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Abstract. In this paper we define a new orbifold K-theory Korb(X ) for a
Deligne-Mumford stack X with projective coarse moduli; and furthermore, for
any smooth, projective variety X with an action of a finite group G we define a
G-Frobenius algebra K (X, G), called the stringy K-theory of the G-variety X,
whose associated Frobenius algebra of G-coinvariants is the orbifold K-theory
of the quotient stack [X/G]. The algebra Korb(X ) is linearly isomorphic to
the “orbifold K-theory” of Adem-Ruan [AR], but carries a different product,
generalizing the quantum K-theory of Givental [Gi] and Y. P. Lee [Le].

We prove there is a ring isomorphism Ch : K (X, G) → H(X, G), which we
call the stringy Chern character, and a ring isomorphism Chorb : Korb(X ) →
Horb(X ), which we call the orbifold Chern character, where H(X, G) is the
stringy cohomology ring of [FG, JKK], and Horb(X ) is the Chen-Ruan orbifold
cohomology. We further show that Ch and Chorb respect all properties of a

G-Frobenius (respectively Frobenius) algebra that do not involve the metric
and that Grothendieck-Riemann-Roch holds for étale maps.

Our main result is a new, simple formula for the obstruction bundle, which
allows one to completely exorcise complex curves from the definitions of the
stringy Chow ring, stringy K-theory, orbifold K-theory, and Chen-Ruan orb-
ifold cohomology. This new formula plays a key role in the proof that the
stringy Chern character is a ring homomorphism and it also yields a simple
proof of associativity and the trace axiom.

All of these results hold both in the algebro-geometric category and in the
topological category for equivariant almost complex manifolds.

We conclude by showing that a K-theoretic version of Ruan’s conjectures
holds for the symmetric product of a complex projective surface with trivial
first Chern class.
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1. Introduction

When X is a compact, complex manifold with an action of a finite group G,
the stringy cohomology H (X,G) of X is a G-Frobenius algebra [FG, JKK]—an
equivariant generalization of a Frobenius algebra—which contains the ordinary co-
homology of X as a subalgebra. However, it is larger, in general, as it contains the
so-called twisted sectors. Taking G-coinvariants, one obtains the Chen-Ruan orb-
ifold cohomology Horb([X/G]) of the quotient stack [X/G]. As might be expected
from Gromov-Witten theory, the product depends on an “obstruction bundle” de-
scribed in terms of the cohomology of certain sheaves on admissible (or Galois)
covers of P1.

The first main result of this paper is a new, simple formula for the obstruction
bundle that avoids all use of complex curves, admissible covers, or moduli spaces.
Instead, this formula expresses the obstruction bundle in terms of the representation
of G on the tangent space TX . The formula also greatly simplifies the computation
of both stringy and orbifold cohomology, and it allows us to give relatively simple
proofs of associativity and the trace axiom.

As a simple corollary of this formula, we obtain a result originally due to Chen
and Hu [CH] describing the obstruction bundle when G is Abelian.

The second main result of this paper is the introduction of a K-theoretic analog
of stringy cohomology, the stringy K-theory K (X,G) of X , and the introduction of
the stringy Chern character C h : K (X,G) → H (X,G). We prove that K (X,G)
is a G-Frobenius algebra and that Ch is an isomorphism of G-commutative alge-
bras, i.e., Ch preserves all of the properties of a G-Frobenius algebra except those
involving the metric.

The third main result of this paper is the introduction of an orbifold K-theory
Korb(X ) (linearly isomorphic to that of [AR], but with a different, “quantum,”
product) for a general Deligne-Mumford stack X and the introduction of the orb-
ifold Chern character Chorb : Korb(X ) → Horb(X ). We prove that Chorb is an
isomorphism of algebras. These constructions and results hold even when the stack
is not a global quotient by a finite group. But when X = [X/G] is a global quo-
tient, the Frobenius algebra Korb([X/G]) is isomorphic, as a Frobenius algebra, to

the G-coinvariants K (X,G) of K (X,G), and the orbifold Chern character Chorb

is induced from the stringy Chern character Ch.

1.1. Background and motivation. We now describe part of our motivation for
studying stringy K-theory. For convenience, we assume throughout this subsection
that the coefficient ring is C rather than Q.

Let Y be a projective, complex surface such that c1(Y ) = 0. For all n, consider
Y n with the symmetric group Sn acting by permuting its factors. The quotient
orbifold [Y n/Sn] is called the symmetric product of Y . Let Y [n] denote the Hilbert
scheme of n points on Y . The morphism Y [n] → Y n/Sn is a crepant resolution
of singularities and is, furthermore, a hyper-Kähler resolution [Ru]. Fantechi and
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Göttsche [FG] proved that there is a ring isomorphism ψ′ : Horb([Y n/Sn]) →
H•(Y [n]), where H•(Y [n]) is the ordinary cohomology ring (see also [Kau05, Ur]).∗

The previous example is a verification, in a special case, of the following con-
jecture of Ruan [Ru], which was inspired by the work of string theorists studying
topological string theory on orbifolds.

Conjecture 1.1 (Cohomological Hyper-Kähler Resolution Conjecture). Suppose

that Ṽ → V is a hyper-Kähler resolution. The ordinary cohomology ring H•(Ṽ ) of

Ṽ is isomorphic to the Chen-Ruan orbifold cohomology ring Horb(V ) of V .

Let us return again to the example of the symmetric product. The algebra
isomorphism ψ′ : Horb([Y n/Sn]) → H•(Y [n]) suggests that there should exist a
K-theoretic analog Korb([Y

n/Sn]) of Horb([Y n/Sn]), a stringy Chern character iso-
morphism Chorb : Korb([Y

n/Sn]) → Horb([Y n/Sn]), and an algebra isomorphism
ψ : Korb([Y

n/Sn]) → K(Y [n]), such that the following diagram commutes:

(1)

Korb([Y
n/Sn])

Chorb
- Horb([Y

n/Sn])

K(Y [n])

ψ

?
ch

- H(Y [n]).

ψ′

?

The previous discussion suggests the more general question of whether one can
define a K-theoretic analogue of stringy cohomology and of Chen-Ruan orbifold
cohomology in such a way that, for a global quotient, the ring of coinvariants of
the former is equal to the latter. Such a generalization should also have a stringy
Chern character that is a ring homomorphism and not just a linear isomorphism. Of
course, since the usual Chern character does not preserve the metric for ordinary K-
theory and ordinary cohomology, it is unreasonable to expect that a stringy Chern
character would preserve the metric, but it should preserve all the other properties
of the G-Frobenius algebras K (X,G) and H (X,G). That is, if we define a G-
commutative algebra to be a G-Frobenius algebra but where all axioms involving
the metric have been dropped, then the stringy Chern character ought to be an
isomorphism of G-commutative algebras.

1.2. Summary and discussion of main results. Although most of our results
are initially formulated and proved in the algebro-geometric category, with Chow
rings and algebraic K-theory, they also hold in the topological category, with coho-
mology and topological K-theory (see Section 11) for almost complex manifolds with
a G-equivariant almost complex structure. We show that these algebraic structures
depend only upon the homotopy class of the G-equivariant almost complex struc-
ture. Our results can also be generalized to equivariant stable complex manifolds
(see Remark 11.2).

As aG-gradedG-module, the stringy K-theory K (X,G) ofX is just the ordinary
K-theory K(IG(X)) of IG(X) :=

∐
g∈GX

g, the inertia variety of X (not to be

confused with the inertia orbifold, or inertia stack
∐

(g)[X
(g)/ZG(g)], where the

∗In fact, they proved that the isomorphism holds over Q, provided that the multiplication on
Horb([Y n/Sn]) is twisted by signs. This sign change can be regarded as a kind of discrete torsion
(see Section 11.3 for more details).
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sum runs over conjugacy classes in G). The vector space K (X,G) is endowed with
a metric in a manner similar to that in the stringy Chow ring A (X,G). The only
nontrivial part in the definition of K (X,G) is the multiplication.

The definition of the multiplication is a generalization of Givental [Gi] and Lee’s
[Le] K-theoretic version of the Gromov-Witten theory of a smooth, projective vari-
ety X without a group action. Recall that they define a virtual structure sheaf on
the moduli space of stable maps M g,n(X) and use it to define the correlators in
the theory by analogy with the usual Gromov-Witten theory of X . On the other
hand, the G-Frobenius algebra A (X,G) can be understood to be a construction

analogous to Gromov-Witten theory on the moduli space M
G

g,n(X, 0), the moduli
space of G stable maps of degree 0 into X [JKK] . The multiplication on K (X,G)
is defined by combining these ideas, using a virtual structure sheaf Ovir := λ−1(R

∗)

on the substack ξ(X, 0,m) of M
G

0,3(X, 0), where R is the obstruction bundle. The
virtual structure sheaf plays a role in stringy K-theory similar to that of the top
Chern class ctop(R) in stringy cohomology.

Our first main result is a simple and remarkable, new formula for the obstruction
bundle R that is responsible for the multiplications on both A (X,G) and K (X,G).
The formula uses certain sums of eigenbundles of the (right) G-action on TX , as
follows. For any order r element m ∈ G, define Sm ∈ Km(X) := K(Xm) as

(2) Sm :=

r−1⊕

k=1

k

r
Wm,k,

whereWm,k is the eigenspace of TX|Xmi wherem acts with eigenvalue exp(−2πki/r).
This Sm has virtual rank precisely equal to the age of m.

Theorem 1.2. Let X be a smooth variety (not necessarily projective, or even
proper) with an action of a finite group G.

The obstruction bundle R(m) that is responsible for the multiplication in stringy
K-theory and the stringy Chow ring can be expressed solely in terms of eigenspaces
of the tangent bundle TX and its restrictions to various fixed point loci in X.

More precisely, if m = (m1,m2,m3) ∈ G3 is such that m1m2m3 = 1 and mi has
order ri in G, then on the fixed point locus Xm := Xm1 ∩ Xm2, the obstruction
bundle R(m) satisfies the following equality in K(Xm):

(3) R(m) = TXm 	 TX|Xm ⊕

3⊕

i=1

Smi
|Xm ,

We have a similar formula for the obstruction bundle in orbifold K-theory and
orbifold Chow (see Theorem 9.2).

The formula for the obstruction bundle also allows us to prove that K (X,G) is a
G-Frobenius algebra. But unfortunately, the ordinary Chern character K (X,G) →
A (X,G) does not respect the stringy multiplication operations. We repair this
problem by defining the stringy Chern character Ch : K (X,G) → A (X,G) to be
a deformation of the ordinary Chern character (see Equation (37)) involving the
same element Sm that appeared in the formula for the obstruction bundle. Again
using the formula of Theorem 1.2, we prove our second main result.

Theorem 1.3. The stringy Chern character Ch : K (X,G) → A (X,G), is an
isomorphism of G-commutative algebras.
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We also prove naturality properties and the Grothendieck-Riemann-Roch theo-
rem for Ch with respect to G-equivariant étale maps (See Theorem 7.3).

After proving these results about K (X,G), we introduce the orbifold K-theory,
Korb(X ), a Frobenius algebra associated to a smooth, Deligne-Mumford stack X

with a projective coarse moduli in a manner analogous to orbifold cohomology
[CR1] and orbifold Chow ring [AGV]. Moreover, we define a deformation Chorb of
the ordinary Chern character, which we call the orbifold Chern character.

Our third main result is the following theorem.

Theorem 1.4. The orbifold Chern character Chorb : Korb(X ) → A•
orb(X ) is an

isomorphism of commutative algebras.
When X = [X/G] is a global quotient of a smooth projective variety by a finite

group, the Frobenius algebra Korb(X ) is isomorphic to the Frobenius algebra of G-

coinvariants K (X,G) of K (X,G), and the orbifold Chern character is the same as
the map induced on the G-coinvariants of K (X,G) by the stringy Chern character
Ch.

As we mentioned above, all these results are proved initially in the algebro-
geometric category, but we prove in Section 11 that their analogues in the topolog-
ical category also hold.

We then apply these results to the case of the symmetric product of a smooth,
projective surface Y with trivial canonical bundle and verify that the Conjecture 1.1
holds in this case; that is Korb([Y

n/Sn]) is isomorphic to K(Y [n]).

1.3. Directions for further research. These results suggest many different di-
rections for further research. The first is to generalize to the case where G is a
Lie group and to higher-degree Gromov-Witten invariants. This will be explored
elsewhere. It would also be interesting to study stringy generalizations of the usual
algebraic structures of K-theory, e.g., the Adam’s operations and λ-rings. Another
interesting direction would be to study stringy generalizations of other K-theories,
including algebraic K-theory and higher K-theory. It would also be very interesting
find an analogous construction in orbifold conformal field theory, e.g., twisted ver-
tex algebras and the chiral de Rham complex [FS]. Finally, it would be interesting
to see if our results can shed light upon the relationship between Hochschild coho-
mology and orbifold cohomology [DE] in the context of deformation quantization.

1.4. Notation and conventions. Unless otherwise specified, we assume through-
out the paper that all cohomology rings have coefficients in the rational numbers
Q. Also, unless otherwise specified, all groups are finite and all group actions are
right actions.

The stack quotient of a variety X by G will be denoted [X/G] and the coarse
moduli space of this quotient will be denoted X/G.

1.5. Acknowledgments. We would like to thank D. Fried, J. Morava, S. Rosen-
berg, and Y. Ruan for helpful discussions. We would also like to thank J. Stasheff
for his useful remarks about the exposition. The second and third author would
like to thank the Institut des Hautes Études Scientifiques, where much of the work
was done, for its financial support and hospitality, and the second author would
also like to thank the Max-Planck Institut für Mathematik in Bonn for its financial
support and hospitality.
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2. The ordinary Chow ring and K-theory of a variety

In this section, we briefly review some basic facts about the Chow ring, K-theory,
and certain characteristic classes that we will need. Throughout this section, all
varieties we consider will be smooth, projective varieties over C.

Recall that a Frobenius algebra is a unital, commutative, associative algebra with
an invariant metric. To each smooth, projective variety X , one can associate two
Frobenius algebras, namely, the Chow ring A•(X) of X , and the K-theory K(X)
of X . Furthermore, there is an isomorphism of unital, commutative, associative al-
gebras ch : K(X) → A•(X) called the Chern character. The Chern character does
not, however, preserve the metric. We will now briefly review these constructions
in order to fix notation and conventions, referring the interested reader to [Fu, FL]
for more details.

2.1. The Chow ring. The Chow ring of a smooth, projective variety X is addi-

tively a Z-graded Abelian group A•(X,Z) =
⊕D

p=0A
p(X,Z), where D is the di-

mension of X , and Ap(X) is the group of finite formal sums of (D−p)-dimensional
subvarieties of X , modulo rational equivalence.

In this paper we will always work with rational coefficients, and we write

A•(X) := A•(X,Z) ⊗Z Q.

The vector space A•(X) is endowed with a commutative, associative multiplication
which preserves the Z-grading, arising from the intersection product, and possesses
an identity element 1 := [X ] in A0(X). The intersection product Ap(X)⊗Aq(X) →
Ap+q(X) is denoted by v ⊗ w 7→ v ∪ w for all p, q.

Given a proper morphism f : X → Y between two varieties, there is an induced
pushforward morphism f∗ : A•(X) → A•(Y ). In particular, if Y is a point and
f : X → Y is the obvious map, then one can define integration via the formula

∫

[X]

v := f∗(v)

for all v in A•(X). The integral vanishes unless v belongs to AD(X). Define a
symmetric, nondegenerate bilinear form ηA : A•(X) ⊗A•(X) → Q via ηA(v, w) :=∫
[X]

v ∪ w.

Proposition 2.1. Let A•(X) be the Chow ring.

(1) The tuple (A•(X),∪,1, ηA) is a Frobenius algebra graded by Z.
(2) If f : X → Y is any morphism, then the associated pullback morphism

f∗ : A•(Y ) → A•(X) is a homomorphism of Frobenius algebras graded by
Z.

(3) (Projection formula) For any proper morphism f : X → Y , if α ∈ A•(X)
and β ∈ A•(Y ), we have

f∗(α ∪ f∗(β)) = f∗(α) ∪ β.

2.2. K-theory. K(X ; Z) is additively equal to the free Abelian group generated
by isomorphism classes of (complex algebraic) vector bundles on X modulo the
subgroup generated by

(4) [E] 	 [E′] 	 [E′′]
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for each exact sequence of vector bundles

(5) 0 → E′ → E → E′′ → 0.

Here 	 denotes subtraction and ⊕ denotes addition in the free Abelian group. We
define

K(X) := K(X ; Z) ⊗Z Q.

The multiplication operation, also denoted by ⊗, taking K(X) ⊗K(X) → K(X)
is the usual tensor product [E] ⊗ [E ′] 7→ [E ⊗E′] for all vector bundles E and E ′.
We denote the multiplicative identity by 1 := [OX ].

Given a proper morphism f : X → Y between two smooth varieties, there
is an induced pushforward morphism f∗ : K(X) → K(Y ) given by f∗([E]) =∑D

i=0(−1)iRif∗E. In particular, if Y is a point and f : X → Y is the obvious map,
then the Euler characteristic of v ∈ K(X) is the pushforward

χ(X, v) = f∗(v).

Define a symmetric, nondegenerate bilinear form ηK : K(X) ⊗ K(X) → Q via
ηK(v, w) := χ(X, v ⊗ w).

Proposition 2.2. Let K(X) be the K-theory of X.

(1) The tuple (K(X),⊗,1, ηK) is a Frobenius algebra.
(2) If f : X → Y is any morphism, then the associated pullback morphism

f∗ : K(Y ) → K(X) is a homomorphism of Frobenius algebras.
(3) (projection formula) For any proper morphism f : X → Y , if α ∈ K(X)

and β ∈ K(Y ) we have

f∗(α ∪ f∗(β)) = f∗(α) ∪ β

While K(X) does not have a Z-grading like A•(X), it does have a virtual rank
(or augmentation). That is, for each connected component U of X , there is a
surjective ring homomorphism vr : K(U) → Q which assigns to each vector bundle
E on U its rank. In addition, K(X) has a natural involution which takes a vector
bundle [E] to its dual [E∗].

Another important property of K-theory is that it is a so-called λ-ring. That
is, for every non-negative integer i, there is a map λi : K(Y ) → K(Y ) defined by

λi([E]) := [
∧i

E], where
∧i

E is the i-th exterior power of the vector bundle E. In
particular, λ0([E]) = 1, and λi([E]) = 0 if i is greater than the rank of E.

These maps satisfy the relations

λk(F ⊕ F
′) =

k⊕

i=0

λi(F )λk−i(F ′)

for all k = 0, 1, 2, . . . and all F , F ′ in K(Y ). These relations can be neatly stated
in terms of the universal formal power series in t

(6) λt(F ) :=

∞⊕

i=0

λi(F )ti

by demanding that it satisfy the multiplicativity relation

(7) λt(F ⊕ F
′) = λt(F )λt(F

′).
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If E is a rank-r vector bundle over X , then one can define

λ−1([E]) :=

r⊕

i=0

(−1)iλi([E])

in K(X), which will play an important role in this paper.

2.3. Chern classes, Todd classes, and the Chern character. The Chern
polynomial of F in K(X) is defined to be the universal formal power series in t

ct(F ) :=

∞∑

i=0

ci(F )ti,

where ci(F ), the i-th Chern class of F , belongs to Ai(X) for all i, and ct and the
ci satisfy the following axioms:

(1) If F = [O(D)] is a line bundle defined by a divisor D, then

ct(F ) = 1 +Dt.

(2) The Chern classes commute with pullback, i.e., if f : X → Y is any mor-
phism, then ci(f

∗F ) = f∗ci(F ) for all F in K(X) and all i.
(3) If

0 → F
′ → F → F

′′ → 0

is an exact sequence, then

ct(F ) = ct(F
′)ct(F

′′).

In particular, c0(F ) = 1 for all F .
A fundamental tool is the splitting principle, which says that for any vector

bundle E on X , there is a morphism f : Y → X , such that f ∗ : A•(X) → A•(Y ) is
injective, and f∗([E]) splits (in K-theory) as a sum of line bundles:

(8) f∗([E]) = [L1] ⊕ · · · ⊕ [Lr],

where r = vr([E]). We define the Chern roots of [E] to be ai := c1(Li), and thus
by Property (3) of the Chern polynomial we have

(9) ct([E]) =
r∏

i=1

(1 + ait).

Of course, the Chern roots depend on the choice of f , but any relations derived in
this way among the Chern classes of [E] will hold in A•(X) regardless of the choice
of f .

From the Chern classes, one can construct the Chern character

ch : K(X) → A•(X)

by associating to a rank-r vector bundle E over X the element

(10) ch([E]) :=

r∑

i=1

exp(ai) = r + c1([E]) +
1

2
(c21([E]) − 2c2([E])) + · · · ,

where a1, . . . , ar are the Chern roots of [E].
For each connected component U of X , the virtual rank is the algebra homo-

morphism vr : K(U) → Q, which is the composition of ch : K(U) → A•(U) with
the canonical projection A•(U) → A0(U) ∼= Q.

We have the following theorem.
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Theorem 2.3. The Chern character ch : K(X) → A•(X) is an isomorphism
of unital commutative, associative algebras. Furthermore, if f : X → Y is any
morphism, then the following diagram commutes:

(11)

K(Y )
f∗

- K(X)

A•(Y )

ch

? f∗
- A•(X).

ch

?

Remark 2.4. In general, the Chern character does not commute with pushfor-
ward. That is the content of the Grothendieck-Riemann-Roch theorem, which we
will review shortly. Since the metrics of both K(X) and A•(X) are defined by
pushforward, this means the Chern character does not respect the metrics.

To state the Grothendieck-Riemann-Roch theorem we will need the Todd class,
td : K(X) → A•(X), which is defined by imposing the multiplicativity condition

td(F ⊕ F
′) = td(F )td(F ′)

for all F , F ′ in K(X), and by also demanding that if E is a rank r vector bundle
on X , then

td([E]) :=

r∏

i=1

φ(ai),

where ai = 1, . . . , r are the Chern roots of [E] and

φ(t) :=
tet

et − 1

is regarded as a element in Q[[t]]. Therefore, td(F ) = 1 + x, where x belongs to⊕D
i=1A

i(X).

Theorem 2.5 (Grothendieck-Riemann-Roch). For any proper morphism f : X →
Y of non-singular varieties and any F ∈ K(X), we have

(12) ch(f∗(F )) ∪ td(TY ) = f∗(ch(F ) ∪ td(TX)),

where TX and TY are the tangent bundles of X and Y , respectively.

A useful proposition which intertwines many of these structures is the following.

Proposition 2.6. If E is a vector bundle of rank r over X, then the following
identity holds in A•(X):

(13) td([E])ch(λ−1([E
∗])) = ctop([E]),

where ctop([E]) is the top Chern class cr([E]).

Notation 2.7. When E is a vector bundle over X , we will often write ct(E) instead
of ct([E]), and similarly for λt, td and ch.

Remark 2.8. Since K(X) is a Q-vector space, we will need to make sense of
expressions such as td( 1

n [E]), where n is a positive integer and E is a rank r vector
bundle over X . Observe that

td([E]) = td

(
n⊕

i=1

1

n
[E]

)
=

(
td(

1

n
[E])

)n

.
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Consider the formal power series Φ(t1, . . . , tr) in Q[[t1, . . . , tr]] defined by

Φ(t1, . . . , tr) :=

r∏

i=1

φ(ti).

In particular, td([E]) = Φ(a1, . . . , ar). Since Φ(t1, . . . , tr) is equal to 1 plus higher

order terms, we can define Φ
1
n (t1, . . . , tr) to be the unique formal power series in

Q[[t1, . . . , tr]] equal to 1 plus higher order terms such that

(Φ
1
r (t1, . . . , tr))

r = Φ(t1, . . . , tr).

We define

td
1
r ([E]) := Φ

1
r (a1, . . . , ar).

3. G-graded G-modules and G-(equivariant) Frobenius algebras

We begin by introducing some algebraic structures which we will need throughout
the rest of the paper.

Definition 3.1. A finite-dimensional, G-graded vector space H :=
⊕

m∈G Hm

which is endowed with the structure of a right G-module by isomorphisms ρ(γ) :

H
∼
−→ H for all γ in G, is said to be a G-graded G-module if ρ(γ) takes Hm to

Hγ−1mγ for all m in G.
A G-invariant metric on a G-graded G-module H is a symmetric, nondegen-

erate, bilinear form η on H which is G-invariant (under the diagonal G-action)
and which respects the grading, i.e., for all vm+ in Hm+ and vm− in Hm− we have
η(vm+ , vm−) = 0 unless m+m− = 1.

G-gradedG-modules form a category whose objects areG-gradedG-modules and
whose morphisms are homomorphisms of G-modules which respect the G-grading.
Furthermore, the dual of a G-graded G-module inherits the structure of a G-graded
G-module.

Let us adopt the notation that vm is a vector in Hm for any m ∈ G.

Definition 3.2. A tuple ((H , ρ), ·,1, η) is said to be a G-(equivariant) Frobenius
algebra [Kau02, Kau03, Tu] provided that the following hold:

(1) (G-graded G-module) (H , ρ) is a G-graded G-module.
(2) (Self-invariance) For all γ in G, ρ(γ) : Hγ → Hγ is the identity map.
(3) (Metric) η is a symmetric, nondegenerate, bilinear form on H such that

η(vm1 , vm2) is nonzero only if m1m2 = 1.
(4) (G-graded Multiplication) The binary product (v1, v2) 7→ v1 · v2, called the

multiplication on H , preserves the G-grading (i.e., the multiplication is a
map Hm1 ⊗ Hm2 → Hm1m2) and is distributive over addition.

(5) (Associativity) The multiplication is associative; i.e.,

(v1 · v2) · v3 = v1 · (v2 · v3)

for all v1, v2, and v3 in H .
(6) (Braided Commutativity) The multiplication is invariant with respect to

the braiding:

vm1 · vm2 = (ρ(m−1
1 )vm2) · vm1

for all mi ∈ G and all vmi
∈ Hmi

with i = 1, 2.
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(7) (G-equivariance of the Multiplication)

(ρ(γ)v1) · (ρ(γ)v2) = ρ(γ)(v1 · v2)

for all γ in G and all v1, v2 ∈ H .
(8) (G-invariance of the Metric)

η(ρ(γ)v1, ρ(γ)v2) = η(v1, v2)

for all γ in G and all v1, v2 ∈ H .
(9) (Multiplicative Invariance of the Metric)

η(v1 · v2, v3) = η(v1, v2 · v3)

for all v1, v2, v3 ∈ H .
(10) (G-invariant Identity) The element 1 in H1 is the identity element under

the multiplication, and it satisfies

ρ(γ)1 = 1

for all γ in G.
(11) (Trace Axiom) For all a, b in G and v in H[a,b], where [a, b] denotes the

commutator aba−1b−1, if Lv denotes left multiplication by v, then we have

TrHa
(Lvρ(b

−1)) = TrHb
(ρ(a)Lv).

Remark 3.3. When G is the trivial group, a G-Frobenius algebra is nothing more
than a Frobenius algebra. Given any G-Frobenius algebra H , the subalgebra H1 is
a Frobenius algebra with a G-action which preserves the multiplication, unit, and
metric.

Remark 3.4. One can readily generalize the above definition to a G-Frobenius
superalgebra by introducing an additional Z/2Z-grading and inserting signs in the
usual manner.

We will also need a related, simpler algebraic gadget in our discussion of the
Chern character.

Definition 3.5. A G-commutative algebra is a tuple ((H , ρ), ·,1) satisfying all the
axioms of a G-Frobenius algebra which do not involve the metric; namely, all but
(3), (8), and (9).

Remark 3.6. When G is the trivial group then aG-commutative algebra is nothing
more than a commutative, associative algebra with unit.

Definition 3.7. Let (H , ρ) be a G-graded G-module. Let πG : H → H be the
averaging map

πG(v) :=
1

|G|

∑

γ∈G

ρ(γ)v

for all v in H . Let H be the image of πG. The vector space H is called the space
of G-coinvariants of H , and it inherits a grading by the set G of conjugacy classes
of G:

H =
⊕

γ∈G

H γ .

For any metric η on H , we define η to be the restriction of the metric 1
|G|η to H .

The following Proposition is immediate.
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Proposition 3.8. The following properties hold:

• If the tuple ((H , ρ), ·,1, η) is a G-Frobenius algebra, then its G-coinvariants

(H , ·,1, η) form a Frobenius algebra, where · is induced from H .
• If the tuple ((H , ρ), ·,1) is a G-commutative algebra, then its G-coinvariants

(H , ·,1) form a commutative, associative algebra with unit, where · is in-
duced from H .

4. The stringy Chow ring of a variety with G-action

In this section, we review the definition of the stringy Chow ring A (X,G) of
a smooth, projective variety X with the action of a group G. The G-Frobenius
algebra structure on A (X,G) was constructed in [FG, JKK]. In addition to its
G-grading, it has a grading by rational numbers (the usual Z-grading shifted by
the age). When G is the trivial group, then A (X,G) is isomorphic, as a Frobenius
algebra, to the usual Chow ring A•(X).

Let X be a smooth, projective variety with a right action ρ : G → Aut(X) of
a finite group G. The G-action induces a G-action on X ×G, where γ in G takes
(x,m) to (ρ(γ)x, γ−1mγ). As a vector space, the stringy Chow ring is just the
Chow ring of the inertia variety

IG(X) :=
∐

m∈G

Xm ⊆ X ×G,

where Xm := {(x,m)|ρ(m)x = x} with its induced G action. Note that the inertia
variety is not the same as the inertia orbifold, or inertia stack,

[IG(X)/G] =
∐

(g)

[X(g)/ZG(g)]

of [CR1, AGV], which is the stack quotient of the inertia variety IG(X) by the
action of G.

The irreducible components of IG(X) are smooth, and IG(X) has a natural G-

action ρ(γ) : Xm → Xγ−1mγ . The inertia variety also has a G-equivariant canonical
involution

σ : IG(X) → IG(X),

which maps Xm to Xm−1

via (x,m) 7→ (x,m−1) for all m in G.
Let

A (X,G) := A•(IG(X)) =
⊕

m∈G

Am(X),

where Am(X) := A•(Xm) for all m in G. The vector space A (X,G) inherits a
right G-action ρ : G → Aut(A (X,G)) from the action on IG(X), and there is a
natural pairing ηA on A (X,G) defined by

ηA (v1, v2) :=

∫

[IG(X)]

v1 ∪ σ
∗v2

for all v1, v2 in A (X,G). Let 1 be the unit element in A1(X) = A•(X).
We also have several natural morphisms. Let Xm := Xm1 ∩Xm2 ∩Xm3 for all

triples m := (m1,m2,m3) in G3 such that m1m2m3 = 1, where Xmi is regarded
as a subvariety of X . We define

emi
: Xm → Xmi ,
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and

imi
: Xmi → X

to be the canonical inclusion morphisms for all i = 1, 2, 3, and define

ěmi
:= σ ◦ emi

: Xm → Xm−1
i .

Let X have dimension D, q belong to X , and m belong to the isotropy sub-
group of q in G. Denote the set of eigenvalues of the action of m on TqX by
{exp(−2πia1), . . . , exp(−2πiaD)}, where for each j = 1, . . . , D the rational number

aj belongs to the interval [0, 1). The age a(m, q) of m at q is defined to be
∑D

j=1 aj .
†

Since a(m, q) depends only upon the connected component U ⊆ Xm containing q,
we define the age a(m,U) of m on U to be a(m, q) for any q in U .

For all m in G, all connected components U of Xm, and all elements vm in
Ap(U) ⊆ Am(X), for p the usual integral degree in the Chow ring, we define a
Q-grading (or stringy grading) |vm|str on Am(X) by

(14) |vm|str := a(m,U) + p.

The key ingredient in defining the multiplication on the stringy Chow ring
is the obstruction bundle R, defined for each triple m = (m1,m2,m3) ∈ G3

such that m1m2m3 = 1, as follows. Let 〈m〉 be the subgroup generated by the
elements m1,m2, and m3. There is a presentation of the fundamental group
π1(P1 − {0, 1,∞}) as 〈c1, c2, c3|c1c2c3 = 1〉, where c1, c2 and c3 are little loops
around p1 = 0, p2 = 1, and p3 = ∞, respectively. We define a natural homo-
morphism π1(P1 − {0, 1,∞}) → 〈m〉, taking ci to mi. This defines a principal
〈m〉-bundle over P1−{0, 1,∞} which extends to a smooth connected curve E. The
curve E has an action of 〈m〉 such that the quotient E/〈m〉 has genus zero, and the
natural map E → E/〈m〉 is branched at the three points p1, p2, p3 with monodromy
m1,m2,m3, respectively.

Let π : E × Xm → Xm be the second projection. We define the obstruction
bundle R(m) on Xm to be

(15) R(m) := R1π
〈m〉
∗ (OE � TX |Xm).

One can check that the restriction of the obstruction bundle R(m) → Xm to a
connected component U of Xm has rank

(16) a(m1, U) + a(m2, U) + a(m3, U) − codim(U ⊆ X).

For those familiar with quantum cohomology, this obstruction bundle is the
analogue of the obstruction bundle for stable maps, but with additional accounting
for the structure of the group action on X . That is, ctop(R) is the virtual fun-
damental class on (distinguished components of) the moduli space of genus-zero,
three-pointed G-stable maps into X . The base space Xm in the definition of the
obstruction bundle is actually the distinguished component ξ0,3(X, 0,m) ∼= pt×Xm

of M
G

0,3(X, 0,m). The interested reader may refer to [JKK, §6] for more details.

Definition 4.1. The stringy multiplication (or stringy product) on A (X,G) is
defined by

(17) vm1 · vm2 := ěm3∗(e
∗
m1
vm1 ∪ e∗m2

vm2 ∪ ctop(R(m)))

†The signs of aj and a(m, q) differ from [FG] and [CR1] because our group actions are on the

right.
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for all vmi
belonging to Ami

(X), for i = 1, 2, and m := (m1,m2,m3) in G3 such
that m1m2m3 = 1. Otherwise, the product is defined to be zero.

Theorem 4.2. [FG, JKK] Let X be a smooth, projective variety with an action of
a finite group G.

(1) The tuple ((A (X,G), ρ), ·,1, ηA ) is a G-Frobenius algebra.
(2) |1|str = 0.
(3) The multiplication respects the Q-grading, i.e., for all homogeneous ele-

ments vmi
in Ami

(X), for i = 1, 2, we have

|vm1 · vm2 |str = |vm1 |str + |vm2 |str.

(4) The metric has a definite Q-grading, i.e., for all homogeneous elements vmi

in Ami
(X), for i = 1, 2, we have

(18) ηA (vm1 , vm2) = 0

unless m1m2 = 1, and

(19) |vm1 |str + |vm2 |str = dimX.

Remark 4.3. Sometimes the Q-grading just happens to be integral. If X is n
dimensional and its canonical bundle KX has a nowhere-vanishing section Ω, then
for all m in G, we have

ρ(m)∗Ω = exp(2πia(m))Ω.

Thus, if G preserves Ω, then a(m) must be an integer.
A special case is when X is 2n dimensional, possessing a (complex algebraic)

symplectic form ω in
∧2

T ∗X . This can arise if X happens to be a hyper-Kähler
manifold. If, in addition, G preserves ω, then G preserves the nowhere vanishing
section ωn of KX . In this case, for all m in G and for every connected component
U of Xm, the associated age [Kal] is the integer

a(m,U) =
1

2
codim(U ⊆ X).

5. The stringy K-theory of a variety with G-action

In this section, we introduce the stringy K-theory K (X,G) of a smooth projec-
tive variety X with an action of a finite group G. Like stringy Chow, K (X,G)
is a G-Frobenius algebra which, when G is the trivial group, reduces to the or-
dinary K-theory K(X). However, unlike the stringy Chow ring, K (X,G) lacks a
Q-grading. This should not be surprising as even ordinary K-theory lacks a grading
by “dimension.”

As a vector space, the stringy K-theory K (X,G) of a smooth, projective variety
X with an action of a group G is defined to be

K (X,G) := K(IG(X)) =
⊕

m∈G

Km(X),

where Km(X) := K(Xm) for all m in G. Again, K (X,G) inherits a right G-action
ρ : G → Aut(K (X,G)) from the action on IG(X). We let ηK be the pairing on
K (X,G) defined by

ηK (v1, v2) := χ(IG(X), v1 ⊗ σ∗v2)

for all v1, v2 in K (X,G). Let 1 := [OX ] be the isomorphism class of the structure
sheaf of X in K1(X) = K(X).
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Definition 5.1. The multiplication (or product) on K (X,G) is defined by

(20) Fm1 · Fm2 := ěm3∗(e
∗
m1

Fm1 ⊗ e∗m2
Fm2 ⊗ λ−1(R(m)∗))

for all Fmi
belonging to Kmi

(X), for i = 1, 2 and m := (m1,m2,m3) in G3 such
that m1m2m3 = 1. Otherwise, the product is defined to be zero.

Theorem 5.2. Let X be a smooth, projective variety with an action of a finite
group G. The tuple ((K (X,G), ρ), ·,1, ηK ) is a G-Frobenius algebra.

Proof. The only nontrivial parts of this theorem are the associativity of the multi-
plication and the trace axiom. These are proved in Theorems 10.4 and 10.7. �

Remark 5.3. As with stringy Chow, there is a natural way to think of this con-
struction in terms of stable maps. Here the virtual fundamental class ctop(R) on

M
G

0,3(X, 0,m) has been replaced by a virtual structure sheaf Ovir := λ−1(R
∗).

Let us consider a case where the obstruction bundle R on Xm is trivial, namely,
when mi = 1 for some i = 1, 2, 3. If m1 = 1 and m2m3 = 1, then the stringy
multiplication is given by the restriction to Xm3 of the ordinary multiplication in
ordinary K-theory, i.e.,

(21) Fm1=1 · Fm2 = Fm1 |Xm3 ⊗ σ∗
Fm2 .

A similar result holds if m2 = 1 and m1m3 = 1. In particular, this means that
stringy multiplication on the untwisted sector K1(X) coincides with the ordinary
multiplication on K1(X).

More interesting is the case where m3 = 1 and m1m2 = 1. In this case, we have

(22) Fm1 · Fm2 = ěm3∗(e
∗
m1

Fm1 ⊗ e∗m2
Fm2).

Even here, the stringy multiplication is nontrivial since the map ěm3 could be
between varieties of different dimensions.

6. Explicit description of the obstruction bundle

In this section, we give an elementary description of the obstruction bundle R in
terms of the representation of G on the tangent bundle TX . This follows from an
explicit formula forH1(E,OE) as a G-module in terms of the regular representation
of G.

We begin by introducing some notation. Let X be a smooth, projective variety
with an action of a finite group G. Let m be an element in G of order r which
generates the cyclic subgroup 〈m〉 in G. Let Wm either denote the normal bundle

Nm := (TX|Xm) /TXm

of Xm in X or the restriction TX|Xm of the tangent bundle. Since Wm is an
〈m〉-equivariant vector bundle over Xm, it has an eigenbundle decomposition

(23) Wm =

r−1⊕

k=0

Wm,k,

whereWm,k is the eigenbundle where the action ofm has eigenvalue ζk = exp(−2πik/r).
In particular, we have

(24) Nm,0 = 0.
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For all m, define Sm in K(Xm) as

(25) Sm :=

r−1⊕

k=0

k

r
Wm,k.

Remark 6.1. Clearly, Sm is the same whether Wm is Nm or TX|Xm .

The G-equivariant involution σ : Xm → Xm−1

yields a G-equivariant isomor-
phism σ∗ : Wm−1 → Wm for all m in G. If m acts by multiplication by ζk, then
m−1 acts by ζr−k, so we have

(26) σ∗Wm−1,0 = Wm,0

and

(27) σ∗Wm−1,k = Wm,r−k

for all k ∈ {1, . . . , r−1}. Consequently, the induced map σ∗ : K(Xm−1

) → K(Xm)
satisfies

(28) Sm ⊕ σ∗
Sm−1 = Nm,

by Equations (24) and (27).

Remark 6.2. The virtual rank of Sm on a connected component U of Xm is
precisely the age a(m,U), and taking the virtual rank of both sides of Equation (28)
yields the well-known equation

(29) a(m,U) + a(m−1, U) = codim(U ⊆ X).

Hence, Sm could be regarded as a K-theoretic version of the age.

6.1. The key formula. The purpose of this section is to prove Theorem 1.2, that
is,to establish Equation (3).

Theorem 1.2 is a consequence of Theorem 6.3, which we will prove first. The
basic setup for Theorem 6.3 is as follows. Let E be a smooth algebraic curve of genus
g̃, not necessarily connected, with a finite group G acting effectively on E. Assume
that the quotient E/G has genus g. Denote the orbits where the action is not free
by p1, . . . , pn ∈ E/G. A choice of base point p̃ ∈ E induces a homomorphism of
groups

ϕep : π1(E/G− {p1, . . . , pn}, p) → G,

where p is the image of p̃ in E/G (we assume p /∈ {p1, . . . , pn}). Denote by H the
image of ϕep in G. Note that the number α of connected components of E is the
index [G : H ]. There is a presentation of π1(E/G − {p1, . . . , pn}, p) of the form
〈a1, . . . , ag, b1, . . . , bg , c1, . . . , cn|

∏n
i=1 ci =

∏g
j=1[aj , bj ]〉, where the ci are loops

around the points pi. For each i ∈ {1, . . . , n} we call the image mi := ϕep(ci) ∈ G
of ci the monodromy around pi, and we denote the order of mi by ri. Of course, a
different choice of p̃ will change all of the mi by simultaneous conjugation with an
element of G.

Theorem 6.3. Given the setup described above, and letting C[G] denote the group
ring regarded as a G-module under (right) multiplication, we have the following
equality in the representation ring of G,

(30) H1(E; OE) = C[H\G] ⊕ (g − 1)C[G] ⊕
n⊕

i=1

ri−1⊕

ki=0

ki

|G|
IndG

〈mi〉 C[G]mi,ki
,
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where C[G]mj ,kj
is the eigenspace of the action of mj with eigenvalue exp(2πikj/rj),

and IndG
〈mi〉 C[G]mi,ki

is the induced representation C[G]mi,ki
⊗C[〈mi〉] C[G].

Proof. It suffices to check that these two virtual representations have the same
virtual character. The trace of the action of an element γ ∈ G on the right hand
side is

χC[H\G](γ) + (g − 1)|G|δγ,e +

n∑

i=1

ri−1∑

ki=0

ki

|G|
χIndG

〈mi〉
C[G]mi,ki

(γ).

It is well known (e.g., [FH, ex 3.19]) that, for a representation V of a subgroup
H < G, we have

χIndG
H

V (γ) =
|G|

|H |

∑

σ∈H∩C(γ)

χV (σ)

|C(γ)|
,

where C(γ) is the conjugacy class of γ in G. In our case, with H = 〈mi〉 of order

ri, and V = C[G]mi,ki
of dimension |G|

ri
, we have

χIndG
H

V (γ) =
|G|

ri|C(γ)|

∑

ml
i
∈C(γ)

χV (ml
i)

=
|G|

ri|C(γ)|

∑

ml
i∈C(γ)

ζlki

i dimV

=
|G|2

r2i |C(γ)|

∑

ml
i
∈C(γ)

ζlki

i ,

where ζj = exp(2πi/rj), for each j ∈ {1, . . . , n}. Thus the trace of the right hand
side of equation (30) becomes

χC[H\G](γ) + (g − 1)|G|δγ,e +

n∑

i−1

ri−1∑

ki=0

ki|G|

r2iC(γ)|

∑

ml
i
∈C(γ)

ζlki

i .

If γ = e is the identity element of G, we have

TrRHS(e) = α+ |G|(g − 1) +

n∑

i=1

ri−1∑

ki=0

ki|G|

r2i

= α+ |G|(g − 1) + |G|

n∑

i=1

ri − 1

2ri

= dimC H
1(E,OE),(31)

where the last equality follows from the Riemann-Hurwitz formula and the fact
that the genus of E/G is g.
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If γ 6= e then

TrRHS(γ) = χC[H\G](γ) +

n∑

i=1

|G|

r2i |C(γ)|

∑

ml
i
∈C(γ)

ri−1∑

ki=0

kiζ
lki

i

= χC[H\G](γ) +

n∑

i=1

|G|

r2i |C(γ)|

∑

ml
i
∈C(γ)

ri
ζ−l
i

1 − ζ−l
i

=
∑

σ∈H\G
σγ=σ

1 +
n∑

i=1

|G|

ri|C(γ)|

∑

ml
i
∈C(γ)

ζ−l
i

1 − ζ−l
i

,(32)

where the last equality follows from standard results on induced representations
[FH, 3.18].

This formula is related to fixed points of the action of γ on E as follows. The
element γ can only fix points that lie over the pi, for i ∈ {1, . . . , n}. If p̃i is a point
over pi fixed by γ, then p̃i has holonomy conjugate to mi, and thus γ must be
conjugate to ml

i for some l. Conversely, if γ is conjugate to ml
i for some l, then γ

fixes all points p̃i that lie over pi, and γ acts on the tangent space Tepi
E by ζl

i .

If p̃i and p̃′i both are fixed by γ with action ζ l
i on the tangent space, then p̃′i = p̃iσ

for some σ ∈ G, such that σ commutes with γ, but if σ ∈ 〈mi〉, then p̃i = p̃′i. So

the number of such points lying over pi is exactly |ZG(γ)|
|〈mi〉|

= |G|
ri|C(γ)| , where ZG(γ)

is the centralizer of γ in G.
The term

∑
σ∈H\G
σγ=σ

1 counts connected components of E which are mapped to

themselves by γ; that is, it is the trace of γ for the natural representation of G on
H0(E,OE). If we now denote by dγep = ζl

i the action of γ on the tangent space TepE
at a fixed point p̃ ∈ E, the above argument shows that

TrRHS(γ) = χH0(E,OE)(γ) +
∑

ep fixed by γ

(dγep)
−1

1 − (dγep)−1
.

But the Eichler trace formula says precisely that this is the trace of the action
of γ on H1(E,OE); that is, the traces of equation (30) agree (see [FK, §V.2.0] for
E connected with g̃ > 1, and [Sh, §17] in general). �

Proof of Theorem 1.2. For any m = (m1,m2,m3) with m1m2m3 = 1, the curve
E in the definition of R(m) is connected and has an effective action of G′ :=
〈m1,m2,m3〉 with quotient P1 = E/G′ and three branch points p1, p2, p3.

We have

R(m) = R1πG′

∗ (OE � TX |Xm) ∼= (H1(E,OE) ⊗ TX |Xm)G′

,
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and by Theorem 6.3 this is

(H1(E,OE) ⊗ TX |Xm)G′

=

((
C 	 C[G′] ⊕

3⊕

i=1

ri−1⊕

ki=0

ki

|G′|
IndG′

〈mi〉 C[G′]mi,ki

)
⊗ TX |Xm

)G′

= TXm 	 TX |Xm ⊕

3⊕

i=1

ri−1⊕

ki=0

ki

|G′|

(
IndG′

〈mi〉 C[G′]mi,ki
⊗ TX |Xm

)G′

= TXm 	 TX |Xm ⊕

3⊕

i=1

ri−1⊕

ki=0

ki

ri
(TX |Xm)mi,ki

= TXm 	 TX |Xm ⊕

3⊕

i=1

Smi
|Xm .(33)

�

6.2. The Abelian case. It is instructive to consider the special case where G is
an Abelian group. In this case, our analysis of the obstruction bundle R yields, as
a simple corollary, a result originally due to Chen and Hu [CH].

Consider the obstruction bundle R over Xm, where m = (m1,m2,m3) in G3

satisfies m1m2m3 = 1. Let us assume without loss of generality that G = 〈m〉.
Since G is Abelian, one can simultaneously diagonalize the actions of mi, for i =
1, 2, 3 on R. If Wm denotes the normal bundle of Xm in X , then we have the
simultaneous eigenbundle decomposition

(34) Wm =
⊕

k

Wm,k,

where the sum is over all k = (k1, k2, k3) such that ki = 0, . . . , ri − 1, and ri is
the order of mi for all i ∈ {1, 2, 3}. The eigenbundle Wm,k of Wm is the bundle
where for all j ∈ {1, 2, 3} each mj has an eigenvalue exp(−2πikj/rj). The following
proposition is an easy corollary of Theorem 1.2.

Proposition 6.4. [CH] When G is Abelian, under the above assumptions, then

(35) R =
⊕

k

Wm,k

in K(Xm), where the sum is over triples k = (k1, k2, k3), for ki = 0, . . . , ri − 1 and
i = 1, 2, 3, such that

(36)
k1

r1
+
k2

r2
+
k3

r3
= 2.

Proof. It is a straightforward exercise to verify that the right hand side of Equa-
tion (3) agrees with Equation (35) when G is Abelian. �

Remark 6.5. Chen and Hu use this characterization of the obstruction bundle
to give a de Rham model for Chen-Ruan orbifold cohomology when the orbifold
arises as the quotient of a variety by an Abelian group. It would be interesting to
see how their constructions can be generalized to non-Abelian groups in light of
Equation (3).
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7. The stringy Chern character

In this section, we introduce a stringy generalization of the ordinary Chern
character. For general G, the ordinary Chern character fails to be a ring homo-
morphism; however, this drawback can be overcome through the introduction of
the appropriate correction terms to give what we call the stringy Chern character
Ch : K (X,G) → A (X,G). The map C h is an isomorphism of G-commutative
algebras for any smooth, projective variety X with an action of a finite group G.
When G is the trivial group, C h reduces to the ordinary Chern character from
ordinary K-theory to the ordinary Chow ring of X .

Definition 7.1. Let X be a smooth, projective variety with an action of G. The
stringy Chern character Ch : K (X,G) → A (X,G) is the linear map defined by

(37) Ch(Fm) := ch(Fm) ∪ td−1(Sm)

for all m in G and Fm in Km(X), where Sm is defined in Equation (25), td is the
Todd class, and ch is the ordinary Chern character.

We are now ready to prove Theorem 1.3, that is, that Ch is an isomorphism of
G-commutative algebras.

Proof. First, we show that Ch is an isomorphism of G-graded G-modules. It is an
isomorphism of G-graded vector spaces, since td is invertible (it is a series starting
with 1). The equivariance under the G-action follows from naturality properties of
td, ch, the cup product, and Sm.

We now prove that Ch respects multiplication. We suppress the cup and tensor
product symbols to avoid notational clutter. Let Fmi

belong to Kmi
(X), for

i = 1, 2, 3, where m1m2m3 = 1. Let emi
denote the inclusion Xm → Xmi and

ěmi
:= σ ◦ emi

: Xm → Xm−1
i for all i = 1, 2, 3. We have

Ch(Fm1 · Fm2) = ch(Fm1 · Fm2)td(	Sm−1
3

)

= ch(ěm3∗(e
∗
m1

Fm1e
∗
m2

Fm2λ−1(R
∗)))td(	Sm−1

3
)

= ěm3∗(ch(e∗m1
Fm1e

∗
m2

Fm2λ−1(R
∗))td(T ěm3))td(	Sm−1

3
))

= ěm3∗(e
∗
m1

ch(Fm1)e
∗
m2

ch(Fm2)ch(λ−1(R
∗))td(T ěm3))td(	Sm−1

3
)

= ěm3∗(e
∗
m1

ch(Fm1)e
∗
m2

ch(Fm2)ctop(R)td−1(R)td(T ěm3))td(	Sm−1
3

)

= ěm3∗(e
∗
m1

ch(Fm1)e
∗
m2

ch(Fm2)ctop(R)td(	R ⊕ T ěm3))td(	Sm−1
3

)

= em3∗(e
∗
m1

ch(Fm1)e
∗
m2

ch(Fm2)ctop(R)td(	R ⊕ T ěm3)ě
∗
m3

td(	Sm−1
3

))

= ěm3∗(e
∗
m1

ch(Fm1)e
∗
m2

ch(Fm2)ctop(R)td(	R ⊕ T ěm3 	 ě∗m3
Sm−1

3
)),

where the first two equalities follow from the definition of the multiplication and
Ch, the third from the Grothendieck-Riemann-Roch theorem, the fourth from the
fact that the usual Chern character ch commutes with pull back and is a homo-
morphism with respect to the usual products in the Chow ring, and the fifth from
Equation (13). The sixth and eighth equalities follow from multiplicativity of td,
and the seventh follows from the projection formula.

If we let T ∈ K(Xm) be

T := 	R ⊕ TXm 	 TXm−1
3

∣∣∣
Xm

	 ě∗m3
Sm−1

3
,
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then by plugging in Equation (28), we obtain

(38) T = 	R ⊕ TXm 	 TX|Xm ⊕ Sm3 |Xm .

Therefore, we obtain the equality

(39) Ch(Fm1 · Fm2) = ěm3∗(e
∗
m1

ch(Fm1)e
∗
m2

ch(Fm2)ctop(R)td(T )).

Similarly, we see that

Ch(Fm1) · C h(Fm2) = ěm3∗(e
∗
m1

C h(Fm1)e
∗
m2

C h(Fm2)ctop(R))

= ěm3∗(e
∗
m1

(ch(Fm1)e
∗
m1

td(	Sm1))e
∗
m2

(ch(Fm2 )td(	Sm2))ctop(R))

= ěm3∗(e
∗
m1

ch(Fm1)e
∗
m2

ch(Fm2)ctop(R)td(	e∗m1
Sm1 	 e∗m2

Sm2)),

where the first two equalities are by definition and the third is by multiplicativity
of td. Thus, if

(40) T
′ := 	 Sm1 |Xm 	 Sm2 |Xm ,

then

(41) Ch(Fm1) · C h(Fm2) = ěm3∗(e
∗
m1

ch(Fm1 )e
∗
m2

ch(Fm2)ctop(R)td(T ′)).

C h is therefore an algebra homomorphism if and only if the right hand sides of
Equations (39) and (41) are equal. A sufficient condition for this equality to hold
is if T = T ′, or equivalently, if Equation (3) holds.

It remains to show that Ch respects the trace axiom. Consider m1,m2 in G,
vm1 in Km1 , and v[m1,m2] in K[m1,m2]. Let Lw denote left multiplication by w.
Since C h is a ring isomorphism commuting with the G-action, we obtain

(42) Ch ◦ Lv[m1,m2]
◦ ρ(m−1

2 ) ◦ C h−1 = LCh(v[m1,m2]) ◦ ρ(m
−1
2 )

and

(43) C h ◦ ρ(m1) ◦ Lv[m1,m2]
◦ Ch−1 = ρ(m2) ◦ LCh(v[m1,m2]).

Taking the trace of both sides of Equation (42) and using the cyclicity of the trace,
we obtain

(44) TrKm1 (X)(Lv[m1,m2]
◦ ρ(m−1

2 )) = TrAm1 (X)(LCh(v[m1,m2]) ◦ ρ(m
−1
2 )).

Doing the same to Equation (43), we obtain

(45) TrKm2 (X)(ρ(m1) ◦ Lv[m1,m2]
) = TrAm2 (X)(ρ(m2) ◦ LCh(v[m1,m2])).

However, the left hand sides of Equations (44) and (45) are equal by the trace
axiom on K (X,G). Thus, we obtain

TrAm1 (X)(LCh(v[m1,m2]) ◦ ρ(m
−1
2 )) = TrAm2 (X)(ρ(m2) ◦ LCh(v[m1,m2])),

as desired.
�

Remark 7.2. It is instructive to consider the homomorphism property of Ch when
the obstruction bundle R on Xm is trivial. When m1 = 1 and m2m3 = 1, it is
trivial to verify from Equation (22) that

(46) Ch(Fm1 · Fm2) = C h(Fm1) · Ch(Fm2 ).

Indeed, Equation (46) continues to hold even if C h were replaced by the ordinary
Chern character ch. A similar result holds if m2 = 1 and m1m3 = 1. However,



22 T. J. JARVIS, R. KAUFMANN, AND T. KIMURA

when m1m2 = 1 and m3 = 1, then Equation (46) would fail to hold if Ch were re-
placed by the ordinary Chern character ch because of the presence of the nontrivial
pushforward map ěm3∗ in Equation (22). This shows that the stringy corrections
to the Chern character are necessary even when the obstruction bundle is trivial.

Finally, C h satisfies the usual functorial properties with respect to equivariant
étale morphisms.

Theorem 7.3. Let f : X → Y be a G-equivariant, étale morphism between smooth,
projective varieties X and Y with G-action. The following properties hold.

(1) (Pullback) The pullback maps f ∗ : A (Y,G) → A (X,G) and f∗ : K (Y,G) →
K (X,G) are homomorphisms of G-Frobenius algebras.

(2) (Naturality) The following diagram commutes.

(47)

K (Y,G)
f∗
- K (X,G)

A (Y,G)

Ch

? f∗
- A (X,G)

Ch

?

(3) (Grothendieck-Riemann-Roch) For all m in G and Fm in Km(X),

(48) f∗(C h(Fm) ∪ td(TXm)) = C h(f∗Fm) ∪ td(TY m).

Proof. The proof of part (1) is the same as in the case of stringy cohomology [FG].
Since f is G-equivariant and étale, f ∗TY m is isomorphic to TXm. This induces
the desired map between the associated obstruction bundles.

Part (2) follows from the naturality of the ordinary Chern character and the
fact that if f is étale, then f∗S Y

m = S X
m , where S X

m and S Y
m are as defined in

Equation (25) for X and Y , respectively.
Part (3) follows from these same considerations, since

f∗(Ch(Fm) ∪ td(TXm)) = f∗(ch(Fm) ∪ td(	S
X
m ) ∪ td(TXm))

= f∗(ch(Fm) ∪ td(TXm) ∪ td(	S
X
m ))

= f∗(ch(Fm) ∪ td(TXm) ∪ td(	f∗
S

Y
m ))

= f∗(ch(Fm) ∪ td(TXm) ∪ f∗td(	S
Y
m ))

= f∗(ch(Fm) ∪ td(TXm)) ∪ td(	S
Y
m )

= ch(f∗Fm) ∪ td(TY m) ∪ td(	S
Y
m )

= Ch(f∗Fm) ∪ td(TY m),

where the projection formula was used in the fifth equality and the ordinary Grothendieck-
Riemann-Roch theorem was used in the sixth.

�

8. Discrete torsion

At this point, we wish to make a short comment about discrete torsion. As
discussed in [Kau04], any G-Frobenius algebra H can be twisted by a discrete
torsion, which is an element α ∈ Z2(G,Q∗), to obtain a G-Frobenius algebra with
twisted sectors of the same dimension.
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This procedure allows us to “twist” the stringy Chow ring A (X,G) and the
stringy K-theory K (X,G). If one twists both rings by the same element α, then
the stringy Chern character C h again provides an isomorphism of G-commutative
algebras.

We briefly recall the main points of the construction of twisting by discrete tor-
sion, omitting the proofs which all follow from rather straightforward computations.
A reference for the proofs is [Kau04].

For α ∈ Z2(G,Q∗), let Qα[G] be the twisted group ring, i.e., Qα[G] =
⊕

m∈G Qem

with the multiplication em1 ? em2 = α(m1,m2)em1m2 .
Set ε(γ,m) := α(γ−1,m)/α(γ−1mγ, γ−1) and define ρ(γ)(em) = ε(γ,m)eγ−1mγ .

Define a bi-linear form η by η(em+ , em−) = 0 unless m+m− = 1 and η(em, em−1) =
α(m,m−1). Lastly, let 1 = e1.

Lemma 8.1. ((Qα[G], ρ), ?,1, η) is a G-Frobenius algebra.

Definition 8.2. We define the tensor product ⊗̂ of two G-Frobenius algebras
((H , ϕ), ?,1, η) and ((H ′, ϕ′), ?′,1′, η′) to be the G-Frobenius algebra H ⊗̂H ′ =⊕

m∈G(H ⊗̂H ′)m with (H ⊗̂H ′)m := Hm⊗Q H ′
m, diagonal multiplication ?⊗?′,

diagonal G-action ρ⊗ ρ′, the tensor product metric η ⊗ η′, and unit 1 ⊗ 1′.

Proposition 8.3. The tensor product of two G-Frobenius algebras is a G-Frobenius
algebra.

Definition 8.4. For a G-Frobenius algebra H and an element α ∈ Z2(G,Q∗), we
set H α := H ⊗̂Qα[G].

Notice that as vector spaces

(49) H
α

m = Hm ⊗Q Q ' Hm.

Lemma 8.5. Using the identification H α
m

∼= Hm, the G-Frobenius structures for
((H α, ρα), ?α,1α, ηα)) are

vm1 ?
α vm2 := α(m1,m2)vm1 ? vm2 ,

ρα(γ)vm := ε(γ,m)ρ(γ)vm,

and

ηα(vm, vm−1) := α(m,m−1)η(vm, vm−1)

for all vmi
in H α

mi
, vm in H α

m , and vm−1 in H α
m−1 .

Proposition 8.6. The G-Frobenius algebras H and H α are isomorphic if and
only if α is a coboundary, that is, [α] = 0 ∈ H2(G,Q∗).

Remark 8.7. The above twisting procedure is also well defined for G-commutative
algebras.

Proposition 8.8. If Φ : H → H ′ is an isomorphism of G-Frobenius algebras (or
of G-commutative algebras) then Φ⊗ id is an isomorphism between H α and H ′α.

Corollary 8.9. Let Ch : K (X,G) → A (X,G) denote the stringy Chern charac-
ter. For all α ∈ Z2(G,Q∗), the map Chα = Ch ⊗ id : K α(X) → A α(X) is an
isomorphism of G-commutative algebras.
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9. The orbifold K-theory of a stack

In this section we show how our constructions and results carry over to the case
of a smooth Deligne-Mumford stack X with projective coarse moduli space. We do
not restrict ourselves to the case of a global quotient by a finite group. In particular,
the results of this section apply to quotients of the form [X/G ], where G is a Lie
group acting on X with finite stabilizers.

We will give a construction of an orbifold K-theory Korb(X ) and an orbifold
Chern character Chorb : Korb(X ) → Horb(X ). The construction of Korb(X ) gen-
eralizes Givental and Lee’s quantum K-theory [Le] to orbifolds, just as Chen-Ruan
[CR2] and Abramovich-Graber-Vistoli [AGV] generalized quantum cohomology to
orbifolds. Of course, as a vector space, our construction agrees with the construction
of Adem and Ruan [AR], but our orbifold product has the virtue that the orbifold
Chern character Chorb is a ring isomorphism—not just an additive isomorphism.

Of course, when G is a finite group acting on X , taking G-coinvariants of our
stringy K-theory gives a form of orbifold K-theory K (X ) for the stack quo-
tient X = [X/G]. Furthermore, the stringy Chern character C h induces a map

Ch : K (X,G) → A (X,G), which is an isomorphism of commutative, associative
algebras with unit. This is a K-theoretic version of the construction of the orbifold
Chow ring of a stack quotient from stringy cohomology as in [FG, JKK], but we
will show that this orbifold K-theory can be defined on Deligne-Mumford stacks
that are not global quotients by finite group and show that the orbifold K-theory
of a stack quotient is independent of the presentation of the stack.

The main result of this section is Theorem 1.4; namely, that Chorb is a ring iso-
morphism, and furthermore, for global quotients X = [X/G], we have Korb(X ) =

K (X,G) and Chorb is induced from C h.
Theorem 1.4 will follow from a formula for the orbifold obstruction bundle (The-

orem 9.2), just as its counterparts for stringy K-theory (Theorems 5.2 and 1.3)
follow from the formula for the obstruction bundle for varieties with finite group
action (Theorem 1.2).

Recall that the stack M 0,n(X , 0) of degree-zero, genus-zero, n-pointed orbifold
stable maps into X is a Deligne-Mumford stack [AGV]. We denote the universal

curve over it by $ : C0,n → M 0,n(X , 0), and the universal stable map by f̄ :

C0,n → X . The evaluation maps from M 0,n(X , 0) do not map just to X , but
rather to the inertia stack

X̃ :=
∐

(g)

X(g),

where the indices run over conjugacy classes of local automorphisms, and X(g) =

{(x, (g))|g ∈ stab(x)}. The evaluation maps evi : M 0,n(X , 0) → X̃ are given by
evi([f̄ : C → X ]) = (f(pi), (gpi

)) ∈ X(gpi
), where pi is the ith marked point (gerbe)

of C , and gpi
is the image of the canonical generator of stab(pi) in stab(f(pi)). Of

course, this image is only defined up to conjugacy, since if X is locally presented
as [X/G] near a point pi ∈ X , then a representative p̃i ∈ X of pi can be replaced
by another representative p̃iγ for any γ ∈ G, which replaces gpi

by γ−1gpi
γ. As

in earlier sections, we also define σ : X̃ → X̃ to be the canonical involution
(x, (g)) 7→ (x, (g−1)) and ěvi = σ ◦ evi.
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Definition 9.1. As a vector space, the orbifold K-theory Korb(X ) of X is the

ordinary K-theory of X̃ :

Korb(X ) := K(X̃ ) =
⊕

(g)

K(g) :=
⊕

(g)

K(X(g)).

To define the product on Korb(X ), we use the obvious obstruction bundle on the

stack M 0,3(X , 0), namely, R̃ := R1$∗(f̄
∗TX ), and we define the virtual bundle

Ovir to be

Ovir := λ−1(R̃
∗).

The orbifold product of two bundles F and F ′ in Korb(X ) is defined to be

F ∗ F
′ := (ěv3)∗(ev

∗
1(F ) ⊗ ev∗2(F ′) ⊗ Ovir).

There is a natural map i : X̃ → X given by forgetting the extra data of the
conjugacy class (g), and i is locally a regular embedding. That is, for each (g), the
space X(g) embeds into X in a natural way. Because these orbifold stable maps

have degree zero, the composition J = i◦evj : M 0,3(X , 0) → X is the same for all
j ∈ {1, 2, 3}. As in the stringy case, for each conjugacy class (g) with g of order r,
the element g acts by r-th roots of unity on W(g) := TX |

X (g) . We define W(g),k to

be the eigenbundle of W(g), where g acts by multiplication by ζk = exp(−2πik/r).
Note that this eigenbundle is determined only by the conjugacy class (g) rather
than by the particular representative g. Finally, we define

S(g) :=

r−1⊕

k=0

k

r
W(g),k ∈ K(g).

This allows us to define S ∈ Korb(X ) as S =
⊕

(g) S(g). As in the stringy case,

the following theorem holds.

Theorem 9.2. In the K-theory of M 0,3(X , 0), the following relation holds for the

obstruction bundle R̃.

(50) R̃ ∼= TM 0,3(X , 0) 	 J∗TX ⊕

3⊕

i=1

ev∗i S .

Proof. The idea of the proof is to use distinguished components of the stack of
pointed admissible covers ξ0,3 [JKK, §2.5.1] to produce an étale cover of the mod-

uli stack M 0,3(X , 0). On this cover, we can easily produce an isomorphism of
equivariant bundles, but it is not unique—it is only determined up to conjugacy.
However, the bundles we really want are the coinvariant bundles of these equivari-
ant bundles, and the induced isomorphism is independent of conjugation. Thus,
étale descent applies, and we obtain the desired isomorphism.

We first recall the definitions from [JKK, §2.5.1 and §6] of ξG
0,3(m) and ξG

0,3(X,m).
As described in the definition of the obstruction bundle for stringy Chow and stringy
K-theory, there is a presentation of the fundamental group π1(P1 − {0, 1,∞}) as
〈c1, c2, c3|c1c2c3 = 1〉, where c1, c2 and c3 are little loops around p1 = 0, p2 = 1,
and p3 = ∞, respectively. For any finite group G, and any triple of elements m =
(m1,m2,m3) in G, such that m1m2m3 = 1, we can define a natural homomorphism
π1(P1 − {0, 1,∞}) → 〈m〉 ⊆ G. This defines a principal 〈m〉-bundle over P1 −
{0, 1,∞} which extends to a smooth, connected curve E with three distinguished
points p̃1, p̃2, and p̃3 lying over the points p1 ,p2, and p3, respectively. It also
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defines a principal G-bundle that extends to a smooth (not necessarily connected)

curve Ẽ, with E as a connected component of Ẽ. The groups 〈m〉 and G act on the

curves E and Ẽ, respectively, such that the quotients E/〈m〉 and Ẽ/G have genus

zero, and the natural map E → E/〈m〉 = P1 and Ẽ → Ẽ/G = P1 are branched at
the three points p1, p2, p3 with monodromy m1,m2,m3, respectively.

Definition 9.3. We define ξ
〈m〉
0,3 to be the connected component of the stack of

3-pointed admissible 〈m〉-covers of genus zero that contains the admissible cover
(E, p̃1, p̃2, p̃3). Similarly, we define ξG

0,3 to be the connected component of the stack
of 3-pointed admissible 〈m〉-covers of genus zero that contains the admissible cover

(Ẽ, p̃1, p̃2, p̃3).
If X is any variety with a G-action, a degree-zero, 3-pointed G-stable map of

genus zero is a G-equivariant morphism Ẽ → X from a 3-pointed admissible G-
cover to X , such that the induced morphism Ẽ/G→ X/G is a 3-pointed stable map
of genus zero. We define ξG

0,3(X, 0,m) to be the component of the stack of pointed

G-stable maps whose underlying 3-pointed admissible G-covers Ẽ correspond to
points of ξG

0,3(m).

It is easy to see that there is a canonical isomorphism I : ξ
〈m〉
0,3 (m) → ξG

0,3(m),

and that ξG
0,3(m) is the stack quotient BH = [pt/Hm] of a point modulo the group

Hm := 〈m1〉∩ 〈m2〉∩ 〈m3〉 (see [JKK, Prop 2.20]). Moreover, in [JKK, Lemma 6.7]
it is shown that ξG

0,3(X, 0,m) is canonically isomorphic to ξG
0,3 ×Xm. Finally, we

have a natural morphism q : ξ0,3(X, 0,m) → M 0,3([X/G], 0) given by sending a G-
stable map [f : E → X ] to an induced map of quotient stacks [f̄ : [E/G] → [X/G]].
This map is easily seen to be étale.

Now we may begin the proof. First note that if U is an étale cover of X consisting
of a disjoint union of smooth varieties Xα with finite groups Gα acting to make
qα : Xα → X induce an isomorphism [Xα/Gα] to a neighborhood in X (that is
{Xα, Gα, qα)} form a uniformizing system), we may construct an étale cover

p :
∐

α,m

Xm

α →
∐

α,m

ξGα

0,3 ×Xm

α =
∐

α,m

ξGα

0,3 (Xα, 0,m) → M 0,3(X , 0),

where for each α the m run through all triples in Gα whose product is 1, and the
first morphism is induced by the obvious (étale) map pt×Xm

α → [pt/Hm]×Xm

α =

ξGα

0,3 ×Xm

α .

For each α and m, the pullback p∗R̃ is easily seen to be the usual obstruction

bundle R(m) on Xm

α , and the pullback p∗
(
TM 0,3(X , 0) 	 J∗TX ⊕

⊕3
i=1 ev

∗
i S

)

is clearly equal to TXm

α 	 TXα|Xm

α
⊕
⊕3

i=1 Smi
|Xm

α
. But to prove the theorem,

we will need to provide a canonical isomorphism between these bundles.
The fibered product Xm

α ×
M0,3(X ,0) X

m
′

β is non-empty if and only if the stack

ξGα

0,3 (Xα, 0,m) ×
M0,3(X ,0) ξ

Gβ

0,3 (Xβ , 0,m
′) is non-empty; and it is straightforward

to see that this occurs only if there is a group G with injective homomorphisms
G ↪→ Gα and G ↪→ Gβ , such that the triple m′ is diagonally (i.e., all three terms
simultaneously) conjugate to m in G3. Moreover, for each connected component of
M 0,3(X , 0), there is a well-defined diagonal conjugacy class of such triples.

For each such conjugacy class, choose a representative m and letK = 〈m1,m2,m3〉
be the group generated by the triple. As described above, this triple determines a
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well-defined distinguished component ξK
0,3(m) of the stack of three-pointed, admis-

sible K-covers of genus zero.
Choose, once and for all, an isomorphism Φm of K-representations giving the

(virtual) equality of Equation (30) in Theorem 6.3. For any other triple m′ in the

same conjugacy class, there is a canonical isomorphism of groupsK ′ = 〈m′
1,m

′
2,m

′
3〉

∼
−→

K taking m′ to m, and a canonical (equivariant) isomorphism of representations
H1(E′; OE′) ∼= H1(E; OE), where E → C → ξK

0,3(m) is the three-pointed admis-

sible K-cover with holonomy m, and E ′ → C ′ → ξK′

0,3(m
′) is the three-pointed

admissible K ′-cover with holonomy m′. Similarly, we have canonical (equivariant)
isomorphisms of the representations
(51)

C	C[K]⊕

n⊕

i=1

ri−1⊕

ki=0

ki

|K|
IndK

〈mi〉 C[K]mi,ki
∼= C	C[K ′]⊕

n⊕

i=1

ri−1⊕

ki=0

ki

|K ′|
IndK′

〈mi〉 C[K ′]mi,ki
.

Thus Φm induces an isomorphism Φm′ for each triple m′ which is conjugate to m.
If G is any group containing both K and K ′, with K ′ a conjugate (say by γ ∈ G)

of K, then letting Ẽ → C → ξG
0,3(m) denote the distinguished three-pointed G-

cover with holonomy m, and Ẽ′ → C → ξG
0,3(m

′) denote the distinguished universal

three-pointed G-cover with holonomy m′, the group action ρ(γ) : ξG
0,3(m)

∼
−→

ξG
0,3(m

′) identifies the base (γ acts on E and E ′). Furthermore, we have canonical
isomorphisms of G-representations

(52) H1(Ẽ; OẼ) ∼= IndG
K(H1(E; OE))

and

(53) H1(Ẽ′; OẼ′) ∼= IndG
K′(H1(E′; OE′)).

AsG-representations,H1(Ẽ; OẼ) and ρ(γ)∗H1(Ẽ′; OẼ′) are not identical, but rather

are conjugate; that is, H1(Ẽ′; OẼ′) is the representation of G arising from con-

jugating the action of G on H1(Ẽ; OẼ) by γ. The same holds for the induced
representations

(54) C[K\G] 	 C[G]

3⊕

i=1

ri−1⊕

ki=0

ki

|G|
IndG

〈mi〉 C[G]mi,ki

∼= IndG
K(C 	 C[K]

3⊕

i=1

ri−1⊕

ki=0

ki

|K|
IndK

〈mi〉 C[K]mi,ki
),

and

(55) C[K ′\G] 	 C[G]

3⊕

i=1

ri−1⊕

ki=0

ki

|G|
IndG

〈m′
i
〉 C[G]m′

i
,ki

∼= IndG
K′(C 	 C[K ′]

3⊕

i=1

ri−1⊕

ki=0

ki

|K ′|
IndK′

〈m′
i
〉 C[K ′]m′

i
,ki

).

Finally, for an open subset V of any Xα with G acting on V , pulling pack by
the action

ρ(γ) : Vm ∼
−→ V m

′
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makes the G-bundle ρ(γ)∗f∗TV = OẼ′ � IndG
K′ TV |V m

′ on V m isomorphic to the

conjugate by γ of the G-bundle f∗TV = OẼ�IndG
K TV |V m . Thus the isomorphisms

Φm′ and the induced isomorphisms

Φ̃m : R1π∗(f
∗TV ) = H1(Ẽ; OẼ) ⊗ IndG

K TV |V m

∼
−→

(
C[K\G]	 C[G] ⊕

3⊕

i=1

ri−1⊕

ki=0

ki

|G|
IndG

〈mi〉 C[G]mi,ki

)
⊗ IndG

K TV |V m(56)

on ξG
0,3(m) × V m are determined up to conjugacy by an element in G.

However, a representation and any conjugate of that representation have canon-
ically identified coinvariants, so the isomorphisms Φ̃m induce isomorphisms of the
coinvariant bundles

Φ̄m : R1πG
∗ (f∗TV )

∼
−→

((
C[K\G] 	 C[G] ⊕

3⊕

i=1

ri−1⊕

ki=0

ki

|G|
IndG

〈mi〉 C[G]mi,ki

)
⊗ TV |V m

)G

= TVm 	 TV |V m ⊕

3⊕

i=1

Smi
|V m ,(57)

which are independent of conjugation.
In summary, we have chosen an explicit isomorphism

Φ : p∗R̃
∼
−→ p∗

(
TM 0,3(X , 0) 	 J∗TX ⊕

3⊕

i=1

ev∗S

)

on the étale cover
∐

α,mXm
α

p
- M 0,3(X , 0), with the particular property that

on the product
∐

Xm

α ×
M0,3(X ,0)

∐
Xm

α

s
-

t
-

∐
Xm

α

we have s∗Φ = t∗Φ. Thus by étale descent the isomorphism Φ descends from the
cover

∐
Xαm to the stack M 0,3(X , 0).

�

Lemma 9.4. The ring of G-coinvariants K (X,G) of the stringy K-theory of X is
isomorphic to the orbifold K-theory Korb([X/G]) of the quotient stack.

Proof. First, we have the isomorphism

Korb([X/G]) =
⊕

(g)

K([X(g)/ZG(g)]) ∼=
⊕

(g)

K(Xg)ZG(g),

where the sum includes only one representative g from each conjugacy class (g) ⊂ G.
For any triple m ∈ G3 with m1m2m3 = 1, we have the following commutative
diagram of morphisms for every i ∈ {1, 2, 3}.

(58)

Xm
ei

- Xmi

M 0,3([X/G], 0)

pm

?
ei
- [X(mi)/ZG(mi)]

qmi

?
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If p :
∐

m
Xm → M 0,3(X, 0) is the obvious morphism induced by the pm, and

q : IG(X) →
∐

(m)[X
(m)/ZG(m)] = [̃X/G] is the obvious morphism induced by the

qm, then for any conjugacy class (g) in G, the following diagram is Cartesian.

(59)

∐

m

m3∈(g)

Xm
e3
-

∐

m3∈(g)

Xm3

M 0,3([X/G], 0)

p

?
e3
- [X(g)/ZG(g)]

q

?

Moreover, for any α ∈ K(Xg)ZG(g) ⊆ K(Xg), the pullback q∗(α) ∈ K (X,G) is
G-invariant and is exactly

q∗(α) =
∑

h∈(g)

ig,hα,

where ig,h is the obvious map K(Xg)ZG(g) → K(Xh)ZG(h). It is easy to see that

q∗ is a linear isomorphism q∗ : Korb([X/G]) → K (X,G), so all that remains is to
check that q∗ is a ring homomorphism.

For for any triple (g1), (g2), (g3) of conjugacy classes in G, and for any αi ∈
K(X(gi)/ZG(gi)) for each i ∈ {1, 2} we have

q∗(α1 · α2) = q∗(e3)∗

(
e∗1α1 ⊗ e∗2α2 ⊗ λ−1(R̃

∗)
)

= (e3)∗p
∗
(
e∗1α1 ⊗ e∗2α2 ⊗ λ−1(R̃

∗)
)

= (e3)∗

(
p∗e∗1α1 ⊗ p∗e∗2α2 ⊗ λ−1(p

∗
R̃

∗)
)

= (e3)∗ (e∗1q
∗α1 ⊗ e∗2q

∗α2 ⊗ λ−1(R
∗))

= q∗α1 · q
∗α2,

(60)

where the first and last equalities are the definition of multiplication, the second
follows from the fact that p and q are flat, and the fourth from the fact (shown in

the proof of Theorem 9.2) that p∗R̃ = R and commutativity of Diagram (58).
Thus q∗ is a ring isomorphism �

To finish the proof of Theorem 1.4 we must define the orbifold Chern character.

Definition 9.5. For any F(g) ∈ K(g) the orbifold Chern character Chorb : Korb(X ) →
A•

orb(X ) is

Chorb(F(g)) = ch(F(g)) ∪ td−1(S(g)),

thus for any F ∈ Korb(X ) we have

Chorb(F ) = ch(F ) ∪ td−1(S ).

We can now adapt the proofs we have given in the stringy case to the orbifold
case to finish the proof of Theorem 1.4. In particular, the proof of associativity
given in Theorem 10.4 is easily adapted to give a proof of associativity for the
orbifold product in Korb(X ).

Similarly, using Theorem 9.2, one can easily adapt the proof of Theorem 1.3
to show that the orbifold Chern character Chorb is a ring homomorphism. Since
the ordinary Chern character is a linear isomorphism ch : K(X(g))

∼
−→ A(X(g))
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for every conjugacy class (g), and since td(S ) is invertible, we see that Chorb :
Korb(X ) → A•

orb(X ) is an isomorphism of rings. Thus Theorem 1.4 holds.
We conclude this section with an orbifold version of Theorem 7.3.

Theorem 9.6. Let f : X → Y be an étale morphism of smooth, Deligne-Mumford
stacks with projective coarse moduli. The following properties hold.

(1) (Pullback) The pullback maps f ∗ : A•
orb(Y ) → A•

orb(X ) and f∗ : Korb(Y ) →
Korb(X ) are homomorphisms of Frobenius algebras.

(2) (Naturality) The following diagram commutes.

(61)

Korb(Y )
f∗
- Korb(X )

A•
orb(Y )

Chorb

? f∗
- A•

orb(X )

Chorb

?

(3) (Grothendieck-Riemann-Roch) For all F in A•
orb(X ),

(62) f∗(Chorb(F ) ∪ td(TX )) = Chorb(f∗F ) ∪ td(TY ).

The proof of this Theorem is a straightforward adaptation of the proof of its
stringy counterpart, Theorem 7.3.

10. Associativity and the trace axiom revisited

In this section, we use the explicit formula for the obstruction bundle, Equa-
tion (3), to give an elementary proof of associativity and the trace axiom for both
the stringy Chow ring and stringy K-theory. For both associativity and the trace
axiom, these proofs avoid all uses of admissible G-covers and G-stable maps or their
moduli. That is, the entire stringy multiplication on K (X,G) can be formulated
by defining the obstruction bundle via Equation (3). In the case of associativity,
our argument refines the proof in [FG]. In the case of the trace axiom, this proof is
distinct from that in [JKK], although we indicate relations to the moduli-theoretic
proof where appropriate.

10.1. Associativity. Let us recall some basic excess intersection theory. Consider
smooth, projective varieties V , Y1, Y2, and Z which form the following Cartesian
square

(63)

V
i1

- Y1

Y2

j2

? i2
- Z

j1

?

,

where i1, i2 are regular embeddings and j1, j2 are morphisms of schemes.
Let E(V, Y1, Y2) → V be the excess normal (vector) bundle, which is the cokernel

of the natural map NV/Y1
→ NY2/Z

∣∣
V

, where NV/Y1
and NY2/Z denote the normal

bundles of V in Y1 and Y2 in Z, respectively. In K(V ) one thus obtains the equality

(64) [E(Z, Y1, Y2)] = TZ|V 	 TY1|V 	 TY2|V ⊕ TV.
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Under these hypotheses, the following theorem holds (see Theorems 1.3 and 1.4
in [FL, Chapter IV.1]).

Theorem 10.1. For all F in K(Y2) and v in A•(Y2),

(65) j∗1 i2∗F = i1∗(λ−1(E(Z, Y1, Y2)
∗) ⊗ j∗2F )

and

(66) j∗1 i2∗v = i1∗(ctop(E(Z, Y1, Y2)) ∪ j
∗
2v).

The previous theorem gives rise to the following fact about R.

Theorem 10.2. Let m := (m1, . . . ,m4) in G4 such that m1m2m3m4 = 1. Let
Xm consist of those points in X which are fixed by mi for all i ∈ {1, . . . , 4}. The
following equation holds in K(Xm):

(67) R(m1,m2, (m1m2)
−1)
∣∣
Xm

⊕ R(m1m2,m3,m4)|Xm ⊕Em1,m2

= R(m1,m2m3,m4)|Xm ⊕ R(m2,m3, (m2m3)
−1)
∣∣
Xm

⊕Em2,m3 ,

where

(68) Em1,m2 := E(Xm1m2 , X〈m1,m2〉, X〈m1m2,m3〉)

and

(69) Em2,m3 := E(Xm2m3 , X〈m1,m2m3〉, X〈m2,m3〉).

Furthermore, both sides of Equation (67) are equal in K(Xm) to

(70) TXm 	 TX|Xm ⊕
4⊕

i=1

Smi
|Xm .

Proof. Plug in the definitions of the excess normal bundles and the formula for the
obstruction bundle R from Equation (3), then apply Equation (28) and simplify the
result. One discovers that both the right hand and left hand sides of Equation (67)
are both equal in K(Xm) to Equation (70). �

Remark 10.3. For the reader familiar with the G-stable maps of [JKK], we note

that the element TXm 	 TX|Xm ⊕
⊕4

i=1 Smi
|Xm in Equation (70) may be inter-

preted as the fiber of the obstruction bundle over {q} × Xm in ξ0,4(m) × Xm =
ξ0,4(X, 0,m), where q is any point in ξ0,4(m). This can be seen by an argument
similar to that in the proof of [JKK, Prop 6.21].

Theorem 10.4. Let X be a smooth, projective variety with an action of a finite
group G. The multiplications in stringy K-theory ((K (X,G), ρ), ·,1, ηK ) and in
the stringy Chow ring ((A (X,G), ρ), ·,1, ηA ) are both associative.

Proof. Consider m = (m1,m2,m3,m4) in G4 such that m1m2m3m4 = 1. If Em1,m2

and Em2,m3 are defined as in Equations (68) and (69), then the following equalities
hold:

(71)

ctop(R(m1,m2, (m1m2)
−1))

∣∣
Xm

∪ ctop(R(m1m2,m3,m4))|Xm
∪ ctop(Em1,m2) =

ctop(R(m1,m2m3,m4))|Xm
∪ ctop(R(m2,m3, (m2m3)

−1))
∣∣
Xm

∪ ctop(Em2,m3)
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and

(72)

λ−1(R(m1,m2, (m1m2)
−1)∗)

∣∣
Xm

⊗λ−1(R(m1m2,m3,m4)
∗)|Xm⊗λ−1(E

∗
m1,m2

) =

λ−1(R(m1,m2m3,m4)
∗)|Xm⊗λ−1(R(m2,m3, (m2m3)

−1)∗)
∣∣
Xm

⊗λ−1(E
∗
m2,m3

).

Equation (71) follows by taking the top Chern class of both sides of Equation (67)
and then using multiplicativity of ctop. Equation (72) follows by taking the dual of
Equation (67), applying λ−1, and then using multiplicativity of λ−1.

Associativity will follow from Equations (71) and (72) and the definitions of the
multiplications as follows.

Let m+ = (m1m2)
−1 and m− = (m1m2). Consider the following diagram:

Xm

X〈m1,m2,m+〉
�

φ

X〈m−,m3,m4〉

ψ

-

Xm1

�

em
1

Xm2

em2

?

Xm−

�

em
−

ě
m
+

-

Xm3

em3

?

Xm4 ,

ě
m
4

-

where φ and ψ are the obvious inclusions. Note that the diamond in the middle is
Cartesian and that the usual inclusions εi : Xm → Xmi factor as

ε1 = em1 ◦ φ ε2 = em2 ◦ φ(73)

ε3 = em3 ◦ ψ ε4 = em4 ◦ ψ.(74)

And finally, we define

ε̌4 = σ ◦ ε4 = ěm4 ◦ ψ.

For any F1 ∈ Km1 , F2 ∈ Km2 , F3 ∈ Km3 , we have

(F1 · F2) · F3 = (ěm4)∗

(
e∗m−

(ěm+)∗
[
e∗m1

F1 ⊗ e∗m2
F2 ⊗ λ−1(R(m1,m2,m+)∗)

]

⊗ e∗m3
F3 ⊗ λ−1(R(m−,m3,m4))

)

= (ěm4)∗

(
ψ∗

(
φ∗
[
e∗m1

F1 ⊗ e∗m2
F2 ⊗ λ−1(R(m1,m2,m+)∗)

]

⊗ λ−1(E
∗
m1,m2

)
)
⊗ e∗m3

F3 ⊗ λ−1(R(m−,m3,m4))

)

= (ěm4)∗

(
ψ∗

(
φ∗e∗m1

F1 ⊗ φ∗e∗m2
F2 ⊗ φ∗ (λ−1(R(m1,m2,m+)∗))

⊗ λ−1(E
∗
m1,m2

) ⊗ ψ∗e∗m3
F3 ⊗ ψ∗(λ−1(R(m−,m3,m4)

∗))
))
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= (ε̌4)∗

(
ε∗1F1 ⊗ ε∗2F2 ⊗ φ∗λ−1(R(m1,m2,m+)∗) ⊗ λ−1E

∗
m1,m2

⊗ ε∗3F3 ⊗ ψ∗(λ−1(R(m−,m3,m4)
∗))

)

= (ε̌4)∗

(
ε∗1F1 ⊗ ε∗2F2 ⊗ ε∗3F3 ⊗ λ−1(R(m1,m2,m+)∗)|Xm

⊗ λ−1(R(m−,m3,m4)
∗)|Xm ⊗ λ−1(E

∗
m1,m2

)

)
,

(75)

where the first equality is the definition, the second equality follows from Theo-
rem 10.1, the third equality follows from the projection formula, and the fourth
and fifth equalities follow from Equations (73) and (74) and the definitions of ψ
and φ.

A similar argument shows that the product F1 · (F2 · F3) is given by

F1 · (F2 · F3) = (ε̌4)∗

(
ε∗1F1 ⊗ ε∗2F2 ⊗ ε∗3F3 ⊗ λ−1(R(m1,m2m3,m4)

∗)|Xm

⊗ λ−1(R(m2,m3, (m2m3)
−1)∗)

∣∣
Xm

⊗ λ−1(E
∗
m2,m3

)
)

(76)

But by equation (72) these two expressions (75) and (76) are equal, so associativity
holds. �

10.2. The trace axiom. We now prove the trace axiom in a similar way. Through-
out this section, we fix elements a and b in G and let m1 := [a, b]. We will also find

it useful to define ã := aba−1 and b̃ := a−1.
Let m′ := (m′

1,m
′
2,m

′
3) := ([a, b], bab−1, a−1) and m′′ := (m′′

1,m
′′
2,m

′′
3) :=

([a, b], b, ab−1a−1). Observe that we have the identity m′′ = ([ã, b̃], b̃ãb̃−1, ã−1).

Let H := 〈a, b〉 = 〈ã, b̃〉. Let H ′ := 〈m′〉 and H ′′ := 〈m′′〉. Both H ′ and H ′′

are subgroups of H . Let R(m′) denote the obstruction bundle on XH′

and R(m′′)

denote the obstruction bundle on XH′′

, as in Equation (15).
Consider the commutative diagram

(77)

XH j′2 - XH′

Xa

j′1

? ∆′
1

- Xbab−1

×Xa−1

.

∆′
2

?

Here j′1 and j′2 are the obvious inclusion morphisms, ∆′
2 is the diagonal map, and

∆′
1 is the composition of the morphisms

Xa ∆
- Xa ×Xa ρ(b−1)×σ

- Xbab−1

×Xa−1

,

where ∆ is the diagonal map and ρ(b−1) is the induced group action on the tangent

bundle. Let E ′ be the excess intersection bundle E(Xbab−1

×Xa−1

, XH′

, Xa).
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Similarly, consider the commutative diagram

(78)

XH j′′2 - XH′′

X ã

j′′1

?
∆′′

1
- X b̃ãb̃−1

×X ã−1

∆′′
2

?

,

where j′′1 and j′′2 are the obvious inclusion morphisms, ∆′′
2 is the diagonal map,

and ∆′′
1 is the composition of the morphisms

X ã ∆
- X ã ×X ã ρ(b̃−1)×σ

- X b̃ãb̃−1

×X ã−1

,

where ∆ is the diagonal map and ρ(b̃−1) is the induced action of ρ(b̃−1) on the tan-

gent bundle. Let E ′′ be the excess intersection bundle E(X b̃ãb̃−1

×X ã−1

, XH′′

, X ã).

Theorem 10.5. The following equality holds in K(XH):

(79) j′
∗
2R(m′) ⊕ E

′ = j′′
∗
2R(m′′) ⊕ E

′′.

Furthermore, both sides are equal to

(80) TXH ⊕ Sm1 |XH .

Proof. All equalities in this proof are understood to be in K(XH). Observe that

j′
∗
2∆

′∗
2T (Xbab−1

×Xa−1

) = TXbab−1
∣∣∣
XH

⊕ TXa−1
∣∣∣
XH

= ρ(b−1)(TXa)
∣∣
XH ⊕ σ∗TXa|XH

= TXa|XH ⊕ TXa|XH ,

where the third equality follows from the fact that ρ(b−1) × σ are isomorphisms.
Plugging this into the definition of the excess intersection bundle yields

E
′ = TXH ⊕ TXa|XH ⊕ TXa|XH 	 TXa|XH 	 TXH′

∣∣∣
XH

,

which simplifies to

(81) E
′ = TXH ⊕ TXa|XH 	 TXH′

∣∣∣
XH

.

On the other hand, Equation (3) yields the equality

R(m′) = TXH′
∣∣∣
XH

	 TX|XH ⊕ Sm1 |XH ⊕ Sbab−1 |XH ⊕ Sa−1 |XH .

Together with the equality

Sbab−1 |XH = ρ(b−1)(Sa)
∣∣
XH

and Equation (28), we obtain

(82) R(m′) = TXH′
∣∣∣
XH

	 TXa|XH ⊕ Sm1 |XH .

Combining Equations (81) and (82) yields the identity

(83) j′
∗
2R(m′) ⊕ E

′ = TXH ⊕ Sm1 |XH .

One now does precisely the same calculation, applied to the morphisms in the
diagram (78), and one obtains

(84) j′′
∗
2R(m′′) ⊕ E

′′ = TXH ⊕ Sm1 |XH .
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�

Remark 10.6. For the reader familiar with G-stable maps, we note that the el-
ement TXH ⊕ Sm1 |XH from Equation (80) is the restriction of the obstruction
bundle over ξ1,1(m1, a, b)×XH to {q}×XH , where q is any point in ξ1,1(m1, a, b).
The details of this are given in [JKK, Prop. 6.21].

Theorem 10.7. If X is a smooth, projective variety with an action of a finite
group G, then both stringy K-theory ((K (X,G), ρ), ·,1, η) and the stringy Chow
ring ((A (X,G), ρ), ·,1, η) satisfy the trace axiom.

Proof. We will prove the trace axiom in the case of K (X,G). The proof in the
case of A (X,G) is analogous, just as it is in the proof of associativity.

We begin by fixing some notation. Let 1Xa denote the trivial bundle OXa . Let
{Fα[a]} be a basis for Ka(X) with α[a] = 1, . . . , da, where da is the dimension

of Ka(X), and ηα[a]β[a−1] is the inverse of the metric ηK restricted to Ka(X) ⊕
Ka−1(X).

We now observe that

(85) ∆′∗
2∆

′
1∗1Xa = ηα[a]β[a−1] (ρ(b−1)Fα[a])

∣∣
XH′ ⊗ Fβ[a−1]

∣∣
XH′

and

(86) ∆′′∗
2∆

′′
1∗1X ã = ρ(b̃−1)Fα[ã]

∣∣∣
XH′′

⊗ Fα[ã−1]

∣∣
XH′′ ηα[ã]α[ã−1].

Now, consider the following diagram

(87)

XH j′2- XH′

XH′′

j′′2

?
ε′′m1- Xm1 .

ε′m1

?

We see that

TrKa(X)(Lvm1
◦ ρ(b−1))

= χ
(
XH′

, λ−1(R(m′)) ⊗ ε′
∗
m1
vm1 ⊗ (ρ(b−1)Fα[a])

∣∣
XH′ ⊗ Fα[a−1]

∣∣
XH′ ηα[a]α[a−1]

)

= χ
(
XH′

, ε′
∗
m1
vm1 ⊗ λ−1(R(m′)∗) ⊗ ∆′∗

2∆
′
1∗1Xa

)

= χ
(
XH′

, ε′
∗
m1
vm1 ⊗ λ−1(R(m′)∗) ⊗ j′2∗λ−1(E

′)
)

= χ
(
XH′

, j′2∗(j
′∗
2ε

′∗
m1
vm1 ⊗ j′

∗
2λ−1(R(m′)∗) ⊗ λ−1(E

′)
)
,

where the first equality follows from the definition of trace, the second from Equa-
tion (85), the third from Theorem (10.1), and the fourth from the projection for-
mula. Using the functoriality of pushforward, we conclude that

(88) TrKa(X)(Lvm1
◦ ρ(b−1)) = χ

(
XH , vm1 |XH ⊗ λ−1(j

′∗
2R(m′) ⊕ E

′)
)
.
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Similarly,

TrKb(X)

(
ρ(a) ◦ Lvm1

)

= TrK
b̃ãb̃−1 (X)

(
ρ(b̃−1) ◦ Lvm1

)

= χ(XH′′

, λ−1

(
R(m′′)) ⊗ ε′′

∗
m1
vm1 ⊗ (ρ(b̃−1) Fα[ã]

∣∣
XH′′ ) ⊗ Fα[ã−1]

∣∣
XH′′ ηα[ã]α[ã−1]

)

= χ
(
XH′′

, ε′′
∗
m1
vm1 ⊗ λ−1(R(m′′)∗) ⊗ ∆′′∗

2∆
′′
1∗1X ã

)

= χ
(
XH′′

, ε′′
∗
m1
vm1 ⊗ λ−1(R(m′′)∗) ⊗ j′′2∗λ−1(E

′′)
)
,

and we ultimately obtain,

(89) TrKb(X)

(
ρ(a) ◦ Lvm1

)
= χ

(
XH , vm1 |XH ⊗ λ−1(j

′′∗
2R(m′′) ⊕ E

′′)
)
.

Combining Equations (88), (89), and (79) yields the desired result. �

11. Stringy topological K-theory and stringy cohomology

All of the results in the previous sections have their counterparts in the topolog-
ical category.

11.1. Ordinary topological K-theory and cohomology. Throughout this sec-
tion, unless otherwise stated, G is a finite group acting on a compact, almost
complex manifold X preserving the almost complex structure.

Furthermore, let H•(X) be the rational cohomology of X . It is a Frobenius su-
peralgebra: a Frobenius algebra with a multiplication that is graded commutative.

Topological K-theory Ktop(X) := Ktop(X ; Z) ⊗Z Q is also a Frobenius superal-
gebra with the Z/2Z-grading:

Ktop(X) = K0
top(X ; Z) ⊗Z Q ⊕K1

top(X ; Z) ⊗Z Q.

HereK0
top(X ; Z) is defined exactly asK(X ; Z) but in the topological category. That

is, K0
top(X ; Z) is additively generated by isomorphism classes of complex topological

vector bundles over X modulo the relation of Equation (4) whenever Equation (5)
holds. The odd part K1

top(X ; Z) is defined to be K0
top(X × R; Z). Equivalently, we

may take K1
top(X ; Z) to be the kernel of the restriction map i∗ : K0

top(X × S1) →

K0
top(X×pt) induced in K-theory from the inclusion of a point i : X×pt→ X×S1.
Associated to a differentiable proper map of almost complex manifolds f : X →

Y , there is the induced pushforward morphism f∗ : Ktop(X) → Ktop(Y ) (see
[Kar, IV 5.24] and [AH, Sec. 4]). In particular, if Y is a point and f : X → Y
is the obvious map, we again define the Euler characteristic χ(X,F ) := f∗F .
And associated to any continuous f : X → Y , there is a pullback homomorphism
f∗ : Ktop(Y ) → Ktop(X) [Kar, II.1.12].

For any compact, almost complex manifolds X and Y , there are natural mor-
phisms

ν : Kn
top(X) ⊗Km

top(Y ) → K0
top(X × Y × Rn+m).

Bott periodicity says that if Y is a point, there is an isomorphism

β : K0
top(X)

∼
−→ K0

top(X × R2)
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[Kar, III.1.3], which is natural with respect to both pullback and pushforward.
Therefore, for any compact, almost complex manifold X , composition of ν with
pullback along the diagonal map ∆ : X → X ×X gives a multiplication

µ : Kn
top(X) ⊗Km

top(X) → K0
top(X × Rn+m) ⊆ Ktop(X)

if n+m ≤ 1 and

µ : K1
top(X) ⊗K1

top(X) - K0
top(X × R2)

β−1

- Ktop(X),

if n = m = 1. Here β−1 is the inverse of the Bott isomorphism. We will write
F1 ⊗ F2 to denote µ(F1,F2). This product makes Ktop(X) into a commutative,
associative superalgebra [Kar, II.5.1 and II.5.27].

We can now define a metric on Ktop(X) by

ηKtop(F1,F2) := χ(X,F1 ⊗ F2),

and we define 1 := OX . It is straightforward to check that (Ktop(X),⊗,1, ηKtop)
is a Frobenius superalgebra. Moreover, the projection formula holds for proper,
differentiable maps with a compact target [Kar, IV.5.24].

The Frobenius superalgebra of topological K-theory satisfies the usual naturality
properties with respect to pullback, is also a λ-ring [Kar, §7.2], and satisfies the
splitting principle [Kar, Thm IV.2.15].

For all i, the i-th Chern class ci(F ) associated to any F in K0
top(X) belongs

to H2i(X), and so H2p(X) may be regarded as the analogue of the Chow group
Ap(X). The associated Chern polynomial ct satisfies the usual multiplicativity and
naturality properties, and the Chern character ch : Ktop(X) → H•(X), defined
by Equation (10), is an isomorphism of commutative, associative superalgebras
[Kar, Thm. V.3.25]. The Todd classes are defined from the ordinary Chern classes
as before. In addition, Proposition (2.6) holds in topological K-theory since it
follows from the splitting principle, the Chern character isomorphism, and the λ-
ring properties [FH, Prop. I.5.3].

Finally, the Grothendieck-Riemann-Roch formula (see [Kar, Cor V.4.18] or [AH,
Thm. 4.1]) and the excess intersection formula (Theorem 10.1) hold (see [Qu, Prop
3.3], which is written for cobordism, but the proof works as well for topological
K-theory).

Remark 11.1. Let X be a compact, G-manifold with a smoothly varying one pa-
rameter family of G-equivariant almost complex structures Jt : TX → TX for all
t, say, in the interval [0, 1]. Because of the homotopy invariance of characteristic
classes, the resulting G-Frobenius algebras H (X ;G) and K (X ;G), and the stringy
Chern character are all independent of t. Therefore, these stringy algebraic struc-
tures depend only upon the homotopy class of the G-equivariant almost complex
structure on the G-manifold X .

In particular, when X is a compact symplectic manifold with an action of G
preserving the symplectic structure, since there exists a unique up to homotopy, G-
equivariant almost complex structure compatible with the symplectic form [GGK,
Ex. D.12], these stringy algebraic structures are invariants of the symplectic man-
ifold with G-action.

Remark 11.2. While we are primarily interested in G-equivariant almost complex
manifolds in this section, our constructions generalize in a straightforward way to
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the case whereX is a compact manifold with an oriented, G-equivariant stable com-
plex structure (see [GGK, App. D]). The key point [GHK] is that a G-equivariant
stable complex structure induces an almost complex structure on the normal bun-
dle to any submanifold XH consisting of points fixed by H for any subgroup H of
G. Furthermore, both Sm (see Remark 6.1) and the right hand side of Equation
(3) only depend upon such normal bundles.

11.2. Stringy topological K-theory and stringy cohomology. Let X be a
compact, almost complex manifold with an action of a finite group ρ : G → Aut(X)
preserving the almost complex structure.

Fantechi and Göttsche’s [FG] stringy cohomology H (X,G) of X , is given by

H (X,G) :=
⊕

m∈G

Hm(X),

where Hm(X) := H•(Xm), and the definition of the multiplication is still given
by Equation (17), and similarly for the metric and identity element. However, the
Q-grading here is not quite that defined by Equation (14), but is defined instead
by the equation

(90) |vm|str := 2a(vm) + |vm|,

where |vm| := p when vm belongs to Hp(Xm) and a(vm) := a(m,U).
Furthermore, Theorem (4.2) holds, provided that A (X,G) is everywhere re-

placed by H (X,G), dimension dimX is understood to be the dimension of X as a
real manifold, and “G-Frobenius algebra” is replaced by “G-Frobenius superalge-
bra.”

Stringy topological K-theory K top(X,G) :=
⊕

m∈G K top
m (X) is defined addi-

tively by K top
m (X) := Ktop(Xm) for all m in G. The stringy multiplication, metric,

and identity element are defined just as in the case of K (X,G). This is compat-
ible with the Z/2Z-grading because the obstruction bundle R is an element of
K0

top(X
m).

Since the Eichler trace formula holds for all compact Riemann surfaces, our
formula (3) for the obstruction bundle, and indeed the entire analysis in Sections 6
and 10, holds in topological K-theory. Consequently, ((K top(X,G), ρ), ·,1, η) is a
G-Frobenius superalgebra.

Furthermore, the stringy Chern character Ch : K top(X,G) → H •(X,G) is
still defined by Equation (37). The rest of the analysis in Section 7 holds, provided
that A (X,G) is everywhere replaced by H (X,G) and K-theory is everywhere
replaced by topological K-theory. Therefore, Ch : K top(X,G) → H •(X,G) is an
isomorphism of G-commutative superalgebras.

Finally, the analysis in Section 9 holds after replacing Chow groups by co-
homology everywhere. In particular, K top(X,G) is isomorphic to Korb([X/G]),

the stringy topological K-theory of [X/G], while H (X,G) is isomorphic [FG]
to the stringy (or Chen-Ruan orbifold) cohomology H•

orb([X/G]). Therefore, the

stringy Chern character Ch : K top(X,G) → H (X,G) gives a ring isomorphism
Chorb : Korb(X) → Horb(X).

11.3. The symmetric product and crepant resolutions. One of the most
interesting examples of stringy K-theory and cohomology is the symmetric product.
Let X := Y n, where Y is a complex manifold of complex dimension d with the
symmetric group Sn acting on Y n by permuting its factors. In this case, for any
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m ∈ Sn it is easy to see that the age a(m) is related to the length of the permutation
l(m):

a(m) = l(m)d/2.

Consequently, by Equation (90), the Q-grading on H (X,G) is, in fact, a grading
by (possibly odd) integers.

Consider stringy topological K-theory K top(Y n, Sn) of the Sn-variety Y n. Choose
the 2-cocycle (discrete torsion) α in Z2(Sn,Q∗)

α(m1,m2) := (−1)ε(m1,m2),

where ε is defined by

ε(m1,m2) :=
1

2
(l(m1) + l(m2) − l(m1m2)).

It is straightforward to verify that ε(m1,m2) is an integer. Now, twist the Sn-
Frobenius algebra K top(Y n, Sn) by α, as in Section 8, to yield a new Sn-Frobenius
algebra ((K top(Y n, Sn), ρ), ?,1, ηα) which we will denote by Ktop(Y n, Sn). No-
tice that the G-action is unchanged by the twist, but the twisted multiplication
K top(Y n, Sn) is given by the formula

(91) vm1 ? vm2 := α(m1,m2)vm1 · vm2 ,

where · denotes the stringy multiplication in K top(Y n, Sn).
Twisting the multiplication on the stringy cohomology of Y n in the same fash-

ion, we obtain the Sn-Frobenius algebra ((H (Y n, Sn), ρ), ?,1, ηα), which we will
denote by H(Y n, Sn). By the obvious topological analogue of Corollary 8.9, the
stringy Chern character Ch : Ktop(Y n, Sn) → H(Y n, Sn) is an isomorphism of Sn-
commutative algebras. After taking Sn-coinvariants, we obtain a ring isomorphism

Chorb : Ktop
orb([Y

n/Sn]) → Horb([Y
n/Sn]),

where K
top
orb([Y n/Sn]) is Korb([Y

n/G]), but with the twisted multiplication, and
similarly for Horb([Y n/Sn]).

What makes these particular twisted rings interesting is the following theorem.

Theorem 11.3. Let Y be a complex, projective surface such that c1(Y ) = 0. Con-
sider Y n with Sn acting by permutation of its factors. If Y [n] denotes the Hilbert
scheme of n points in Y , then K

top
orb([Y

n/Sn]) is isomorphic as a Frobenius algebra

to Ktop(Y [n]).

Proof. We define ψ so that the following diagram commutes

(92)

K
top
orb([Y n/Sn])

C horb
- Horb([Y n/Sn])

Ktop(Y [n])

ψ

?
ch

- H(Y [n])

ψ′

?

,

where ψ′ is the ring isomorphism Ψ−1 in [FG, Thm 3.10]. This uniquely defines ψ,
since ch and Chorb are ring isomorphisms.

The homomorphism ψ also preserves the metrics because of the Hirzebruch-
Riemann-Roch Theorem and the fact that ψ′ preserves the metrics. �
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Remark 11.4. The rings K
top
orb([Y

n/Sn]) ⊗Q C and Korb([Y
n/Sn]) ⊗Q C are iso-

morphic (see [Ru]). Since Y [n] → Y n/Sn in the previous theorem is a crepant (and
hyper-Kähler) resolution, this is an example of a K-theoretic version of Conjec-
ture 1.1. Our result is nontrivial precisely because of the nontrivial definition of
multiplication on Korb([Y

n/Sn]) and the stringy Chern character.
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