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REVISITED USING CONTINUED FRACTIONS

YVES GALLOT, PIETER MOREE, AND WADIM ZUDILIN

Abstract. If the equation of the title has an integer solution with k ≥ 2, then
m > 109.3·106

. This was the current best result and proved using a method due
to L. Moser (1953). This approach cannot be improved to reach the benchmark
m > 10107

. Here we achieve m > 10109
by showing that 2k/(2m−3) is a convergent

of log 2 and making an extensive continued fraction digits calculation of (log 2)/N ,
with N an appropriate integer. This method is very different from that of Moser.
Indeed, our result seems to give one of very few instances where a large scale
computation of a numerical constant has an application.

1. Introduction

In this note we are interested in non-trivial integer solutions, that is, solutions
with k ≥ 2, of the equation

1k + 2k + · · ·+ (m− 2)k + (m− 1)k = mk. (1)

Conjecturally such solutions do not exist. For k = 1 one has clearly the solu-
tion 1 + 2 = 3 (and no further ones). From now on we will assume that k ≥ 2.

Moser [28] showed in 1953 that if (m, k) is a solution of (1), then m > 10106
and k

is even. His result has since then been improved on. Butske et al. [6] have shown
by computing, rather than estimating, certain quantities in Moser’s original proof
that m > 1.485 · 10 9 321 155. By proceeding along these lines this bound cannot be
improved on substantially. Butske et al. [6, p. 411] expressed the hope that new

insights will eventually make it possible to reach the more natural benchmark 10107
.

Using that Σk(m) = 1k + 2k + · · · + mk ≤
∫ m

1
tkdt and Σk(m + 1) >

∫ m

0
tkdt we

obtain that k + 1 < m < 2(k + 1). This shows that the ratio k/m is bounded.
By a more elaborate reasoning along these lines Krzysztofek [20] obtained that
k + 2 < m < 3

2
(k + 1). This implies that k ≥ 4 and hence

k + 2 < m < 2k. (2)

Dividing both sides of (1) by mk one sees that for every integer m ≥ 2, (1) has
precisely one real solution k. It is known that limm→∞ k/m = log 2 and we show
here that in fact the behaviour of k as a function of m can be determined in a much
more explicit way (Theorem 1 and Section 2).

Moree et al. [27], using properties of the Bernoulli numbers and polynomials (an
approach initiated in Urbanowicz [30]), showed that N1 = lcm(1, 2, . . . , 200) | k.
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Kellner [19] in 2002 showed that also all primes 200 < p < 1000 have to divide k.
Actually, Moree et al. [27, p. 814] proved a slightly stronger result and on combining
this with Kellner’s, one obtains that N2 | k with

N2 = 28 · 35 · 54 · 73 · 112 · 132 · 172 · 192 ·
∏

23≤p≤997

p > 5.7462 · 10427.

For some further references and info on the Erdős–Moser equation we refer to the
book by Guy [14, D7].

In this note we attack (1) using the theory of continued fractions. This approach
was first explored in 1976 by Best and te Riele [3] in their attempt to solve the
related conjecture of Erdős [11] that there are infinitely many pairs (m, k) such that
Σk(m) ≥ mk and 2(m − 1)k < mk. In this context they also gave the following
variant of one of their results (without proof), namely, (3) with O(m−2) replaced
with o(m−1). The proof we give here uses the same circle of ideas as used by Best
and te Riele. It seems that after their work continued fractions in the Erdős–Moser
context have been completely ignored. We hope the present paper makes clear that
this is unjustified.

Theorem 1. For integer m > 0 and real k > 0 satisfying equation (1), we have the
asymptotic expansion

k = log 2

(
m− 3

2
− c1

m
+ O

(
1

m2

))
as m →∞, (3)

with c1 = 25
12
− 3 log 2 ≈ 0.00389 . . . . Moreover, if m > 109 then

k

m
= log 2

(
1− 3

2m
− Cm

m2

)
, where 0 < Cm < 0.004. (4)

Corollary 1. If (m, k) is a solution of (1) with k ≥ 2, then 2k/(2m − 3) is a
convergent pj/qj of log 2 with j even.

Corollary 2. The number of solutions m ≤ x of (1), as x tends to infinity, is at
most O(log x).

The equation (1) seems to be a sole example of an exponential Diophantine equa-
tion in just two unknowns for which even the finiteness of solutions is not yet estab-
lished. The best result in this direction is given by Corollary 2, which is an immediate
consequence of the exponential growth of pj as a function of j and Corollary 1.

Corollary 1 is not the only result which relates convergents to solutions of Dio-
phantine equations. For example, if (x0, y0) is a positive solution to Pell’s equation
x2 − dy2 = ±1, with d a positive square-free integer, then x0/y0 is a convergent of

the continued fraction expansion of
√

d. On the other hand, in our situation the
number in question, log 2, is transcendental and its continued fraction expansion is
expected to be sufficiently ‘generic’ (unlike that of quadratic irrationals).

Corollary 1 naturally leads us to investigate common factors of k and 2m − 3.
This can be done using the method of Moser, but is not in the literature, as before
there was no special reason for considering 2m− 3.
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A key role in this arithmetic study is played by the congruence∑l−1
j=1 jr

y
=

{
0 (mod 1

2
) if r > 1 is odd;

−
∑

p|l, p−1|r
1
p

(mod 1) otherwise.
(5)

This identity can be proved using the Von Staudt–Clausen theorem; for alternative
proofs see, e.g., Carlitz [7] or Moree [25]. Its relevance for the study of (1) was first
pointed out by Moree [26].

Given N ≥ 1, put

P(N) = {p : p− 1 | N} ∪ {p : 3 is a primitive root modulo p}.
By a classical result of Hooley [16] it follows, assuming the Generalized Riemann
Hypothesis (GRH), that P(N) has a natural density A, with A = 0.3739558136 . . .
the Artin constant, in the set of primes. If 2k/(2m − 3) = pj/qj is a convergent of
log 2 arising in Corollary 1, then it can be shown that (qj, 6) = 1 and, if p ∈ P(N2)
and p divides qj, then

νp(qj) = νp(3
p−1 − 1) + 1 ≥ 2,

where we write νp(n) = a if pa | n and pa+1 - n. All primes p ≤ 2017 are in
P(N2). For p 6= 3 we have νp(3

p−1 − 1) = 1 unless 3p−1 ≡ 1 (mod p2), that is, p is
a Mirimanoff prime. (It is known that the only Mirimanoff primes p < 1014 are 11
and 1006003.)

The main idea of this paper is, in essence, to make use of the fact that the
convergents pj/qj of log 2 have no reason to also satisfy N2 | pj. The first piece of
information comes from asymptotic analysis and the latter piece from arithmetic.
Analysis and arithmetic give rise to conditions on the solutions that ‘do not feel
each other’ and this is exploited in our main result:

Theorem 2. Let N ≥ 1 be an arbitrary integer. Let

log 2

2N
= [a0, a1, a2, . . . ] = a0 +

1

a1 +
1

a2 + · · ·
be the (regular) continued fraction of (log 2)/(2N), with pi/qi = [a0, a1, . . . , ai] its
i-th partial convergent.

Suppose that the integer pair (m, k) with k ≥ 2 satisfies (1) with N | k. Let
j = j(N) be the smallest integer such that:

(a) j is even;

(b) aj+1 ≥ 180N − 2;

(c) (qj, 6) = 1; and

(d) νp(qj) = νp(3
p−1 − 1) + νp(N) + 1 for all primes p ∈ P(N) dividing qj.

Then m > qj/2.

Computing many partial quotients (that is, continued fraction digits) of log 2
is closely related to computing log 2 with many digits of accuracy. Indeed, it
is a well-known result of Lochs that for a generic number knowing it accurately
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up to n decimal digits implies that we can compute about 0.97n (where 0.97 ≈
6(log 2)(log 10)/π2) continued fraction digits accurately. For example, knowing 1000
decimal digits of π allows one to compute 968 continued fraction digits.

It seems a hopeless problem to prove anything about E(log qj(N)), the expected
value of log qj(N) produced by the result. However, metric theory of continued frac-
tions offers some hope of proving a non-trivial lower bound for E(log qj(N)(ξ)), where
we require conditions (a), (b), (c) and (d) to be satisfied but replace (log 2)/(2N)
by a ‘generic’ ξ ∈ [0, 1] \ Q. In this context recall the result of Lévy [21] that, for
such a ξ,

lim
j→∞

log qj(ξ)

j
=

π2

12 log 2
≈ 1.18. (6)

The Gauss–Kuz’min statistics asserts that, for a generic ξ, the probability that a
given term in its continued fraction expansion is at least b, equals log2(1 + 1/b).
This allows one to deal with the case where we only have condition (b). Likewise a
result of Moeckel [23], reproved in a very different way a few years later by Jager and
Liardet [17], allows one to deal with the case where we only focus on condition (c).
Their result says that for a generic ξ ∈ [0, 1] \Q we have

lim
n→∞

{1 ≤ m ≤ n : qm(ξ) ≡ a (mod d)}
n

=
d

J(d)

ϕ((a, d))

(a, d)
,

where ϕ denotes Euler’s totient function, J(m) = m2
∏

p|m(1−1/p2) Jordan’s totient

and (a, m) the greatest common divisor of a and m. This result shows that (qj, 6) = 1
with probability 1/2 (note that a natural number is coprime to 6 with probability
1/3). P. Liardet communicated to us that methods of his paper [22] can be used
to take into account both conditions (a) and (c); also the authors of [15] claim that
this can be done. We expect that there is a positive constant c1 such that for a
generic ξ satisfying conditions (a), (b) and (c), we have E(log qj(N)(ξ)) ∼ c1N as N
tends to infinity. Furthermore, we expect that for a generic ξ satisfying conditions
(a), (b), (c) and (d), E(log qj(N)(ξ)) ∼ c2N logβ N for some positive constants c2 and

β; condition (b) is responsible for N , condition (d) for logβ N , while conditions (a)
and (c) affect c2. We are definitely not experts in metric aspects of number theory,
thus leave this problem to the interested reader acquainted with the subject. Indeed,
we even expect that going beyond computing the expected value of log qj(N)(ξ) is
possible, and a probability distribution for log qj(N)(ξ) can be obtained.

Using the above results from metric theory of continued fractions and some heuris-
tics we are led to believe that roughly speaking we can get

m > 10257N

from Theorem 2. Being able to compute the convergents of (log 2)/(2N) arbitrarily

far, we would expect (taking N = N2) to show that m > 1010400
. With the current

computer technology computing sufficiently many convergents is the bottleneck.
Taking this into consideration we would expect to get

m > 100.515r,
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from Theorem 2, where r is the number of convergents we can compute accurately
and 0.515 is the base 10 logarithm of Lévy’s constant (6). Note that the fact that
N2 has many divisors gives us some flexibility and increases the likelihood of the
heuristics to be applicable. Indeed, our numerical experimenting agrees well with
our heuristic considerations (see Section 4). Early 2009, A. Yee and R. Chan [31]
reached r > 31 · 109 for log 2. On the other hand, Y. Kanada and his team [18]
computed π to over 1.24 trillion decimal digits already in 2002, using formulae of
the same complexity as those used for the computation of log 2 (see [2, Chapter 3]
for details). Thus, given the present computer (im)possibilities, one could hope to

show (with a lot of effort!) that m > 101012
.

Applying Theorem 2 with N = 28 · 35 · 53 or N = 28 · 35 · 54, and invoking the
result of Moree et al. [27] that N | k, we obtain the following

Theorem 3. If an integer pair (m, k) with k ≥ 2 satisfies (1), then

m > 2.7139 · 10 1 667 658 416.

As an application we can show that ω(m − 1) ≥ 33, this improves on the result
of Brenton and Vasiliu [5], who have shown that ω(m − 1) ≥ 26, where ω denotes
the number of distinct prime divisors; see Section 5.1 for further details.

The fact N2 | k naively implies that k is of size 10427 (at least), which is much

smaller than Moser’s 10106
. However, in this paper we show that the fact actually

yields that k > 10109
(and likely even k > 1010400

)—a modestly small number
dividing k leads to a huge lower bound for k. Thus, on revisiting [27] after 16 years,
its main result is seen to be far more powerful than the second author thought at
that time.

In the three following sections we prove Theorems 1, 2 and 3, respectively. Our
final Section 5 is devoted to discussing some problems related to the Erdős–Moser
equation.

2. Asymptotic dependence of k in terms of m

Our proof of Theorem 1 makes use of the following lemma.

Lemma 1. For any real k > 0, we have

(1−y)k = e−ky

(
1− k

2
y2− k

3
y3+

k(k − 2)

8
y4+

k(5k − 6)

30
y5+O(y6)

)
as y → 0. (7)

Moreover, for k > 8 and 0 < y < 1, the inequality

e−ky

(
1− k

2
y2 − k

3
y3 +

k(k − 2)

8
y4 +

k(5k − 6)

30
y5 − k3

6
y6

)
< (1− y)k < e−ky

(
1− k

2
y2 − k

3
y3 +

k(k − 2)

8
y4 +

k2

2
y5

)
(8)

holds.

Proof. As for the asymptotic relation in (7), we simply develop the Taylor expansion
of (1 − y)keky up to y5. Unfortunately, estimates coming from the classical forms
for the remainder are not sufficient to derive a sharp dependence on k as in (8) for
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the last term. Therefore, we need more drastic methods to quantify the asymptotics
in (7) when 0 < y < 1.

First note that

(1− y)ey = 1−
∞∑

n=2

n− 1

n!
yn

= 1− y2

2
− y3

3
− y4

8
− y5

30
− · · · , 0 < y < 1.

Since all coefficients, starting from n = 2, in this power series are negative and their
sum is exactly −1, for these values of y we have the inequality

1− y2

2
− y3

3
− y4

8
− y5

30
− y6

120
< (1− y)ey < 1− y2

2
− y3

3
− y4

8
. (9)

The quantities

x1 =
y2

2
+

y3

3
+

y4

8
and x2 =

y2

2
+

y3

3
+

y4

8
+

y5

30
+

y6

120
, (10)

which appear in (9), lie between 0 and 1 for 0 < y < 1.
Our next ingredient is Gerber’s generalization of the Bernoulli inequality [12] (see

also Alzer [1]). It states that the remainder after k terms of the (possibly divergent)
binomial series for (1 + x)a (a, x real with −1 < x) has the same sign as the first
neglected term. In particular we have for real k > 2 and 0 < x < 1,

(1− x)k < 1− kx +
k(k − 1)

2
x2, (11)

and for real k > 3 and 0 < x < 1,

(1− x)k > 1− kx +
k(k − 1)

2
x2 − k(k − 1)(k − 2)

6
x3. (12)

Using the right inequality in (9) and taking x = x1 in (11) we obtain, for k > 2,

(1− y)keky < 1− k

(
y2

2
+

y3

3
+

y4

8

)
+

k(k − 1)

2

(
y2

2
+

y3

3
+

y4

8

)2

= 1− k

2
y2 − k

3
y3 +

k(k − 2)

8
y4

+ k(k − 1)y5

(
1

6
+

17

144
y +

1

24
y2 +

1

128
y3

)
< 1− k

2
y2 − k

3
y3 +

k(k − 2)

8
y4 +

385

1152
k(k − 1)y5 (13)

implying the upper estimate in (8). In the same vein, the application of the left
identity in (9) and of (12) with x = x2 results, for k > 3, in

(1− y)keky > 1− k

2
y2 − k

3
y3 +

k(k − 2)

8
y4 +

k(5k − 6)

30
y5

− ky6

12∑
n=0

(ank
2 + bnk + cn)yn, (14)
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where the polynomials pn(k) = ank
2 + bnk + cn, n = 0, 1, . . . , 12, all have positive

leading coefficients an; moreover, pn(k) > 0 for k > 3 and n = 2, 3, . . . , 12, p1(k) =
1
24

k2 − 11
60

k + 17
120

> 0 for k > 4, and p0(k) = 1
48

k2 − 13
72

k + 121
720

> 0 for k > 8. Using
this positivity of the polynomials we can continue the inequality in (14) for k > 8
as follows:

(1− y)keky > 1− k

2
y2 − k

3
y3 +

k(k − 2)

8
y4 +

k(5k − 6)

30
y5

− ky6

12∑
n=0

(ank
2 + bnk + cn)

= 1− k

2
y2 − k

3
y3 +

k(k − 2)

8
y4 +

k(5k − 6)

30
y5

− ky6

(
1

6
k2 − 17

24
k +

11

20

)
, (15)

from which we deduce the left inequality in (8), and the lemma follows. �

Proof of Theorem 1. The original equation (1) is equivalent to

1 =
m−1∑
j=1

(
1− j

m

)k

. (16)

Applying to each term on the right-hand side the inequality from (8) we obtain

S0 −
k

2m2
S2 −

k

3m3
S3 +

k(k − 2)

8m4
S4 +

k(5k − 6)

30m5
S5 −

k3

6m6
S6

<
m−1∑
j=1

(
1− j

m

)k

< S0 −
k

2m2
S2 −

k

3m3
S3 +

k(k − 2)

8m4
S4 +

k2

2m5
S5, (17)

with the notation

Sn =
m−1∑
j=1

jne−kj/m =
m−1∑
j=1

jnzj

∣∣∣∣
z=e−k/m

.

By (2) we have e−1 < z < e−1/2, where z = e−k/m, and hence 1/(1 − z) <
1/(1− e−1/2) < 3, and in the closed-form expression of the sum

S0 =
m−1∑
j=1

zj =
z

1− z
− zm

1− z
,

the second term as well as its z d
dz

-derivatives are bounded:

0 <
zm

1− z

∣∣∣∣
z=e−k/m

< 3e−k and

0 <

((
z

d

dz

)n
zm

1− z

)∣∣∣∣
z=e−k/m

< 3n+1mne−k, for n = 1, 2, . . . .
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Therefore, we can write the inequality in (17) as

S ′0 −
k

2m2
S ′2 −

k

3m3
S ′3 +

k(k − 2)

8m4
S ′4 +

k(5k − 6)

30m5
S ′5 −

k3

6m6
S ′6 −

(
33k

2
+

34k

3
+

37k3

6

)
e−k

<
m−1∑
j=1

(
1− j

m

)k

< S ′0 −
k

2m2
S ′2 −

k

3m3
S ′3 +

k(k − 2)

8m4
S ′4 +

k2

2m5
S ′5 +

(
3 +

35k(k − 2)

8
+

36k2

2

)
e−k

implying

S ′0 −
k

2m2
S ′2 −

k

3m3
S ′3 +

k(k − 2)

8m4
S ′4 +

k(5k − 6)

30m5
S ′5 −

k3

6m6
S ′6 − 500k3e−k

<
m−1∑
j=1

(
1− j

m

)k

< S ′0 −
k

2m2
S ′2 −

k

3m3
S ′3 +

k(k − 2)

8m4
S ′4 +

k2

2m5
S ′5 + 500k2e−k,

(18)

where

S ′n =
∞∑

j=1

jnzj

∣∣∣∣
z=e−k/m

=

((
z

d

dz

)n
z

1− z

)∣∣∣∣
z=e−k/m

= (−1)n

((
z

d

dz

)n
1

z − 1

)∣∣∣∣
z=ek/m

for n = 0, 1, . . . ;

in particular,

S ′0 =
1

z − 1
, S ′2 =

z + z2

(z − 1)3
, S ′3 =

z + 4z2 + z3

(z − 1)4
, S ′4 =

z + 11z2 + 11z3 + z4

(z − 1)5
,

S ′5 =
z + 26z2 + 66z3 + 26z4 + z5

(z − 1)6
, S ′6 =

z + 57z2 + 302z3 + 302z4 + 57z5 + z6

(z − 1)7

with z = ek/m. Since 500k3e−k < (2k)−3 < m−3 for k > m/2 > 30, using our
equation (16) we can write the estimates (18) as

k(5k − 6)

30m5
S ′5 −

k3

6m6
S ′6 −

1

m3

< 1− S ′0 +
k

2m2
S ′2 +

k

3m3
S ′3 −

k(k − 2)

8m4
S ′4 <

k2

2m5
S ′5 +

1

m3
. (19)

Noting that e1/2 < z = ek/m < e, we find

0 < S ′5 <
e + 26e2 + 66e3 + 26e4 + e5

(e1/2 − 1)6
< 41438,

0 < S ′6 <
e + 57e2 + 302e3 + 302e4 + 57e5 + e6

(e1/2 − 1)7
< 658544,
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we continue (19) as follows:∣∣∣∣1− 1

z − 1
+

k

2m2

z + z2

(z − 1)3
+

k

3m3

z + 4z2 + z3

(z − 1)4

− k(k − 2)

8m4

z + 11z2 + 11z3 + z4

(z − 1)5

∣∣∣∣ <
110000

m3
, (20)

where z = ek/m.
We already know that k/m is bounded as m → ∞; making the ansatz k/m =

c + O(1/m), hence z = ek/m = ec + O(1/m), we find from (20) that

1− 1

ec − 1
= O

(
1

m

)
as m →∞,

hence ec = 2 and c = log 2. Now we take

k

m
= log 2 +

a

m
+

b

m2
+ O

(
1

m3

)
as m →∞,

hence

z = ek/m = 2 +
2a

m
+

a2 + 2b

m2
+ O

(
1

m3

)
as m →∞.

Substituting these formulas into (20) results in

O

(
1

m3

)
= 1− 1

1 + 2a/m + (a2 + 2b)/m2 + O(m−3)

+
log 2 + a/m + O(m−2)

2m

6 + 10a/m + O(m−2)

1 + 6a/m + O(m−2)

+
log 2 + O(m−1)

3m2

26 + O(m−1)

1 + O(m−1)

− log2 2 + O(m−1)

8m2

150 + O(m−1)

1 + O(m−1)
+ O

(
1

m3

)
=

2a + 3 log 2

m
−

3a2 − 3a + 13a log 2− 2b + 75
4

log2 2− 26
3

log 2

m2
+ O

(
1

m3

)
,

hence a = −3
2
log 2, b = (3 log 2 − 25

12
) log 2 and, finally, we get the asymptotic

formula (3).
To quantify this asymptotic expansion, we introduce the function

fm(C) =

(
1− 1

z − 1
+

λ

2m

z + z2

(z − 1)3
+

λ

3m2

z + 4z2 + z3

(z − 1)4

− λ(λ− 2/m)

8m2

z + 11z2 + 11z3 + z4

(z − 1)5

)∣∣∣∣
z=eλ

,

where

λ = λ(C) = log 2

(
1− 3

2m
− C

m2

)
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agrees with our k/m up to O(m−2). Direct computation then shows that

fm(0) > 0.005m−2 − 100m−3 and fm(0.004) < −0.00015m−2 + 100m−3

for m ≥ 100. Therefore, fm(0) > 110000/m3 for m > 2202 · 104 and fm(0.004) <
−110000/m3 for m > 734 · 106, so that |fm(C)| < 110000/m3 is possible only if
0 < C < 0.004. Comparing this result with (20) we conclude that, for k and
m > 109 satisfying (16), we necessarily have

k

m
= log 2

(
1− 3

2m
− Cm

m2

)
with 0 < Cm < 0.004. �

Clearly, the strategy to deduce further terms in the expansion (3) remains the
same, but in order to achieve precision O(m−n) for an integer n ≥ 2 we have to use
the Taylor expansion of (1− y)keky up to y2n+1 (each new term in (3) requires two
extra terms in the expansion of (1− y)keky). In this way we get

k = cm− 3

2
c−

(
25

12
c− 3c2

)
m−1 +

(
−73

8
c +

61

2
c2 − 25c3

)
m−2

+

(
−41299

720
c +

657

2
c2 − 598c3 +

1405

4
c4

)
m−3 + O(m−4)

)
≈ 0.69314718m− 1.03972077− 0.00269758m−1 + 0.00323260m−2

+ 0.00217182m−3 + O(m−4), (21)

where c = log 2. However, we do not possess any clear general strategy to quantify
such expansions. Already proving a sharp dependence on k for the remainder of
the n-th truncation of the Taylor expansion of (1 − y)keky (like we do for n = 4 in
Lemma 1) seems to be a difficult task. We discuss related problems in Section 5.

Proof of Corollary 1. Let (m, k) be a non-trivial integer solution of (1). By Moser’s
result we know that m > 109. It follows from Theorem 1 that

0 < log 2− 2k

2m− 3
<

0.0111

(2m− 3)2
. (22)

By Legendre’s theorem, | log 2 − p/q| < 1/(2q2) implies that p/q is a convergent
of log 2, while log 2 > p/q insures that the index of the convergent is even. Thus,
2k/(2m− 3) is a convergent pj/qj of the continued fraction of log 2 with j even. �

3. The proof of the main theorem

In this section we prove Theorem 2. The restrictions on the prime factorization
of qj in that result are established using an argument in the style of Moser given in
the proof of the following lemma.

Lemma 2. Let (m, k) be a solution of (1) with k ≥ 2. Let p be a prime divisor of
2m− 3. If p− 1 | k, then

νp(2m− 3) = νp(3
p−1 − 1) + νp(k) + 1 ≥ 2.

If 3 is a primitive root modulo p, then p− 1 | k.
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Proof. Using that k must be even, we find that

2m−4∑
j=1

jk ≡
m−1∑
j=1

jk +
m−3∑
j=1

(2m− 3− j)k ≡
m−1∑
j=1

jk +
m−3∑
j=1

jk (mod 2m− 3)

≡ mk + mk − (m− 1)k − (m− 2)k ≡ 2(3k − 1)(m− 1)k (mod 2m− 3),

where we used that mk ≡ (2m−3+m)k ≡ 3k(m−1)k (mod 2m−3) and (m−2)k ≡
(2m− 3−m + 1)k ≡ (m− 1)k (mod 2m− 3). On applying (5) with l = 2m− 3 and
r = k we then obtain that

2(3k − 1)(m− 1)k

2m− 3
≡ −

∑
p|2m−3
p−1|k

1

p
(mod 1). (23)

If p | 2m− 3 and p− 1 | k, the p-order of the right-hand side is −1. The p-order of
the left-hand side must also be −1, that is, we must have

νp(2m− 3) = νp(3
k − 1) + kνp(m− 1) + 1 = νp(3

p−1 − 1) + νp(k) + 1,

where we used that m − 1 and 2m − 3 are coprime. Now suppose that p | 2m − 3
and 3 is a primitive root modulo p (thus p | 3k − 1 implies p − 1 | k). If p − 1 - k,
the p-order of the left-hand side is ≤ −1 and > −1 on the right-hand side. Thus,
we infer that p− 1 | k. �

This completes the required ingredients needed in order to prove the main result.

Proof of Theorem 2. Since by assumption N | k, we can write k = Nk1 and thus
rewrite (22) as

0 <
log 2

2N
− k1

2m− 3
<

0.0111

2N(2m− 3)2
. (24)

We infer that k1/(2m−3) = pj/qj is a convergent to (log 2)/(2N) with j even. Since
p | m implies p− 1 - k (see, e.g., Moree [26, Proposition 9]), we have (6, qj) = 1. We
rewrite (24) as

0 <
log 2

2N
− pj

qj

<
0.0111

2Nd2q2
j

,

with d the greatest common divisor of k1 and 2m− 3. On the other hand,

log 2

2N
− pj

qj

>
1

(aj+1 + 2)q2
j

,

hence (aj+1 + 2)−1 < 0.0111/(2Nd2), from which the result follows on also noting
that 2m − 3 ≥ qj and invoking Lemma 2 (note that if νp(qj) ≥ 1, then νp(qj) =
νp(2m− 3)− νp(k1)). �

To prove that p | m implies p−1 - k one uses that k must be even and takes l = m
in (5), showing that

∑
p|m, p−1|k

1
p

must be an integer. Since a sum of reciprocals of

distinct primes can never be an integer, the result follows.
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4. Computation of the continued fractions

We make use of conditions (a), (b), (c) of Theorem 2. We recall that we expect
E(log qj(N)(ξ)) ∼ c1N for a generic ξ ∈ [0, 1] satisfying these conditions. Indeed, on
the basis of theoretical results, heuristics and numerical experiments, we conjecture
that c1 = 60π2.

N j = j(N) aj+1 qj (rounded down) qj mod 6 p = p(qj)

1 642 764 2.383153 · 10 330 −1 149

2 664 1 529 2.383153 · 10 330 −1 149

22 1 254 21 966 1.132014 · 10 638 +1 5

23 1 264 43 933 1.132014 · 10 638 +1 5

24 1 280 87 866 1.132014 · 10 638 +1 5

25 1 294 175 733 1.132014 · 10 638 +1 5

26 8 950 26 416 3.458446 · 10 4 589 −1

27 8 926 52 834 3.458446 · 10 4 589 −1

28 119 476 122 799 1.374540 · 10 61 317 +1

28 · 3 119 008 368 398 1.374540 · 10 61 317 +1

28 · 32 139 532 782 152 9.351282 · 10 71 882 +1 56 131

28 · 33 6 168 634 1 540 283 8.220719 · 10 3 177 670 +1

28 · 34 22 383 618 5 167 079 5.128265 · 10 11 538 265 +1 17

28 · 35 155 830 946 31 664 035 2.257099 · 10 80 303 211 −1

28 · 35 · 5 351 661 538 85 898 211 9.729739 · 10 181 214 202 −1

28 · 35 · 52 1 738 154 976 1 433 700 727 1.594940 · 10 895 721 905 +1 5

1 977 626 256 853 324 651 1.196828 · 10 1 019 133 881 −1

28 · 35 · 53 2 015 279 170 4 388 327 617 5.565196 · 10 1 038 523 018 −1 19

3 236 170 820 2 307 115 390 5.427815 · 10 1 667 658 416 +1

28 · 35 · 54 2 015 385 392 21 941 638 090 5.565196 · 10 1 038 523 018 −1 19

3 236 257 942 11 535 576 954 5.427815 · 10 1 667 658 416 +1

Table 1. Smallest integers j satisfying conditions (a), (b) and (c) of Theorem 2

The computation of (log 2)/(2N) is done in two steps. First, we generate d digits
of log 2. For this we use the γ-cruncher [31]. With this program, A. Yee and
R. Chan computed 31 billion decimal digits of log 2 in about 24 hours. Second, we
set a rational approximation of (log 2)/(2N) with a relative error bounded by 10−d.
Then partial quotients of the continued fraction of (log 2)/(2N) are computed: about
0.97d of them can be evaluated, with safe error control [4] (cf. the result of Lochs
mentioned in Section 1). We maintain a floating point approximation of numbers qj
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(rounded down) and residues of qj (mod 6) by the formula qi+1 = ai+1qi + qi−1 for
i ≥ 0, where q0 = 1 and q−1 = 0.

Table 1 was created with the ‘basic method’ of [4] for N ≤ 28 · 34. It was fast

enough to reach the benchmark m > 10107
in four days with 50 · 106 digits of log 2.

Bit-complexity of this algorithm (or of the indirect or direct methods [4]) is quadratic

and reaching the m > 101010
milestone would take centuries.

Some subquadratic GCD algorithms were discovered that have asymptotic run-
ning time O(n(log n)2 log log n) [24]. A faster version of the program was written:
this time a recursive HGCD method is applied. It is adapted for computing a con-
tinued fraction by using Lemma 3 of [4] (which is similar to Algorithm 1.3.13 of [8])

for error control. With it the program leaps over 10108
in just about one hour. Fi-

nally, the new benchmark m > 10109
is established in no more than 10 hours with

3 · 109 digits of log 2, N = 1555200 and condition (d): the first found solution fits

conditions (a)–(c), but not (d). With N = 7776000, m > 10109
is achieved for the

smallest j. See Table 1: in the last column, p is a prime such that p ∈ P(N) and
νp(qj) = 1, that is, such that condition (d) of Theorem 2 is violated.

Now, computation time is not a problem to achieve the m > 101010
milestone,

a few days will be sufficient on a computer with a large amount of memory. We
remark that the complexity and hardware requirement for computation of the digits
of log 2, respectively for computation of its continued fraction expansion, are similar.

5. Miscellaneous

5.1. The number of distinct prime factors of m− 1. There is a different ap-
plication of Theorem 3 suggested by the work of Brenton and Vasiliu [5], to factor-
ization properties of the number m − 1 coming from a non-trivial solution (m, k)
of (1). A result of Moser [28] (which can also be deduced from the key identity (5),
cf. the proof of Lemma 2 above) asserts that∑

p|m−1

1

p
+

1

m− 1
∈ Z; (25)

in particular, the number m − 1 is square-free. Since the sum of reciprocals of the
first 58 primes is less than 2, we conclude that either ω(m− 1) ≥ 58 or the integer
in (25) is equal to 1. In the latter case, we can apply Curtiss’ bound [9] for positive
integer solutions of Kellogg’s equation

n∑
i=1

1

xi

= 1,

namely, maxi{xi} ≤ An−1, where the Sylvester sequence {An}n≥1 = {2, 3, 7, 43, . . . }
is defined by the recurrence An = 1+

∏n−1
i=1 Ai (for some further info, see e.g. Odoni

[29]). From this result and the estimate An < (1.066 · 1013)2n−7
, we infer

m < (1.066 · 1013)2ω(m−1)−6

,
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which together with the lower bound on m from Theorem 3 yields ω(m − 1) ≥ 33.
A similar estimate on the basis of another (25)-like identity of Moser implies that
ω(m + 1) ≥ 32.

5.2. Generalized EM equation. The method we use in Section 2 for deriving the
asymptotics of k in terms of m works for the more general equation

1k + 2k + · · ·+ (m− 1)k = tmk, (26)

with t ∈ N fixed, as well. Indeed, the coefficients in the Taylor series expansion

(1− y)keky = 1− k

2
y2 − k

3
y3 +

k(k − 2)

8
y4 + · · · =

∞∑
n=0

gn(k)yn (27)

are polynomials satisfying

g0(k) = 1, g1(k) = 0, and degk gn(k) =

[
n

2

]
, gn(0) = 0 for n ≥ 2;

(28)
the latter follows from raising the series (1 − y)ey = 1 − y2/2 − y3/3 − · · · to the
power k. In these settings, equation (26) becomes

t =
m−1∑
j=1

(
1− j

m

)k

=
m−1∑
j=1

e−kj/m

∞∑
n=0

gn(k)

(
j

m

)n

=
∞∑

n=0

gn(k)

mn

m−1∑
j=1

jne−jk/m

(since
∑∞

j=m jne−jk/m = O(mne−k))

∼
∞∑

n=0

gn(k)

mn

∞∑
j=1

jne−jk/m =
∞∑

n=0

gn(k)

mn

((
z

d

dz

)n
z

1− z

)∣∣∣∣
z=e−k/m

=
∞∑

n=0

gn(k)

mn
(−1)n

((
z

d

dz

)n
1

z − 1

)∣∣∣∣
z=ek/m

,

hence in the notation λ = k/m and x = 1/m we have

t =
∞∑

n=0

gn

(
λ

x

)
(−x)n

((
z

d

dz

)n
1

z − 1

)∣∣∣∣
z=eλ

. (29)

Searching λ in the form λ = c0 + c1x + c2x
2 + · · · , we find successively

c0 = c(t) = log

(
1 +

1

t

)
= log

t + 1

t
, c1 = −

(
t +

1

2

)
c,

c2 =

(
t +

1

2

)3

c2 −
(

t +
1

2

)2

c− 1

4

(
t +

1

2

)
c2 +

c

6
,
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and so on. Note that cn(−(t + 1)) = (−1)n+1cn(t) for n = 0, 1, 2, . . . ; this reflects
the equivalence of equation (26) and

1k + 2k + · · ·+ (m− 1)k + mk = (t + 1)mk. (30)

From this asymptotics we see that

2k

2m− t1
= c +

t31c
2 − 2t21c− t1c

2 + 4c/3

2(2m− t1)2
+ O

(
1

(2m− t1)3

)
, (31)

where t1 = 2t+1 and c = log(1+1/t). It can be checked that for all positive integers
t we have the inequality

−0.22 < t31c
2 − 2t21c− t1c

2 +
4c

3
< 0,

and hence 2k/(2m − 2t − 1) is a convergent (with even index) of this logarithm
c = log(1 + 1/t) for m large enough.

5.3. Saddle-point method. A different approach to treat the asymptotic behaviour
of k in terms of m for k and m satisfying (1) (or, more generally, (26)) is based on
the integral representation

1k + 2k + · · ·+ (m− 1)k =
Γ(k)

2πi

∫ C+i∞

C−i∞

emz

(ez − 1)zk+1
dz,

where C is an arbitrary positive real number (cf. [10, p. 273]). On noting that

emz

ez − 1
=

e(m−1)z

1− e−C

(
1 +

1− ez−C

ez − 1

)
one obtains, on taking C = (k + 1)/(m − 1) and after invoking some rather trivial
estimates, that

1k + 2k + · · ·+ (m− 1)k =
(m− 1)k

1− e−(k+1)/(m−1)

(
1 + ρk(m)

)
, (32)

with

|ρk(m)| <
√

2(k + 1)C√
π(k − 1)(eC − 1)

.

(This part of the argument is due to Delange; for more details see [10, pp. 273–274].)
By (2), C is bounded and we infer that |ρk(m)| = O(k−1/2) = O(m−1/2). On putting
mk on the left-hand side of (32) and using (1 − 1/m)m = exp(−1 + O(m−1)), we
immediately conclude that, as m →∞,

k

m
= log 2 + O

(
1√
m

)
,

where the implied constant is absolute. A more elaborate analysis, using the saddle-
point method, will very likely allow one as many terms in the latter expansion as
required.
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5.4. Experimental asymptotics. It is worth mentioning a fast experimental ap-
proach of doing asymptotics like (21). Given numerically a few hundred terms of
a sequence s = {sn}n≥1 that one believes has an asymptotic expansion in inverse
powers of n, one can try to apply the asympk trick, a simple but often powerful
method to numerically determine the coefficients in the ansatz

sn ∼ c0 +
c1

n
+

c2

n2
+ · · · .

As a second step one tries to identify the so-found coefficients with (linear combina-
tions of) known constants. Thus, one arrives at a conjecture that hopefully can be
turned into a proof. For more details and some ‘victories’ achieved by the asympk

method, see Grünberg and Moree [13].
D. Zagier has applied this trick to the sequence of k = k(m) obtained from (1)

on letting m run through the first thousand values. Excellent agreement with our
theoretical results was obtained in this way.
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[10] H. Delange, Sur les zéros réels des polynômes de Bernoulli, Ann. Inst. Fourier (Grenoble)
41 (1991), 267–309.
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