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Tntroduetion

In this note, I would like to draw attention to an interesting algebra coming
from solvable systems in statistical mechanics, and also its connection with
"rapidity" variable of the high genus Rieman surface in chiral Potts model [2]
[4] [5] [12]. This algebra appeared in the Onsager's original paper [11] on the
solution of planar Ising model in zero magnetic field. Simplifications of Onsagers
work were found afterwards by using fermion algebra, a different method with
the original one. However renewed interests on Onsager's algebra arise in recent
years. Dolan and Grady [6] considered Hamiltonians H of the form

H = An + k' Al

with a parameter k' and given operators An, Al. They showed that a pair of
operators An and Al which are uself dual" in a certain sense, and satisfy the
Dolan-Grady (DG) conditions, namely

generate a infinite sequence of commuting operators for H. This sequence
is in fact the generators of Onsager's algebra, and the Ising model was the
only realization given by them. Subsequently, von Gehlen and Rittenberg [10]
found that certain ZN symmetrie Hamiltonian spin chains have lsing-like spectra
and the operator pair appeared in the Hamiltonian also satisfy DG conditions.
Recently, a new exactly solvable two-dimension lattice model-tbe chiral Potts
model-has been fouod [1] [2] [3] [5]. A special case is the superintegrable one
which has much lsing-like strueture for the solution eveo tbough it is an N
state model. The corresponding quantum spin chain is the one investigated by
von Gehlen and Rittenberg, and again by Albertini et al . The conclusions they
obtained rely heavily on tbe numerical computation. Recently B. Davies [8]
[9] gave a mathematical treatment on the study of Onsager's algebra just from
DG conditions, and also obtained its irreducible representations. It seems as if
in mathematical literature, no reference can be found. However, the Davies'
arguments still lack rigorousness in same respects from tbe mathematical point
of view. It is one purpose of this note, to put Davies' treatments on a more firm
mathematica1 footing. ·We find a realization of Onsager's algebra inside the loop
algebra TJ(.d2(C)) of .d2(C) is easier for the study of representations of Onsager's
algebra since we have a better understanding of representations of f,(.q12(C)) in
mathematicalliterature, e.g. [6]. By the structure of irreducible representations of
Onsager's algebra, one obtains the spectrum of a Hamiltonian of superintegrable
chiral spin chain whieh depends on an "extra" parameter. We shall examine
the relation between this parameter and the "rapidity" variable appeared in the
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solution of Yang-Baxter equation in chiral Potts model [2] [3] [4]. In particular,
for ground-state sector, the spectrum obtained by Baxter [3] is described by zeros
of a certain polynomial whose variable is related to the "rapidity" curve. These
zeros are the data of representations of Onsager's algebra. This simply implies
certain representations of .QI2(C) being assigned to given marked points on the
"rapidity" curve. Tbe significance of this interesting phenomenon is still under
investigation.

Tbe plan of this paper is as follows. In section 1, we follows Davies' argument
[9] to derive the important relations between generators of Onsager' s algebra
from the DG conditions (Theorem 1 below). Using these relations Onsager's
algebra can be identified with the fixed subalgebra of an involution of TJ('CJ12 (C»).
In section 2, we describe the basic construction of representations of Onsager's
algebra through that of TJ(.d2(C)), and in Section 3 they are shown to generate
all the irreducible representations of Onsager's algebra as in [8]. In Seetion
4, we study the spectrurn of the quantum N -state chiral Potts spin chain in
superlntegrable case. Using the description of irreducible representations of
Onsager's algebra, the eigenvalues of Hamiltonian are expressed in an explicit
form involving a parameter, whose relation with "rapidity" curve of chiral Potts
model is also discussed there.

I am greatly pleased to acknowledge many fruitful discussions with Professor
G. von Gehlen and Professor V. Rittenberg durlng the preparation of this note. I
would like to thank Professor B. Davies for sending me his preprint on Onsager' s
algebra. Furthermore, I would also like 10 thank Professor F. Hirzebruch for the
opportunity of visiting Max-Planck-Institut where this work was done.

rv·otation

In this note we shaU make much use of the adjoint representation of a Iie
algebra and write

for elements A, R in the Lie algebra. Tbe Jacobi identity can be expressed as

We shall always denote

g= .d!(C) ,
R, F, H = t.he generators of 9 with

[R, F] = H, [H, R] = 2R, [H, F] = -2F,

P = {non -7.ero integral dominate weight of g },
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V(Ä) = th~ irrooudhle g - modu1~ with highflSt. w~ight 1 E 'P,

T..(g) = th~ 100p a.lg~hra. C(t,t- l
] ® g with hrack~t [ ]0 giv~n hy

C

[f ® x, g ® Y]o = fg ® [x, y]

for f, g EC [t, t-'] and x, yEg, ( We often tbink of T..(g) as the space of algebraic
maps C· -+ g).

1. On.~ager'.fi algf'hra, TJOOP Algebra 01 .fiI2(C)

Tbe following notion is defined in [7] [9] :

Definition 1\vo elements A, R in a Lie algebra satisfy Dolan-Grady (DG)
conditions if

ad~ R = 16 adAR, adhA = 16 adRA .

Lemma 1 Let .c be a Lie algebra. For A, R E .c, define the elements 0:, ß
of .c by

1 1
0: = A + gadRadAR, ß = R + gadAadRA.

Then A, R satisfy DG conditions if and only if A, R, 0:, ß satisfy the conditions

[ß, A] = [A, R] = [R,a].

Proof. As

1
R +ß= 2 R - gad'7.t R ,

the equality of [ß, A] = [A, R] is equivalent to ad~ R = 16 adA R. Similarly,

[A, R] = [R,ß] {:} ad'1A = 16adRA . q.~.d.

Definition Onsager algebra 21 is tbe universal complex Lie algebra generated
by two elements Ao, Al satisfying DG conditions.

Let Cl be tbe commutator

and define an infinite sequence of elements Am, Gm (mt: Z) in 21 by

(1 )

We shall follow Davies' argument [9] to show the following relations for the
generators Am, Gm of 21.
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Theorem 1 Am, Gm satisfy the identities:

[A" Am] =4G'-m (24 )

[G" Am] = 2A'+m - 2Am-l, (26)
[G" Gm] = 0 (2r.)

We shall proceed the proof of the above theorem in a number of steps. First we
note that the relation (2 11 ) will imply the following relations:

An+1 - A-n-1 = -~adAoadAl A_n, n ~ 0, (3a )

An+1 - A_n+1 = ~adAl adAoAn, n ~ 1. (36)

Tbe cases (311 )n=n and (36)n=1 are obvious by (1). Tbe general cases follows
from induction by using the following lemma.

Lemma 2 Let n ~ 1. (i) If [An, An] = [A_n, An], then

(3 11 )n-1 {:} (36)n+l

Proof. Applying ~adAl to the equality [An, An] = [A_n, An], we have

1 1 1
gadAladAoAn = -gadAoadA1 A_n - "2adC1 A_n

1= -gadAoadA 1 A_n - (A_n+1 - A_n- 1),

hence (i). Similarly we obtain (ü) by applying iadAn to [Al, An+l]
[A_n +1 , Al]. q.e.d.

First we reduce Theorem 1 to the only one relation (24 ):

Lemma 3

Proof: Step I. We show

(2 a ) ::} (26) .

By (2a ) (3a ) (36), we have for 1 2: 1,

1
[G" An] = -4adAo[Al, A-I+l] = 2(A,- A_I),

1
[G" Al] = -4adA1 [A" An] = 2(A

'
+1 - A-I+1 ).
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Therefore (2b) holeIs for (l,m) = (1,0),(1,1). Applying adc", on (2B ) for
(1, m) = (1,0), we have

4[Gm ,G,] = [adc",A" An] + [A" adc",Ao] . (4)

By (1) and (4) for (m,l) = (1,1),

4[Gl, Gd = 2[A'+1 - A'-h Ao] + 2[A" Al - A_1]
= 8(G'+1 - G,_,) + 8(G'_1 - G'+l) = °

Hence (2,:) holds for 1 = 1 or m = 1. Applying the relations

1
An+2 = An + "2adCl An +1

repeatedly, we obtain the expression:

An+, = 9,(adel )An + h,(adcl )An+l for 1~ °,
where 9'(X) and h,(x) are polynomials generat~ by the recursion

9'+1 =~g'+9'-1, 90=1,91 =0,
h'+l = !h, + h'_l. 14J = °,h1 = 1.

Then

[G" Am] = adCI(9m(adCl )An + hm(adcl )A1 )

= 9m(adCl )adc, An + km(adCl )adc, Al
= 29m(adc,)(A, - A_,) + 2hm(adc l HA'+1 - Al-I)

= 2A'+m - 2Am _, .

Hence we obtain (2b).
Step 11.

We have

4[Gm ,G,] = [adcmA" An] + [A" adcmAn] (hy (4»
= 2[A'+m - A'_rn, An] + 2[A" Am - A_m ] (hy (2h»
= 8(G'+m - G'-m) +8(G'-m - G'+m) = ° . (hy (2&»

q.e.d.

Tbe Lemma 4-6 below are for the proof of (2B ).

Lemma 4 H An , Al satisfy DG conditions, then

[A_2, An] = [A_ 1 , Al] = [An, A2] = [Al, A3], (5)
[A_3 , An] = [A_2 , Al] = [A_1 , A2 ] = [An, A3] = [Al, A4]. (6)
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Proof. By Lemma 1, we have

By Lemma 2, the relations (3a)n=', (3b)n=2 hold. Applying adc1 on the above
equalities, we have

Aeting adA, adAo on [Al, An], we have

Since the left hand side equals to

we obtain [An, A2] = [A_" A,], hence the equalities (5). By Lemma 2, the
relation (3a)n=2 holds.

In order to obtain (6), we mllSt have four equations. Applying adGl on
[A_1t A,] = [An, A2] in (5) and cancelling the commutators whose indices differ
by 1, we have

Aet adAoadAl on [A_2, An] = [A_1t Al] in (5). The left hand side becomes

[adAo adAl A_2 , An] - 4[An, adG l A_2]

= -8[A3 - A_3, An] - B[An, A_, - A-3]

= 8([An, A3 ] + [A_ h An]) ,

while the right hand side,

[adAoadAl A- , , A,] + [adAl A- , ,adAo A,]
= -8[A 2 - A_2 , A,] +4adc1 [A" A-d (hy (3a.)n=')
= B([A" A2 - A-2] + [A2 - Ao, A_,] + [A" An - A-2])
= 8(2[A_2, A,] - [A_" A2] + [A_l, An]).

This gives

By (7) (8),
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From this it follows adcl [A -1 , Al] = O. Now consider

adAoadcladAo[A_1, Al] = [adAoGl , [An, [A_l, Al]]] + [Gl ,ad~o[A_l' Al])

= - [a~oGl, [A-l, Al]] + [An, [adAoGl , [A_l , Al I]] - adc,ad~oadA, A_l
= [4ad~oA" [A_" Al)] - [An, [G" adAo[A_" Al]]]

+8adc,adAo(A2 - A_2) (hy (31l)n=1)

= [-16G" [A_1, Al]] - adAoadc, adAo[A_" Al] + 0 (hy (5))

= -adAoadc,adAo[A_" Al],

hence adAoadC, adAtl [A_l ,Al] = O. Theo by (311 )n=1'

1o= gadAn [G1, A2 - A-2] = 2[Ao, A3 - Al - A_l + A-3] = 2[Ao, A3 + A-3),

[Ao, A3 ] = [A_3 , Ao].

Hence we obtain the first three equalities of (6). From [A -1 , A2] = [An, A3), there
follows adc, [Ao, A2] = O. As the computation in the previous case,

adA,adc,adA, [An, A2]= [adA, G" [Al, [A o, A2]]] + [G" ad~, [Ao, A2]]

= - [a~l Gl , [An, A2]J + [Al, [adA1 Cl, [Ao, A2]]] - adc, ad~,adAoA2

= [-16G" [An, A2]] - adA,adC, adA, [Ao, A2)

+8adc,adAl(A3 - A_l) (hy (3b)n=2)

= -adAladc,adA, [Ao, A2] ,

hence

1o= gadA,ade,adA, [Ao, A2] = adA, [Cl, A3 - A_ l )

= 2[A1, A4 - A2 - Ao+ A-2] = 2[A l , A4 + A_2),

[A" A4 ] = [A_2 , Al).

Therefore we obtain (6). q.e.d.

Lemma 5 Every adjacent pair Am, Am+1 satisfies DG conditions and
[Am, Am+1] = 4G1 for all m.

Proof. Aeting adcl on tbe equalities [Ao, A2) = [Al, A3), [A_2 , Ao] =
[A-l, Al] in (5) and using Lemma 1 and 4 to eliminate [A" Am] with I-rn = 1,3,
we have

Applying Lemma 1, we find DG conditions for m=l, -1, and also Cl
[Al, A2 ] = [A_1 , An]. By induction, the conclusions are obvious. q.e.d.
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By Lemma 5, Am, Am+l satisfy DG conditions with [A m+l , Am] = 4Gl,
for all m. Therefore for a positive integer N, the following statements are
equivalent:

[A" Am] = [A'+h Am+l ] fOT m -I = N

{:} [A" Am] = [A,+l , Am+l ] fOT m -I = N, 0 ~ m < N.

Hence the proof of (24 ) is reduced to the following Lemma

Lemma 6 If An, Al satisfy DG conditions, then for any positive integer N
and all values 1, m satisfying m = 0, ... , N, m -1 = N, we have

Proof. By Lemma 4 , the results holds for N = 1,2,3. For tbe general N,
we shall prove by induction, i.e. for N ~ 4, the conclusion of a11 positive
integers ~ (N - 1) will imply the one for N. By Lemma 2, the relations
(34 )n (3b)n fOT 1 ~ n ~ (N - 1) hold. Let m = 0, ... , N - 1, m - 1= N - 1.
Acting 2adG1 on the equation [A" Am] = [A'+ h Am +l ], and cancelling tbe terms
of indices different by (rvo - 2), we get

Setting l' = 1- 1, we obtain N equations

[A", Am] - [A"+h Am+l ] = [A"+h Am+l ] - [A"+2, Am+2],
m = 0, ... , (N - 1), m - f = N.

To find one more equation, we consider the case of even and odd N separately.
For N = 2m, acting adA1 adAo on the equation [A_2m+2 ,A1] = [A-m+1,Am] ,
then using the induction assumption and (34 )n=(2m-2),(m-l)' (3b)n=m' we get

8[A" A2m-l] + 8[A-2m+l' Al]

= [adAladAoA-m+h Am] + [adAoA_m+h adA1 Am]

+[adA1 A_m+1, adAoAm]+ [A-m+l, adA1 adAoAm]

= [4adG l A-m+l + adAoadA1 A_m+" Am] + 0+ 0+ [A_m+" adA1 adAo Am]

= 8[A_m+2 - A_m, Am] - 8[Am - A_m, Am] + 8[A_m+" Am+1 - A_m+1]

= 8[A_m+2, Am]+8[A-m+l , Am+l],

hence

[A-2m+l, Al] = [A_m+l, Am+l ].

Therefore we obtain the result for even N.
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For N = 2m + 1, we act adAoadA1 and adA1 adAo 00 tbe equations
[A-2m, An] = [A_m, Am], [A-2m+l, Al] = [A_m, Am] respectively. As before,
we get

8[A_2m+" Ao] + 8[Ao, A2m+l ]

= [adAoadA1 A_m, Am] + [ad A1 A_m,adAo Am]

+[adAoA-m,adAl Am] + [A_m, adAoadA1 Am]

= 8[A_m_" Am] + 8[A_m, Am - l ]

+[adA1A_m, adAo Am] + [adAoA_m, adA1Am],

and

8[A" A2m]+ 8[A_2m , Al]

= [adAladAoA-m, Am] + [adAoA_m,adA1 Am]

+[adA1A_m,adAoAm]+ [A_m, adA1adAoAm]

= 8[A_m+" Am] +8[A_m , Am+l]

+[adAoA_m, adA1Am] + [adA1A_m, adAoAm].

Subtract the second from the first of the above equatioos and drop equalities
belonging to the induction assumption. We bave the extra relation

[Ao, A2m+l] - [A-2m, Al] = [A_m-l, Am] - [A_m, Am+l],

from wbieh tbe result follows. q.e.d.

From the above Lemma 3--6, we obtain Theorem 1. Now we can easily
embed Onsager's algebra into tbe loop algebra lJ(g).

Proposition 1 Onsager's algebra 21 is isomorphie to the Lie-subalgebra of
lJ(g) generated by elements 21m R + 2t-mP and (tm - t-m) H, mEZ.

Proof. Denote

Am = 2tmR + 2t-mp
Gm = (tm - t-m) H for mEZ.

Then Am, Gm satisfy the relations (24 ), (2b) and (2r.), bence there exists a Lie
homomorpbism

c.p: 21 -+ l;(g)

witb c.p(Am) = Am, c.p(Gm) = Gm. It is easy to see that Am, Gm (m E Z) are
linearly independent elements in lJ(g). Theo tbe result follows immediately. q.e.d.

Denote the Lie-involutions

o: g -+ g, O(R) =F, O(F) = R, O(R) = -R,

On : lJ(g) -+ L(g) , Oo(f(t) ® x) = f( t- l
) ® O(x) .
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By the above Proposition, we may regard 21 as the Ue-subalgebra of L(g) fixed
by On. For the rest of this note we shall always malee this identification and write

Am = 2tmR + 2t-mp
Gm = (tm - t-m) H for mEZ.

2. Roaluation map 0/ On.e,agp..r':~ algebra

Let EI) 9 be the direct sum of n copies of g. Tbe generators R, P, H of 9
n

in the i-th factor of EI) 9 are denoted by Ri, Pi, Hi. Then Ri, Pi, Hi (l~i ~ n)
n

form a base of EB g. For a= (a" .__ , an) E (C·) n, the homomorphism
n

n

is a Lie algebra homomorphism. Its restriction on 21 is called the evaluation of
21 at a and denoted by

P'Il :21 -+ EI1 9 .
n

We have
n

e,,(A m ) = 2 2: (ar Ri +aim Fi) , (9)
i=l
n

e,,(Gm ) = 2: (ai - a;m)Hi mEZ. (10)
i=l

We shall study the representations of 21 via the above evaluation maps. Introduce
the notation

c = (C - {0,±1})/ "', here I"V is defined hy ident.ifying a wit.h a-1
•

Note that C is bijective to the complex plane minus two points. For a E

C-{O, ±1}, adenote the element of C determined by a.

Lemma 7 For a= (ab" _, an) E (C·)n, eil is a surjective map if and only
if the conditions

a~ =F 1, ai -:F aj for i i:- j,

hold.

Proof: Denote

r = maxi i E Z~olp..a(An), ... , e,,( Ai) a.re linea.r indepe.ndent.},

A =< e(A j ), 1 ~ j ~ r > C.

10



Claim: A =< e,,(Am ), mEZ>
C

There is a polynomial pet) of degree r + 1

P(t) = PO +Plt. + ... +Pr+l t,r+l

such that

which means

P(a;) = P ( aj1
) = 0 for 1 S j Sn.

Note that the constant term Po can not be 0, otherwise

which contradicts the linear independence of eIl( Al), ..., eil ( Ar) . Hy Pr+1 =F 0,
we have ell(A r+l ) E A. For.q E N,

for 1 S j S n,

which implies

By induction, e,,( Am) E A for m ~ O. Similarly,

aj·"P(aj) = ajP (ai l
) = 0 for 1 S j Sn, .q > 0,

By PO =1= O,ell(A_... ) E< e,,(A_...+l} , ... ,eA(A-.'I+l+r) >. Hence eA(Am ) E A for
c

m<O, therefore

A =< eA(A m ), mEZ> .
C

As

n

eA(A m ) E L:(CRi+CFi)'
i=l
n

e,,(Gm ) E L: CHi
i=l

11

for mEZ,



the surjectivity of the Lie-bomomorphism eIl is equivalent to the equality

n

A =L: (CRi+CFi) .
i=1

It is easy to see the following equivalent conditions hold,

n

A = L: (CRi +CFi)
i=l

a'1
-i #- 0 wi t h r = 2n - 1 ,

an

r r -r -ra1 an a 1 an

<=> a; #- 1, aj #- nt1 for j #- k.

There follows the conclusion. q.e.d.

Remark Tbe above polynomial

P(t.) = Po +Pl t. + ... + Pr+l t
r
+ l

has the degree r + 1 = 2n with 2n distinct roots aj, nil (j = 1, ... ,n) . This
polynomial P(t) (up to a scalar) is characterized by one of the following equivalent
conditions:
(i) P(t) is the polynomial with tbe smallest degree such that

po f''Il ( A0) +Pl eIl( A,) + ... +Pr+1P.a ( Ar+1) = 0 .

(ii) P(t) is the polynomial with the smallest degree such that

n

For non-trivial integrable dominate weights Jli in P, 1 ~ i ~ n, ® V(J-li) is
i=l

an irreducible EB g-module under action
n

It defines the 21-module Va(p) = ® V(Pi) via eIl for a= (ßl' ..., an) E (C*)n
i

and /l = (Ph ···,Pn) E pn. By Lemma 7, V,,(/l) is an irreducible 21-module
when ai (1 < i ~ n) are distinct elements in C.
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Lemma 8 Let a= (a1, ... ,a"), a'= (~, ...,a~) be elements in (C*)" with
a~ = a~2 for a11 i. Then Va(p) ~ V",(p) as ~---modules for pEP".

Proof. Renumbering the indices, we may assume ai = a~-l for i ~ m,
ßi = ß~ for i > m. For each i ~ m, there is an automorphism <pi of V(Pi)
such that

Let n n

tf> : ® V(Pi) -4 ® V(Pi) ,
i=l i=l

e: E}7g --+ Ef)g
n "

be the isomorphisms defined by cft = CPl ® .. ® cpm ® id. ® ... ® w., e =
~ ffi .. EB 0.. EBid. EB ... EB id.. It is easy to see that eisa Lie-isomorphism and...

m
8 . eR = eR" By the relation

"
cf>(Xw) = ß(X)cf>(w) for XE 61g, 10 E ® V(Pi),

n i=l

VR(p) ~ V",(p) as ~---modules. q.e.d.

For a= (al,.'" an) E (C*)" with a; =f:. 1, the strueture of ~-module Va(p)
depends only on the elements Ui in C and we shall write

V~p) = Va(p) here a = (7i1, ..., an) E e" .

Denote
(C")'= {a = (til, ... , tln) E C" I flj =f:. a; for i =f:. j}.

Proposition 2 For (p,a) E P" X (Cn )',(p',8!) E pi X (CI)',

V;r(p) ~ ~(p')

as ~~odules if and only Ü n = I and for some permutation fT of {l, ... , n},
Pi = P~(i)' ßi = a~(i) for i = 1, .. , n.

Proof. When Va(p) is isomorphie to ~IL'), the polynomials P(t), P'(t)
corresponding to Va(p) and Va,(p') are the same by the remark of Lemma 7.
Then n = 1and for some permutation (1' of {l , ..., n}, ur1 = a~(i) , i = 1, ... , n.

It follows Pi = P~(i)" Tbe converse statement is obvious. q.e.d.

3. ReprelJentation 01 On.c;ager'.c; algP1rra

In this section we shall give the c1assification of a11 the irreducible finite
dimensional representations of ~. Let V be a sueh 2l-module with dimeV>l.
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Denote Am, Gm the linear transformations of V corresponding to the 2l-actiOD
of Am, Gm for mEZ. Since the addition of a constant multiple of the identity
matrix to either ( or both) to AO, Al makes DO difference to DG conditions , the
traces of An,~ can be reduced to O. Hence for the discussion of this section
we shall always assume

Am, rJ;: E .d(V) fOT mEZ.

The Am's generate a finite dimensional subspace of .q[(V). For some positive
integer r, there is a non-trivial linear relation of { Am Im = 0, ... , r +1}, namely

poAO+P1A1 + ... +Pr+1Ar+1 =0 , Pj E C.

Claim: We have the more general recurrence relations of length r + 1:

r+1
E pjAj+1'I = 0,
j=l
r+1
L: pjGj+K = 0
j=1

(11 )

(12)

for R E Z.
The second equality simply follows from (2b)' This implies

[
r+1 ] [r+1 ]
?:PjAj+1, AO = ?: pjAj+l, ~ = 0 .
J=O J=O

By Schur's Lemma,

r+l

LpjAj+1=0.
j=O

(

r+1 ) r+1 r+1
adCl L pjAj-f-R = 2Lpj Aj +R+1 - 2L pjAj+l'l-l fOT R E Z.

j=O j=O j=n

Therefore the equalities (11) hold for s+l, s-2 whenever it holds for s-l and s.
Hence the conc1usions follow from the case s=O, 1.

We now assume the length r + 1 of the above recurrence relation is the
minimal one. By (2b), we also have

r+1

LPjA_j+R = 0
j=O

14
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Tbe minimal property of r+ 1 implies either Pj = Pr+1-j for allj or Pj = -Pr+1-j

for all j. Define the polynomial

P(t) = Po + P1t. + ... + Pr+1 t
r +1

.

Tben

pet) = ±tr+1PG). (14)

Consequently the zeros of P(t) not equal to ±1 occur in reciprocal pairs. This
polynomial is characterized by the foUowing property:

Definition Tbe polynomial P(t) satisfying (11) (12) (14) with the minimal
degree is ca11ed the minimal polynomial of the irreducible finite dimensional
2l-module V.

Remark. Tbe minimal polynomial of V;t{Jl) is the one appeared in the proof
of Lemma 7.

Label the zeros ( with multiplicity) of P(t)

(15)

in such way that

al ~ 1, bJ = 1 for all 1, ) ,

and for some finite sequences {kß } ,{~},

1 = k1 < k2 < ... < kd ~ n, 1 = k~ < k~ < ... < k~, ~ n' , (16)

and

ai = aj <=}

bi = bj {:}

k.• ~ i ,j < kß+1

k' <.. k't - t ,) < t+1

for sorne .~,

for Horne t.

Tbe linear subspace of 81(V) spanned by Am (m E Z) has the dimension
r + 1 (= 2n + n') with a base Ri , Fi ,~j (i = 1, ... , n, j = 1, ... , n') which
are detennined by the relations

n n'

Am = 2L (r-m,i Ri + C-m,iFD + 2L dm,j~j
i=l j=l

wit.h r-m.; = (~y-k. (tm)It=.;' dmJ = (1t y-k:(tm)lt=bj ,

here mEZ, k.• ~ i < kß+1 , k~ ~ j < k~+l'

15



Then r-m,i ,dm,; (m E Z, 1 ~ i ~ n, 1 ~ j ~ n' ) satisfy the assumption of the
following lemma.

Lemma 9 Let n, n' be non-negative integers with 2n + n' = r + 1. Let
Ri, Pi, P..; be elements in .d(V) and r-m,i, dm ,; (m E Z, 1 ~ i ~ n, 1 ~ j < n')
complex numbers with dm ,; = d_m ,;, such that the following conditions hold:

n n'

(i) ~ = 2 L (r-mtiRi + c-m,iFD + 2 L dmjp..; fOT mEZ ,
i=l ;=1

(H) For 1 E Z,

(

r..,tl q,n

Q+r,l Q+rtn

(

('-fI, 1 ••• r..(),n

r""l •.. r""n

C-l-r,l

r.(),l

C-l,n d',l d, n' )

C-/-r,n d/+r,l d/~r,n'
cn,n do,l... do,n,)

: ll,
C-r,n d,.,l . .. dr-,n'

for same upper trianguJar matrix ll,. Then P..; ,1 ~ j ~ n' , commute with all
the ~.

Proof. It suffices to show that for 1 ~ j ~ n' ,

Hy (i), it follows

n n'

4~= [Am, Aß] = 2 L (r-m,i Ri +C-mti Pi, An] +2 L tim,; [p..; ,"AO]
i=l ;=1

n

= L (r-m,i + C-m,i) [Ri + Pi, An] + (r-m,i - C-m,i) [Ri - Pi, An]
i=l

n'

+2L dmj (p-; , An] .
;=1

Hy dmj = d_m ,; and Gm = -G-m , we have

n n'

~ = L (r-m,iHi -C-m,iHi) + LdmJh;
i=l ;=1

wit.h 4Hi = ~ - F'i,Afi], h; = O.

16



Let (a..,t) denote the inverse of the matrix

2 (<'-0,1 r-O,n ('-0,1 r-o,n do1 ~n,),

dr,~, .
:

r"",l ... ('..,.,n C-r ,l C-r,n t4,l

Theo
R,

(~)
(<'-0 1

... r..(l,n r-o,l ... r.{),n dO,l ... do,nJ --I-

Cl'l
Rn.

••• C1,n C-1,l ... ('-l,n d1,l ... d1 ,n' F;
=2 '

r-r,l ... r-r,n dr,l ... dr,n'
Fn.

r"",l ••• r..,.,n "'1

~~,

H1

(~) ( eil
••. Cl,n C-l,l ... C-l,n dl,l ... d'n' ) Hn.

~ f'-l+ 1',1 ... CJ+1,n C-l-1,1 ... C-I-1,n dl+1,1 ":' d1+1.n, -H1

-

G/~r -Hn

r"'+r,l ... r"'+r,n C-l-r,l ... C-I-r,n dl+r,l ... dl+r.n , h,

h:,
hence

(17)

(
Gi)Gl+1

2(a..,t) _:_ = 1ft

GI+r

(18)

h:,
For X = Ri, "Pi or F.k, by hj = 0 and the upper triangular property of the
matrix 1ft, we have

r r

[X, ~j] = L a",la 2n+j,k [Al, Ak] = -4 L a ... ,la 2n+j,kGk-1

l,k=O l,k=O

= -2 I>...", (2t Q2n+i,kGk-l) = 0.
1=0 1=0

17



q.e.d.

Tbe above lemma implies that if n' > 0, the linear subspace of .d(V) spanned
by~ (m E Z) has a non-trivial center, whieh contradicts the irredueibility of
the 21-module V. Hence ±1 can not be a zero of P(t), and all the zeros of P(t)
are now labelIed by (15) with n' = O.

Proposition 3 Let V be a non-trivial irreducible representation of 21. If the
minimal polynomial of V has only simple zeros, then V is isomorphie to Va(p)
for same (I', a) E 'P n x (e n )'.

Proof. Let P(t) be the minimal polynomial and r + 1 be the degree. Label
its zeros in pairs, Le. the zeros are

with r + 1 = 2n and al ~ ±1 for all i.. A5 before, let

be the inverse of the non-singular matrix

1 1

a1 an -1 -1a1 an

2
a l a l -I -I

1 n a1 an

a r a r -r -r
1 n a1 an

and Ri, Pi, 1:$ i~ n, be the elements of .d(V) defined by

(19)

Then
n

Am = 2 L(ai Ri + a;m Pi) , for mEZ. (20)
i=l

Hy (17) (18), it follows that for i = 1, ... , n, I E Z,

r

a~Hi = 2 E aiJGj +l ,
j=o

-1- r --
-ai Hi =2 E O'n+i,j Gj+l .

j=O

18
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(22)

Claim: Ri, Pi, Hi (i = 1, ... , n) satisfy the relations

_ [Ri, Rj ] = [Pi, Fj] = ~, Hj] = 0 , _
[Ri, Pj ] = SiJ Hj, [Hi, Rj ] = 2SiJ Rj, [Hi, Fj ] = - 2SiJ Fj .

By the direet computation and using Theorem 1, we bave
_ r _ r r -1-

[Ri, Rj ] = 2: ai/O'jk [Al, AI:] = 4 2: ai/O'jI:G,_1: = -22: O'i/aj Hi = 0 ,
1,1:=0 l,l:=O 1=0

r

[1li", Hj ] = 4 2: ai,/aj,1: [GI, 0;] = 0 ,
1,1:=0

r r

~,Fj] = 4 2: lli,lD:n+j,k [Al, Ai] = 4 I: O'i,/an+j,l:G,_1:
1,1:=0 1,1:=0
r

1- -= 2 "" a·,a· H· = S· .H·L..J s, J J IJ J'
1=0

r T

~, Rj] = 4 L: ai,/O'j,l: [GI ,Ak ] = 4 L: ai,lai,1: (AI:+1 - AI:_/)
l,l:=O 1,1:=0

r T

[Hi,"Rj] = 4 L: ai,laj,1: [GI, Ai] = 4 L: ai,laj,l:~ - AI:-d
1,1:=0 1,1:=0

= 4 t lli,1 ( a~ Ri - aj1F;) = 2ni,j Rj .
1=0

Tbe same argument for [Pi, Fi ] = 0 and [1li , Fj ] = - 2ni,i Fi. Hence
2l-action of V ean be factored through a representation of E9 g via eH.

n

21 -+ .d(V)
eil '\. i

(f)g
n

Tbe irreducibility of 2l-module V implies V also irreducible as E9 9 module,
n

hence corresponds to some p. E pn. Therefore V is isomorphie to Va(p) as
2t-modules. q.e.d.

We are going to show the minimal polynomial P(t) of an irreducible repre
sentation of 21 always satisfies the assumption of the above Proposition.

Proposition 4 P(t) has no multiple zeros.

Proof. Step I. Qaim: ±yCT are tbe only possible multiple zeros of P(t), and
in this situation it has the multiplieity 2.

Say ß, is a multiple zero, Le. the difference n:= k2 - k1 in (16) is greater
than 1. Let (a..,t) be the matrix in tbe proof of Lemma 9. Now the formula
(17) (18) give

r

R6- 1 = L: a6-1,.• A.• ,
.4'==:;0
r

H6 = 2 L: a6,A~ ,
A=O

19



Tbe conditions (i) (il) of Lemma 9 and the fonnula (17) (18) imply

(23)

(24)

-7T;.

Tbe entries lh;Jf,t of the above upper triangular matrix U, can be calculated from
Leibniz's fOrDlula

with <p(x) = xl, W(x) = x~. In particular,

,r-l ( ')
lJ/-1 = { ;z;;r=r X 12:=111

, ,t 0
for 1 ::; t ::; 8,

otherwise_

for t = 8 - 1,
for t = 8,
otherwiRe.

Note that R1 , ••• , Rn, F1 , ••• , Fn are linearly independent. We have

r r

[H2 , R6-1] = 2 E a2,~0'6-1 ,t rc;,At] = 4 E 0'2,0,0'6-1,t (At+., - At- o')
~,t=O ~,t=O

r

= 4 E 0'2'0' { a1R6- 1+ (8 -1 )sa~-l R6 - al-'I R6- 1 - (8 - 1)(_.q)a,-o'l+l (a12R6)}
0'1=0

= 2(8 - 1) R6 ,

and

r r

[-H2 , R6-1] = 2 E O'n+2,0.t)'6-1,t~, At] = 4 E O'n+2,.'Ill'6-1,t(At+~ - At-o'l)
~,t=O o'l,t=O

r

= 4l: an+2,~{a1R6-1 + (8 - l).qa~-l R6 - al~ R6-1 - (8 - 1)(-.q)a,-0'l+1(a1
2R6)}

..-=0

= 2(8 -l)al~ ,

20



hence a~ = - 1. We also' have

6
here 6 = l:: 61: RA: and 63 = 3a13 in case {, ~ 3, which contradicts the linear

1:=.1 ,
independence of RA: R. Therefore we obtain a~ = -1, {, = 2.

Step II. We may assume now

here O(t) has no multiple zeros. Consider first the special case when

or equivalently, the zeros of pet) are a, a, a-1, a-1 with a =.p. By (23)
(24), for 1 E Z,

with

(25)

(26)

o
1

2a
3a2

21

(27)



and

ll, = (~ lai
l

a~l lJ+l)'
o 0 0 a-'

By computation, using the fonnulas (25)-(28), we have

(28)

3 3

~,"'R2] = -4 L O".'I0 2,tGt-.'1 = -2 L o".'1a -·· H2 = 0 ,
.'I,t=o .'1=0

3 3

(R" F,] = -4 E 0:",.'I0:'3,tGt-.• = -2 E 0:",.'1 (-a··H, +.qa··+' H2 ) = H"
.'I,t=O .'1=0

3 3
[Rh F2 ] = -4 :E 0, ,.'I0:'4 ,tGt-.'1 = -2 2: 0, ,.• (-a··H2 ) = H2 ,

.'I,L=0 .or=O

3 3

[R;, F2 ] = -4 L a2,.'I0'4,tGt-.'I = -2L 02,.•a-.'1 H2 = 0 ,
.'I,t=o .<t=O

3

[H" R, ] = 4 L 0:', ,.•0:', ,t (A t+.. - At-",)
.'1,t=O

3

= 4 L 0:', ,.• (a.'l R, + .qa"'-'R:; - a-'" R, +.qa-.'I-' F/2) = 2R1 ,

.'1=0
3 3

[H1 , F/2] = 4 2: 0', ,,,,02,t (A t+.'1 - At-.'I) = 4 2: 0, ,.• (a'· F/2 - a-''1 F/2) = 2F/2 ,
.'I,t=O ,'1=0

Similarly,

[Fl,"F2] = 0, [Fl, F/2] = -H2 , [111, F1 ] = -2F, ,[Hl,F2] = -2F2 ,

[112, F1 ] = 2a2F; = -2F; , [112,F;] = O.

Tbe above relations of Ri ,Fi ,Hi, i = 1, 2, are also satisfied by the Ue
algebra g[t]/t2 := g 18l (C[t]/t 2C[t)) (with the obvious Lie-structure) via the
correspondence .\ :

R ® 1 -+ R, ,
R®t -+ F/2,

F ® 1 -+ F, ,
F 0 t -+ F2 ,

H 01 -+ H, ,
H f.8; t -+ H2 .

Then the representation of ~ on V is factored through a representation of
g[t]/t 2:

21 -+ .ql(V)
f". jA

g[t]/t2

22



here 1 is defined by

I( Ao) = 2( R @ 1 + F @ 1) ,

I( Al) = 2yCT( R @ 1 - F @ 1) +2( R @ t + F @ t)

The representation.\ of g[t]/t2 is irreducible. A5 tg[tJ/t 2 is a Lie-ideal of g[tJ/t2 ,

the irreducibility of .\ implies V = (tg [tJ/ t2) TJo for some vector 'Jo of V. Since
R @ t annihilates tg[tJ/ t2 , -p;; is the zero map of V, a contradiction to the linear. -,
mdependence of Ri .~.

For the general case, write

P(t) = (t2 + 1)2Q(t),

with Q(x) no multiple zeros. With the same argument as the previous case together
with the one given in Proposition 3, we ean show that the 21-module V ean be

factored through a representation of (g[tJlt 2
) EIl (~ g):

21 -. .~I(V)

(I, eH.) " 1 A

(g[t]/t2
) EIl (~g)

for some integer n and aE (C*)n. By the irreducibility of the representation A,
we can derive a contradietion just as before. q.e.d.

By Proposition 2- 4, we now have the following conc1usion:

Theorem 2 Every non-trivial irreducible finite dimensional 2l-module is
isomorphie to \-'.(P) for some (Jl, a) E P" x (C")'. All sueh modules are

parametrized by II P" x (C")')/(mod. permutation) .
nEN

4. Superintegrable rhiral Pott.e; model

Tbe Hamiltonian of superintegrable N -state ehiral Potts spin ehain has the
fonn

H(k') = Ho + k' H1 (29)

with a temperature-like variable k'. For a row of TI sites, Hoand H1 are Hennitian
operators acting on the vector space whieh is the direct product of TI copies of
eN : V = eN @ ... @ CN , and they are defined by

Ti N-l

Ho = -2L L (1 _w-n )-l xj ,
;=1 n=l

r. N-l

Hl = -2 L L (1 - w-n )-lZj Z:,+," ,
;=1 n=l
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here

TN is the N x N identity matrix, the elements of the N x N matrices Z and X are

X"m = fi
'
,m+1 (mod N)

ry c 1-1
hl m = °lmW ., ,

H(k') is Hennitian for real value k' and has real eigenvalues. We are going to
study the behavior of the continuous dependence of its eigenvalues. Note that
the operators Ho and Hl satisfy

Then the operators Ao and Al defined by

(30)

satisfy DG conditions.

Theorem 3 The eigenvalues of operator H(k') in (29) are of the fonn

n

A(k') = (a + k'ß) +2N L m;V1 + J:12 - 2k' cos 8;
;=1

her" k', a,ß, B; ER, m; = -.9;' -.9; + 1, ... , .9; (9; E ~N) .

Proof. Hy the Hennitian property of Ho, H" we have a decomposition
of the representation space V ioto irreducible subrepresentations W. It needs
only to have the expression for the eigenvalues of H(k') on an irreducible
subrepresentation W. When the dimension of W equals to one, the eigenvalue
is simply equal to a + k'ß. We now assume dimcW 2:: 2. Let Ao and Al be
defined in (30). Theo W is an irreducible 2l-module. Let n,ß be the real
numbers such that

By Theorem 2, we may assume
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for some P = (p1, . .. )Pn) E'Pn
)a = (til, ... , an) E (C n )'. Ah a.nd A~ act on

Vä\Jl) = ® V(Jl;) by
;

n

cp(Ah) = 2 L (R; + P;)
;=1

n

cp(A~) = 2 L {- (",()RB;( Rj + P;) - iRin B;( R; - Pi)}
;=1

here e-i8j = -a;. Denote

dimcV(Jlj) = 20j + 1 , .Oj E ~N,
1 -i 1

(.T:tJ; = "2(R; + Pi), (.lu); = "2(R; - Pi), (.Tz); = "i H;

where (.T,:);, (.l~);, (.Tz); are the usual irreducible matrix representations of an
gular momentum of dimension (2.Q; + 1). Then

n

cp (" (k'» = a + k'ß - 2 N L {(1 - k' (".os B; ) (.Tx); + k' Rin B;(.T11 ) ; }

;=1

with B; E R. Bach term in the sum is of the fonn

-2N(1 - k' cORBj)(.T:tJ; - 2Nk' Rin B;(.l,);.

Mter rotating the xy plane, it is transfonned into

2N-)1 + k'2 - 2k' COR Bi (.l:tJ;

which has the eigenvalue

2Nm;J1 +k'2-2k'eoRfJ; ,mi =-l;i,-.t:;j+1, ... ,.Qj.

Therefore we obtain the result q.e.d.

Associated to the chiral Potts chain, there are the spatial o~rator with eigen-

values e2riP
/ T~ (P = 0, 1, ... ) TJ - 1) , and spin shift operator (:= fi Xi) with

1=1

eigenvalues e2riQ/ N (Q = 0, 1, ... , f\l - 1). "na.no H1 commute with these oper
ators. So the representation space V decomposes into different subrepresentations
of Ho, H1 labelIed by a pair of integers (P, Q). The DG conditions associated
10 Ho, H1 provide a further, hidden, symmetry. As von Gehlen and Rittenberg
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[10] observed, in the representation where Xj of (29) is in the diagonal form,
by the relations

N-l wok N -1L 1 _ w-m = 2 - k for k = 0, 1, ... , (N - 1),
m=1

-1 Ho is the usual representation for the z component of angular momentum for
the N dimension irredueible representation of 8U(2). For a ehain of length ~,

the maximum and minimum eigenvalues of Ho differ by 2( N - 1) TI, while in
any sector of given Q, the eigenvalues differ by multiple of 2N. So the different
number of distinet eigenvalues of Ho in a Q sector is given by

= [N~- TI-Q]
n N (31)

where [ ] stands for integer part. For small k', the eigenvalues of H are elose
to those of Ho. By the analyses we have before, there are at least N distinet
irreducible representations of ~ in order to reproduce the spectrum of H in one
sector for a pair (P, Q). This integer n refers to the largest sector whieh must
necessarily eontain the ground state. This is the sector fouod by Baxter [3].
He gave the elosed-fonn solution of the characteristie polynomial J(zN) for the
ground-state sectors (P = 0)

(32)

(33)-i8j _ .
P. - -aJ ,

(equation (16) of [3]). Tbe RHS is invariant when one substitutes z by wz, hence
a polynomial of zN. lt is easy to see that the degree of J(Z) equals to the integer

fT:) - N (T::'\ - N (-) - Nn of (31). Let V'l ,"2) , ... , tn be the zeros of J(Z). Define

tjN + 1
c.osBj = N 'r; -1

equivalently

(r'\.q. _ . B _ 1 - aj
tJ ) - -IC.ot- - -- .

2 1 +aj

By [3] and Theorem 3, the representation lt,rlJl) of 21 associated to this sector
is given by

a= (a" , an) a; : defined hy (32) ,

/l = (/lI, , /ln) /lj : spin ~ representation of SU(2).
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Tbe algebraic curve where "rapidity" variables of chiral Potts N -state model lie
is the hyperelliptic curves defined by

(34)kf2 =I- 0, 1
N (1 - k' ..\) (1 - k'..\ -1 )

t = Jc'21-

[3] [12] (here we use Baxter's notation). Tbe variables t and I (for tj) are
related by

__ (1 + k,)l/N
t - k' t .1-

Now the eigenvalues for Harniltonian H have the expression

a + k'ß ± J1 + k'2 - 2k' COR 8j

= a + k'ß ± (1 - k'); + ~ j
- 1

( k') l/N_
here ..\ i is obtained by (33) by letting t = t;p tj. In conclusion we
have observed that the spectrum of ground-state sector is determined by zeros
of the polynomial (32) with parameter identified with t variable of the "rapidity"
curve (33). Tbe corresponding representation of Onsager's algebra is obtained by
attaching spin 1/2 representation of SU(2) to each zero and their ..\ values give
the spectrwn of the spin chain Hamiltonian.
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