a; "+ (a7 7F5) }
s=0
=2(6 — 1)a;7F5



hence a? = —1. We also have
[z, Fi] =4 3 oz, (Atgs — Ar—a)
a,t=0

r n -1 n k—1 —_— _—
=4 z 0!2'3{k231 a";}:‘-(gg"')lzm"ﬁ; —_ kz:l Ht:-_.‘:"(m_")p:m Ek} = 2}‘—}2 ,

a=0

[—_ﬁ;,ﬁ;] =4 En 12,200 t(Atrs — At—s)
a,l=

r n n

dh—l — dk—‘l _ —

=4 z%)an'*'z!'{kzl drk-T (Ia)l’:=ﬂ1 Ek - i:z:1 drk=1 (2’! ") |z=a1 Ek}
A=l = =

=247 F2 + A

§
here A = 3 AgFr and Az = 3a;” in case § > 3, which contradicts the linear
k=3

independence of Fj s. Therefore we obtain a? = —1, § = 2.
Step II. We may assume now

P(H) = (12 +1)°Q(),
here Q(t) has no multiple zeros. Consider first the special case when

° P(t) = (t2+1)2,

or equivalently, the zeros of P(t) are a, a, a~',a™' with a =+/=1. By (23)
24), for I € Z,

A 12}
A E
()| 25 | = Uz(ﬁ) ) (25)
Al I
Gt L
G Hy
2( e t) a.:%; =10 (—ﬂ) ) (26)
Giia —H
with
1 0 1 0
- a 1 a”! 1
(ap)” =2 2 22 a? 92 |’ (27)
a3 3‘12 a—3 30—‘2



U =

oo

0 a-l la—iH1 - (28)
0 0 0 a”!
By computation, using the formulas (25)-(28), we have

3 3
[W]7T;5] =—4 Z al,JQZ,tzrt-—n = —2 Za‘l,.!a_"—FT'Z =0 3
=0

2,t=0

(B, Fa]=—4 2{,01,4'03,:(;:—.- = -2 m,(—a"H +sa* Hy) = Hy,
a, =0

_ 3 3 J—
[Fr.F2] =4 T 01,004Giy = -2 o ,(—a"Hy) = A3,
=)

a,i=0

3 3
IEZ.;F_E] = —4 Z: aZ,Am,tZ’t—n = -2 202,3‘1_‘?; =0,
=0

2,1=0

3
[, F] =4 E a1 401 ¢ ( Atgs — At—s)

s,i=0
3
=4 Z o, (a’ﬁ +8a" VF, —a"Ey 4 sa”" L) =28, ,

2=(

_ 3 3 _ _
[Fi,F2]) =4 Y o1,004(Arga — Ars) =4 3 on4(a'F2 — a7 "Fy) = 2F,
2,0=0 =0
Similarly,

m).ﬁ;] = 07 I.—F_!lgﬁz_] = _T{-;'p [Fl)ﬁ] - —2-F"1]- 3 [ﬁl-;.’_"“'z_] = _QE,
[Ti;jr‘] = 2“'2?2_: _2-p2— ’ I.—n';v-pz_] =0
The above relations of F; ,F; ,H;, i = 1,2, are also satisfied by the Lie
algebra g(t]/t? := g ® (C[t]/t2C[t]) (with the obvious Lie-structure) via the
correspondence A :
E®l - F, F1l -F, H®l - H,
E@t - F, Fet -F, H®t - H,.

Then the representation of A on V is factored through a representation of
alt]/t*:

A o sl(V)
I\ TA ,
olt]/t
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here f is defined by
fl(A) =2E®1+F®1),
F(A)=2V/-1(E®1-FQ1)+2(E®t+ F®t) .
The representation X of g[¢]/¢? is irreducible. As tg[t]/¢? is a Lie-ideal of gft]/t?,
the irreducibility of A implies V = (tg[t]/¢%)vq for some vector vy of V. Since
F ®1 annihilates tg[t]/t2, F, is the zero map of V, a contradiction to the linear
independence of F; 's.

For the general case, write
P(t) = (2 +1)°Q(1),

with Q(x) no multiple zeros. With the same argument as the previous case together
with the one given in Proposition 3, we can show that the A—module V can be

factored through a representation of (g[t]/1?) @ (@ 9):
n

A - sl(V)
(fa ea) \a T A
(alt)/?) @ (@ g)

for some integer n and a€ (C*)". By the irreducibility of the representation A,
we can derive a contradiction just as before. g.e.d.
By Proposition 2—- 4, we now have the following conclusion:

Theorem 2 Every non-trivial irreducible finite dimensional A—module is
isomorphic to V;é,u) for some (y,@) € P" x (C*). Al such modules are

parametrized by | J] P" x (C")')/ (mod. permutation) .
neN

4. Superintegrable chiral Potts model

The Hamiltonian of superintegrable N —state chiral Potts spin chain has the
form
H(K) = Ho+ kK'Hy (29)
with a temperature-like variable k'. For a row of /. sites, Hpand H; are Hermitian

operators acting on the vector space which is the direct product of /. copies of
CN: V=CV®...®C", and they are defined by

I N—1
Ho=-2 3 (1-w™ 7' X7,
1=1 n=1
I N-1 .
=2y Y (1) 2
1=1 n=1



here

1,‘)=‘32m'/.f\'
X;=In®..0 X" @..0Iy
Z,’:fN®...®Zj‘h®...®TN,

Iy is the N x N identity matrix, the elements of the N x N matrices 7 and X are

Xim = bim1 (mod N)

Zl,m = 6‘I,rn“J'_1 .

H (k') is Hermitian for real value k' and has real eigenvalues. We are going to
study the behavior of the continuous dependence of its eigenvalues. Note that
the operators Hp and Hp satisfy

- [H'I) [Hlv [HI: HO]]] = 4N2[Hla Hﬂ] [Hﬂa [Hﬂa [H(h H]]]] = 4N2[H0) HI] .
Then the operators Ap and Ay defined by
Ag = —2N""H, Ay =—-2N"TH, (30)

satisfy DG conditions.
Theorem 3 The eigenvalues of operator H(k') in (29) are of the form

/\(k’) = (a+k’ﬂ) +2N ij\/l + k72 — 21:'0089,'

j=1

here k,0,8,0; €eR |, mj=—s;,—s;+1,...,5 (s_,- € %N) ]

Proof. By the Hermitian property of Hp, /1, we have a decomposition
of the representation space V into irreducible subrepresentations W. It needs
only to have the expression for the eigenvalues of H(k') on an irreducible
subrepresentation W. When the dimension of W equals to one, the eigenvalue
is simply equal to a + k’'3. We now assume dimcW > 2. Let Ap and Ay be
defined in (30). Then W is an irreducible A—module. Let o, be the real
numbers such that

Ah=Ag+2N a, Al = A +2N7'3 € sl(W).
By Theorem 2, we may assume

W =Vi(u)
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for some p = (u1,...,4n) €P" @ = (i,..., ) € (C*). A} and A} act on
Va(n) = @ V(u;) by
]

o(A) =2 (Fi+ F)

=
() =23 (= con0y(F; + Fy) — isin 85(F — Fy)}
1=1
here e=®% = —a;. Denote
1
dimcV(p;) =2s;+1, 85 € §N ,

1 —i !
(J,:),' = E(EJ + Fy), (-]v)j = ?(EJ - ), (J")-" = §Hj

where (), ,(Jy);,(J:); are the usual irreducible matrix representations of an-
gular momentum of dimension (2s; +1). Then

o(H(K)) =a+kf—2N Z {(1 — K cos8;)(Jz); + K'sin 0,~(J,,)j}

=1

with 8; € R. Each term in the sum is of the form
—2N(1 — k' cos 8;)(J;); — 2Nk'sin 8;(.1,), .

After rotating the =y plane, it is transformed into

IN/1+ K2 — 2k 005 6; (1),

which has the eigenvalue

Qij\ﬁ + k%~ 2k cos; ,mj;=—s;,—s;+1,...,3;.

Therefore we obtain the result. q.e.d.

Associated to the chiral Potts chain, there are the spatial operator with eigen-

. I
values e27*F/ (P =0,1,..., . — 1), and spin shift operator (:z [1 X; | with

s=1
eigenvalues ez"Q/N(Q =0,1,...,N —=1). Hoand Hy commute with these oper-
ators. So the representation space V decomposes into different subrepresentations
of Hy, Hy labelled by a pair of integers (P,Q). The DG conditions associated
to Hy, Ay provide a further, hidden, symmetry. As von Gehlen and Rittenberg
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[10] observed, in the representation where X, of (29) is in the diagonal form,
by the relations

N-1 k .

w N =1 i
Y m = =k for E=0,1,.,(N=1),
m=1

—3 Ho is the usual representation for the z component of angular momentum for
the N dimension irreducible representation of SU(2). For a chain of length 7,
the maximum and minimum eigenvalues of Hy differ by 2(N — 1)7, while in
any sector of given ), the eigenvalues differ by multiple of 2N. So the different
number of distinct eigenvalues of Hy in a Q sector is given by

ne [ﬁf_‘“N’—_Q] (31)

where [ ] stands for integer part. For small £/, the eigenvalues of H are close
to those of Hy. By the analyses we have before, there are at least N distinct
irreducible representations of 2 in order to reproduce the spectrum of H in one
sector for a pair (P,(}). This integer n refers to the largest sector which must
necessarily contain the ground state. This is the sector found by Baxter [3].
He gave the closed-form solution of the characteristic polynomial f(z%) for the
ground-state sectors (P = 0)

N=1 4
f(zfv) = NF,Q E w(Q+L):'(zN_“') (32)
§=0

Z—I’..r.Jj

(cequation (16) of [3]). The RHS is invariant when one substitutes z by wz, hence
a polynomial of zV. It is easy to sce that the degree of f(7) equals to the integer
n of (31). Let (ZT)"N, (E)_N, ceeh (?;)-N be the zeros of f(7). Define

—N
t; 1 9.
cosfj = iﬁ--l-—, e~ = —-a; , (33)
i —1
equivalently
8 1-—a

N
1T = —; - = .
(t,) = zmt2 T Fa;

By [3] and Theorem 3, the representation Vi{p) of A associated to this sector
is given by

a= (a1,...,a,) a; : defined by (32) ,
p=p1,. . pn) Hy: spin% representation of SU(2).
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The algebraic curve where “rapidity” variables of chiral Potts N —state model lie
is the hyperelliptic curves defined by

~_(- KA)(1 - KA
1— k7

[3] [12] (here we usc Baxter’s notation). The variables ¢ and £ (for Z;) are

related by
i\ 1N
i= (1R,
1—-K

Now the eigenvalues for Hamiltonian H have the expression

K% £0,1 (34)

a+ £\ [1+ k2 — 2K cosd;
14+ A;

- ™M

AN
here ), is obtained by (33) by letting ¢ = (}35)  %. In conclusion we

have observed that the spectrum of ground-state sector is determined by zeros
of the polynomial (32) with parameter identified with £ variable of the “rapidity”
curve (33). The corresponding representation of Onsager’s algebra is obtained by
attaching spin 1/2 representation of SU(2) to each zero and their A values give
the spectrum of the spin chain Hamiltonian.
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