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Introduction

Abstract: Wc give a llnified approach to tbc Isomorphism Conjecture of FarreH anel Joncs Oll
thc algcbraic K- anel L-theory of integral group rings anel to the Baurll-Connes Conjccturc Oll
thc topological K -theory of reduced group C* -algcbras. The approach is through spectra ovcr tbc
orbit catcgory of a eliscrete group G. We givc scvcral points of view on the assembly map for
a family of subgroups anel elescribe such assembly maps by a universal property gencralizing thc
results of Wciss anel Williarlls to thc cquiva.riaut sctting. The main tools are spaces anel spcctl'a.
ovcr a. category anel thc Stllely of the associatecl gcncl'alizeel hmllology anel COhOlllOlogy thcories anel
homotopy limits.

Key words: Aigebraic K anel L-theory, Baum-Coullcs Conjecture, assernbly ruaps, spaces allel
spcctra ovcr a category

AMS-classification number: 57

Glcu Brcclon [5] introdueed thc orbit catego1"Y 01'(G) of a group G. Objcets arc ho­
IllOgCIlCOUS spaces GIH, eonsidereel as left G-sets, ancl Illorphisnls are G-Illaps. This is a
useful eonstruct for organizing the stuely of fixccl sets anel quotients of G-actions. Ir G
acts on a set ..-\, there is the contravariant fixeel point fuuctor Or(G) ---+ SETS given by
G/ H 1-1 ).;11 = IllaPc(GIH, ..-Y) anel thc covariant quotient space functor Or(G) ---+ SETS
givcn by G/H 1-1 ..-Y/H =..-Y Xc G/H. Bredon used thc orbit category to define equivariaut
COhOIIlOlogy thcory and to develop equivariant obstruction theory.

ExaUlples of covariant fUBetors frmn the orbit catcgory of a discrete group G to abelian
groups are giVCB by algcbraic ](-thcory ](i(71H), algebraie L-theory Li(71H), anel thc !(­
thcory ]<itoP(C;(H)) of the reduced C*-algcbra of H. In Section 2, we express eaeh of these
H.,,'! thc conlpositc of a [unetor Or(G) ---+ SPECTRA with the i-th homotopy grollp. VVc
usc thcse fUllctors to give a clean fornlulation of 50111C of thc 111ain conjectllrcs of high-

1Snpportcd by the Alexander von Humboldt-Stiftung alld the National Science Foundation. .Jamcs F.
Davis wishes to thank thc .Johannes Gutcnbcrg-Univcrsität in r\'tainz for its hospitality when this work was
initiatcd.
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elitnensional topology: the ISOInOrphisl11 Conjecture of Farrell-Joncs [14] (whieh itnplics the
Borel/Novikov Conjeeturc) anel the Bmun-Conncs Conjeeture in thc ease of diserete grollps.

Our rnotivation was in part to obtain such a fonnulation anel anel in part t.o set the
stage for explicit cOlnputations baseel on isolnorphisln eonjcetures. \-Ve give conlputations of
](- anel L-groups of group rings in a separate paper [7]. Our fonDulation is uscd by Kilnberly
Pcarson [27] to show that thc vVhiteheael group \Vh(G) anel the rceluced f(o-group [(o(ZG)
vanish for two dilllensional crystallographie groups. \~Te also hope our formulations will prove
usefnl in thc further stlldy of isomorphisnl conjeetures anel in the rclateel stuely of manifolds
achnitting Inetrics of positive scalar ellrvature.

Seetions 1, 3, 4 anel 7 contain founelational background, independent of a..'lselnbly Inaps
and algebraic f<-theory. SectiOll 2 is dcvoted to f(-theory, allel Sections 5 and 6 to asselnbly
rnaps. t\10rc preciscly, in Section 1 we eliscuss the adjointness of Inapping spaces and tensor
(01' balanceel) products over a category, as well as the notions of spaces and spcctra over a
catcgory. In SectiOll 2, we define our threc Ill<ün cxatnples of Or(G)-spectra: Ka1g, L, and
KtoP. Thcy are all clcfined by first assigning to an object CIH, thc transfonnation groupoid
GIH, whose objects are elelllents of GIH, and whose morphislns are given by nnlltiplication
by a group element, anel then assigning a spectrulll to a groupoiel. In the KtoP-case thcre
is an intennediate step of considering the C* -catcgory of a groupoid and a spectnun of a
C·-category, elerivcd from Bott perioclicit.y.

In ScctiOll 3 we eliscuss free CHi-cOInplexcs over a category C, the universal free C1V­
cornplex EC over a catcgory C, anel hornotopy (co)-limits EC ®c..'\ of a C-spacc ..'\. Thc ieleas
here are well-known to thc experts (sec e.g. [10]), but the approach: relying on hOlnological
111ethods anel ayoiding simplicial Inethoels, filay appeal to an algebraist. By approxirnating
a C-space ..'\ by a free C-CvV-conlplcx, in Section 4 we clefine hornology He; (X; E) anel
cohomology of aspace He (..'\; E) of aspace with coefficicnts in a C-spectflllrl E. \~Te givc an
Atiyah-Hirzcbruch type spectral sequence for these thcories.

\'-Tith regarcl to the asselnbly 1l1apS arising in thc Isolnorphisll1 Conjecturcs, we give
three points of view in SectiOll 5. Let F be a family of subgroups of G, dosed undcr
indusion anel conjugation. Let E : Or(G) ----+ SPECTRA be a covariant functor. "-Te elefine
a funetor

E% : C- SPACES ----+ SPECTRA

by setting E%(X) = (GI H ----+ ..'\H)+®Or(G)E. Then 7r.. (E%(X)) is an equivariant honlology
theory in the sense of Bredon [5]. Let E(G, F) be the classifying space for a family of
subgroups of C, Le. it is a G-Cl'V-cOlnplex so that E(G,F)H is contractible for subgroups
H in F anel is elllpty for H not in F. Thc 111ap

7r.. E%(E(C,.1')) ----+ 7r.. E%(GIG)

given by applying E% to the constant Illap anel then taking hOlnotopy groups is calleel thc
(E,.1', G)-a8sembly 7nap. \Vc say thc (E, F, G)-isornorphi87n conjecl1L7'e holels if the (E, F, G)­
assCll1bly Inap is an iSOl110rphislIl. \iVhcn F = ),C, the family of virtual cyclic subgroups of G,
(i.e. H E ),C if and onl)' if H has a cyclic subgroup of finite index), thc iSOlnorphislll conjec­
tllres of Farrell-Joncs [14] for algebraic f(- anel L-theory are cquivalcnt to thc (Kalg , ),C, G)-
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and (L, ).,C 1 C)-isoInorphisIn conjcctures, where Kalg and L are 01'(C)-spectra associated to
algebraic ](- anel L-theorics. When F = FLN", thc faInily of finite subgroups of C, alld Kto!'

is the 01'(C)-spectra associated with the ](-theory of C*-algebras, then the (KtOP, FLN", G)­
IsomorphisIn Conjecturc is equivalcnt to the Baunl-Conncs Conjectllre (see Section 5). \,VhcIl
F = 1, the fanlily consisting only ofthe trivial subgroup of C, thcn thc (Kalg , 1, C), (L, 1, C),
anel (KtoP, 1, G)-assembly Inaps can bc idcntifiecl with Inaps H.(BG; Ka1g(Z)) ----7 ](.(ZG),
H*(BG; L(Z)) ----7 L*(ZG), anel H.(BG; KtoP(C)) ----7 ](;OP(C;C).

V/e give thrcc variant ways of exprcssing thc (E, F, G)-asselnbly map: by approxiInat­
ing E by E% as above, in tenns of homotopy eolinlits, anel in terms of a generalized hOlllOlogy
theory over a catcgory. Thc first definition is thc quiekest and leads to an axiolnatic ehar­
aeterization; the last two are well-suitcd for eOIllplltations.

Let Or(G, F) be thc rcstricteel orbit catcgory, where thc objcets are G/ H with H E F.
The (E, F, C)-a..l5selnbly Inap is cquivalent to the Inap

7f*(hoeoliInE) ----77f*(hoeoliInE)
Or(G,F) Or(G)

inelueeel by the indusion of the restrietcd orbit eategory in the fuU orbit category. Since
E(G, F) is only defineel Hp to G-homotopy typc, it is natural for us to define hOInotopy
linlits anel eolilnits as a hOInotopy type, rather than a fixed spaec 01' spectra; we take this
approach in Seetion 3.

Given a faInily F of subgroups of C, define the 01'(G)-spaec {*}..r to be thc funetor
whieh scnds G/ 11 to a point if H is in :F anel to the clnpty sct othcrwise. Let {*} bc thc
trivial Or(G)-space, which sends G/ H to a point for all H. Thc thirel point of view is to
ielentify the (E, F, G)-asscInbly Inap with the map

indueed by tbe indusion Inap of 01'(G)-spaces, {*}.:F ----7 {*}.

Scetion 6 givcs a eharacterization of asscmbly Inaps, generalizillg that of \iVeiss-vVillialTIS
[41] to thc equivariant sctting. Assoeiated to a hOlnotopy invariant funetor

E : G- SPACES ----7 SPECTRA,

we define a oew funetor
E% : G- SPACES ~ SPECTRA,

and a natural transfonnation
A : E% ----7 E,

where A(G/ H) is a hOIllOtOpy cquivalcnee for all orbits G / H. Here E% is thc "bcst approx­
iInation" of E by an exeisive funetor, in partiCldar 7f*(E%(X)) is an cquivariant hOlllOlogy
thcory. \·Vhen E(X) = K alg(I1(EC Xc ..-Y)) where rr is thc fundanICntal groupoid, then the
1l1ap 7f.. (A(E(G, F))) is equivalent to thc (Kalg,.r 1 G)-asscInbly Illap. An analogous statc­
nlent holels for L-theory anel for thc topologieal ](-theory of C" -algcbras. This givcs a fourth
point of view on asselnbly Inaps.
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In Section 7 wc Inakc cxplicit thc corrcsponclcllce bctween G-spaecs anel Or(G)-spaees
whieh has beeil ilnplicit throughout the paper.

vVc thank Erik Pcdcrscll for warning us about two pitfalls relatcel to thc spcetra of
algcbraic ]{- anel L-theory alld Stcphan Stolz for discussions on the nulterial of Section 2.

The paper is organizcd ac; follows :

O. Introduetion
1. Spaces anel Spectra ovcr a Catcgory
2. ](- alld L-Theory Spcctra over the Orbit Category
3. CHi-Approxitnations alld Hornotopy Lilnits
4. (Co-)Hornology Theories Associated to Spectra over a Category
5. Asselnbly Ivlaps and Isorl1orphislll Conjectures
6. Charactcrization of Assembly Ivlaps
7. G-Spaces anel Or(G)-spaces

Refercnees
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1. Spaces and Spectra over a Category

This section gives basic definitions anel exanlples of spaces anel spcctra over a SIllall

(discretc) category C anel discusses thc adjointncss of the tensor prodllct anel Inapping space.
Our Inain cx<uuple for C is duc to Bredon [5J:

Definition 1.1 Let G be a group and :F be a fantily of subgroups, i. e. a non-ernpty set
of subgroups of G clo.'3cd undcr taking conjugates and subgroups. Tlte orbit category 01'(G)
has as objects hornogeneous G-spaces GIHand as morphisms G-rnaps. The orbit category
Or(G,:F) with respcct to :F is the full subcategory of Or(G) consisting oj those objeets GI H
for which H belongs to :F. •

Exalnplcs of fanülies are :F = {H C G I ..\ Jl i= 0} for a G-spacc ..\, thc finite subgroups
of C, and thc virtually cyclic subgrollps of G. Notice that the alltolllorphisln grollp of an
object GI f1 can bc identified with thc \Veyl group Hl(H) = N(H)I H. Furthenuore if 11 is
finite, then any enclOluorphisIll of GI H is invcrtible, but not in gencral [23, Lemlna 1.31 on
page 22]. \,Ve will always work in the category of cOlnpactly generated spaces (see [37] and
[42, 1.4]).

Definition 1.2 A covariant (contravariant) C-space X over thc category C is a covariant
(contravariant) func tor

X : C ----+ SPACES

fr'out C into the category of cornpactly generated spaces. A rnap between C-spaces is a nat'ural
transformation of such junctors. Given C-spaces ..\ and Y, denote by hornc(..\, Y) the .space
of maps ofC-spaces from ~\ to Y with the subspace topology coming frorn the obvious incl1lsion
into ncEOb(C) rnap(..\(c), Y(c)). •

Likewise we can define aC-set and an RC-Inodule. For a ring R a RC-module is a
fuuctor NI froln C to thc catcgory of R-Illodules. For two RC-rIlodulcs 1\1 and LV of thc salnc
variance, hOIlIRC(1'1, lV) is the abelian group of natural transfonnations froll1 lVI to lV. \~Te

can fornl kerncls aud cokernels, so the category of RC-nlodules is an abelian category, and
thus one can use hOlnological algebra to study RC-Inodules (see [23]).

Let G be a group. Let 1 be the faluily consisting of precise1y one cleInent, HaInely
the trivial group. Then Or(G, l) is a category with a single objcct, anel the morphisms
cau be identifiecl with the group G. A covariant (contravariant) Or(G, l)-space is the salne
as a left (right) G-space. Ivlaps of Or(G, l)-spaces correspond to G-Inaps. For a different
cxalnple of an orbit category, let Zp be the cyclic group of order p for a prinle number p. A
contravariant Or(ZlJ)-space Y is specified by a ZTJ-space Y (Zpl {I} ), aspace Y (ZpIZp), and
a luap )7 (Zp/Zp) ----+ )'~ (Zpl {I} )ZP.
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Example 1.3 Let Y be a left G-space anel :F be a fmnily of subgroups. DeRne the associateel
contr-avariant Or(G, :F)-space lnapc(-, Y) by

Iuapc(-, Y): Or(G,:F) -----7 SPACES •
Next wc explain two itnportallt constructions which makc out of two C-spaces aspace.

Thcy are calleel the coenel anel end constructions in category theory [24, pages 219 and 222].
A lot of well-knowll constructions are special cases of it.

Definition 1.4 Let./\ be a contravariant and Y" be a covariant C-space. Define their tensor
product to be the space

X ®c Y· = TI X (c) x )'~(c)/ f"V

cEOb(C)

where f"V is the equivalence relation generated by (xcj>, y) f"V (x, cj>y) Jor aU morphisrns
c/J : c -----7 d in C and points x E X(d) and y E Y"(c). Here xfjJ stands JOT ..'\(fjJ)(x) and
1>Y Jor Y(4))(y). •

Recall that the category of covariant (contravariant ) Or(G, 1)-spaccs is the category
of left (right) G-spaces. The balanceel proelllct X Xc Y of a right G-space ..'\ anel of a left
G-space )'~ can be identifiecl with the tensor proeluct ); 00r(G,1) )'~. Thc ll1appillg space
llHLPc(./\, Y) of two left (right) G-spaces )( ancI Y" can be identified with h01110 r (G,I) (X, lT).

The lnain property of the tellsor product is the following.

Lemma 1.5 Let..'\ be a contravariant C-space, Y be a cova1'iant C-Bpace und Z be a "pace.
Derwte by Iuap(Y, Z) the obvious contravariant C-space whose val1te at an object c is tILe
mapping Bpace rnap(Y(c), Z). Then there is a homeomorphisrn natur'al in X, Y' and Z

T = T(..'Y, Y, Z) : Inap(..Y 0c 1', Z) -----7 hOInc(X, Illap(Y, Z))

Proof: \Ve only illdicate thc definition of T. Given a Illap 9 : X 0c Y ~ Z, \Vc havc to
specify for each object c in C a lllap T(g)(c) : ..'\(c) -----7 Inap(Y"(c), Z). This is the saille as
spccifying a lnap ..'\ (c) X }' (c) -----7 Z which is defineel to be the cOinposition of 9 with the
obvious Inap fronl.Y(c) X Y(c) to )C0c Y. •

In particular Lelnlna 1.5 says that for a fixed covariant C-space }' the fnnctor - 0c Y
frOin thc catcgory of contravariant C-spaces to the category of spaces and the [nnctor
Inap(1', -) fron1 thc category of spaces to the category of contravariant C-spaces are adjoint.
SiInilarly if JV is a covariant RC-module, then there is acIjoint to hOlnRC (N, - ), nalnely tlIc
teIlSOl' product of RC-ll1odules - ®RC JV (see [9, p. 79], [23, p. 166]). IvIany properties of
these products Ci:Ln be proven via the adjoint property, rather than referring back to the
definition. These products are renünisccnt of the analogous situation of a right R-1l10dule
X, a lcft R-Illoclllle Y allel an abelian group Z, the tensor product )( 0u }', thc R-lnoclule
hon1z (Y, Z). Here there is a natural adjoint iSOIl10rphisITl

h01nz(..'\ 0n Y, Z) -----7 homR(X, hOIllZ(Y, Z)).
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Lemma 1.6 Let ~\ be a sIJace and let Y and Z be covariant (contravariant) C-spaceB. Let
~\ x Y be the obviou.'i covariant (contravariant) C-.'ipace. There is a horneo17wrphism, natural
in ~\J Y, and Z

T(~\, Y, Z) : hOIl1c(X X y', Z) --t Inap(~Y, hon1c(Y, Z)). •

Example 1.7 Let ß be the category of finite orclered sets, i.e. for cach non-negative integer
]J we have an object [p] = {O, 1, ... ,p} anel morphisms are Inonotone functions. A sirnplicial
space X. is by definition a contravaria,nt ß-space anel a cosimplicial space is a covariant
ß-space. A simplicial set is a contravariant ß-set. It can be considered as a siInplicial
space by using thc discrete topology. Define a covariant ß-space ~. by assigning to [p]
the standard p-siInplcx anel to a Inonotone funetion thc obvious siInplicial Inap. Given
a topological space }7, the a8sociated simplicial set S.17 is given by map(~.,Y)d. (Thc
subscript cl indicates that we equip this Inapping space with the discrcte topology, in contrast
to the uSllal convention.) The geometrie realization IX.I of a simplicial space )(. is thc space
~Y. 0a ~.. The geolnetric realization of a siInplicial set has has the strllcture of a CvV­
cOlnplex where each non-degenerate p-sitllplex corresponcls to a IJ-cell.

\\Te get frOIll LCIllma 1.5 that these two functors are adjoint, i.e. there is a natural
hOIlleomorphism for a simplicial space )(. and aspace }7

T(X., Y) : map(I~\.I, Y) --t homa(~Y" S.}7).

In particular we get for aspace }7 thc natural UUtp given by the acljoint of thc identity on
S.l'''

t(Y) : 18.17
1 -t Y

whieh is known to be a weak homotopy cquivalence. Hence t(Y) is a functoric:l1 eonstruetion
of a eHr-approxiInation of the space Y. For tllOre infonllation about SiIllplicial spaces and
sets we refcr for instance to [4] [6], [22] and [25]. •

Next wc intraduce spectra over a category C. Let SPACES+ bc the category of pointed
spaees. Recall that objects are eompaetly gencrated spaces X with base points for whieh
the inclusion of thc base point is a eofibratioll and IllorphislllS are pointed Illaps. vVe deHne

the eategory SPECTRA of speetra as fallows. A spectnL1n E = {(E(n), a(n)) In E Z} is
a sequcnee of p ointed spaces {E (n) 1 n E Z} together wi th painted maps called structure
1naps a(n) : E(n) 1\ SI -t E(n + 1). A (8trong) rnap of speetra f : E~ E' is a sequenee
of Illaps f(n) : E(n) --t E'(n) whieh are eompatible with the strueture Illaps a(n), i.e. we
have f(n + 1) 0 a(n) = al(n) 0 (1(n) 1\ idsl) for a11 n E Z. This should not be confllsed
with the notion of Inap of spcctra in the stable eategory (see [I, 111.2.)). Rceall that the
hOIllOtopy graups of a spectnull are defined by

whcre the system 7ri+k(E(k)) is given by the cOlnposition
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of the suspension homOillorphislll allel thc hOillOillorphisll1 indllceel by the structure l11ap. A
wcak homotopy equivalcnce of spectra is a map f : E --r F of spectra indllcing an iSOIllor­
phisll1 on a1l hOlllOtOpy grollps. A spectnllll E is called O-s]Jectrurn if for erlch structurc
nUtp, its adjoillt E(n) ----t OE(n + 1) = Inap(Sl, E(n + 1)) is a weak hOI110tOpy cquivalencc
of spaces. \-\'e denote by O-S P ECTRA the corresponding full sllbcategory of SPECTRA.

A pointed C-space resp. a C-spectrum resp. C-O-spectrum is a fllnctor fr0111 C to
SPACES+ res}). SPECTRA resp. ,O-SPECTRA. vVe have introclllced tensor proclllct of
C-spaces in Definitions 1.4 anel luapping spaces of C-spaccs in Definition 1.2. These notions
extenel to poillted spaces, olle siInply has to replace disjoint unions Uanel cartesian products
n by wedge proclucts V anel sinash products A anel mapping spaces by pointed l11appillg
spaces. All the aeljunction properties reluain true. Any C-space ./\ elctcnnincs a pointecl
C-space ./\+ = ./\ II{*} by adjoining a base point. Here {*} elenotes a C-space which assigns
to any ohject a single point. It is called thc trivial C-space.

A C-spectrun1 E cau also bc thollght of as a sequence {E(n) I n E Z} of pointeel C­
spaces anel the structurc maps as Illaps of pointed C-spaces. \-\'ith this interpretation it is
obvious what the tensor prod1lct s]Jectru1n, X 0e E of a contravariant pointeel C-space anel a
covariant C- spectrull1 means. The canonical associativity hOll1eOlnorphisIl1S

are used in order to elefiue thc strncture Inaps. It is given on represelltatives by sending
(x 0c e) 1\ z to x 0e (e 1\ z). I\10re abstractly, it is illelucecl by thc following COIl1position of
natural bijections COlllillg frm11 various aeljunctions where Z is a poilltecl space

nutp (C.:\'" 0c E(n)) A sI, Z) ----t Illap (.X,. 0c E(n), rnap(SI, Z)) --r

map (X, horne (E(n), Inap(SI, Z))) -+ Il1ap (X, hOlne (E(n) A SI, Z))
-r ll1ap(./\ 0c (E(n) A SI), Z).

Sinülarly one elefincs the rnapping space spectl'um hOlnc(..-\, E) of a pointeel C-space .L\ anel
a C-spectrum E using the canonical Inap of poillteel spaces (which is Bot a hOmeOl110rphisITI
in general)

hOllle(./Y, E(n)) A Si --r h01nc(X, E(n) A SI).

This map assigns to </J A z the 111ap of C-spaces from ./\ to E(n) 1\ SI which sends x E ./\(c)
to rjJ(c) (J;) A z E E(n)(c) A SI for c E Ob(C).

A hornotopy of rnap8 of 8]JectnL fk : E --r F is a 111ap of spectra h : [0,1]+ A E ----t F
whose cOinposition with the indusion ik : E --r [0,1]+ 1\ E e H k A e is fk for k = 0,1.

Let C anel V be two categories. A C-V-s]Jace is a covariant C x VOP-space where VOP
IS the opposite of V which has thc SaIne objccts as V aud is obtained by rcvcrsing thc
dircction of all arrows in V. This is the analogue of a R-S-biInodule for two rings R ancl S.
Let F : C -+ V be a covariant fllnctor. vVe gct a V-C-space rnorv(F(?), ?7) if wc usc thc
discrete topology on thc set of ll1orphisI11S. Here 7 is the variable in C anel 7? is the variable
in V. Analogously onc clcfines a C-V-space morv (?7, F (7)).
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Definition 1.8 Given a covariant (contravariant) C-space X, define the induction of J\
with F to be the covariant (contravariant) 'V-space

F.,X = mor1)(F(?), ?7) 0e X

respec tively
F*)[ = J\ 0e 1110 r1) (77, F(?))

and the coinduction of J\ with F to be the covariant (contravariant) 'V-space

respectively
F!X = home(lllorv(F(?), 77), X).

Given a covariant (confravariant) 'V-space Y, define the restrietion of Y with F to be fhe
eovariant (contravariant) C-space F*1'~ = Y 0 F. _

There are corresponding definitions for C-sets alld RC-ll1odules (sec [9, p. 80), [23,
p. 166] for incluction of 11lodules). For example, if kI is a covariant RC-n1odule, then
F*lvJ = RlnOr1)(F(7), 77) 0RC 1'1, ,vhere for a set S the notation RS is the free R-Inoclllie
generated by the set S. Thc key properties of (co)-incluction anel restrietion are the following
adjoint properties.

Lemma 1.9 There are natural adjunction horneomorphisrns

hornv(F.,J\, Y) -+ hon1c(X, F*Y);

horne (F* J\, Y) -+ hOll11) (X, F!Y);

F*J\ (1) 1'~ -+ )[ 0e F*Y;

Y 01) F*X -+ F*1/' 0e J\;

F*Y 0e){ -+ Y 0v F*X;

)( 0e F*Y -+ F*)( Q9v 1'Y;

for a C-space X and 'V-space Y of the required variance.

Praaf: Notice for a covariant 'V-space Y that there are natural hOlUeOl1l0rphisrns of co­
variant C-spaces

11101'1)(77, F(?)) 01) Y -+ F*Y -7 hOll11) (ruor1)(F(7), ??), Y)

anel analogonsly for contravariant Y. Now thc dain1 follows frOln thc adjointness of tcnsor
product allel hOll1 anel the associativity of tcnsor prochlct. _
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2. K- and L-Theory Spectra over the Orbit Category

In this scction we construct the Inaill cxatnples of spectra over the orbit catcgory

Ka1g : 01'(G) ---+ 0- SPECTRA,

LU) : Or(G) ---+ n- SPECTRA,

Ktop : Or(G) ---+ n- SPECTRA .

These funetors are Ileeessary for the stateInents of the various IsoIllorphislll Conjeeturcs.
First we ontline what \ve would naively like to do, explain why this does not work and thcll
givc thc details of the eorreet eonstruetion.

The three fUBetors clcfinecl over the orbit category will be relatecl to thc more classical
funetors

Ka1g : RINGS ---+ n-SPECTRA,

LW : RINGS ---+ n- SPECTRA,

Ktop: C*-ALGEBRAS ---+ Sl-SPECTRA,

whcre RINGS is the eategory of rings with involution. The classical functors were defincd
by Gersten [16J for algebnüc !(-theory, by Qllinn-Ranicki [33] for algebraic L-theory, allel
by using Bott periodicity for C*-algebras (see [39] for a discllssion of Bott .perioclicity for
C*-algebras and also the end of this section for a functorial approach). The hOlnotopy
groups of these spectra give the algebraic !(-grollps of Quillen-Bass, the surgery obstrue­
tion L-grollps of \'Vall, and the topologieal ](-groups of C*-algebras. \~le would like our
fUBetors defined Oll the orbit category to have the property that the spectra Ka1g(G / H),
LW (G / H) aud Ktop (G/ H) have the weak homotopy type of the speetra Ka1g (ZR), LU) (ZH)
and Ktop (c

7
: H) respectively, where ZR is the integral grou}) ring anel C;H is the reduceel

C*-algebra of H (see [29] for adefinition). \~Te would also like our functor to be correct
on Inorphis1I1S. Notiee that amorphisIll from G/ H to G/!< is given by right luul tiplicatioll
r 9 : G / H ---+ G / ](, g'JI H g'g]( provided 9 E G satisfies g-1 Hg C !(. The indnced ho­
Inoillorphisnl cg : H ---+ ](, h H g-1 hg gives a Inap of rings (with involution) frolll ZH to
Z!<, and, at least. if the index of cg(H) in K is finite, a map on reduced C*-algebras. \Ve
would like the fllnctors applied to the Illorphislll r 9 in the orbit category to Inatch up with
the 'lclassical" funetors on rings, rings with involution, and C*-algebras.

The naive approach is define Ka1g (G / H), LU) (G / H) and Ktop (G / H) as the spectra
Kalg (ZH), LW (ZH) anel Ktop (C; H) respectively. This definition works fine for objects, but
fails for morphislllS. The probletll is that 9 in cg is not unique, bccause for any k E !( 1

clearly 9 anel gk elcfine thc sarne lnorphism in the orbit catcgory. Hence this definition
Inakes sense only if Ck : ]( ---+ !< induccs the identity Oll the varions spectra associated to
I<. This is actually true Oll the level of hOIllOtOpy grOllps, but not on the level of thc spectra
thcIl1sclves. However, it is iInportant to construct these functors for spectra anel not only for
hOI110tOpy groups of spectra in order to deal with asselnbly maps and the variOllS Isoillorphisln
Conjcctures. Thus we Illust thicken 11p the spectra. The problelllS with constructing the
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fnnctor Ktop : C*- ALGEBRAS ---+ 0- SPECTRA are particularly involved. P. BaUIn and
J. Block, and P. Baunl anel G. Comezana have approachcs to this constrnction, quitc different
froIllours.

The general strategy for a solution of this problelll is thc follo\ving. Let GROUPOIDS
be the category of (cliscrete) groupoicls with functors of groupoids as Illorphislns. (A groupoicl
is a small category, all of whose IllorphislllS are iS0I110phisms.) Let GROUPOIDSinj be the
full subcategory consisting of those functors F : 90 ---+ 91 which are faithflll, i.e. for any
two objects x,y in 90 the incluceel luap 1l10rgo(x,y) ---+ 1110rg i (F(x),F(y)) is injeetive. In
the first step one deRnes a eovariant functor

GR : Or(G) ---+ 'GROUPOIDSinj

fronl the orbit category to thc catcgory of groupoids as follows. Nmnely, a left. G-set S
defines a groupoid 8 where Ob(8) = 8 anel for 8, t E 5, l11or(s, t) = {g E G I 98 = t}. The
c0l11position law is giveu by group Inultiplieation. Obviously a map of left G-sets defines
a fllnctor of the associated groupoicls. The eategory G / H is equivalent to thc category
Or(H, 1) = Hand henee G / H ean serve as a substitute for the subgroup H.

Next one extencls the definition of thc algebraie K- and L-theory spectra. of thc integral
group ring of a group anel thc topological !(-theory spectruln of thc recltlcecl C* -algebra of
a group to the category of groupoids. The eomposition of this extension with thc funetor
GR above yielcls covariant functors from thc orbit category to thc category of speetra. \\Te
will see that their valuc at cach objcet G / H is hOlnotopy equivalent to thc eorrcsponding
spcctnnn a.'5sociatcd to H. Thc Inain effort is now to construct these extensions to the
eategory of groupoids, whieh will bc clcnoted in thc salnc way as thc threc fuuctors we want
to eonstruct:

Kalg : GROUPOIDS ---+ 0- SPECTRA,

L (j) : GRO UPOIDS ---+ 0- SPECTRA,

Klap : GROUPOIDSinj ---+ 0- SPECTRA.

For this purpose we Inust introcluce sonle additional strllcturcs on eategories. Rccall that
a category C is .91nall if the objeets in C fOrIn a set alld for any two objects :r and y the
nlorphislns froln ;r; to y form a set. In the scquel all categories are assluned to bc slnall. \\lc
will recall and introduce additional struetures on C.

Let R be a eOlllnlutative ring with unit. \\Tc eall C a R-category if for any two objects
x allel y thc set 111orc(x, y) of l110rphislns frOln x to y carries the strllcturc of a R-1110dule
such that cOlnposition induccs a R-bilinear map Inore(X, y) x rnorc (y, z) ---+ luore (;1:, z) for
all objects x, y anel z in C. \·Ve also require the cxistence of an object 0 so that 11101'C (0,0)
is thc zero R-Inoelule.

Suppose that R cornes with an involution of rings R ---+ R r f--t r. A R-category with
involution is a R-category C with a collection of Inaps

*x,y : rnore(x, y) ---+ 1l10rC(y, ;1:)

11

X, y, E Ob(C)



such that thc following eOllclitions are satisficcl:

1. *x,y(A' J + /1.. g) = :\. *x,y(J) + 71' *x,y(g) for all A, JL E R, objccts x, Y E Ob(C), anel
nlorphislllS f, 9 : x --+ y;

2. *x,y 0 *y,x = iel for all objeets x, y E Ob(C);

3. *x,z(g 0 J) = *x,y(J) 0 *y,z(g) for all :r, Y, Z E Ob(C) anel all IllorphisIl1S f : x --+ y anel
9 : Y ---+ z.

In the sequel we abbrcviatc *x,y(f) by f*. In this notation thc eonditions abovc beeOlne
(AI + JLg)* = :\/* + Jig*, (J*)* = / and (g 0 f)* = f* 0 g*.

\:\,1e eall a R-eatcgory (with involution) an additive R-category (with involution) if it
possesses a sunl E9 anel the obvious compatibility eonditions with the R-l1l0dule structures
(and the involution) on the morphisrns are fulfilled.

Thc notion of a C*-eategory was elcfincel by Ghez-Linla-Roberts [17] and we givc thc
definition belo\v in our languagc. Equip the cOInplex BUInbcrs with the involution of rings
given by cOl1lplex conjllgation. A C*-category C is a Ccategory with involution such that for
caeh two objects x, y E Ob(C) thcre is a Bonn 11 Ilx,y on eaeh complex veetor space more (.r" y)
such that the following conelitions are satisficd:

1. (nlore(1;, y), 11 Ilx,y) is a Banach space for all objects :r, y E Ob(C);

2. 11 gof Ilx,z :::; 11 9 IIY,z . 11 j Ilx,y for all x, y, Z E Ob(C) anel all Il10rphislllS j : :r --+ y
auel 9 : y ---+ z;

3. 11 j* 0 j Ilx,x = 11 / 11;,y for all X, y E Ob(C) anel all 1110rphisl11S / : x --+ y.

4. For every I E 11lorc(x, v), there is a 9 E lllorc(x, x) so that j* 0/ = g* 0g.

In the sequc1 we abbreviate 11 f Ilx,y by 11 / 11 aud we will consider a C*-category as a
topologieal eatcgory by equipping thc set of objects with the discrete topology and the set
11l0re(X, y) with thc topology whieh is indllced by the norm.

Example 2.1 Let C be a eategory with precisely one object x. Thcn thc strllcture of a
R-category on C gives Illore(X, x) thc structure of a central R-algebra wit.h unit idx . The
additional strllctllrc of an involution is given by a lllap * : lTlOrc (.7" x) ---+ Illore (x, x) satis­
fying:

anel * (g 0 f) = *(f) 0 *(g).

The structure of a C*-category on C is thc sallle as thc structure of a C*-algebra on the set
lllore (x, x) with idx as lluit. Thc structUl'e of a topological category on C is thc structure of
a topologieal space on IIlore(X, x) such that COlllposition elefines a continuous lIlap. _
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Next we const1'uct frolll a category (for example, a groupoid) other categories with the
structures c1escribed above. Given a category C, the associated R-category RC has the Seune
objects as C anel its rllorphislll set mOI'RC (:Z;, y) from x to 'Y is given by the free R-Illodllie
R Inorc (X, y) generated by the set Ill0rc (X, y). The cOInposition is induceel by the composi tion
in C in thc obvious way. Notice that the functor eHRe is the left adjoint of the forgetful
functor froIll the category of R-categorics to the category of sInall categories.

Let 9 be a groupoid and R a cmllmutativc ring with unH. anel involution. Then R9
inherits the strllctllre of a R.-catego1'Y with involution by c1cfining

(

r ) '" T

~'\Ji := ~~fi-l

Let 9 be a groupoicl. Next we explain how the catcgory with involution C9 can be
completed to a C*-category C;9. It will have the saille objccts as Q. Consieler two objects
x, y E Ob(9). If mOrg(.L, y) is eIllpty, Pllt IllOrC;g(x, y) = O. Suppose that IllOrg(x, y) is 110n­
elllpty. Choose SOllle object z E Ob(9) such that Ino1'g(z, x) is Ilon-CInpty, for instance one
coulel choose z = x. Define a CliIlCar lIlap

ix,y;z : Crnorg(x, y) ---7 B(l2(nlOrg(z, x)), l2(IIlOrg(z, V)))

by sCIleling JE IllOrg(x,y) to thc bounelcd operator frmll l2(IllOrg(z,x)) to l2(morg(z,y))
giVCIl by cOInposition with f. On the target of ix,Yjz wc havc the operator nonn 11 11. Define:

1111. IIX'l/ := 11 iX 'l/jz(11.) 11 for 11. E IllorQ/ (x, y) = Cmorg(x, V).

One casily checks that this nonll 11 Ilx,y is independent of thc choice of z. The Banach space
of mo1'phislns in C;9 frolll x to y is thc cOInpletion of 1110rq;; (x, y) with rcspect to thc nonn
11 llx,y. \~Te will elenote the inducecl norll1 on the cOInpletion IHOrC;g(.T" y) again by 11 Ilx,yanel
sOIlletilnes abbreviate by 11 11· One easily checks that *x,y : InOreg (x, y) ---7 Illorec (y, .7;) is
an isoInctry since it is cOInpatible with applying the maps ix,Yjz and iy,xjz allel taking adjoints
of operators. Therefore it induces an iSOIlletry elenoted in the salIlC way

*x,y: l11orc;o(x, y) ---7 InOrC;g(y, x).

Composition elefines a Cbilinear Inap IllorQ/ (x, y) x Il10fcg (y, z) ---7 Inarw (x, z) whieh sat­
isfies 11 gof Ilx,z ::; 11 9 IIY,z . 11 f Ilx,y. Hence it induces CL map on thc completions

IIlOrC;g (:r, y) x 1l1Orc;g (y, z) ---7 morC;g (2;, z)

with the saIlle inequality far the nonns. This is thc cOlnposition in C;9. One casily verifies
that C;9 satisfies all the aximlls of a C* -catcgory.

Example 2.2 Let G be a group. It defines a g1'oupoiel 9 with onc object anel G a.s its
autoIllorphism grollp. Then H9 is jllst the group ring RG anel C;Q is just the reelucecl group
C*-algebra C;G uncler thc idcntifications of ExaInplc 2.1. •
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The assignll1ent of a C*-category c;9 to a groupoiel 9 gives a fUllctor

c; :GROUPOIDSinj -----7 C*- CATEGORIES,

where C*- CATEGORIES is the category of SIllall C*-categories. Thc inj-conelition that
a functor F : 90 -----7 91 is faithful is llsed to guarantce that the 111ap 1110rG/o (2:, y) -----7

Il10rC91 (F(x), F(y)) extends to 1110rC;9o(x, y) -----7 morC;Ql (F(x), F(y)), for all :C, y E Ob(90).

Remark 2.3 \"lc n1ake a few rCIl1arks on functoriality (01' lack thereof) of C*-algebra.s, which
Il10tivate our use of C*-categories. First note that the assignlnent of a C*-algebra. C; H to
a grollp H cannot be extclldecl to a functor froln thc category of groups to the category of
C*-algebras. For instance, the rcducccl C*-algebra C;(Z *Z) of the free group on two letters
is siInple [31] anel hence {lcltnits no C*-hOlllOl110rphisln to the reeluccel C*-algebra C of the
trivial group.

There is a notion of the C*-algebra of a groupoid, but it is poorIy behaveel with respeet
to funetoriality. To a discretc groupoiel 9 1 one ean assoeiate the cOlllplex g1'oupoiel ring
C9, whieh as a C-vector space has a basis consisting of the 11l0rphisIllS in the groupoid.
The product of two basis eleillents is the eomposite if clefineel anel is zero othcrwise. The
eOlllpiction of C9 in 8([2(9), [2(9)) in thc opcrator nonn is ealleel the reeluccd C*-algebra
of the groupoid anel whieh we denote C;9- alg. Ir 9 is eonncetecl (any two objeets are
isomorphie), allel H is the f-lutolnorphislll group of an objeet, then it can bc shown (via. Nlorita
theory) that the spectra K toP(C;9- alg) anel KtoP(C;H) have the salne weak hOlnotopy type.
The second naive approach to the cOllstruction of a functor

Ktop : 01'(G) -t 0- SPECTRA

is to define Ktop (G / H) to be Ktop (C; G/ I!- alg). \;Yhile this approach is basically eorrect
for algebraic K- and L-theory, it fails for C*-algebras beeause the C*-algebra of a groupoid
eloes not elefine a functor froll1 the category GROUPOIDSinj to C*-ALGEBRAS. Inclecd,
consieler thc groupoicl 9[n] with n objccts anel preciscly OBe 11lorphislll between two objeets.
Noticc that the obvious functor froIrl 9[n] to 9[1] has an obvious right inverse. Hence it
woulcl induce a surjective C*-hOlllolllorphislll between the associatcel C* -algebras but this
is inlpossiblc for n 2:: 2 as the associated C*-algcbra of 9[11] is A1(n, n, C). Anothcr e011n­
terexalllpie COUles frorn a Illorphisll1 in the orbit category. Let G be any infinite group and
cOl1sicler thc map of groupoids G /1 ---+ G/G where G acts on G /1 cffectively anel transi­
tivc1y by left 111ultiplication anel G acts triviallyon G/G. An easy COIllputatiol1 with the
operator Donn shows that this Illap of grollpoiels does not extcnd to a rnap of the reeluced
C*-algebras of the groupoids. vVe take the trouble to eliscuss this becallse Inistakes have
been Inaele in the literature on this point anel to Inotivate our definition of the functor
C; : GROUPOIDSinj -----7 C*- CATEGORIES. Below \Ve will elefine the KtoP-funetor [rOl11
C*- CATEGORIES to SPECTRA. Note that after applying hOlllOtOpy grollps, one gets 11laps
on the !(-theory of reduceel C*-algebras of the groupoids, independent of Nlorita thcory anel
without Inaps on the C* -algebras therl1selves. _

\-Ve recall some basic constl~llctions we will neeel later.
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LetC bc a R-catcgory. Vvc define a Ilew R-category CflJ , called the .syrnrnetric rnonoidal
R-category associated to C with an associative anel cOlnn111tative Sl1n1 EB as folIows. The
objects in CflJ are n-tuplcs ;E. = (Xl, ·7;2, ... ,Xn ) consisting of objects Xi E Ob(C) for 'n = Ü, 1,
2, .... vVe will think of the ell1pty set as O-tuple whieh we denote by O. The R-rnodule of

n10rphisn1s fron1 22 = (Xl, ... ,Xm) to 1L = (YI' ... ,Yn) is given by

Given a 1110rphisl11 f : 22 ---+ y, we dcnote by fi,j : Xi ---+ Yj the COI11ponent \vhich belongs to
i E {I, ... ,771.} alld j E {I, ..~ ,n}. If x 01' Y is the empty tuple, then Inorem (x, y) is defined
to be the trivial R-nlOdule. The cOlnposition of f : {f ---+ Y and 9 : Y ---+ ~ for objccts

22 = (Xl," . ,Xm ), 1!.. = (YI"" ,Yrl) anel ~ = (Zl"" ,Zp) is defilled by - -

n

(g 0 f)i,k = L gj,k 0 Ji,j.
j==l

The SUlll on Cmis clefined on objects by sticking the tu pies together, i.c. for;I = (Xl, ... ,.Lm)
anel '}L = (YI, ... ,Yn) deHne

Thc clefinition of the Sllin of two rnorphislllS is now obviollS. Notice that this surn is (strictly)
associative, i.e. (:'f EB 1/) EB ~ anel ;I EB Cl!.. EB~) are the SaIJle objects anel analogonsly for 11101'­
phisIllS. i\10reover, there is a natural iSOII10rphisII1

and all obviollS cOlnpatibility cOllditions hold. Thc zero object is given by the Clupty tuple
O. These cIata define the structurc of a sYllunetric lllonoidal R-category Oll Cm. Notice that
the fllllctor C H C$ is the left acljoint of thc forgetful fUllctor frolll sYIllInetric I11011oiclal
R-categories to R-categories.

Given a category C, define its idempotent completion P(C) to be the following category.
An object in P(C) is an cndoIllorphisIll P : .7; -----+ x in C whieh is an ideIllpotcnt, i.c. pop = p.

A morphisIn in P(C) [roIll P : x -----+ x to q : y -----+ Y is a Inorphism f : x ---+ Y in C satisfying
q 0 f 0 p = f. Thc idcntity on the object p : X -----+ x in P(C) is given by the Il1orphisll1
]J : X -----+ x in C. If C hac; the structure of a R-category or of a a synllnetric 1l1Onoidai
R-category, thcn P(C) inherits such a structure in the obviotls war.

For a category C, let Iso(C) be the subcategory of C with the saIne objects as C, but
whose morphisms are the isoInorphisIllS of C. Ir C is a sYlnmetric 1l10noidal R-catcgory, thcn
so is Iso (C) .

Let C bc a sylllmetrie Illonoidal R-category, all of whosc IllorphisIllS are isoInorphisIns.
Then its group c07npletion is the following sylnlnetric Ill0noidal R-category c. An objcct in C
is a pair (x, y) of objccts in C. A Inorphisnl in C..... froIll (x, y) to (x', V') is given by equivalence
classcs of tripies (z, f, g) consisting of an objcct z in C and iSOlnorphisms f : :1: EB Z -----+ :r'
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anel 9 : y EB z ---t y'. '/I/e call two such tri pIes (z, f, g) and (z', !',.cl) equivalent if there is an
isolnorphism h : Z ---t z' which satisfies f' 0 (ielx EBh) = f allel g' 0 (idy EBh) = g. Thc SUlll Oll
r is given by

(x, y) EB (x', V') := (x EB x', y EB V')·

If C is a C· -category, thcn C$ and P (C) inheri t the structure of a C* -category where olle
sholild IllOdify the definitioll of P(C) by requiring that each object p : :r; ~ x is a selfadjoint
idernpotent, i.e. ]J 0 p = p and ]1. = p. tvloreover, Ce:b P(C$) anel (Iso(P(C$)))-- inherit the
structure of topological catcgorics where the set of objccts always gcts thc eliscrete topology.

Ncxt wc can construct the desired functors from GROUPOIDS anel GROUPOIDSinj
to O-SPECTRA. The covariant functor non-connective algebraic ]{-theory spcctrum 01 a
groupoid with coefficients in R

Kalg : GROUPOIDS -t Sl- SPECTRA

assigns to a groupoid 9 the non-connective ]{-theory spectrum of a SIllall additiv~ category
(see [28]) where the additive catcgory is (Iso(P(R9$)))--'

Ncxt wc define thc covariant fUIlctor periodic algebraic L-theory spectrurn 01 a groupoid
with coefficients in R

L = Lh
: GROUPOIDS ---t Sl- SPECTR,A

wherc we assllrue that R is a cOIllutative ring with lluit and involution. Thcn Rg allel hence
R9fjJ inherit an involution. \~Te apply the construction of the periodic algebraic L-theory
spectrU111 in [33, Exarnple 13.6 on page 139]. If Olle llses the idelnpotcnt cOIIlpletioll oue gets
the projective version

LP : GROUPOIDS~ Sl- SPECTRA.

Taking the \\Thitehead torsion into account yields the silnplc version

L S
: G ROUPOIDS~ 0- SPECTRA .

i\10rc generally one obtains for j E Z Il {-oo}, j ::; 2

LW : GROUPOIDS~ Sl- SPECTRA .

where LU} is LS Lh LP for J' = 2 1 0" , , .

Next we construct thc covariant. functor non-connective topological ](-theory spectr7Lm

Ktop : GROUPOIDSinj ~ Sl- SPECTRA .
!

\,Ve do this by COIllposing thc functors

GR: Or(G) ~ GROUPOIDSinj,

C; :GROUPOIDSinj ~ C*- CATEGORJES,
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with the functor
Ktop : C~- CATEGORIES -----+ 0- SPECTRA,

whieh we are about to eonstruct. Let C denot.e both the cornplex nUlnbers anel thc obvious
C*-eategory with preciscly Olle object dellotecl by 1. We have introcluced the catcgory 4
before. V'le clcnote by '!1:. thc n-fold sUln of thc objcct 1. In this notation ~ has as objccts
{111 TI, = 0,1,2 ... }, thc SUIn is 'lTL EB n = 1n + n for m,n = 0,1,2 ... anel the Banaeh spaee
of 11lorphisIl1S frolll m to Tl:. is just given by the (m, n)-Il1atrices with cornplcx cntrics. Let C
be any C-catcgory. \i\'e define a functor

a..'i fallows. \Ve assign to an objcct TI. E ~ alld an object 12 E Cm the object 11012 whieh
is the n-fold direct SUlll EB7=1~' Let f : 111 -----+ TI. be a Inorphis111 in ~ anel 9 : ~ -----+ '1L be
a rnorphisrn in C$. Define f ® g : 171, ® ;f -----+11 ® Ib to be the rnorphisrn whosc cOInponent
frOlll thc i-th copy o[ ;f in 111 ®;f to the j-th copy o[ '1L in 110 '1L is fi,j . g, wherc fi,j E C is
the cornponent of f frorn thc i-th coordinate of 711 to the j-th coordinatc of '!l. One easily
checks that f ® 9 is a functor. For objccts 171 and 11 in 4 and an object :I. in Cffi we have
(m Ef1 nJ ® x. = (m ®;f) EB Cu: ® ~). For an objcct 11 in ~ anel objects ;f. anel y in C$ we
have a natural iSOI110rphisIll !l ® (~ ffi y) ~ (rr 0 ~J ffi (TI. 0 y). Obviously this funct.ol' senels
thc subcatcgories {Q} x C$ anel ~ x-{O} to {O} where {Q} ancI {O} denote the obvious
subcategories with one objcct.

Let C bc any C~-category. Then thc constructioll abovc applies to P(C$)' It cxtends
to a functor

® : (Iso(~))-- x (Iso(P(Cm)))-- -----+ (Iso(P(Cffi)))--

in thc obvious wa)'. Notice that (ISO(P(Cffi) ))-- inherits [rOIl1 C thc structurc of a topological
catcgory for which thc set of objccts is elisercte. \'Vith rcspect to these topological stl'ucturcs
the functor above is a functor of topologieal categories. Givcn a topological catcgory V, let
BV be it classifying space [34] (whosc constrlletion takes thc topology into account). Given
topological catcgories V anel V', the projections ineluce a hOIlleOlnOrphis111

B(V X V') -----+ BV X BV' .

Henee thc [unetor above inelllces a nlap

B (Iso (~))-- x B (Iso (P (CEB )))-- -----+ B (Iso(P (Cffi)))--

for any C*-category C. Since it scncls B(Iso(~))-- V B(Iso(P(Cm)))-- to the base point
B{O} c B(Iso(P(Cffi)))--, we obtain a Il1ap, natural in C,

fl' : B(Iso(~))-- 1\ B(Iso(P(Cm)))-- -----+ B(IsO(P(Cffi)))--'

The category Iso(~) can be identified with the elisjoint union Un>O GL(n, C). Let
GL(C) = coliInn~oo GL(n, C). Let Z x GL(C) be thc SYIl1Illctrie Il1oniodäI category whose
objects (anel rnonoielal surn) are given by thc integers, and so that Il10rZ xGL(C) (111, n) is e111pty
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ifm i= n and is GL(C) ifrn = n. Therc is an obvious functor Iso(Cta) --+ Z x GL(C). Using
Quillen's group c0111pletion theOre111 [18, pages 220-221], it follows that B Iso(~)"'" has the
hOl110tOpy type of Z x BGL(C). Let b : 52 --+ B Iso(~)"'" be a fixed representative of the
Bott clcInellt in 1T2 (B Iso(Ce)""') = K 2

( {pt.} ). Then b anel I" yield a map, natural in C,

Its adjoint is also natural in C and denoted by

Define the non-connective topological]( -theory spectrurn Ktop (C) of thc C*-category C by the
spacc B(Iso(P(CED )))-- in evcn dirnensions, by the space SlB(Iso(P(CED )))"'" in odd diInensions
and by the structllre rnaps which are the idcntity in odd dimensions and ß in even clilnensions.
Another cOIlstruction is suggested by [13, Rernark VIII.4.4. on page 186). Vve dahn that the
proof of Bott periodicity for C*-algebras carries over to C*-categories. Hence KtoP(C) is a
O-spectrU111. Volc will only bc intercsted in thc case whcrc C is C;9 for a connectecl groupoid
and in this case the clairn follows froln Bott perioclicity for the reclucecl group C*-algebra of
the automorphisln group of an object in 9 and Lelnma 2.4.

Vle Innke SOllle rernarks about the constructions of thc spectra of grollpoids abovc and
give sOlne ba.sic properties.

Thcre are obvious equivalcnces of additive catcgories froln RQ(J} resp. P(R9fB) to
the catcgory of finitely generated free R9-111odules resp finitely generated projective R9­
11lOdulcs as defined in [23, sectiOll 9]. Notice that these module categories are not small in
contrast to R9ffi anel P(RQED)' A fUIlctor F : 90 --+ 91 induces a functor frolll the category
of finitely gencratecl frec resp. projective RQo-1l10dules to the corrcsponding category over 91
by incluction. However, if wc have a second fUIlctor G : 91 ---7 92, thcn thc fllnctor inclncecl
on thc rnodule categorics by GoF allel thc cOlnposition of the fUllctors ineluced by Fand
G on the moclulc categories are not the sanlC, thc)' agrec onl)' up to natural eqllivalence. In
order to avoid this technical problCln, we prefer thc slnall category R9ED and its idclnpotent
cOlllpletion since therc the cOlnpositioll of the fUllctors il1clucecl by F ancl G is thc sarne
as the functor incluced by GoF, so that wc get honest functors froln GROUPOIDS to
Sl-SPECTRA.

As mentioncd earlier, thc functors Ka1g, LW, and Ktop defined on thc orbit category are
given by the compositioll of the groupoid-valued functor GR anel thc spectra-valuecl functors
clefined above. The autolnorphisln grollp of thc object eH in G / H for the iclentity elclnent
e E G is just the subgroup H. Hence thc next lellllna proves what we have already claillled
before, narnely, that thc spcctra we assign to G/ H are honlotopy equivalent to thc spcctra
associa.ted to H. In particular we get for all n E Z and j E Z Il {-00 },.i ::; 2

1Tn (Ka1g (G/ H)) ~ ](~lg (ZR)

1Tn (LW(G/H)) ~ L~}(ZH)

1Tn (KtoP(G / H)) ~ ](n(C* H)
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Lemma 2.4 1. 1f Pi : 90 -t 91 Jor i = 0,1 are Junctors oJ gro1l]Joids and T : Po -t PI
is a natural transformation between thern, then the induced maps oJ spectra

are h01notopy equivalent and analog01lsly for LW and KtOP,.

2. Let 9 be a groupoid. Suppose that 9 is connected, i. e there is a 1narphis1n between any
two objects. Far an object x E Ob{Q), let Qx be the f1tll subgroupaid with precisely one
abject, namely x. Then the inclusion ix : 9x ---+ 9 induces a homotopy equivalence

and K alg (9x) is isamorph i c to the spectrum K alg associated t0 the gro up ring Rautg (x) .
The analogous statements hold for LW and KtoP.

Proof: Obviously 2.) follows fron1 1.). vVe indicate the proof of 1.) in thc case of
Ktop, the other cases are analogOllS if ane inspects the definitions in (28) and {33]. üne easily
checks that a natural transfonllatian bctweell Fa to F1 induces a natural transformation [roIll
the ineluceel functors fr0111 (Iso(P{C;90aJ))" to (Iso(P{C;QlfIj)))'" Let [1J be the category
havillg twa objects, narnely °anel 1 anel three rnorphisms, nalnely the identities on 0 anel
1 anel one nlorphisnl fraIn °to 1. Then thc natural transfonnation abavc can be vicwed as
a functor of topological categories frolll (Iso(P(C;9ofIj)))" x [1] to (Iso(P(0;91 fIj)))'" Sillce
the classifying space of a product is thc product of thc classifying spaces allel thc classifying
space of [1] is [0, 1], we obtain a Illap

One easily checks that this inchlces the desireel hOlnotopy of Inaps of spectra. _
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3. GM!-Approximations and Homotopy Limits

In this section we give the basic definitions anel properties of spaces and CH1_COlllplcxes
over a sn13.11 catcgory C. \·Ve show that the '~Thitchead Theorem anel CH1-approxiInations
calTY ovcr frOlll spaces to C-spaces. Wc elnphasize the parallcls bctwcen a catcgory anel a
group, thinking of a group as a catcgory with a single object, all of whosc morphisms are
invertible. \·Ve eleRne EC, the universal free contractible C-space, anel use this to deRne thc
hOlllotOpy colinlit EC 0c ..,\, thc analogue of thc Borel construction EG. Xc; X.

Consicler the set Ob(C) as a slnall category in the trivial way, Le. the set of objects is
Ob(C) itself anel the only 11lorphislllS are thc identity Illorphisll1S. A Illap of two Ob(C)-spaces
is a collection of Inaps {f(c) : ..,Y(c) --t Y(c) leE Ob(C)}. There is a forgctful functor

F : C- SPACES -t Ob(C)- SPACES

Define a fUllctor
B : Ob(C)- SPACES --t C- SPACES

by scnding a contravariant Ob(C)-spacc ./Y(-) to lIcEob(c) morc( -, c) X ./Y(c). In the covari­
ant case one uses Illorc (c, - ).

Lemma 3.1 The functor B is the lejt adjoint of F.

Prüof: This InCC:lns that thcre is a natural bijcction

for all Ob(C)-spaces ..,\ and for all C-spaees Y. Aetually T(X, y .. ) will evcn bc a hOl11col11or­
phisIll. For f : B(X) = LIcEOb(C) Inorc(-, c) x ..Y(c) ----t Y (-) define T(f) (-) by rcstrietillg
f to ..,\(-) = {iel_} x .<'\(-). The inverse T(..,\, y)-l assigns to a llHtp 9 ofOb(C)-spaees the
following transfonnation

B(X) = TI 1110rc(-, c) x .<'Y(c) --t Y( -),
cEOb(C)

(1>1 x) t--t )1 (1» 0 9 (c) (x). •

Let R bc a ring. There is also an adjoint to the forgetful fnnetor frOln RC- NIOD to
Ob(C)- SETS. It is defineel as B(X( -)) = EBcEOb(C)R(rnorc(-, c) x ..,\ (c)). A free RC-rnodule
is a. Inodulc ison1orphie to Olle in thc iInagc of B. Noticc the analogy betwecn Lenuna 3.1
and the case of the forgetful fnnetoT froln R-modules to sets and the fnnetor assigning to a
set S thc free R-rnodllic RS generated by S.

V'Je have alreaely mcntiollcd that the catcgory of 01'(G 1 1)-spaees is thc category of
G-spaees anel thc eatcgory Ob(Or(G, l)-spaecs) is thc catcgory of spaces. Undcr this idcn­
tification the forgetful fnnctor F just forgets thc G-aetion anel B SCllelS aspace Z to thc
G-spaec G x Z \vhcrc G acts in the obvious way.
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Notice that. the not ions of coprocluct, procluct, pushout, pullback, eoliInit, allel linüt
exist in the category of C-spaces. Thcy are constructeel by applying these notions in
the catcgory SPACES objectwise. For instance, the pushout of a diagraIll of C-spaces
Xl f-- -01\0 ~ X2 is defineel as thc functor -/\ : C~ SPACES whose value at an object
c in C is the pushout of the diagran1 of spaces -oI\} (c) f-- Xo(c) ~ X 2 (c). \Ve rnention that
sOIuetiInes in the literat.ure thc tenns direct lilnit anel inverse liInit are llsed instead of colinüt
anel liInit. We will always usc thc narnes colimit and lilllit.

A lHap / : -01\ ~ }T of C-spaces is a cofibration (fibration) 0/ C-spaces if it has thc
hOlllOtOpy extension property (holnotopy lifting property) for all C-spaces. If / is a (co)­
fibration of C-spaces, its evaluation j(c) : ..Y(c) ~ Y(c) is a (co)-fibration of aut(c)-spaces
for all objects ein C. The proof of this fact is a sirnple abstract Inallipulatioll of the hornotopy
lifting (extension) property anel various adj unctions. Notice that the converse is not true.

Next we cxtenel thc notion of a ClV-cOInplex for spaces to C-spaees. V'le will see
that the notion of a free C-CH'-colnplex is very sinülar to the the notion of an ordinary
CvV-colnplex and that standard results allel their proofs for CW-colnplexcs generalize in a
straightforward 111anner to the case of free C-CH1-complexes. This leads to easy proofs of
known and new results whose strategy is very elose to classical ideas aud patterns.

Definition 3.2 A cOlltravariallt free C-CH1-colnplex X is a contravariant C-space ~\ to­
gether with a filtration

o= ~\-1 c ~yo C ~\1 C ~Y2 ... C -/\n C ... C X = UX n

n~O

8uch that X = COlil11n~oo Xn and fo1' any 'n 2:: 0 the n-skelcton ~\nJ is obtained from the
(n - 1) -skeleton' )(n -1 by attach ing /rec C-n-cells, i. e. th e1'e exist,r;; a pushout 0f C-."pa ce.,; 0/

the fonn

UiE/n 1110rc(-, Ci) x sn-l ~ .E\n-l

1 1
UiE/n n10rc( -, Ci) x Dn ~ Xn

whcr'e the veT'iical rnaps are inclusions, In is an index sclJ and the Ci are objee ts 0/ C. We
re/er to the inclusion /unctor morc( -, Ci) x int Dn ~ X as a /ree C-n-cell baser! at Ci.

A free C-CH1-c07nplex has clilnension ::; n i] -01\ = ~\n' The definition 0/ a covariant free
C-CH1-colnplex is analogous. _

A C-CH'-cOlnplex was defineel by Dror Farjoun [10, 1.16 anel 2.1] (see also [30]). \,Ve
shall deal abnast exclllsivcly with free C-CH1-colnplexes. For a [ree C-C1V-colllpiex -/\, the
eellular chain c01nplex C. (-01\)( - ), C H C. ();)(c) is a C-chain COln plex of free ZC-Inodu 1es.
Notice that a free C-CH1-colnplex -01\ elefincs a functor froln C to CH1_COi\1PLEXES, but
not an)' functor froln C to CH/-COIvIPLEXES is a free C-C1V-colnplex.
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If Y is a G-ClIV-coInplex, thCIl mapc(-, Y) (which sends GIH I-t y~}[) is an cxarnplc
of a free 01'(G)-CH1-eOIl1plex. A G-cell of Y of orbit type G/ H corresponcls to a 01'(G)-ce11
of Inapc (-, )7) based at G/ H. Recall that thc category of 01'(G, 1)-spaces coi neides wi th
the category of G-spaecs. Under this iclentification a free Or(G, 1)-CH1-coInplcx is the SaIl1C
as a free G-Cl'V-coIl1plex.

Given a C-space ..:\ anel aspace )7, wc obtain thc C-space X x Y by assigning to an
objcct c the space ...Y(c) x Y. Taking Y = [0,1], it is now clear what a homotopy 01 maps
0/ C-spaces rl1eans. Rcca11 that a rnap I : J'\ ---+ Y· of spaces is n-connected for 11, ~ 0 if and
only if for a11 points x in ){ thc ineluced Illap 'ffk(/, x) : yrk(){, x) ---+ 7T"k(17, f(x)) is bijective
for all k < 11, anel sllrjective for k = n. It is a weak honwtopy equivalence if it is n-connectcel
for all 11, ~ o.

Definition 3.3 A map f : )( ---+ Y 01 C-spaces is n-connectecl (a wcak hOIl10tOpy equiv­
alence) ij for all objects c the map 01 spaces j(c) : X(c) ---+ Y(c) is n-connected (a weak
homotopy equivalence). _

The constant 1l1ap EG ---+ {*} is a wcak hOinotopy equivalenec, but not a hOlnotopy
equivalence of Or(G, l)-spaces.

The following result is well-known for orelinary Cl'V-cOInplcxes [42, IV. TheorCll1 7.16
anel 7.17 on page 182]. See also [10, Proposition 2.9] anel [30, Thcorenl 3.4].

Theorem 3.4 Let f : Y ---+ Z be a ma]J of C-spa.ces and X be a C-space. The rnap on
homotopy classes of maps between C-spaces induced by composition with f is denoted by

f. : [...Y, Y"JC ---+ [...\, ZJC.

1. Then f is n-connected if and only ij f. is bijective for any fTee C-CIV -c07nplex J'\ with
diIn( ...\) < n and surjective for any free C-CI-V -cornplex J'Y with elitn(J'\) ::; n;

2. Then f is a weak hornotopy equivalence if and only if f. is bijective for any free C­
CvV -co7nplex X.

Proof: \\Te only give the proof of the second assertion in the special casc whcre Z is the
trivial C-space, i.c. Z (c) = {*} for all objects c in C. Then it is easy to figure out the full
proof following thc cla...,sical proof in [42, IV. Theorcrn 7.16 allel 7.17 on page 182].

\,Ve begin with thc if statell1Cnt. Supposc that [X, Y]C consists of one element for each
free C-CIV-cornplex X. \~le then choose ){ = IllOfe(-, c) x Sk, for a fixcd c E Ob(C). Froln
LClllll1a 3.1 we obtain a natural hOlllCOrl1orphislll

horne (Inorc( -, c) x Sk, Y) ---+ Inap(Sk, )7(C))
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anel thus a natural bijcction

Hcnce for a11 objects c in C any Illap frmn Sk to )'r(c) is nll11homotopic. This iIllplies that I
is a weak hOIl10tOpy equivalencc.

Next we prave thc only if statelllCnt. Suppose that f is a weak hOl1l0tOpy equiva­
lence. Vve luust show far any free C-CHf-cmllplex X that any Illap of C-spaces 9 : ~\ ----t 1""
is nullhornotopic, or in othcr words, extends to thc COlIC Oll X. Thc cone on ~\ is ob­
tained froIn X by attaching C-cclls. Thcl'cforc it sufficcs to show that any Inap of C-spaces
mol'c( -, c) X 5 11

-
1 ----t )7 can bc extcndecl to a Inap 1110rc(-, c) X D71 ----t Y. Such a prob­

leIn rechlces to extcneling a II1ap froIll sn-l to Y" (c) to D71. This can be done as )7 (c) has thc
weak hOlllOtOpy type of a point by asstll11ption. _

Corollary 3.5 A weak homotopy equivalencc between free C-CHf-complexes is a homotopy
equivalence.

Proof: Let f : Y --+ ~\ be a weak hmllotopy cquivalence betwecn free C-CHf_COIllplcxes.
By Theoren1 3.4, there is a 9 : )( --+ 17 so tha.t f* [g) = [f 0 g] = [idx ]. Thus 9 is a weak
hOlnotopy cquivalence. To show that 9 is the hOIl10tOpy inverse of f, wc necd only show that
g has Cl right hOIllOtOpy inverse, but this follows by TheorcIl1 3.4 again. _

Definition 3.6 Let (X, A) be a pair 01 C-spaces. A C-Cl'V-approxiInation

(u,v) : (..-\',A') ----t (..-\,A)

consists 01 a I1'ee C-CvV-pai l' (..-\', A') together with a map 01 pairs (7l, v) 01 C-.9paces such
that both v, und v are weak homotopy equivalences 01 C-spaces. A C-CHf-approxiInation of a
spacc ~\ is a C-CHf -apPToxirnation 01 the pair- ()(, (/)) . _

This is a categorical generalization of thc llotion of a CHf-approxirnation for a topo­
logical space )( (sec [42, V.3]. Ey taking (1, q) to be thc identity in Theorern 3.7 below we
see that C-Cl'V-approxiInations exist anel are unique up to hOlnotopy.

Theorem 3.7 Let (X, A) be a pair 01 C-spaces.

1. {existence} There exists a C-Cl'V -approxirnation 01 ()(, A);

2. (uniqueness) Given a rn ap 01 pairs (I, g) : (X, A) ----t (Y, B) 01 C-space.'! and given
C-Cl'V -approxirnations (u, v) : ()(I, A') --+ (..-\, A) and (a, b) : (171 , B') ---+ (Y, B),
then there exists a rnap 01 pairs (/', g') : (~\'"/, A') --+ 071

, B') so that the diagram
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(~Y', A')
(u,v)

(X,A)~

(P,r/)1 1(/,9)

(Y', B')
(a,b)

(Y·, B)~

C01nmutc.5 up to homotopy. Furthermore the rnap (f', g') is unique up to hornotopy.

Proof: Existence of a C-CH'-approxilnation is an incluctive construction done by attaching
n-cclls to obtain a n-eonnectccl Inap anel finally taking a eoHInit. Uniqucness follows frmn
the relative versions of Theorenl 3.4 and Corollary 3.5. _

Definition 3.8 Lel EC denole any free C-ClV -camplex so that EC(c) is contractible fOT all
objects c. _

Since EC is a C-CvV-approxilnation of thc trivial C-space, EC cxists anel is uniquc up
to hOlnotüpy type. Note there is a contravariant EC and a covariant EC. They are not
düsely related, but olle ean ielcntify thc contravariant EC with the covariant ECoP. Thcre
are functorial constructions of C-CvV-approximations and henee for EC, which wc elescribc
at the end of this section. Hüwever, often it is usefnl to have sIllaller anel Illore flexible
IIlOdcls.

If C = Or(G, 1), thcn EC can be iclcutificd with EG, a contractiblc frce G-ClV-coInplex.
If C has a final objeet, then we Inay take the contravariant EC to be the trivial C-space,
which is a single C-O-eell bascd at the final object. SilnHarly, if C has an initial object, the
trivial C-space is a covariant EC. Ir G is a crystallog1YLphic group, i.e. a discrete subgroup
of thc iSOInetries of Rn so that RH / G is COll1 pact, then (G/ H f------7 (RH) ll) is a contravariant
E Or(G,:FIN), where :FIN" is the faInily of finite subgrollps. More generally, if E(G,:F) is
classifying space für a fanlily of subgroups of a discrete group G, thell (G/ H f------7 E(G, :F) Il)
is a Inodel for E Or(G, :F). This cxaIuplc is cxpallded on in Section 7.

Example 3.9 Let w be the eategory whose objects are the non-negative integers and whose
1110rphisIllS are given by t.hc arrows below, thcir cOInposites, anel thc identity n1aps.

0--+1--+2--+3--+···

Then we Inay take the contravariant Ew to be (Ew) Ci) = [i, (0), whose zero skeleton is
obtained by intersecting each spaee with the integers. For eaeh non-negative integer i, there
is C-O-cell anel a C-I-cell basecl at i. \tVc Illay take the covariant Ew to be the trivial C-space.

-
Definition 3.10 The classifyillg space of a catcgory C is the space BC = EC ®c {*}, where
{*} is the trivial C-space and EC is a contravariant C-Cl'V -apIJ1'oximation of the trivial C-
space. _
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Thc classifying space BC is a ClV-COll1plex clefinccl only up to hOlnotopy type. We will
recall its functorial definition later in this scction.

Theorem 3.11 Let f : Y -----+ Z be a weak homotopy equivalence of covaTiant C-spaces.
Then for any contravariant free C-eH' -complex..,\ the induced map

idx 0c f : ..,\ 0c}1" -----+ X 0c Z

is a weak homotopy equivalence. A similaT staternent holds for weak homotopy equivalences
0/ contravariant C-spaces.

Let ..,Y be a covaTiant (contTfLvariant) I,ee C-CvV -cornplex and f : Y -----+ Z be a wcak
hornotopy equivalence 0/ covariant (contravariant) C-spaces. Then thc induced rnap

hOIl1c(id, f) : h0I11C(..,\, Y) -----+ hOII1c("'Y' Z)

is a weak homotopy equivalence.

Proof: Vve will prove the clain1 by incluction over the skeletons ancl the cells in X. \Ve
only consider thc case iclx 0cf. Thc fUl1ctor - ®c Y is compatible with coliInits, using
thc standard trick from category theory that a functor with a right adjoint conlInutes with
arbitrary COliIl1its (see [24, Chapter V, scction 5]). Hente the pushout spccifying how X n is
obtained froin X n - 1 by attaching cells l'Clnains a pushout after applying - 0c Y. rdo1'eove1',
the left vertical arrow in this pushout is a cofibration anel idxn 0cf is thc pushout of three
weak hOIl1otopy equivalences. Hence it is itself Cl weak hOlnotopy equivalence by excision
theoren1 of Blakers-Massey [42, VII.7]. Analogously one argues to show that the coliInit of
thc n1aps idxn 0cf is idx 0cf and each indusion "'\n ®c Y -----+ "'\n+l 0c Y is a cofibration.
This irnplies that idx 0cY is R weak hOlll0tOpy equivalcncc. Thc p1'oof of the assertion for
horn is sin1ilar. •

Next we give some definitions, which are in dose analogy with group COhüIll010gy and
hOIllological algebra.

Definition 3.12 Let A1 be a covariant ZC-rnodule, X a covariant C-space J and E a covariant
C-speetrum. Define the colinlit. and the liInit 01 111 over C to be the abelian groups

colim 1'1 = 7l 0zc 1'1
c

and

Define the colinlit of X ovef C and the liIl1it of X ovcr C to be the topological spaces

COliIl1){ = {*} ®c ..,\
c

anel li n1..,\ = hOll1c ({*}, ..,\) .
c

Define the colinlit of E over C and the lilnit of E over C to be the spectr'a

col irn E = {*} 0c E
c

and
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Thc above definitions are standard aud the universal propcrties follow frolll the acl­
junctions in Lemlna 1.5 and LeIllIna 1.6. Here Z represents the trivial ZC-Inoelule, with
Z(c) Z anel {*} is the trivial C-spacc. It is also convcnient to deHne coliInits allel lirnits of
contravariant functors over C, by applying the abovc definitions to thc functors considereel
as covariant fllnctors Oll coP. \~Te next cliscuss thc higher derived functors of thc above linlits.

Definition 3.13 /f A1 is a covariant 7lC-rnodule, define

and

1/ ..'\ is a covariant C-s]Jace} rlcfine the honlotopy colinlit and lhe hOlnotopy liInit of ..'\ aver
C as

hocoliIn X = EC 0e )( and holinl X = hOHle (EC, ..'\).
e e

1/ E is a eovar'iant C-spectrum, define the hOInotopy colinüt and the hOIIlOtOpy limit of E
over C as

hocolimE
C

EC®e E and holilnE
C

horne (EC, E). •

One Inust be carcful about the variances on EC in the above definitions. In the left­
hand appearances of EC we are taking the eontravariant version, whilc on thc right we want
the covariant version. In thc definition of thc higher liInits H i anel colilnits H i , thc ZC-chain
cOlllplex C* (EC) ean bc replaced by any projcctive ZC-resolution of Z. As abovc we elefinc
hornology, coholnology, hocolilnits, and holiInits of contravariant fllnctürs by considcring
thenl as functors dcfineel on the üppüsite catcgüry. For properties of H i anel H i

1 sec, for
exanlple, [23] and for properties of hOlllOtOpy liloits see für instance [4], [11, §9] and [21].
One obtains thc fllnctorial definitions if olle uses thc functorial construction Ebarc for EC.
Since EC rnaps to {*}, therc are Inaps hocülimc X --+ COlin1c X allel linlc X ----7 holinlc ./\.
They are not, in general, weak hüIllOtOpy cquivalences, unless )( is a frcc C-CHl-cOlnplex.
The basic property of hOlnotopy lilnits is that if ){ ----+ 1"" is a weak hOlllOtOpy equivalcncc,
then so are thc ineluced Inaps hocolime..'Y ----+ hocolilllC Y allel holiIIle Y ----+ ho1itTlc ./\; this
follows froln Theoretn 3.11.

Example 3.14 Let w bc thc catcgory from Exaluple 3.9. Let A1 anel N bc covariant allel con­
travariallt ZC-Inoelules respectively. Thcn it is ea"y to see that Hi(w; 111) is COlinlj-fOO l'1(j)
for i = 0 anel zero for i > 0, that Hi(w; A1) is A1(0) for i = 0 anel zero for i > 0, that
Hi(w; N) is 1V(0) for i = 0 allel zero für i > 0, and that Hi(w; N) is linlj-fOO 1V(j) for i = 0,
I\1ilnor's litnJ-foo IV (j) for i = 1, and zero for i > 1.

Let )( anel l' be covariant anel contravariant C-spaces respcctively. Then with the Ew's
from Exanlple 3.9 hocolinlw..'\ is the infinite luapping telescape of
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Ciearly holinlw X = X(O) and hoCOlinlw Y = Y(D). Now holinlw Y is a bit bigger, it is the
subspace of

Inap([O, (0), Y(O)) x 11lap([l, (0), Y(l)) x Inap([2, (0), Y(2)) x map(1, Y(3)) x ' , , ,

consisting of all tllpIes ('Yo, 'YI, 'Y2, ' , , ) so that the COlll positc of [i, (0) ~ )7 (i) -+ Y (i - 1)
cquals ri-l 1'estricted to [i, (0). •

Definition 3.15 Let ..Y be a C-space and M a ZC-module. Let X' -+ X be (L C-CHi- ap­
proximation. 1/)( is contTavariant and 1'1 is covariant, define

where C. (X') is the cellulaT chain complex 0/ ..Y', There is (L Birnilar definition ij X 'lS

covariant and JVI is contravariant. II ..Y and 1i1 have the same variance) define

vVhen C = Or(G, 1), If~(X; NI) is Borel equivariallt hOlllOlogy H:(X; 1\1) = Hp(EGxe
.-Y; !t1), \·Vhen C = 01'(G) anel .-Y is the the fixed point functor G/ H M Z H of a G-Cl'V­
cOlllplex Z, then Hg (.-Y; 1\1) is Bredoll equivariant hOlllOlogy of Z with coefficients in Ji1.

Remark 3.16 Olle of the original Illotivations for Breelon's introduction of thc orbit catc­
gory was equivariant obstruction theory, allel it is dcar that all thc ingrcdients are in place for
the developrnent of obstruction theory for thc study of C-maps between a free C-CHi-space
and a C-spacc, but we lcave the task of fincling the precise fonnulatioll to a reaeler motivated
by specific applications. Local coefficient systClns are particularIy subtle, see [26]. •

Next we recall functorial constructions of classifying spaces anel C-C1V-approxilnations
(see for instance [4]' [21], [34]). \~Te will necd SOHle of thc details later in Section 6. Vie\v the
ordered set [p] = {D, 1,2 1 , •• ,p} as a catcgorYl namelYl objects are thc elelncnts and therc is
precisely Olle Inorphislll frorll i to j if i ::; j anel no morphislll otherwisc. Continuing with
thc tenninology froln Exalllpie 1.7, we gct a covariant functor

[ ] ; d -t CATEGORJES

fronl the category of finite orderecl sets into the catcgory of sIllall categories. Thc nerve of a
catego1'Y C is the silnplicial set

N.C : N -+ SETS, []J] M func([p], C).

rvlorc explicitly, lVpC consists of diagraIns in C of thc fonn
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The bar resolution model Bbare for thc classifying space of a category e is the gcolnetric
realil~ation IlV.CI of its nerve where we regard a siInplicial set as a siInplicial space by us­
ing thc discrete topology. It has thc niee properties (see [34]) that it is functorial , that
Bbar(c X '0) = Bbarc X Bbarv, that Bbarc = Bbar(cop), anel that Cl natural transfonnatioll

[roln a functor Fa to a functor F I illchlces a hOInotopy bctwcen the lnaps BbarFo and BbarF I

on the bar resolution lllodeis. In particulaI' an equivalcllce of categorics gives a hOIIlOtOpy
equivalence on thc bar resolution models of the classifying spaces. From Exalnple 1.7 we
get that Bbarc COInes with a canonical OliV-cOIIlplex structure such that there is a bijective
corresponclence bctween thc set of seqllences of C0111posable lllorphisms

where 110 1l1orphislll is thc idcntity ancl the set of p-cclls. Any functor incIllccs a ccllular Illap.
\Ve will justify thc terlll "rnodel of thc c1ac;sifying space" shortly.

Given two objects ? ancI ?? in C, clefine the category ?tC t?? as folIows. An object is a

diagram ? ~ c .!!..:,.?? in C. A Inorphislll froIn 'I ~ c .!!..:,.?? to 'I ~ c' ~ ?? is a cOln111utativc
diagram in e of thc shape

? n
~ ??------+ c

id1 ~1 id1
?

0:'

~??------+ d

Let II10rc (? 1 'I?) be tohe category whosc set of objccts is more ('I, ??) anel whose only lllorphisIllS
are thc iclcntity rnorphisln of objects. ConsicIer the fllnctor

? le I?? . (? ??)pr: . + +.. ----t Illore . 1 •• (7 ~ e A??) ~ (ß 0 Q; : ? -t??) .

Lemma 3.17 The map 01 contravariant C x COP-spaces

Bbar pr : B bar ? tC t?? -t B barmore (?, ??) = Illore (?, ??)

is a C x cop -eH! -apPToximation.

Proof: First we vcrify that Bbar pr is a weak homotopy equivalcnce. Fix objects C, c' of C.
Define functors

j : 1norc (c, cl) --t ctC te'

pr(c, c') : c t et c' -t m0rc (c, r!) (C ~ rl !!..., c' ) ~ (ß 0 a: c ---+ c') .

These give hOlI10topy equivalcllces after applying Bbar, since pr(c, c') 0 j is thc idcntity and
there is a natural transfonnation S : j 0 pr(c, c') -t id defined by assigning to an object

c ~ cl A c' in ctC tc' the Illorphism in ctC tc'
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id ßoo
c -------t c -------t C'

\"'e next show that B bar 7.j..C -!-7? is a free C x COP-ClrV-conlplex. The canonical skeletal
filtration on the classifying space of a category induces a filtration on Bbar? -!-C -!-?? such that

B bar ? -!-C -!-?? = colirll B;ar? -!-C -!-?? .
P--"OO

~lloreoverl there is a pushout of contravariant C x COP-spaces

( d :\T 7 IC t 77 ) BP-l --------i Bpb_arJ 7. IC 17.7.n ..h p • 4- ....,... x ~ ....,. ....,.

1 1
( d 1\[ ? IC J?? ) DP --------i B

p
bar ? IC I??n ..lvp ''''''' +.. X ~ + 4-

where n.d.JVp 7-!-C -!-77 is the set of nou-degenerate p-silnplices of the nerve of ? -!-C -!-?7. This
set cau be idcntificd with thc disjoint union of the C-C-sets lllore (7: co) X 1I10re (Cp, ??) wherc
the disjoint union runs over the scqucnces

where no lllorphisill ePi is the iclcntity. Such scquenccs thus give thc indexing set for the
p-cells. _

From Exalnple 1.7 we get that for any C-space -/\ l therc is a weak hOIllOtOpy equivalence
of C-spaces

t : IS../\ I ---7 ./\.

such that (B.XI is fUBctor from C to Cl'V-COJ\1PLEXES. Notice that this does not IlleaB
that IS../\! itself is a frce C-CH!-complex.

Definition 3.18 Let ./\ be a contravariant C-space. The tensor p7'oduct taking over the
variable ?? yields contravariant C-spaces )( ®e Bbar ? -!- C-!-?? and X 0e Illore (? l ??). Define
a map 0/ contravariant C-spaces

'd 10. B bar

]Jx : X ®c B bar ? -!-C -!-?? 1 'C>'c pr) X 0e IllOre (?, ??) -=t ..,\

where the "econd map is the canonical iso1'fwrphism given by X ® eP I---t X (~)(X ) • Define CL

rnap 0/ contravariant C-spaces

18 Xrl B bar ? IC I?? t0c id xr r:::>. B bar ? IC I?? PX vax: . 0c . ....,. + .. ~ IO'C· .+ + .. ...=.....:...:...,\..
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Lemma 3.19 Let 4'\ be a contravariant C-space. Then:

1. ]Jx is a 1JJcak hOTnotopy equivalcnce of contravariant C-spaces, t. e. Px (c) zs a weak
equivalence of spaces JOT alt objects c in C;

2. Suppos e that 4'\ is a contrYLvariant lunetor Irom C to C Hf -CO1\1 PLEXES, i. e. th e1'e is
a CW -structu1'e on X (c) fo1' each object c in C such that each morphisrn f : c ---+ c'
in C induces a cellular rnap X (f) : X (c') ---+ 4'\ (c). Suppose Y is a contravariant /Tee
V x cop -CHi -cornplex. Then the contravariant V-space X ®c Y inherits the stmcture
0/ a /ree V-CH/-complex;

:3. The map (Lx: IS. 4'\ I®c Bbar? -!- ct?? ---+ )( is a C-CHf-approximation.

Proof: 1.) Fix an object c in C. Then

B pr(c, ??) : B bar c-!-C-!-?? ---+ I11orc(c, ??)

is a wcak hornotopy cquivalcnce of [ree C-CHf-cOinplexes, hence is a C-homotopy cqllivalence.

Thus Px (c) is a hOI110tOpy equivalencc.

2.) \iVe will only incIicatc what the skeleta anel cells are. Thc p-skeleton of 4'\ ®c },. is
Ui+i=11 4'\i®C Yj. A free V x COP-j-cell of Y" basecl at (rl, c) together with a i-cell of 4'\(c) givcs
rise to a [ree V-i + j-cell basecl at d. rvlore preciscly, if <I> : D i ---+ 4'\ (c) is a charactcristic
Inap for a i-cell of X (c) anel if \.lJ : lllOrV (7, d) x Inore (c, ??) x Dj ---+ },. is a characteristic
1l1ap for a free D x COP-j-cell of Y bascd at (d, c), thell thc characteristic 111ap

Illorv(7, d) x Di
X Dj ---+ 4'\ ®c )1'"

is given by
(f, a, b) H [<I>(a) , w(f, ielc , b)].

3.) follo\vs [1'0111 LelllnHL 3.17,1.),2.), anel TheofCln 3.11. •

Ir one takes )( = {*} in thc eOllstructioll abovc, OIle obtains the contravariallt bar'
C-CHf -approxirnation of {*}

Ebarc := {*} 0c B bar ? tC t?? .

tvlore explicitly it is given as follows. For an object ? in C let ? tC be the catego1'Y 01
objects under' C. An object in 7tC is a Inorphism cP : 7 ---+ c in C with ? as source. A
I110rphisI11 in ? t C froln cPo : 7 ---+ Co to cPl : ? ---+ Cl is given by a Illorphisl11 h : Co ---+ Cl in C
satis[ying rPl = ho cPo. A Inorphislll 'lj; : C ---+ d in C clefines a funetor 'lj; tC : d t C ---+ c J, C
by COIllposition with 1/J frolll the right. Then

C H B bar cj.C .

One easily checks that Ebarc. 0c {*} = Bbarc anel thercby justifies our notation.
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4., (Co- )Homology Associated to Spectra over a
Category

In this section we introduce thc hOlllOlogy anel cohornology theories associated to a
spectnull over a category. \·Ve then cxplain a kind of Atiyah-Hirzebruch type spectral se­
quence.

Definition 4.1 Let (..\, A) be a pair 01 pointed C-spaces. Denote the 1'educed cone 01 the
pointed space A by cone(A). For a C-.spectT'um E 0f the opposite variance as (..\, A) define

E;(X, A) = Jrp(X UA conc(A) 0c E).

Given a C-spectrurn E of the .sarne variance as (..\, A), define

E~( ..y, A) = 7f_p(h0111C(..-\ UA cone(A), E)).

If A is just a point, we omit A Ir'om the notation. -

Ir C is thc trivial category consisting of precisely one object anel one lllorphism, then
thc hOlllOlogy anel COh01110logy as cIefincd in Definition 4.1 redllces to thc classical definition
of the recIllced hOlll0logy and COhOlllOlogy of a pair with coefficicnts in a spectnull. This is
obviollS for hOIllOlogy whcreas for COhOIllOlogy oue uscs thc natural bijection indllccd by the
adjllnction

7rp+k(ll1ap(..\, E(k))) ----+ [..\ /\ SP+k, E(k)).

Noticc that writing homology anel COhOlll0logy iu tenns of tensor product anel l11apping space
spectra is analogolls to the definition of thc hOIllOlogy anel cohornology of a chaill conlplex
C. with coefficients in a lnoelule lvI as the homology of C. 0 A1 respectivcly HOlll(C., 1'1).

Lemma 4.2 The hornology and cohornology gro1Lps defined in Definition 4.1 are generulized
reduced homology and cohomology theol'ies fo1' pointed C-spaces.

Proof: The proof is exactly as in the case of spaces, i.e. where C is the trivial catcgory.
For instance, let us check the long COhOlllOlogy sequellce of a pair (..\, A) of pointecl C-spaces.
The following diagralll is a pushout

X UA concA

where i is the cofibration givell by the illclusion allel panel q are the projections. Thc functor
horne (-, Y) for a fixcd pointccl covariant C-space Y has a lcft aeljoint, nalnely - 0e Y. Hence
the following cliagralIl is a pullback anel hOlllc(i, ielE(n)) is a fibration for all n E Z.
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hOlllC(.X" UA cone(A), E(n))

horne(j,idE(n))1
horne (q,idE(n»)
------7) homc(X UA (A t\ [0,1]+), E(n))

1hornc(i,idE(n))

hOlllC({*}, E(n)) hOlnc(A, E(n))

Hence we get for n E Z fibrations of pointcd spaces

homc(q,id E (Il))

hOll1c(X UA conc(A), E(n)) ) hOlllC( ...Y UA (A /\ [0, 1]+), E(n))

hornc(i,idE(n)) ( ())
------+) hOIllC A, E n .

Thcy are cOlnpatible with the structure 111aps. Now thc colinüt ovcr thcir long hOlllOtOpy
sequences yields thc elesircd lang COhOlllOlogy sequence of the pair sillce the canonical pro­
jection frolll ){ UA (A /\ [0,1]+) to ~Y is a homotopy cquivalencc of pointed C-spaces.

The suspension isolllorphislll is indllced by thc following identifications

'7rp+l+k(homc("'Y A SI, E(k))) = '7rp+l+k(map(SI, homc(X, E(k)))

= '7rp+1+k(D hOlllC(X, E(k))) = '7rp +k(hOlllC(X, E(k))). •

Recall that a wcak homotopy cquivalcncc of C-spaces is a C-Illap ...Y ---1- Y so that
...Y(c) --). )'''(c) is a wcak homotopy equivalencc for all objects c E Ob(C). Thc \'VHE-axioll1
says that a weak homotopy equivalence f : ...Y ---1- )',. of pointed spaces incluces iSOlllorphisnls
Oll h0111ology resp. cohOlnology. This is not nccessarily satisfiecl for E~ anel E~ as the
following example shows. Let G be a group ancl C = Or(G, 1). Recall that a contravariant
pointcel Or(G, l)-space is aspace with a base point preserving right G-action. Let E be the
ordinary Eilenberg-rvlacLane spectnull with '7ro(E) = Z, considered as a covariant Or(G, 1)­
spectnull by thc trivial G-actiotl. The projection ]J : EG+ ---1- {*}+ is a weak hOlll0tOpy
equivalence of poillted 01'(G, 1)-spaces. \~le get

anel

where H. is ordinary homology. Obviously thesc two groups do not coincide in general.

Our goal is to gct unreduced homology and coholnology theories for (unpointed) C­
spaces which satisfy both the disjoint unioll axiOlll anel thc vVHE-axiOln. To be Illore precisc,
a hOlll0logy theory means that hOlnotopic lnaps of pairs of C-spaccs inducc the seune nutps on
the hornology grollps, that there are long cxact sequcnces of pairs (...Y, A), and for a pushout
of C-spaces

"'\0 ~ "'Y1

i21 1jl

"'\2~ X
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thc nlap (j21 id : (X2l .l\0) --+ (.1\, Xd induces an iSOIllorphism on hornology provided that
i 2 : .1\0 ---t X 2 is a cofibration of C-spaccs. Ir the hOInology theory satisfics thc \VHE-axiolll,
it suffices to require that for each object c the 111ap i 2 (c) : .I\o(c) ---+ .I\2(C) is a cofibration of
spaces. The disjoint union axiolll says that for an arbitrary disjoint union thc obvious lnap
frorn the clirect SUlll of the homology groups of thc various sUllllllands to the hOlll0logy of
thc disjoint union is an iSOInorphislll. (For cohOinology thc clirect SUlll ha..s to be substitutcd
by thc direct product allel the Illap gocs the other way ronnd.) For this purpose we need
C-CH1-approxinlations (Definition 3.6) in order to generalize thc usual procedure for spaces
to C-spaces (cf [38, 7.68]).

Definition 4.3 Let (.I\, A) be a pair 01 C-spaccs. Let (u, v) : (.1\', A') -----+ (.1\, A) be a
C-Cl'V -approxirnation. FOT a C-spectTurn E 01 the opposite variance as (.1\, A), dcfine the
hOInology of (.1\, A) with cocfficicnts in E by

and
H;(X;E) = H;(.I\,0;E).

Given a C-spectrum E 01 the same variance as (.1\, A), define the cohOinology of (X, A) with
coefficients in E by

and
H~(.I\; E) = H~(.I\, 0; E). •

Thc above hornology alld cohorllo1ogy are well-clefinecl by thc existence and lluiqlleness
of C-CH1-approxiInations. Fnrthcnnorc, by Thcoreln 3.4) given a Inap of pairs of C-spaces
(X, A) ---+ (Y, B), thcrc is an induccd rnap of thcir C-C111-approxiInatiolls which is uniqucly
up to hOI110topy detennincd by thc propcrty that thc following diagrarn corllrllutes up to
hOIllOtOpy

(X',A') ~

1
(Y',B') ~

(.X, A)

1
(Y,B)

Thus for a map of C-pairs, therc are corresponding rnaps of hornology ancl cohOlnology
groups. vVc always have natural nutps

and
E~(.I\, A) ---t H~(X,A; E).

Thc)' are isoillorphisIl1S if (.1\, A) is a free C-CH1_pair, but not in general.
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Lemma 4.4 H~(X,A; E) and H~(X, A; E) are unreduced homology und cohornology thc01'ies
on pai1's of C-8paces which satisfy the WHE-axi017L. The hornology theory satisfies the disjoint
union axiorn. The cohonwlogy theory satisfies the disjoint union axiorn provirled that E is CL

C-f2-spectrum.

Proof: Thc first clainl [o11ows froIu Lelurna 4.2 anel Theorenl 3.4.

Thc hOIllOlogy theory satisfics thc disjoint union axioIll for finite disjoint unions. \·Ve get
the disjoint union axiolll for arbitrary coproducts, if we show for that thc hOlllOlogy thcory
COInnlutes with arbitrary COliIUits. This follows frorll the fact that the functor - 0cE(k)
has a right aeljoint anel comrllutes thercforc with arbitrary COliIUits and that two colirnits of
systerns of abelian groups corIlrllute.

To check the disjoint union axiOll1 for the COhOIllOlogy thcory, it sllffices to do this for
a disjoint union UiEI ./'li of frce C-CHf-coInplexes. \Vc concluclc froln TheoTcrn 3.11 for any
free C-Cl'F-cOlnplex Y that homc(}/, E) is a !1-spectnull since E is a C-n-spectrum and hellce

7rp(horllc (Y, E)) = 7rp+k(hornc(X, E(k))),

provided ]J + k 2:: O. Now thc clairn follows frorll the acIjunction hOllleolllorphism

Notice t,hat without thc condition that E is a C-!1-spcctnun thc associatcd cohorllology
theory eloes not havc to satisfy thc disjoint union axiorll.

Lemma 4.5 Let./\ be a C-space with CL filtration

such that )( = colirlln-tco ..'ln. Let E be a C-spectrum with the opposite respectively the same
variance CLS ./'l.

1. The natural rnap

is an is01norphisrn for 1J E Z;

2. Let E be a C-O-spectrurn. There i.s a natural exact sequence

for alt p E Z.
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Proof: The proof is' exactly a..'5 in the case where C is the trivial catcgory which is due to
lvIilnor anel can bc found for instance in [38, 7.53,7.66,7.73] or [42, Theorelll XIII.l.l on page
604 and TheorClll XIII.l.3 on page 605]. _

Len1111a 4.4 and LCll1ma 4.5 iIllply

Lemma 4.6 Let E and F be C-spectra and f : E -t F be a (.strong) rnap of C-.spectra. It
induces a natural transformation

f.,: H;C,\;E) -t H;CX;F).

1f f i.s a weak equivalence, then f., is an isomorphism. The analogous state7nent holds for
cohomology provided that E and F are C-fl-spectra. _

Any coholnology theory on the category of CH1_coll1plexes satisfying thc disjoint union
axioll1 can be represellted by a fl-spectruIl1. This is a cOllsequcllce of Brown's rcpresentation
theorem allel prüvcn für instance in [38, chapter 9]. The proof goes throllgh with SOll1C
obvious Inodifications also in thc case of frec C-ClIV-complcxes. This cloes not contradict the
rell1ark in [10, 5.8] since in our setting wc allow for ffee C-ClV-cOlnplexes only cells of thc
type Ino1'( -, c) allel thc objects of C form a set by asSUIl1ptioll whcrcas in [10] all hOlllOtopy
types of orbits cau occur anel these homotopy types do not fonn a set.

Finally, we reInark that a filtration of .X givcs a spect1'al scqucllCC.

Theorem 4.7 Let X be a contTavaTi(L nt C-.'Jpace with a filtration

o= -<'\-1 C -<'\0 C .Xl C -<'\2 C ... C -<'\

such that )( = colilnn--too X n .

1. Let E be a covariant C-spectnnn E. Then there is a spectral (homology) 8equence
E;,q, d;,q: E;,q -t E;-r,q+r-l whose El-terrn is given by

E~,q = H;+q(.J'\p, X p- 1;E)

and the first differ'ential is the composition

d~,q : El~,q = H;+q(-<,\pl-<,\p-I' E) -t H;+fJ- 1(Xp - 1, E)

-t H;+q_l (-<'\p-l' -<'\p-2; E) = E~_l,q

where the first rnap is the boundary operator of the pair (Xp , Xp-I) and the second
induced by the inclusion. The Eoo -term is given by

E,c;oq = COlilD Ep
r

q.
, r--too '

This spectral sequence conveTges to H;+q(-<'\; E), i.e. there is an ascending filtration
Fp,m-pH~l(-<'\' E) 0/ H~(-<,\, E) such that

Fp,qH;+q()(, E)/FlJ - 1,q+1 H;+q (-<,\, E) ~ E~;
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2. Let E be a contravariant C-fl-spectrurn. Then there is a spectral (cohornology) sequcnce
E~,q, d~,q: E;,q -----+ E;+r,q-r+l whose EI-term is given by

E P,q Hp+q( ·v· X E)
1 = C .A p , p-l;

anti the first differential is the composition

d~,q : E~,q = H~+q("-\pl "-\p-l} E) -----+ H~+q(..-\p, E) -----+ H~+q+l (,,-\,)+1, Xp; E) = E~+l,q

where the first map is induced by the inclusion and the second is the b071ndary operator
of the pair (J'Yp+ 1, J'\p). The EOO -terrn is given by

Ep
OO

q = IiIn Ep
r

q'
, r-too '

There is a descending filtration FP,m-p liIl1u -too HC("-\n; E) 0/ Hlnn-too Hel ("-\n; E) .such
that tkerc is an exact sequence

O -----+ FP,q HIn H p+q( X . E)/Fp+l,q-l HIn Hp+q(X . E) -----+ EP,qC ..- n, C n, 00
n-too n-too

Ilone 01 the foUowing conditions is satisfied

(a) Tke filtration is finite} i. e. there is n 2: -1 such that J'\ = "-\n}'

(b) The inclusion 0/ X p into '/\1)+1 is p-connected /01' p E Z und there is n~ E Z such
that 1rq (E(C)) vanishcs Jo! aU objects c E Ob(C) arul q > rn;

then the spectl'al scquence converges to H~+q (X; E)} i. e. there is a descending jilt1'ation
FP,m-pHe (..-\, E) 0/ Ht(X, E) such that

FP,qH~+q(..-y; E)/FP+l,q-lH~+q(.X;E) ~ E~q.

Proof: Again this is a variation of the casc whcrc C is the trivial category (see [38, 7.75}15.6
and Rcnlark 3 on page 352]) 01' [42} Thcoreul XIII.3.2. on page 614 anel Theorenl XIII.3.6.
on page 616]. •

Suppose in ThcorCln 4.7 that X is a free C-CvV-coInplex and )(n its n-skeleton. Then
the E 2-tcnn respectively E 2-term of the spcctral sequence in Thcorcrn 4.7 cau be iclentifiecl
with

respectively

One gets the sanlC spectral sequcnce as in TheorCln 4.7 if one takes a dual point of
view. Nalnely, one does not filter X by its skeleta, but uses Cl Postnikov decolnposition of
E. The Atiyah-Hirzebruch spectral sequence [38, 15.7]) is a special casc of Theorem 4.7.
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Quinn's spectral scquence [32, Theorem 8.7] coincides with Thcorcln 4.7 when the stratificel
systelll of fibrations is given by a group action.

Taking ..:'( = EC, filtering by skcleta, anel idcntifying thc E 2 anel EOO-tenns, oue gcts
thc homotopy colirnit spectral sequence

anel the homotopy limit spectral sequence

analogons to thosc of BOllsfield-Kan [4J [XII,5.7 on page 339 and XI,7.1 on page 309J.
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·5. Assembly Maps and Isomorphism Conjectures

In this section we give three cquivalent definitions of assCInbly lnaps, each of whieh
eorrcsponcls to a ecrtain point of view. Then we explain thc ISOluorphislu Conjeetures for
thc threc Or(G)-spectra introduced in Scction 2. \,Vc will define asselnbly rnaps giVCll thc
following clata.: a (discretc) group C, a non-cnlpty fanüly of subgroups :F, closed Hllder
inclusion anel cOlljugation, anel a covariant Or(G)-spectrulu E.

1. Asselnbly by Extension froln HOlnogeneous Spaces to G-Spaces

Let E be a covariant Or(G)-spectruln. \~re define an extension of E to the category of
G-spaces by

E% : G- SPACES -----+ SPECTRA

Recall that
lnapc(-, ./\)+ 0o r (G) E = Il ./\!j 1\ E(G/ H)/ rv

HEF

where rv is the equivalencc relation gCllcratcd by (x1>, y) rv (x,1>V) for :r, E --,Yt', y E E(G/ JJ)
anel 1> : C / H -----+ C / J(, This constrllction is functorial in E, i.e. a Inap of Or(G)-spectra
T : E -----7 F induces a 1l1ap of G-SPACES-spcctra T% : E% ---+ F%.

Let E(G,:F) be a classifyillg space of G with respect to a fanlily :F (sec [5] or [9]),
i.e a G-CH1_cOIl1plex such that the H -fixecl point set is contractible if H E :F and enlpty
otherwise. Such classifying spaces were introduceel by tom Dieck [8], [9] anel are unique up
to G-hOinotopy type. \Ve will give another point of view on these spaces in Section 7. Thc
projection induces a lnap

which is called assernbly rna]J. The ll1ap 1r*(E%(pr)) is the (E,:F, G)-asselnbly 1l1ap referrecl
to in the introcluetion. _

2. Assell1bly as HOinotopy ColiInit

\·Vc first disCllSS the bchavior of hOlll0tOpy linüts under change of category. Consielcr
a covariallt [unctor F : C -----+ D. \Ve introduced F*./\ in Definition 1.8. Since EC is a [ree
C-CH1-cOinplex, wc can apply ThcorcI11 3.4 to the weak hOIuotopy equivalencc of C-spaces
F* EV -----+ {*}, allel get a C-Inap Ee ---+ F* E'D, whieh is uniqllc up to hornotopy. It induces
a Irlap of D-spaccs J : F*EC ---+ ED by LeIlllna 1.9. Let X be a covariant V-space. Then
the assembly ma]J
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is given by the COIllposition

EC ®c F*J\ ~ F*EC 0v J\ f®v
id

) EV ®v ){

where the Inap 9 is the hOIlle0l110rphislll fronl Letnma 1.9. This asselnbly Illap is unique
up to hOIllOtOpy. There is also an asselnbly map if thc covariant V-space X is replacecl by
a covariant V-spectnull E. Ir one uses the functorial Inoelels Ebarc anel Ebarv, there is a
functorial construction of thc map Ebarc ---+ F* Eharv and hence of the asselllbly Illap.

Let
! : 01'(G1 F) ---+ 01'(G)

be the inclusion fnnctor. Define thc assembly 1nap

T. : hocolirn [*E ---+ hoeolirn E = E(G j G).
Or(G,:F) Or(C)

where the hOlnotopy eoHrnit over thc orbit category of E is E(G /G) because the orbit cate­
gory has the tcrIl1inal object GjG. This 35sembly IHa}) cau bc ielcntified with the assernbly
rnap clefined earlier by taking E Or(G) = {*} anel E Or(G, F) = 111apc(-, E(G, F)). Thc
(E, :F, G)-asselnbly lnap is obtainccl by applying hOlnotopy groups. _

3. Asselnbly from the HOlnological Point of View

Let {*}F bc the 01'(G)-spacc clefincd by setting {*}F(G j H) to be a point if H E F
and to be clnpty otherwisc. Let inc : {*}.F ---+ {*} be the inclusion rnap of 01'(G)-spaccs.
It follows froll1 definitions that thc (E,:F, G)-assernbly Inap can bc identifieel with the 111ap

Definition 5.1 The (E,:F, G)-Isolnorphism Conjecturc /01' a discrete group G, a family 0/
subgroups :F, and a covariani Or(G)-specti'um E is thai the (E,:F, G)-assembly map is an
isomorphis1n. For an integeri, the (E,:F, C, i)-!somorphi.r;m Conjecture is that the (E, F, G)­
assembly map is an isomorphism in dirnension i.

Of course for an arbitrary (E,:F, G), thc Isornorphisrn Conjcctllrc Ilcecl not be valid.
However, the Isornorphisln COlljcctllre is always trlle (allel thcrefore pointless!) when:F is
thc fanlily of all subgroups. Thc lllain problCln is given G allel E to find a srnall farnUy F
for which the Isornorphisrn Conjecture is truc. The proper F to choose for the functors K,
LU>, allel Ktop will be discuss later in this sectioll.

Thc rnain point of thc validity of the (E, F, G)-Isornorphislll Conjccture is that it
allows the eOlnputation of 1f.(E(GjG)) from 1f*(E(GjH)) for H E F allel thc strllcture
of the rcstrictcd orbit category Or(G, F). Hcre are two exarnplcs which werc historically
irnportant in algebraic !(-theory.
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Example 5.2 Let G bc an arnalgarnated free product of BI anel B 2 along a subgroup ](.
Let F be the sll1allest fanüly (closcd under subgrollps aud conjllgation) containing B j anel
B2 . Thc E(G, F) can be taken to be a tree, where thc isotropy group of an eelge is conjllgatc
to!( and thc isotropy grollp of a vertex is conjugate to BI 01' B 2 . Thc (E, F, G)-Isorllorphisll1
Conjecture and the lnatcrial in Scction 4, give a long exact Maycr-Vietoris exact sequcIlcc

•

Example 5.3 Let G be a senüdircct product given by the action of an infinite cyclic group
on a grollp](, Let F bc thc falllily of all subgroups of ](. Then E(G, F) can be takcn to
be a IR, with thc isotropy group ]( at evcry point. Thc (E, F, G)-Isoillorphisill Conjecturc
anel the material in Section 4, give a long cxact vVang cxact seqllcncc

... -+ 1ri(E(GI]()) -+ 1ri(E(GIG)) -+ 1ri-I(E(G/]{)) -+ ...

•

The following observation both Inotivates Tsolnorphislll Conjectures anel can be hclpful
in cOlnputation of 1-1.. (BG) fol' a gcncl'alizcel hOll1ology tlteory 1-1. allel a eliscrctc gl'OllP G.

Lemma 5.4 Let S be a fixed spectrum and G be a discrete group. Define an Or(G)-spectrurn
E by E(GIH) = (EG Xc GI H)+ A S. For any larnily F 01 SUbg7'OUPS 01 GJ the (E, F, G)­
IS01norphisrn Conjecture i,r; valid.

Proof: Let \7: Or(G) -+ SPACES be thc covariant functor \7(G/H) = GIB. Note that
the Or(G)-spacc \7 has a left G-action elefined by left Inllitiplication of an elcmcnt 9 on GIH.
vVc havc

=
=
A

-+

E(G, F)H 0or (c) (EG Xc GIH)+ /\ S)
(BG Xc (E(G, F)fl ®Or(G) \7))+ A S

(EG Xc E(G, F))+ A S

(EG Xc G /G)+ /\ S

E%(GIG).

Thc first, sccond, allel fOllrth equalities arc dear. Thc third equality holels sincc one can
identify any lcft G-space X with the left G-spacc X H '9or(C) \7 by by Theorenl 7.4 (a).
Thc Inap A is thc asscmbly Inap E%(pr). Sincc {e} E F, we see E(G, F) = E(G, F){c} is
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contractiblc, anel hCllce EG Xc E(G,:F) --+ EG Xc G/G is a hOInotopy equivalence. Thc
Atiyah-Hirzcbruch spcctral sequencc thcn shows A is a weak homotopy equivalcnce. _

Given a cOlltravariant fUIlctor E : 01'(G) --+ !1- SPECTRA l thcrc is a dual asselnbly
Inap obtainecI by revcrsing arrows and replacing 0or(G) by hOlllOr(G) 1 hocolinlits by holirnits l
and hornology by cohornology. Thc analogue of the last lemllla relllaillS valid.

Now we eOllsielcr thc eovariant Or(G)-speetra of Seetion 2. \·Vhen E equals the algebraie
!(-thcory spcetra. Kalg 01' the algcbraic L-theory spectra L(-oo) of Scction 2 anel :F is thc
fanlily '\-C of virtually eyclie subgroups of Cl then the Isomorphisln Conjeeture is the one
of Farrell-Jones [14]. An eleillent of '\-C is a sllbgroup of G whieh in turn has a eyclie
subgroup of finite index. Farrell and .Jones llse Quinn's version of thc asselnbly map whieh
ean be ielentified with the one prescnteel hcre by thc eharaeterization given in Seetion 6 anel
thc faet that thc sonree of Quinuls asscmbly Illap is a hOlllology theory on thc eategory
of C-'\-C-CIV-cornplexcs [32, Proposition 8.4 on page 421]. Thc Isolllorphislll Conjectllrc
COll1putcS the algebraie ](- resp. L(-oo)-groups of thc integral group ring of G in tenlls of the
corresponding groups for all virtually cyclic subgroups of G. Thc Isolllorphisnl COlljccture
for Kalg has beeil proven ratiolla11y for cIiscrete cocOInpaet subgrollps of virtually eonnected
Lic groups by Farrell and Joucs [14]. Thc (Kalg

l '\-C, C, i)-Isolnorphislll Conjecture for such
groups with i < 2 also follows [roln [14]. The ISOlilorphism Conjecturc for LU> has been
provcn for crystallographic groups if one inverts 2 by Yan1asaki [43). Notice that after
invcrting 2 the spectrull1 L (j) is independent of j. The ISOIllorphisllI Conjectllre for Kalg

and L(-oo) togethcr ilnply the Novikov Conjeetllre and (for dirnensions greater thall 4) the
Borel Conjecturc. The Borel Conjecture says that two aspherical closecl lnanifolds with
isolliorphie fundaIlleutal groups are hOlneolnorphic anel any homotopy equivalcllce between
theIn is hOlllOtopic to a hOlneolnorphisln. A survey on these conjeetures is given in [15].
Related issucs are discuss in [40 l Chaptcr 14].

\~Then E cquals the topologic.:al !(-thcory speetnllll Ktop definecl in Section 2 and :F
is the falnily :FLA! of finite subgrollps of G l then thc Isoillorphisrn COlljectllre is thc Bailln­
Connes Conjeeture [3, Conjecture 3.15 on page 254]. The idcntification is not obvious. It
fo11ows froll1 the lnaterial in Section 6 if OIlC reformulates thc Baulll-Connes Conjccture in
tenns of spectra. Such a refonllulation has been constructeel very recently by Higson, Roe
anel StolJ~ [20]. Nal11ely, they construct a fllnctor

K G
: G-CH!- COrvIPLEXES --t SPECTRA

with the following properties:

1. For a C-CH!-colnplcx X thc hOI110tOpy groups of KG (..,y) can bc ielentified with the
eqllivariant !(-hOlnology gronps in thc sense of Kasparov, provided that J\ is proper
ancI eocolnpaet, anel henee with the sourcc of thc BaUJll-COnnes Inapl provicled that
J\ is proper;

2. UncIer this identification the Illap KG(E(G l :FLA!)) --+ KG(G/G) coming frol11 the
projeetion illduccs thc Baum-Connes Inap on hOlllOtOpy groups;
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3. KG is wcakly excisivc für the fanlily :F of all grollps in thc sense of Seetion 6. (For 0111'

purposcs it suffices to know that it is .JI!V-cxcisive);

4. There is a weak equivalence of 01'(G)-spectra [rolli KGjor(G) to KtaP.

For lliore infonnation Oll the Baulli-CollllCS lllap we rcfer to [19].

Example 5.5 Let E be a contravariant 01'(G)-spectrum and :F = 1 thc trivial [aInUy. The
dOlnain of thc (E,I,G)-assembly Inap is E%(E(G, 1)) = EG+ 1\(,' E(G/1). Now supposc
therc is a funetor J : GROUPOIDSinj -+ SPECTRA so that E(G/ H) = J(G1H). Then
thc Inorphislll of groupoids G/l --t 1/1 givcs a 111ap of speetra E(G/l) -+ E(I/l) which is
G-equivariant, where E(G/l) is givcn the G = autOr(G) (G/I)-action and E(1/I) is givcn thc
trivial G-action. Now suppose J has thc additional property that given [llnctors of groupoids
Fi : 90 ---+ 91 for i = 0, 1 and a natural transformation T : Fa ---+ F1, thcn thc lnaps of
spectra J (Fa) and J (F1 ) are hOlnotopie. (See Lenlma 2.4 to see that these hypotheses are
valid where E is Ka1g, LW, 01' KtoP.) Sincc G /1 ---+ 1/1 is a natural equivalencc of groupoids,
the 111ap E(G /1) ---+ E(1/1) is a homotopy equivalcnce, whieh is in addition a G-n1i:lp. It
follows that

is a weak hOlllotOpy eqllivalencc.

ThllS thc (E, 1, G)-asscrnbly Illap for thc thrcc 01'(G)-spectra of ScctiOll 2 can be idcll­
tificd with thc "classical" asselnbly lnaps

A : Hi(BG; Kalg(Z)) ---+ !(i(ZG),

A : Jli(BG; L{-oo)(Z)) ---+ Li-OO
) (ZG),

A : Hi(BG; KtoP(C)) ---+ KtoP(C).

The last rnap has an interpretation in tenns of taking the index of clliptic operators. The
Novikov Conjecture is eqllivalcnt to the conjecture that thc bottonl two Inaps are rationally
injective.

It is easy to check that there are finite groups G für which none of the threc assclnbly
Inaps above is an isomorphisnl. Howcver, it is conjeeturcd that when Gis torsion-free, that all
thrce maps are isolllorphisIllS. Indeecl, the (KUlg , )..C, G), (L{-oo), )..C, G), and (Ktop,.JI!V, G)
Isolllorphislll Conjectllres applicd to a torsion free grollp Gare equiva.lent to the conjeetures
that the Illaps labcled Aare iSOlnürphislns. This is obvious in the (Ktop,.JI!V, G)-case, and
is shown by Farrell-Jones [14, 1.6.1 and Relnark A.ll] is the other two cases. _
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6. Characterization of Assembly Maps

In this scction we characterize asselnbly l11aps by a universal property. This is useful
for idcntifying different constructions of assenlbly lllaps anel generalizes werk of Weiss allel
\·Villiams [41] frOlll the case of a trivial group to thc case of a general discrete group G.

V/e associate to a covariant Or(G, F)-spectrunl E an extension

E~ : G- SPACES ---+ SPECTRA

Notice that this cOllstrllction depends on :F. Ir E is a 01'(G)-spectrtUll, we have introduced
E% alreacly in Section 5. Therc is a nat.ural transfoflllation S : (E IOr(C,.F))~ ---+ E% of
G-SPACES-spectra. A G-:F-space (G-:F-ClV -complex) is a G-space (G-CH!-C0I11plex) such
that the isotropy group Gx of each point x E X is contained in the fanlily F. Tbc lllap SC.y,)
is an isolllorphisnl if X is a G-F-Cl1!-complex but not in general. For instance for ./\. = G jG
anel F the trivial fanlily 1 we get (E I01G,.F))~(GjG) = E(G j1)jG anel E%(G jG) = E(G jG).
Vve will olnit thc superscript F in E% when it is deal' from thc context. Noticc that this
const.ruction is functorial in E, i.e. a lnap of Or(G, F)-spectra T : E ---+ F ineluces a llHtp
of G - SPACES-spectra T% : E% ---+ F%. Recall that a lllap (isolllorphisln) of spectra
f : E ---+ F is a collectioll of Inaps (horneOII10rphisnls) /(n) : E(n) ---+ F(n) which are conl­
patible with the strllcture lllaps. An isolnorphisln o~ C-spectra is a Inap of C-spectra whose
evaluation at each object is an isoInorphislll of spectra.

Lemma 6.1 Let E be a covariant Or(G, :F)-spect1"urn. Then:

1. The canonical rnap E%(X) UE%(J) E%(Y) ---+ E%(....\ Uf }/) is an isornorphisrn, whcTe
/ : A ---+ Y is a G-rnap and A is a closed, G-invariant .'.iubset 0/ ./Y,.

2. The canonicalrnap colinln~oo E%(':\n) ---+ E%(colinl11~OO ./\.n) is an iS01norphism) whcrc
Xo ---+ ~Yt ---t ./\.2 ---+ ... is (L sequence 0/ G-cofibrations;

3. The canonical map Z+ /\ E%(./\) ---+ E%(Z x X) is an isornorphisrnJ where Z 1,S a
space and./\ is a G-space;

4. The canonical rnap E% (G/ H) ---+ E(G j H) is an isomorphisrn for aU Ii E F.

Prüof: lt can be checked elirectly that the H-fixed point set functor InaPc(G j H, -)
COlnmlltes with attaching a G-space to a G-space along a G-Inap and with colilnits of G­
cofibrations indexeel by the non-negative integers. Parts 1. anel 2. follow froIn thc fact that
- 0or (c,.F) E COlnnlutes with colinüts, since it has an right adjoint by Lemlna 1.5. Parts 3.
and 4. follow frOln the definition ef E%. •

Lemma 6.2 Let E is a covariant Or(G, :F)-spcct1"nm. Then thc extension E I----t E% is
uniquely detennined on the category 0/ G-:F-C1V -complexes up to isom017)hisrH 0/ G-:F­
CHi -COi\1PLEXES-spectra by the properties 0/ Lernrna 6.1
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Proof: Let E H E$ be another such extension. There IS a (a priori not necessarily
eontinuous) sct-theoretic natural transfornlation

TC/\) : E%C/\) = ./\+ ®Or(G,F) E ----+ Es(./\)

whieh sends an elernent represented by (x : G / H ----+ ./\, e) E maPG (G/ H, X) x E(G/ H) to
E$(x)(e). Sinee an)' G-F-CW-coloplex is eonstructcd fronl orbits G/H with H E :F via
proelucts with elisks, attaching a G-space to a G-space along a G-lnap, anel colinlits OV8r the
non-negative integers, T(X) is continuous and is an iS0l1l0rphism for all G-:F-CH1-colnplexes
)(. .

Lemloa 6.2 is a characterization of E H E% up to iSOIllOrphis111. Next wc give a
hOIll0tOpy theoretic charaeterization.

A covariant functor E : G-:F-CH1_COl\1PLEXES ----+ SPECTRA is callecl (weakly) :F­
homotopy invar'iant if it senels G-homotopy equivalenees to (weak) homotopy equivalences
of spectra. Thc functor E is (weakly) F -excisive if it has the following foul' propertics.
First, it is (wcakly) F-hoIllOtOpy invariant. Seconel, E(0) is contractible. Thirel, it respcets
hOlllOtOpy pushouts up to (weak) hOlll0tOpy equivalence, i.c. if the G-:F-CHi-eolnplex ){ is
the union of G-CvV-subcolnplcxes ./\1 auel ./\2 with interscction ./\0, then the canonicallnap
from thc hOlllOtOpy pushout of E(X2) -----7 E(./\o) +-- E(./\2)' which is obtained by gIlling
the Inapping cylinelers togethcr along E(./\o) , to E(./\) is a (weak) homotopy equivalence
of spectra. Finally, E rcspccts cOllntablc disjoint unions up to (weak) homotopy, i.c. thc
natural Inap ViEIE(./\i) -----7 E(LIiEJ ./\i) is a (wcak) hOInotopy cquivalcnec for aU eountable
index sets I. The last conelition ilnplics that the natural IHap fronl thc hornotopy colünit
of the sYStClll E(./\n) conling from the skeletal filtration of a G-F-CHl-colnplex X, Le. the
infinite rnapping telcscopc, to E(X) is a (weak) hOlnotopy equivalence of spectra. Notice that
E is weakly :F-excisive if anel only if 7fq (E(./\)) dcfines a h0l110logy theory Oll thc catcgory of
G-:F-CvV-complexcs, satisfying the disjoint union axiOlIl for countablc clisjoint unions.

Theorem 6.3 1. Suppose E : 01'(G,:F) -----7 SPECTRA is a covariant funct07'. Then
E% is :F-excisive;

2. Let T : E -----7 F be a transfonnation of (weakly) :F-excisive functor.5 E and F f1'07n
G-F-Cl'V -CO!vIPLEXES to SPECTRA so that T(G/ H) is a (weak) homotopy equiva­
lence of spectr'U f01' alt H E F. Then T(./\) is a (weak) hornotopy equivalence of spectra
for alt G-.r-Cl'V -cornplexes ./\;

3. For any (weakly) :F-hor'11otopy invariant funct07' E f7'om G-:F-G1vV-COMPLEXES to
SPECTRA, there is a (weakly) .r-excisive f7Lnctor E% frout G-:F-Cl'V -COi\1PLEXES
to SPECTRA and there are natu7YLl t7'ansformations

AE : E% ----+ E;

BE : E% -----7 (E 10r(G,F))%;

which induce (weak) h01notopy equivalences of spectra AE(G/JI) fo1' alt H E :F and
(weak) homotopy equivalences 01.5pect7YL BE (X) for all G-F-Cl'V -c01nplexes ./\. E is
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(weakly) F-excisive if and only if AE(-"Y) is a (weak) hornotopy equivalence 01 spcctra
for alt G-:F-CW -cornplexes 1\.

Proof: 1.) follows fronl LeIlllna 6.1.

2.) Use the fact that a (weak) homotopy colimit of hOlnotopy eqllivalences of spectra is again
a (weak) hOlllOtOpy equivalence of spectra..

3.) Define E%(-"Y) by thc spectrum

lllapc( - x 6.,-"Y)d 00r(G,:F)x~ Bbar ? .l-Or{G, F) x Ll.l-?? 00r(G,:F)x~ E( - x 6.)

where - resp.. runs over Or(G) resp. Ll, the subscript d in mapc( - x ß., X)d inclicates
that we cquip this rnapping space in contrast to the usual convention with thc discrete
topology anel Bbar? .l-Or(G, F) x Ll.l-?? was introducecl at the enel of Seetion 3. Define the
transfoflllation AE(-"Y) : E%(X) -----+ E(X) by thc following diagram

nlapc( - x ß., ){")d ®Or(G,.F)x~E(- x ß.)

Pmapc(- X6"X)d0idr
Illapc( - x ß., -"Y)d ®Or(G,.F)x~ Bbar '? .l-Or{G, F) x Ll.l-'?? ®Or(G,.F)x~ E(- x L\.)

where Pmapc(-xu.,X)d was introclucecl in Definition 3.18 anel herc allel in thc next eliagralll
Ck refcrs to the callonical rnap whose definition is obvious fronl thc contcxt. Define the
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transfonnation BE(..-Y) : E%(./Y) ~ (E IOr(C,:F»)%(./Y) by the following diagraI11

rnavc( - x .6.., ./Y)d 00r(G,:F)x.6. Bbar? .l.Or(G, F) x Ll.l.?? 00r(C,:F)x~ E( - x .6..)

id 0 id 0E(pr)1
l11apc( - x ß., ./Y)d 00r(C,:F)x.6. B bar ? tOr(G, F) x .6. t?? 00r(C,F)x~E(-)

id0q0id1~
l11apc (- x .6.., X") d 0 Or(G ,:F) x.6. B bar? .l. 0 I' ( G,F) t?? X B bar? t .6. .l.?? 0 Or(C ,F) x~ E (- )

c31~
(nlapc(- X .6.',./\)d0~ Bbar?t.6.j.?? 0.6. {*}) 00r(C,F) Bbar?tOr(G,F)t?? 00r(C,F) E(-)

(id 0C4)0id 0 id1~
(lllapc(- X ß., X")d 0.6. Bbar ? t.6. ) 00r(C,F) Bbar ? t 01'(G, F) t?? 00r(G,F) E(-)

(c50id)0id 0 id1~
(lllap(.6.., Inapc (-, ./\))d 0.6. Bhar? j..6. ) 00 r(C,F) Bbar ? j. 01'(G, F) j.?? 00 r(G,F) E( - )

(id 0q)0io0 iol

(nlap(.6..}lnapc(-, ./Y))d 0~ .6..) 00r(G,F) Bbar? j.Or(G, F)j.?? 00r(C,F) E(-)

(LlllIlJlC(-,X)0idl

1l1apc(-, X") ®Or(C,F) E(-)

where thc canonical nutp q : Bbar? t.6. ~.6.? is defincd in [4, Exmnple XI.2.6 on page 293]
anel amapc(-,X) was introeluccel in Definition 3.18.

Next we show tha.t BE(./Y) is a (weak) hOinotopy cqllivalence provided that)( is a G-F­
CH/-cornplcx. Sinee Eis (wcakly) F-exeisive, the map E(pr): E(G/H X .6.n ) ---+ E(G/H)
is a (weak) hOlllOtOpy cqllivalcnee for all H E F. Henee the first 1l1ap in the diagranl above
id 0 id 0E(pr) is a weak hOlnotopy equivalenee beeause of Theoreln 3.11. The next foul'
Inaps arc all isolllorphis1I1S. The map

is a weak hOlllOtopy eqllivalcllce of Or(G}F)-spaees [4, XII.3.4 on page 331]. Beeause of
Theorem 3.11 the Illap

(iel 0q) 0 id: (rnap(.6..) lnapc( -} ./\))d 0 a B bar ? .t.6. ) 00r(C,:F) B bar ? j. 01'(G, F) j.??

---+ (Inap(.6.., Inapc(-, ./Y))d 0 a .6.) 00r(G,."F) E bar ? j.Or(G, F)j.??

is a weak Or(G} F)-hOInotopy equivalenee of Or(G, F)-spaees. Binee the cloillain anel target
are free Or(G,F)-ClV-colnplcxcs by LenlIna 3.19, it is a hOlllOtOpy equivalence of 01'(0)­
spaccs by Corollary 3.5. Hence the Inap (id 0q) 0 id 0 icl in thc diagrmn above is a hOlllOtOpy
cquivalcncc.
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As we asSUIllC that X is a G-F-Cl/V-cOinplex InapC(-, X) is a Or(G, F)-CvV-eoInplcx.
Since amapc(-,X) is a 01'(G, F)-CHf-approxinlation by LCIlllna 3.19 Corollary 3.5 irnplics
that it is a hOlllotOpy cquivalenec of 01'(C, F)-CvV-eoIIlplexcs. Henee the last IIlap in thc
diagram abovc amapc(-,X) ® id is a hOIllOtOpy equivalenee. This shows that BE(..r\) is a
(weak) homotopy cquivalenee.

In the ease )( = GIH for H E F the eOIllposition of the (weak) hOInotopy cquiva­
Icnee BE (G I H) with the canonical isolllorphislll Inapc (-, GIJI) 00 r (C,F) E(-) -t E(GIH)
agrees with AE(GIH). Hence AE(GIH) is a (wcak) hOinotop.'>' equivalcIlee for all Gll! with
H E F. This finishes the proof of Thcorenl 6.3. •

Thc Inap A E is callcd an assembly rnap fOT E.

Example 6.4 For a topological space ..r\) the fundamental gl'oupoid TI(X) is the category
whosc objects are points in )( allel \Vhose Inorphism set Inorn(x) (x, y) is givcll by cquivalcncc
classcs of paths fr01li x to y, whcrc thc eqllivalence relation is hOl110topy rcl {O, I}. A map
of spaces gives a 11lap of fundamental grollpoiels. A hOlllOtOpy eqllivalcnce of spaces gives a
natural equivalcnce of fUlldanlCutal groupoiels. If X is path-conneetcd and Xo E ..r\, then thc
indusion of thc funelaInental group 1ft (..r\, xo) -t I1(..r\) is a natural equivalcnce of gronpoiels.

Let Kalg : GROUPOIDS -t SPECTRA be the fnnctor froln ScctiOll 2. By Lcmnla
2.4, Ka1g has the propcrty that a natural cquivalence of groupoids gives a hOlllOtOpy cquiv­
alenee of spectra.

One can defillc a hOIllOtOpy invariant fUI1ctor E : ClIV-COJvIPLEXES --+ SPECTR.A
by E(..r\) = Ka1g(il(..r\)). \~Te apply Theorcll1 6.3 in the case where Gis the trivial group (note
that for G = I, Thcorenl 6.3 is duc to vVeiss-\Villianls [41]). Thc llUtp BE gives a hOlllOtOpy
equivalenec froll1 E%(..r\) to ..r\+ /\ Kalg(z), wherc Ka1g(Z) is thc algcbraic ](-spectrum of the
ring Z. After one applics thc n-th hOIl10tOpy group to thc asscillbly Illap

Olle obtains thc algebraic K-theory asselnbly IIlap

A : Hn(X; Ka1ß(Z)) -+ ](~lg(Z1i't..r\).

Next eonsider a discrete group G anel a fainily of subgroups F. One can then dcfinc
an F-holllOtopy invariant functor

E: G-ClV-CONIPLEXES -t SPECTRA

by setting E(..r\) = Kalg(rI(EG x G X)). lf ..r\ is simply-connected, therc is a natural cquiva­
lence of groupoiels

G = Or(G, 1) -----+ TI(EG Xc ..rY).

Using this identification, we have a fonrth point of view on thc (Kalg , F, G)-assernbly lnap,
namely it is

1i'.(AE (E(G, F))) : 1i'.(E%(E(G, F))) -t 1i'.(E(E(G, F))).
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Thc case of algebraic L-theory is analogous. For a Inap of spaces X ---+ Y, the Inap
of groupoids II( ....\) ---+ TI(Y) need not be a Inorphisll1 in GROUPOIDSinj. However, all
relevant Inaps in the definition of A E and BE have this property, so that the analogous
statelnent holds also for the topological !(-theory of C·-algebras. _

Next we explain why Thcorelll 6.3 eharaeterizes the assclnbly llHtp in the sense that
A E : E% ---+ E is the universal approxiInation froln the left by a (weakly) F-cxeisive functor
of a (weakly) F-holllOtOpy invariant functor E froIll G-F-CvV-COMPLEXES to SPECTRA.
The argulncnt is the saUle as in [41, page 336]. Nalnely, let T : F ---+ E be a transfonnation
of functors frmn G-F-CH!-COIvIPLEXES to SPECTRA such that F is (weakly) F-excisive
and T(G/ H) is a (weak) hOl110tOpy equivalence for all H E F. Thell for any G-F-CH!­
cmnplex ....\ the following diagram eOlllnllltes

F%(....\) AF(X)
F(....Y))

T%(X)1 IT(X)

E%(....\") AE(X) E(X))

and AFC.Y) anel T%(X) are (weak) hOH10tOpy cquivalellccs. Henee one Inay say that T(X)
factorizes over AE(X).

One Inay be tell1ptcd to define a natural transfonnation S : E% ---+ E as indicated in
the proof of Lenuna 6.2. Then S(X) is a well-elefincel bijcetion of sets but is not nceessarily
contiuuous becallse we do not want to assulnc that E is eontinuolls, i.c. that thc indueed
rnap fronl hOHle (....\, Y) to hOHle (E(./\), E(Y")) is cOlltinuous for all G-F-CH!-cOlnplexes ./\
and Y. Thc construction abovc uscs thc (weak) .F-hOH10tOpy invariance of E insteacl.

Finally wc give for a covariant 01'(G)-spectrtnn E an equivalcnt definition of E%
whieh is closer to the construction in [41]. Let sirnpcC.Y) be the category having as Inor­
phislns pairs (G/H x [n],a) which consists of an objeet G/H x [n] in Or(G,F) x Ll and
a G-Illap er : G/ H x Lln -----+ ./\. A Illorphisln frOln (G / H x [n], er) to (G/!( x [7nL T) is a
Inorphislll f x 7/, : G/ H x [11,] ---+ G/!( x [rn] in Or(G, F) x Ll such that thc inclucecl l11ap
G/ H x ~n ---+ G/!( x .6m COHlposecl with T is er. This is the equivariant vcrsion of the
construction in [35, Appendix A] applied to the siInplicial set B.X associated to aspace
./\. ObviollSly we obtain a covariant functor E(- x ~.) froln sirnPG(./\) to SPECTRA by
(G/!( x [mL er) M E(G/ !( x .6m ) 'A'e briefty indicate how one can idcntify

E%(./Y) = hoeoliln E( - x .6.).
simpc(X)

Let P : SiU1PCC.\,) ---+ Or(G) x ß be thc obvious forgetful functor. It sllffices to constrllct
a natural iSOInorphisill of Or(G) x ß-spaccs

B bar ? -!-siInpc(X) 0 simpc(X) rnorOr(C) x.6. (??, P(?)) ---+
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Inapc( - x ß., X) ®Or(G)Xa B bar ?? -l-Or(G) x ß-l- - x. .

It will be ilnplelnented by thc following natural bijection of sirnplicial sets for a given object
Gll( x [m] in Or(G) X ß where p runs over 0,1,2, ...

Np? -l-simpcC.Y) ®simpc(X) Inoror(c)xa(GI l< x (171,], P(?)) -t

Inapc( - x ~., .X) ®Or(C)xa lVp GI]( x (m] -!-Or(C) x ß-l- - x .

An elcrnent in thc source is representcd für? = (GI H x [n], 0) by the pair

((G/H x [n],o) -t (GIHo x [no], 00) -t ... -t (G/Hp x [np],op))

x (G/I< x [111] -t GIH x [nD.

It is sent to thc clclnent in the target rcpresented by

(op: G/Hp x ~np -t X)

x (Gll( x [171,] -t GIH x [n] -t C/Ho x [no] -t ... -t GIHp x [np]).

This is indeecl a bijection since G/ Ho x [no] -t ... -t GIIIp x [np] and op detenninc 00,

... ,Op-l·
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7. G-Spaces and Or(G)-spaces

In this section we discuss the orbit category in Illore detail, and give a correspondence
betweell G-spaces with isotropy in F anel Or(G, F)-spaces. This in turn will give a corrc­
spondence between classifying spaces of G with respcct to F anel models of E 01'(G, F) anel
will thercby give a source of natural exanlples. As nsual, let G be a discrete group anel F
a non-eillpty falnily of subgroups closed nnder conjllgation anel inclusion. A G-space -L'\ is a
G-F-space if the isotropy sllbgroup of each point in )( is contained in F. Let Or(G, F) be
the restricted orbit category whose objects are GIII for H E F anel whose InorphislllS are
G-nlaps.

Next we explnin how one gets frOll1 G-.r-spaces to Or(G, F)-spaces allel viee versa. We
will gct a correspondencc up to hOlneOlIlorphism, not only up to hOlllOtOpy (cf. [10, Theorem
3.11], [12], [30]).

Definition 7.1 Given a lelt G-space Y, define the associated contravariant Or(G, F)-space
lllapc(-, Y) by

Or(G, F) ---7 SPACES GIH H InaPc(GI H, Y) = y l1
.

Let \7 be the covariant 01'(G, F) -spacc given by scnding GIH to itself. Givcn (L contravrLTiant
01'(G, F) -space )( define the associated left G-F-space X by

......
.J\ = .J\ 00 r (G,:F) \7.

The telt action of an elernent 9 E G is given by id 00r(C,F)Lg where Lg : GIIi ---7 GI H is
the rnap 01 covariant 01'(G, F) -spaces given by left rn1dtiplication with g. •

The notation for thc funt:tor \7 is illtcndeel to be renlinist:ent of thc cosilnplicial space
.6.. frolll Exmnple 1. 7.

Lemma 7.2 The functors in Definition 7.1 are adjoint, i. e. for (L contravariant 01'(G, F)­
space -L'\ and (}, lcft G-space Y there is a natural horneomorphi8rn

T(.J\, }/) : Inapc(X, }/) ---7 h0010r(G,:F)(X,lnapc( -, Y)).

Proof: If we negleet thc G-action on Y, we get [rOln Lemlna 1.6 a natural homeonlorphism

Inap( ....Y, Y) ---7 homOr(G,F)(.J\,lnap(-, Y)).

Using the transfonnatiolls L g and the G-aetion on Y" one deRnes appropriate G-actiolls on
the source and target of this Inap anel checks that this Inap is G-equivariallt. Hellce it induces
a hOlueomorphisl11 011 thc G-fixed point set which is just T(.J\, }/). Of course olle can define
for instance T()(, y)-l explicitly. Given f : .J\~ Inapc(-, Y) we definc T( ....\, y")-1 (j) by

specifying for each GIH a luap X (GIH) x GIH ---7 Y. It sends (x, gH) to thc value of
j(GIH)(x) at gH. •
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Lemma 7.3 The rnap

is a G-homeornorphism.

f : ~\(G/l) -'t J[ XH [x,l]

Proof: The inverse f- 1 : }? -'t J\(G11) assigns to an element represented by (x, gH) the
elcIncnt J\(qg/l )(x) where qg[{ : G/l --+ GI H sends g' to g'gH. _

Let X be a contravariant Or(G, F)-spacc. Obviously the projectioll pr : G/1 -'t GIH
induces a Inap J\(pr) : J\(GIH) -'t J\(Gll)H. Now olle ea..~ily checks using LCInn1a 7.3
above.

Theorem 7.4 1. Given a le/t G-F-space Y J the adjoint 0/ the identity on mapc(-, Y)
under the adjunction 01 Lernma 7.2 is a natural G-homeomoTphism

-T(Y) : mapc(-, Y) --+ }/.

lt is induced by the map

Il Inap(GI11, }/)C x GIJI -'t Y,
ffE:F

(<jJ, gH) H <jJ(gH) ,

2. Civen a contTavariant Or(G, F)-space J\) the adjoint 0/ the identity on S; under the
adjunction of Lernrna 7.2 ü; a natural rnap 01 Or(G, F) -spaces

S(X) : X --+ 111apc(-, X).

Civen H E F, the rnap S(J\)(GI H) rnaps the elernent x E J\ (G I H) to the elernent

in Ina.pc(GIH, JY) = (J\ ®Or(C,F) \7)Jl represented by (x, eH) E J\(GIH) x GIH. lt
is an iSOUL017Jhism 0/ Or(G, F) -s]Jaces i/ and only if for each H E F the projection
pr : G11 -'t GIJ1 induces a hOrne01TLOrphisln J\(pr) : J\ (GI H) -'t J\(G11) [{. This
condition is satisjied if )( is a free 01'(G, F) -CH!-cornplex,

3. II)'T is left G -F-CHi -complex) then Inapc (-, Y) is a /ree Or(G, F) -CHi -cornplex.
There is a bijective correspondence between the G-cells in }/ 0/ type GIHand the
Or(G, F) -cells in Or(Y, F) based at the object GIJ!. The analogous staternent holds
for a free 01'(G, :F) -CvV -cornplex J\ and X.

Thc bar resolution is a natural construction, however, it is a ((very big" Inodel. Models
with a fewer nUInber of cells can bc ver)' convcnient for concrete calculations and arise often
as folIows.

Definition 7.5 Let G be CL group and F bc a farnily 0/ subgr'oups. A classifying space
E(G, F) of G with respect to :F is a left G-CHl-cornplex such that E(G, F)H is contractible
for' H E Fand empty othcrwise. _
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The existence of E(G, F) anel proofs that for any G-F-Cl'l/-colllplex X there is precisely
one G-map up to G-homotopy [rom X to E(G, F) and tlms that two such classifying spaces
are G-hOI110tOpy equivalent, is given in [8],[9, I.6}. Anothcr constructioll and proof of the
rcsults above COIlle frolll TheorCIl1 3.4 and the following result which is a dircct conscquence
of Theorerl1 7.4.

Lemma 7.6 Let G be a gr'oup and F be a Jamily oJ subgroups.

1. 1J E(G, F) is a classiJying space oJ G with respect to F J then the associated contravari­
ant Or(G, F) -space

rnapc( -, E(G, F))

is a model Jor E 01'(GJ F),.

-2. Given a model E Or(G, F) J then the G-space E 01' (G, F) is (l clas8ifying space 0J G
with respect to F. •

Example 7.7 SOInetillles geoInetry yields snutll cxamplcs of cla,,'lsifying spaces anel resolu­
tions. "Ve ha.ve al ready 1l1cntioned this in the case where G is Cl crystallographic group.
Generalizing this, let G be a elisc1'ete subgroup of a Lie group L with a finite lluIl1ber of COIl1­
ponents. Ir !( is a llHLxiIl1al cOIl1pact subgroup of L, then LI]( is homeoIl1orphic to ]RH and
LI!( can be takcn as a model for E(G, :FLA!), where :FLA! is the faIl1ily of finite subgroups.
Generalizing further, let. G be a group of finite virtual cohornological dirl1ension. Then there
is finite-dirnensional classifying space E(G,:FLA!) (see [36, Proposition 12]) and hence a finite
dilnensional 1110dc1 for E Or(G, :FLA!). Many exalnples of such g1'oups are discussed by Serre
in [36]. IvIore exalnplcs of nicc gcoIl1etric 1110elels for E(G,:FLA!) can be found in [3, scction
2]. •
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