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Introduction

Abstract: We give a unified approach to the Isomorphism Conjecture of Farrell and Jones on
the algebraic K- and L-theory of integral group rings and to the Baum-Connes Conjecture on
the topological K-theory of reduced group C*-algebras. The approach is through spectra over the
orbit category of a discrete group G. We give several points of view on the assembly map for
a family of subgroups and describe such assembly maps by a universal property generalizing the
results of Weiss and Williams to the equivariant setting. The main tools are spaces and spectra
over a category and the study of the associated generalized homology and cohomology theories and
homotopy litnits.

Key words: Algebraic K and L-theory, Baum-Connes Conjecture, assembly maps, spaces and
spectra over a category

AMS-classification number: 57

Glen Bredon {5} introduced the orbit category Or(G) of a group G. Objects are ho-
mogeneous spaces G/H, considered as left G-sets, and morphisms are G-maps. This is a
useful construct for organizing the study of fixed sets and quotients of G-actions. If G
acts on a set X, there is the contravariant fixed point functor Or(G) — SETS given by
G/H — X" = mapg(G/H,X) and the covariant quotient space functor Or(G) — SETS
given by G/H — X/H = X xg G/H. Bredon used the orbit category to define equivariant
cohomology theory and to develop equivariant obstruction theory.

Examples of covariant functors from the orbit category of a discrete group G to abelian
groups are given by algebraic K-theory K;(ZH), algebraic L-theory L;(ZH), and the K-
theory K} (C2(H)) of the reduced C*-algebra of H. In Section 2, we express each of these
as the composite of a functor Or(G) — SPECTRA with the i-th homotopy group. We
use these functors to give a clean formulation of some of the main conjectures of high-
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dimensional topology: the Isomorphism Conjecture of Farrell-Jones [14] (which implies the
Borel/Novikov Conjecture) and the Baum-Connes Conjecture in the case of discrete groups.

Our motivation was in part to obtain such a formulation and and in part to set the
stage for explicit computations based on isomorphism conjectures. We give computations of
K- and L-groups of group rings in a separate paper [7]. Our formulation is nsed by Kimberly
Pearson {27] to show that the Whitehcad group Wh(G) and the reduced Ky-group /Ko(ZG)
vanish for two dimensional crystallographic groups. We also hope our formulations will prove
useful in the further study of isomorphism conjectures and in the related study of manifolds
admitting metrics of positive scalar curvature.

Sections 1, 3, 4 and 7 contain foundational background, independent of assembly maps
and algebraic K-theory. Section 2 is devoted to K-theory, and Sections 5 and 6 to assembly
maps. More precisely, in Section 1 we discuss the adjointness of mapping spaces and tensor
(or balanced) products over a category, as well as the notions of spaces and spectra over a
category. In Section 2, we define our three main examples of Or(G)-spectra: K8, L, and
K'"P, They are all defined by first assigning to an object G/H, the transformation groupoid
G/_H, whose objects are elements of G/H, and whose morphisms are given by multiplication
by a group clement, and then assigning a spectrum to a groupoid. In the K*°P-case there
is an intermediate step of considering the C*-category of a groupoid and a spectrum of a
C*-category, derived from Bott periodicity.

In Section 3 we discuss free C'W-comnplexes over a category C, the universal free CW-
complex EC over a category C, and homotopy {co)-limits EC®¢ X of a C-space X. The ideas
here are well-known to the experts (see e.g. [10]), but the approach, relying on homological
methods and avoiding simplicial methods, may appeal to an algebraist. By approximating
a C-space X by a free C-CW-complex, in Section 4 we define homology H¢(X;E) and
cohomology of a space H:(X;E) of a space with coefficients in a C-spectrum E. We give an
Atiyah-Hirzebruch type spectral sequence for these theories.

With regard to the assembly maps arising in the Isomorphism Conjectures, we give
three points of view in Section 5. Let F be a family of subgroups of G, closed under
inclusion and conjugation. Let E: Or(G) — SPECTRA be a covariant functor. We define
a functor

Eg : G-SPACES — SPECTRA

by setting By (X) = (G/H — X7), ®or(c)E. Then m.(Ey (X)) is an equivariant homology
theory in the sense of Bredon [5). Let E(G,F) be the classifying space for a family of
subgroups of G, i.c. it is a G-CW-complex so that E(G, F)" is contractible for subgroups
H in F and is empty for H not in F. The map
mEq(E(G, F)) — mEg(G/G)

given by applying Eg to the constant map and then taking homotopy groups is called the
(E, F, G)-assembly map. We say the (E, F, G)-1somorphism conjecture holds if the (E, F, G)-
assembly map is an isomorphism. When F = W, the family of virtual cyclic subgroups of G,

(i.e. H € W if and only if H has a cyclic subgroup of finite index), the isomorphism conjec-
tures of Farrell-Jones [14] for algebraic K- and L-theory are equivalent to the (K*&,1C, G)-
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and (L, W, G)-isomorphism conjectures, where K8 and L are Or(G)-spectra associated to
algebraic K- and L-theories. When F = FIN, the family of finite subgroups of G, and K'o?
is the Or(G)-spectra associated with the K-theory of C*-algebras, then the (K*P, FIN, G)-
Isomorphism Conjecture is equivalent to the Baum-Connes Conjecture (see Section 5). When
F =1, the family consisting only of the trivial subgroup of G, then the (K*&, 1, G}, (L, 1, G),
and (K'P, 1, G)-assembly maps can be identified with maps H,(BG; K¥8(Z)) — K.(ZG),
H.(BG;L(Z)) — L.(ZG), and H.(BG;K"?(C)) — K*P(CG).

We give three variant ways of expressing the (E, F, G)-assembly map: by approximat-
ing E by Eg, as above, in terms of homotopy colimits, and in terms of a generalized homology
theory over a category. The first definition is the quickest and leads to an axiomatic char-
acterization; the last two are well-suited for computations.

Let Or(G, F) be the restricted orbit category, where the objects are G/H with H € F.
The (E, F, G)-assembly map is equivalent to the map

m.(hocolim E) — 7. (hocolim E)
Or(G,F) or(G)
induced by the inclusion of the restricted orbit category in the full orbit category. Since
E(G,F) is only defined up to G-homotopy type, it is natural for us to define homotopy
limits and colimits as a homotopy type, rather than a fixed space or spectra; we take this
approach in Section 3.

Given a family F of subgroups of G, define the Or(G)-space {*}r to be the functor
which sends G/H to a point if H is in F and to the empty set otherwise. Let {*} be the
trivial Or(G)-space, which sends G/H to a point for all H. The third point of view is to
identify the (E, F, G)-assembly map with the map

HMO({+} 5 B) — HYO({x};E)
induced by the inclusion map of Or(G)-spaces, {*}r — {}.

Section 6 gives a characterization of assembly maps, generalizing that of Weiss-Williams
[41] to the equivariant setting. Associated to a homotopy invariant functor

E: G-SPACES — SPECTRA,

we define a new functor

E” : G-SPACES — SPECTRA,

and a natural transformation
A:E*” L E,

where A(G/H) is a homotopy equivalence for all orbits G/H. Here E” is the “best approx-
imation” of E by an excisive functor, in particular 7, (E?(X)) is an equivariant homology
theory. When E(X) = K¥(TI(EG x¢ X)) where IT is the fundamental groupoid, then the
map 7. (A(E(G, F))) is equivalent to the (K*8, F G)-assembly map. An analogous state-
ment holds for L-theory and for the topological K-theory of C*-algebras. This gives a fourth
point of view on assembly maps.



In Section 7 we make explicit the correspondence between G-spaces and Or(G)-spaces

which has been implicit throughout the paper.

We thank Erik Pedersen for warning us about two pitfalls related to the spectra of
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1. Spaces and Spectra over a Category

This section gives basic definitions and examples of spaces and spectra over a small
(discrete) category C and discusses the adjointness of the tensor product and mapping space.
Our main example for C is due to Bredon [5):

Definition 1.1 Let G be a group and F be a family of subgroups, i.e. a non-empty set
of subgroups of G closed under taking conjugates and subgroups. The orbit category Or(G)
has as objects homogeneous G-spaces G/H and as morphisms G-maps. The orbit category
Or(G, F) with respect to F is the full subcategory of Or(G) consisting of those objects G/H
for which H belongs to F. (]

Examples of families are F = {H € G | X' # 0} for a G-space X, the finite subgroups
of G, and the virtually cyclic subgroups of G. Notice that the automorphism group of an
object G/H can be identified with the Weyl group W{(H) = N(H)}/H. Furthermore if /{ is
finite, then any endomorphism of G/H is invertible, but not in general [23, Lemma 1.31 on

page 22]. We will always work in the category of compactly generated spaces (see [37] and
[42, 1.4]).

Definition 1.2 A covariant (contravariant) C-space X over the category C is a covariant
(contravariant) functor
X :C — SPACES

from C into the category of compactly generated spaces. A map between C-spaces 1s a natural
transformation of such functors. Given C-spaces X and Y, denote by homg(X,Y) the space
of maps of C-spaces from X toY with the subspace topology coming from the obvious inclusion

nto [[.coney map(X(c), Y{c)). n

Likewise we can define a C-set and an RC-module. For a ring R a RC-module is a
functor M from C to the category of R-modules. For two RC-modules M and N of the same
variance, hompe (M, N) is the abelian group of natural transformations from M to N. We
can form kernels and cokernels, so the category of RC-modules is an abelian category, and
thus one can use homological algebra to study RC-modules (see [23]).

Let G be a group. Let 1 be the family consisting of precisely one element, namely
the trivial group. Then Or(G,1) is a category with a single object, and the morphisms
can be identified with the group G. A covariant (contravariant) Or(G, 1)-space is the same
as a left (right) G-space. Maps of Or(G, 1)-spaces correspond to G-maps. For a different
example of an orbit category, let Z, be the cyclic group of order p for a prime number p. A
contravariant Or(Z,)-space Y is specified by a Z,-space Y{(Z,/{1}), a space Y (Z,/Z,), and
amap Y(Z,/Z,) — Y(Z,/{1})%>.



Example 1.3 Let Y be a left G-space and F be a family of subgroups. Define the associated
contravariant Or(G, F)-space mapg(—, Y') by

Hl«'—l])G(—, Y) : OI‘(G, f) — SPACES G/H — InapG(G/H, )/) — },-H' -

Next we explain two important constructions which make out of two C-spaces a space.
They are called the coend and end constructions in category theory [24, pages 219 and 222).
A lot of well-known constructions are special cases of it.

Definition 1.4 Let X be a contravariant and Y be a covartant C-space. Define their tensor
product to be the space
X®Y = H X(c)xY(c)/ ~
c€Ob(C)
where ~ is the equivalence relation generated by (z¢,y) ~ (z,¢y) for all morphisms
¢ c—> dinC and points x € X(d) and y € Y{(c). Here z¢ stands for X(¢)(z) and

¢y for Y(9)(y)- .

Recall that the category of covariant (contravariant) Or(G, 1)-spaces is the category
of left (right) G-spaces. The balanced product X X Y of a right G-space X and of a left
G-space Y can be identified with the tensor product X ®org,1y Y. The mapping space
maps(X,Y) of two left (right) G-spaces X and ¥ can be identified with homor 1) (X, Y).
The main property of the tensor product is the following.

Lemma 1.5 Let X be a contravariant C-space, Y be a covartant C-space and Z be a space.
Denote by map(Y, Z) the obuvious contravariant C-space whose value at an object c is the
mapping space map(Y(c), Z). Then there is a homeomorphism natural in X, Y and Z

T=T(X,Y,Z) : map(X ®: Y, Z) — home(X, map(Y, Z})

Proof : We only indicate the definition of T. Given a map g : X ®¢ ¥ — Z, we have to
specify for each object ¢ in C a map T'(g)(c) : X(¢) — map(Y{(c), Z). This is the same as
specifying a map N (c¢) x Y (c) — Z which is defined to be the composition of ¢ with the
obvious map from X{(c) X Y (¢) to X ®¢ Y. u

In particular Lemma 1.5 says that for a fixed covariant C-space Y the functor — ®¢ Y
from the category of contravariant C-spaces to the category of spaces and the functor
map(Y, —) from the category of spaces to the category of contravariant C-spaces are adjoint.
Simtlarly if N is a covariant RC-module, then there is adjoint to hompgc (N, —), namely the
tensor product of RC-modules — @pe N (see [9, p. 79], [23, p. 166]). Many properties of
these products can be proven via the adjoint property, rather than referring back to the
definition. These products are reminiscent of the analogous situation of a right F-module
X, a left R-module Y and an abelian group Z, the tensor product X ®p Y, the R-module
homgz(Y, Z). Here there is a natural adjoint isomorphism

homz(X ®g Y, Z) — hompg(X, homz(Y, Z)).



Lemma 1.6 Let X be a space and let Y and Z be covariant (contravariant) C-spaces. Let

X x Y be the obvious covariant (contravariant) C-space. There is a homeomorphism, natural
m X, Y, and Z

T(X,Y,Z) :home(X X Y,Z) — map(X, hom¢(Y, Z)). m

Example 1.7 Let A be the category of finite ordered sets, i.e. for each non-negative integer
p we have an object [p] = {0,1,... ,p} and morphisms are monotone functions. A simplicial
space X. is by definition a contravariant A-space and a cosimplicial space is a covariant
A-space. A simplicial set is a contravariant A-set. It can be considered as a simplicial
space by using the discrete topology. Define a covariant A-space A. by assigning to [p]
the standard p-simplex and to a monotone function the obvious simplicial map. Given
a topological space Y, the associated simplicial set S.Y is given by map(A.,Y),. (The
subscript d indicates that we equip this mapping space with the discrete topology, in contrast
to the usual convention.) The geometric realization | X.| of a simplicial space X. is the space
X.®a A.. The geometric realization of a simplicial set has has the structure of a CW-
complex where each non-degenerate p-simplex corresponds to a p-cell.

We get from Lemma 1.5 that these two functors arc adjoint, i.e. there is a natural
homeomorphism for a simplicial space X. and a space Y

T(X.,Y):map(|X.],Y) — homa (X, S5.Y).

In particular we get for a space Y the natural map given by the adjoint of the identity on
SY
t(Y):|SY] —Y

which is known to be a weak homotopy equivalence. Hence ¢(Y') is a functorial construction
of a CW-approximation of the space Y. For more information about simplicial spaces and
sets we refer for instance to [4] [6], [22] and [25]. ]

Next we introduce spectra over a category C. Let SPACES, be the category of pointed
spaces. Recall that objects are compactly generated spaces X with base points for which
the inclusion of the base point is a cofibration and morphisms are pointed maps. We define
the category SPECTRA of spectra as follows. A spectrum E = {(E(n),o(n)) |n € Z} is
a sequence of pointed spaces {E(n) | n € Z} together with pointed maps called structure
maps o(n) : E(n) AS' — E(n+1). A (strong) map of spectra f : E — E' is a sequence
of maps f(n): E(n) — E'(n) which are compatible with the structure maps o(n), i.e. we
have f(n+1)oo(n) = o'(n)o(f(n) Aidgs:) for all n € Z. This should not be confused
with the notion of map of spectra in the stable category (see [1, II1.2.]). Recall that the
homotopy groups of a spectrum are defined by

m(E) = colimmx(E(k))
k—oo
where the system 7;,x(E£(k)) is given by the composition
o(k).
Tirk(E(K)) L8 Tivkr1 (E(K) A S') L’ Tkt (E(k+ 1))
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of the suspension homomorphism and the homomorphism induced by the structure map. A
weak homotopy equivalence of spectra is a map f : E — F of spectra inducing an isomor-
phism on all homotopy groups. A spectrum E is called Q-spectrum if for each structure
map, its adjoint E(n) — QFE(n + 1) = map(S', E(n + 1)) is a weak homotopy equivalence
of spaces. We denote by Q-SPECTRA the corresponding full subcategory of SPECTRA.

A pointed C-space resp. a C-spectrum resp. C-Q-spectrum is a functor from C to
SPACES, resp. SPECTRA resp. Q-SPECTRA. We have introduced tensor product of
C-spaces in Definitions 1.4 and mapping spaces of C-spaces in Definition 1.2. These notions
extend to pointed spaces, one simply has to replace disjoint unions [ [ and cartesian products
[] by wedge products V and smash products A and mapping spaces by pointed mapping
spaces. All the adjunction properties remain true. Any C-space X determines a pointed
C-space Xy = X [[{*} by adjoining a base point. Here {*} denotes a C-space which assigns
to any object a single point. It is called the trivial C-space.

A C-spectrum E can also be thought of as a sequence {£(n) | n € Z} of pointed C-
spaces and the structure maps as maps of pointed C-spaces. With this interpretation it is
obvious what the tensor product spectruin X ®¢ E of a contravariant pointed C-space and a
covariant C- spectrum means. The canonical associativity homeomorphisms

(X @ E(m))AS' — X ®c (E(n)ASH

are used in order to define the structure maps. It is given on representatives by sending
(z ®c €) Az to x®c (eAz). More abstractly, it is induced by the following composition of
natural bijections coming from various adjunctions where Z is a pointed space

map (X ®¢ E(n)) AS',Z) — map (X ® E(n), map(S', Z)) ~—

map (X, hom¢ (E(n), map(S*, Z))) —- map (X, home(E(n) A ST, Z))
— map(X ®c (E(n) A SY), 2).

Similarly one defines the mapping space spectrum home{X, E) of a pointed C-space X and
a C-spectrum E using the canonical map of pointed spaces (which is not a homeomorphism
in general)

home (X, E(n)) A S' — home(X, E(n) A S).

This map assigns to ¢ A z the map of C-spaces from X to E(n) A S! which sends z € X(c)
to ¢(c)(z) Az € E(n)(c) A S* for ¢ € Ob(C).

A homotopy of maps of spectra fr : E — F is a map of spectra h: [0,1], AE — F
whose composition with the inclusion i : E — [0,1]; AE e kAeis f for k=0,1.

Let C and D be two categories. A C-D-space is a covariant C x D°P-space where D°P
is the opposite of D which has the samc objects as D and is obtained by reversing the
direction of all arrows in D. This is the analogue of a R-S-bimodule for two rings R and S.
Let F': C — D be a covariant functor. We get a D-C-space morp(F(?),77?) if we use the
discrete topology on the set of morphisms. Here 7 is the variable in C and 77 is the variable
in D. Analogously one defines a C-D-space morp(?7, F(?7)).



Definition 1.8 Given a covariant (contraveriant) C-space X, dcﬁne the induction of X
with F' to be the covariant (contravariant) D-space

F.(X = morD(F(?), ??) ®c X
respectively
F.X = X @®cmorp(??, F(?))

and the coinduction of X with F to be the covariant (contravariant) D-space
FX = hom¢(morp(??, F(7)), X)

respectively
FX = hom¢(morp(F(?7),77), X).

Given a covariant (contravariant) D-space Y, define the restriction of ¥ with F' to be the
covariant (contravariant) C-space F*Y =Y o F. [

There are corresponding definitions for C-sets and RC-modules (see [9, p. 80], [23,
p. 166] for induction of modules). For example, if M is a covariant RC-module, then
F.M = Rmorp(F(7),77) @pe M, where for a set S the notation RS is the free R-module
generated by the set S. The key properties of (co)-induction and restriction are the following
adjoint properties.

Lemma 1.9 There are natural adjunction homeomorphisms

homp(F,X,Y) —> hom¢(X, F*Y);
home(F*X,Y) — homp(X, RY);
FX®pY — X®¢F'Y;

Y ®p F,LX — F'Y®:X;
F'Y®:X — Y®pFX;
X® F'Y — FX®pY;

for a C-space X and D-space Y of the required variance.

Proof : Notice for a covariant D-space Y that there are natural homeomorphisms of co-
variant C-spaces

morp(??, F(?)) ®pY — F'Y — homp (morp(F(?),77),Y)

and analogously for contravariant Y. Now the claim follows from the adjointness of tensor
product and hom and the associativity of tensor product. [ ]



2. K- and L-Theory Spectra over the Orbit Category

In this section we construct the main examples of spectra over the orbit category

K*®: Or(G) — Q-SPECTRA,
LY . 0r(G) —— Q-SPECTRA,
K : Or(G) — Q-SPECTRA.

These functors are necessary for the statements of the various Isomorphism Conjectures.
First we outline what we would naively like to do, explain why this does not work and then
give the details of the correct construction.

The three functors defined over the orbit category will be related to the more classical
functors

K*&: RINGS — -SPECTRA,
LY . RINGS — -SPECTRA,
K'P : C*-ALGEBRAS — Q-SPECTRA,

where RINGS is the category of rings with involution. The classical functors were defined
by Gersten [16] for algebraic K-theory, by Quinn-Ranicki [33] for algebraic L-theory, and
by using Bott periodicity for C*-algebras (see [39] for a discussion of Bott periodicity for
C*-algebras and also the end of this section for a functorial approach). The homotopy
groups of these spectra give the algebraic K-groups of Quillen-Bass, the surgery obstruc-
tion L-groups of Wall, and the topological K-groups of C*-algebras. We would like our
functors defined on the orbit category to have the property that the spectra K*&(G/H),
LUY(G/H) and K'*P(G/H) have the weak homotopy type of the spectra K*8(ZH), LU{(ZH)
and K'"P(Cr H) respectively, where ZH is the integral group ring and CrH is the reduced
C*-algebra of H (see [29] for a definition). We would also like our functor to be correct
on morphisms. Notice that a morphism from G/H to G/K is given by right multiplication
re: G/H — G/K, ¢ Hw— ¢'gK provided g € G satisfies ¢7'Hg C K. The induced ho-
momorphism ¢, : H — K, h+— g 'hg gives a map of rings (with involution) from ZH to
ZK, and, at least if the index of ¢,(H) in K is finite, a map on reduced C*-algebras. We
would like the functors applied to the morphism 7, in the orbit category to match up with
the “classical” functors on rings, rings with involution, and C*-algebras.

The naive approach is define K*¢(G/H), LY9(G/H) and K*P(G/H) as the spectra
K*&(ZH), L9(ZH) and K'°(C? H) respectively. This definition works fine for objects, but
fails for morphisms. The problem is that g in ¢, is not unique, because for any k € I,
clearly ¢ and gk define the same morphism in the orbit category. Hence this definition
makes sense only if ¢, : K — K induces the identity on the various spectra associated to
K. This is actually true on the level of homotopy groups, but not on the level of the spectra
themselves. However, it is iimportant to construct these functors for spectra and not only for
homotopy groups of spectra in order to deal with assembly maps and the various Isomorphism
Conjectures. Thus we must thicken up the spectra. The problems with constructing the
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functor K'*? : C*- ALGEBRAS — Q-SPECTRA are particularly involved. P. Baum and
J. Block, and P. Baum and G. Comezana have approaches to this construction, quite different
from ours.

The general strategy for a solution of this problem is the following. Let GROUPOIDS
be the category of (discrete) groupoids with functors of groupoids as morphisms. (A groupoid
is a small category, all of whose morphisms are isomophisms.} Let GROUPOIDS™ be the
full subcategory consisting of those functors F': Gy — G, which are faithful, i.e. for any
two objects z,y in Gy the induced map morg,(x,y) — morg, (F(z), F(y)) is injective. In
the first step one defines a covariant functor

GR : Or(G) — GROUPOIDS™

from the orbit category to the category of groupoids as follows. Namely, a left G-set S
defines a groupoid S where Ob(S) = S and for s,t € S, mor(s,t) = {g € G | gs = t}. The
composition law is given by group multiplication. Obviously a map of left G-sets defines
a functor of the associated groupoids. The category G/H is equivalent to the category
Or(H,1) = H and hence G/H can serve as a substitute for the subgroup H.

Next one extends the definition of the algebraic K- and L-theory spectra of the integral
group ring of a group and the topological K-theory spectrum of the reduced C*-algebra of
a group to the category of groupoids. The composition of this extension with the functor
G R above yields covariant functors from the orbit category to the category of spectra. We
will see that their value at each object G/H 1s homotopy equivalent to the corresponding
spectrum associated to H. The main effort is now to construct these extensions to the
category of groupoids, which will be denoted in the same way as the three functors we want
to construct:

K& : GROUPOIDS — -SPECTRA,
LY . GROUPOIDS —— §-SPECTRA,
K%P : GROUPOIDS™M — Q-SPECTRA.

For this purpose we must introduce some additional structures on categories. Recall that
a category C is small if the objects in C form a set and for any two objects z and y the
morphisms from = to y form a set. In the sequel all categories are assumed to be small. We
will recall and introduce additional structures on C.

Let R be a commutative ring with unit. We call C a R-category if for any two objects
z and y the set more(z,y) of morphisms from z to y carries the structure of a R-module
such that composition induces a R-bilinear map more(z,y) x more(y, 2) — more(z, ) for
all objects z, y and z in C. We also require the existence of an object 0 so that morc(0, 0)
is the zero R-module.

Suppose that R comes with an involution of rings R — B 7+ 7. A R-category with
involution is a R-category C with a collection of maps

%z 0 MOTe(T,y) — mote(y, x) z,y, € Ob(C)

11



such that the following conditions are satisfied:

L rayO -+ u0) = X wg(f) + T2+ 5ay(g) for all A s € R, objects 3,y € Ob(C), and
morphisms f,g: 2 — y;

2. %7, 0%, = id for all objects z,y € Ob(C);

3. #z.(g0 f) = #g,(f) 0%y.(g) for all &, y,z € Ob(C) and all morphisms f:z — y and
gy — 2.

In the sequel we abbreviate *z,(f) by f*. In this notation the conditions above become
Af+pg) =Af*+ag, (f)=fand (go f)* = froyg".

We call a R-category (with involution) an additive R-category (with involution) if it
possesses a sum @ and the obvious compatibility conditions with the R-module structures
(and the involution) on the morphisms are fulfilled.

The notion of a C*-category was defined by Ghez-Lima-Roberts [17] and we give the
definition below in our language. Equip the complex numbers with the involution of rings
given by complex conjugation. A C*-category C is a C-category with involution such that for
cach two objects z,y € Ob(C) there is a norm || ||, on each complex vector space more(z, y)
such that the following conditions are satisfied:

1. (more(%,y), || |l=y) is a Banach space for all objects z,y € Ob(C);

2. lgeflle:<llyg
and g:y — z;

lyz - |l filzy for all z, 4,2 € Ob(C) and all morphisms f:z —y

3N frof llaw =1l £, for all 2,y € Ob(C) and all morphisms f:z — y.

4. For every f € morg(z,y), there is a g € more(z,z) so that f*o f =g*oy.

In the sequel we abbreviate || f ||», by || f || and we will consider a C*-category as a
topological category by equipping the set of objects with the discrete topology and the set
more(z,y) with the topology which is induced by the norm.

Example 2.1 Let C be a category with precisely one object z. Then the structure of a
R-category on C gives mor¢(z,z) the structure of a central R-algebra with unit id,. The
additional structure of an involution is given by a map = : morg(z, ) — more(z, z) satis-
fying:

WA f4p-g) =X x(f)+Ti-+(g), *ox=id and x(g0f)=x(f)ox(g).

The structure of a C*-category on C is the same as the structure of a C*-algebra on the set
more{z, z) with id, as unit. The structure of a topological category on C is the structure of
a topological space on morg(z, z) such that composition defines a continuous map. [
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Next we construct from a category (for example, a groupoid) other categories with the
structures described above. Given a category C, the associated R-category RC has the same
objects as € and its morphism set morge(z,y) from z to y is given by the free R-module
R more(z,y) generated by the set more(z,y). The composition is induced by the composition
in C in the obvious way. Notice that the functor C +— RC is the left adjoint of the forgetful
functor from the category of R-categories to the category of small categories.

Let G be a groupoid and R a commutative ring with unit and involution. Then RgG
inherits the structure of a R-category with involution by defining

(Z /\ifi) = foi—l'
i=1 i=1

Let G be a groupoid. Next we explain how the category with involution CG can be
completed to a C*-category C;G. It will have the same objects as G. Consider two objects
z,y € Ob(G). If morg(z,y) is empty, put morg.g(z,y) = 0. Suppose that morg(z,y) is non-
empty. Choose some object z € Ob(G) such that morg(z, z)} is non-empty, for instance one
could choose z = z. Define a C-linear map

’:‘2

ie e - Cmorg(z,y) — B(1*(morg(z, 2)), I*(morg(z,y)))

by sending f € morg(z,y) to the bounded operator from [?(morg(z,z)) to I*(morg(z,y))
given by composition with f. On the target of i, ,,, we have the operator norm || ||. Define:

It oy = | izge(w) || for w € moreg (z,3) = Cmorg(z, y).

One easily checks that this norm || ||, is independent of the choice of z. The Banach space
of morphisms in C7G from z to y is the completion of moreg (z, ¥) with respect to the norm
| ||z, We will denote the induced norm on the completion more,g(=, y) again by || |z, and
sometimes abbreviate by || ||. One easily checks that =, : morgg(z,y) — morgg (y, z) is
an isometry since it is compatible with applying the maps i, and 4, ., and taking adjoints
of operators. Therefore it induces an isometry denoted in the same way

*gy L MOTC:g (2, y) — more.g(y, ).

Composition defines a C-bilinear map moreg(z,y) X morgg (y, 2} — morgg (z, z) which sat-
isfies | g f |lee <11 g llyz - || £ |lzy- Hence it induces a map on the completions

more:g(2,y) X morg¢(y, z) — morg:¢(z, 2)

with the same inequality for the norms. This is the comnposition in C}G. One easily verifies
that C;G satisfies all the axioms of a C*-category.

Example 2.2 Let G be a group. It defines a groupoid G with onc object and G as its
automorphism group. Then RG is just the group ring RG and C}§ is just the reduced group
C*-algebra C}G under the identifications of Example 2.1. n
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The assignment of a C*-category C:G to a groupoid G gives a functor

C: : GROUPOIDS™ — C*- CATEGORIES,

where C*- CATEGORIES is the category of small C*-categories. The inj-condition that
a functor F : Gg — G, is faithful is used to guarantee that the map morgg, (z,y) —
morgg, (F(z), F(y)) extends to morc.g,(z,y) — morc.q, (F(z), F(y)), for all z,y € Ob(Go).

Remark 2.3 We make a few remarks on functoriality (or lack thereof) of C*-algebras, which
motivate our use of C*-categories. First note that the assignment of a C*-algebra C}H to
a group H cannot be extended to a functor from the category of groups to the category of
C*-algebras. For instance, the reduced C*-algebra C;(Z x Z) of the free group on two letters
is simple [31] and hence admits no C*-homomorphism to the reduced C*-algebra C of the
trivial group.

There is a notion of the C*-algebra of a groupoid, but it is poorly behaved with respect
to functoriality. To a discrete groupoid G, one can associate the complex groupoid ring
CG, which as a C-vector space has a basis consisting of the morphisms in the groupoid.
The product of two basis elements is the composite if defined and is zero otherwise. The
completion of CG in B(I?(G),1*(G)) in the operator norm is called the reduced C*-algebra
of the groupoid and which we denote C:G-alg. If G is connected (any two objects are
isomorphic), and H is the automorphism group of an object, then it can be shown (via Morita
theory) that the spectra K'*P(CzG- alg) and K'*P(C} H) have the same weak homotopy type.
The second naive approach to the coustruction of a functor

K'" : Or(G) — Q-SPECTRA

is to define K'*"(G/H) to be K*P(C:G/H-alg). While this approach is basically correct
for algebraic K- and L-theory, it fails for C*-algebras because the C*-algebra of a groupoid
does not define a functor from the category GROUPOIDS™ to C*-ALGEBRAS. Indecd,
consider the groupoid G[n] with n objects and preciscly one morphism between two objects.
Notice that the obvious functor from G[n] to G[1] has an obvious right inverse. Hence it
would induce a surjective C*-homomorphism between the associated C*-algebras but this
is impossible for n > 2 as the associated C*-algebra of G[n] is M(n,n,C). Another coun-
terexample comes from a morphism in the orbit category. Let G be any infinite group and
consider the map of groupoids G/1 — G/G where G acts on G/1 effectively and transi-
tively by left multiplication and G acts trivially on G/G. An easy computation with the
operator normn shows that this map of groupoids does not extend to a map of the reduced
C*-algebras of the groupoids. We take the trouble to discuss this because mistakes have
been made in the literature on this point and to motivate our definition of the functor
C: : GROUPOIDS™ — C*-CATEGORIES. Below we will define the K'*P-functor from
C*- CATEGORIES to SPECTRA. Note that after applying homotopy groups, one gets maps
on the K-theory of reduced C*-algebras of the groupoids, independent of Morita theory and
without maps on the C*-algebras themselves. |

We recall some basic constructions we will need later.
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Let C be a R-category. We define a new R-category Cg, called the symmetric monoidal
R-category associated to C with an associative and commutative sum @ as follows. The
objects in Cg are n-tuples z = (2, zq, ... ,Z,) consisting of objects z; € Ob(C) for n =0, 1,
2, .... We will think of the empty set as O-tuple which we denote by 0. The R-module of
morphisms from z = (zy,... ,z,) to Y= (y1, .. ,¥Yn) is given by

1110rC$(;'§,y) = D1<i<m,1<j<n I]]OI‘C(mi:yj)

Given a morphism f : z — gy, we denote by f; ; : z; — y; the component which belongs to
i€{l,...,m}and j € {1,... ,n}. If z or y is the empty tuple, then more, (z,y) is defined
to be the trivial F-module. The composition of f: 2z — vy and ¢ :y — 2z for objects
T=(T1,...,Tm), ¥ = (Y1,... ,¥n) and z = (21,... ,2,) is defined by

n
(90 fix = gixo fij.
i=t

The sum on Cq is defined on objects by sticking the tuples together, i.e. for z = (zy,... ,z,,)
and y = (y1,... ,¥n) define

Qeﬂ:z (xla'-- yTms Y1y o ayn)°

The definition of the suin of two morphisms is now obvious. Notice that this sum is (strictly)
associative, i.e. (z @ y) Dz and z @ (y ® 2) are the same objects and analogously for mor-
phisms. Moreover, there is a natural isomorphism

TDy —ydz

and all obvious compatibility conditions hold. The zero object is given by the empty tuple
0. These data define the structure of a symmetric monoidal R-category on Cg. Notice that
the functor C — Cq is the left adjoint of the forgetful functor from symmetric monoidal
R-categories to R-categories.

Given a category C, define its idempotent completion P(C) to be the following category.
An object in P(C) is an endomorphism p : £ — z in € which is an idempotent, i.c. pop = p.
A morphism in P(C) fromp: z — z to ¢ : y — y is a morphism f : £ — y in C satisfying
qo fop=f. The identity on the object p:xz — z in P(C) is given by the morphism
p:x— x in C. If C has the structure of a R-category or of a a symmetric monoidal
R-category, then P(C) inherits such a structure in the obvious way.

For a category C, let I1so(C) be the subcategory of C with the same objects as C, but
whose morphisms are the isomorphisms of C. If C is a symmetric monoidal R-category, then
so is Iso(C).

Let C be a symmetric monoidal R-category, all of whose morphisms are isomorphisms.
Then its group completion is the following symmetric monoidal R-category C~. An object in C
is a pair (z,y) of objects in C. A morphism in C” from (z,y) to (z', ) is given by equivalence
classes of triples (z, f, g) consisting of an object z in C and isomorphisms f: 2 @® 2z — 2/



and g : y® z — y'. We call two such triples (z, f,g) and (2, f', ¢') equivalent if there is an
isomorphism h : z — 2’ which satisfies f’ o (id, ®h) = f and ¢' o (id, ®h) = g. The sum on
C™ is given by

(zy)@ (@, y) =z yay)

If C is a C*-category, then Cgq and P(C) inherit the structure of a C*-category where one
should modify the definition of P(C) by requiring that each object p : x — z is a selfadjoint
idempotent, i.e. pop =p and p* = p. Moreover, Cg, P(Cq) and (Iso(P(Cqg)))” inherit the
structure of topological categories where the set of objects always gets the discrete topology.

Next we can construct the desired functors from GROUPOIDS and GROUPOQIDS™
to 2-SPECTRA. The covariant functor non-connective algebraic K-theory spectrum of a
groupoid with coefficients in R

K8 : GROUPOIDS — Q-SPECTRA

assigns to a groupoid G the non-connective K-theory spectrum of a small additive category
(see [28]) where the additive category is (Iso(P(Gg)})".

Next we define the covariant functor periodic algebraic L-theory spectrum of a groupoid
with coefficients in R

L =L" : GROUPOIDS — Q-SPECTRA

where we assume that 1 is a comutative ring with unit and involution. Then RG and hence
RGg inherit an involution. We apply the construction of the periodic algebraic L-theory
spectrum in (33, Example 13.6 on page 139]. If one uses the idempotent completion one gets
the projective version

L? : GROUPOIDS — Q-SPECTRA .

Taking the Whitehead torsion into account yields the simple version
L* : GROUPOIDS — Q-SPECTRA..
More generally one obtains for j € Z1I {—o0},j < 2
LY : GROUPOIDS — Q-SPECTRA .
where LY is L*, L, L? for j = 2,1, 0.
Next we construct the covariant functor non-connective topological K -theory spectrum
K'? : GROUPOIDS™ — Q-SPECTRA . |
We do this by composing the functors
GR : Or(G) — GROUPOIDS™,
Cr : GROUPOIDS™ — C*- CATEGORIES,
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with the functor
K'P : C*-CATEGORIES — Q-SPECTRA,

which we are about to construct. Let C denote both the complex numbers and the obvious
C*-category with precisely one object denoted by 1. We have introduced the category Cg
before. We denote by n the n-fold sum of the object 1. In this notation Cg has as objects
{n|n=0,1,2...}, thesumis m@&n=m+n formn=20,1,2... and the Banach space
of morphisms from m to n is just given by the (m, n)-matrices with complex entries. Let C
be any C-category. We define a functor

®:C® XC@—)C@

as follows. We assign to an object n € Cg and an object € Cq the object n ® z which
is the n-fold direct sum @7_,z. Let f:m — n be a morphism in Cg and g: 2z — y be
a morphism in Cg. Define f® g: m®z — n®y, to be the morphism whose component
from the i-th copy of z in m ® z to the j-th copy of yinn®yis fi;j-g, where f;; € Cis
the component of f from the i-th coordinate of m to the j-th coordinate of n. One easily
checks that f ® ¢ is a functor. For objects m and n in Cg and an object z in Cg we have
mon)@z=(m®z)®(n®z). For an object n in Cg and objects z and y in Cq we
have a natural isomorphism 2 ® (2@ y) = (n®2z) ® (n®y). Obviously this functor sends
the subcategories {0} x Cgq and Cg x {0} to {0} where {0} and {0} denote the obvious
subcategories with one object.

Let C be any C*-category. Then the construction above applies to P(Cg). It extends
to a functor

® : (Iso(Cg))~ x (Is0(P(Ce)))™ — (Iso(P(Ca)))~

in the obvious way. Notice that (Iso{P{Cg)))” inherits from C the structure of a topological
category for which the set of objects is discrete. With respect to these topological structures
the functor above is a functor of topological categories. Given a topological category D, let
BD be it classifying space [34] (whose construction takes the topology into account). Given
topological categories D and D', the projections induce a homeomorphism

B(D xD') — BD x BD'.
Hence the functor above induces a map
B(lso(Cg))™ x B(lso(P(Cq)))™ — B(Iso(P(Ce)))”

for any C*-category C. Since it sends B(Iso(Cg))™ VvV B(Iso(P(Cg)))” to the base point
B{0} c B(Iso(P(Cg)))", we obtain a map, natural in C,

jt: B(Iso(Cg))™ A B(Iso(P(Cq)))~ — B(Iso(P(Cg)))".
The category [so(Cg) can be identified with the disjoint union [] ., GL(n,C). Let

GL(C) = colim,0 GL(n,C). Let Z x GL(C) be the symmetric moniodal category whose
objects (and monoidal sum) are given by the integers, and so that morz g1 q (m, n) is empty
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if m # n and is GL(C) if m = n. There is an obvious functor Iso(Cg) — Z x GL(C). Using
Quillen’s group completion theorem [18, pages 220-221), it follows that B Iso{(Cg )~ has the
homotopy type of Z x BGL(C). Let b: S? — Blso(Cg)™ be a fixed representative of the
Bott clement in mo(B Iso(Cg)™) = K%({pt.}). Then b and g yield a map, natural in C,

5% A B(Iso(P(Cg)))~ — B(Iso(P(Cq)))".
Its adjoint is also natural in C and denoted by
B : B(Iso(P(Cg)))™ — Q*B(Iso(P(Cs)))".

Define the non-connective topological K -theory spectrum K*P(C) of the C*-category C by the
space B(Iso(P(Cg)))” in even dimensions, by the space 2B(Iso{P(Cg)))” in odd dimensions
and by the structure maps which are the identity in odd dimensions and 4 in even dimensions.
Another construction is suggested by [13, Remark VII1.4.4. on page 186]. We claim that the
proof of Bott periodicity for C*-algebras carries over to C*-categories. Hence K*P(C) is a
(l-spectrum. We will only be interested in the case where C is C}G for a connected groupoid
and in this case the claim follows from Bott periodicity for the reduced group C*-algebra of
the automorphism group of an object in G and Lemma 2.4.

We make some remarks about the constructions of the spectra of groupoids above and
give some basic properties.

There are obvious equivalences of additive categories from RGg resp. P(RGg) to
the category of finitely generated free RG-modules resp finitely gencrated projective RG-
modules as defined in (23, section 9]. Notice that these module categories are not small in
contrast to RGg and P(RGg). A functor F : Gy — G; induces a functor from the category
of finitely generated free resp. projective RGp-modules to the corresponding category over G,
by induction. However, if we have a second functor G : G; — G, then the functor induced
on the module categories by G' o F' and the composition of the functors induced by F' and
G on the module categories are not the same, they agree only up to natural equivalence. In
order to avoid this technical problem, we prefer the small category RGg and its idempotent
completion since there the composition of the functors induced by F and G is the same
as the functor induced by G o F, so that we get honest functors from GROUPOIDS to
Q2-SPECTRA.

As mentioned earlier, the functors K8 LY and K'*P defined on the orbit category are
given by the composition of the groupoid-valued functor GR and the spectra-valued functors
defined above. The automorphism group of the object ¢H in G/—H for the identity element
e € G is just the subgroup H. Hence the next lemma proves what we have already claimed
before, namely, that the spectra we assign to G_/TI- arc homotopy cquivalent to the spectra
associated to H. In particular we get for alln € Z and j € Z1I {-c0},j <2

™ (K*€(G/ 1))

o (L9(G/H))
(K7 (G/H))

1%

K8(Z.H)
LYY z.H)
K,(C*H)

1

1%
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Lemma 2.4 1. If F;: Gy — Gy fori=10,1 are functors of groupoids and T : Fy — F
is a natural transformation between them, then the induced maps of spectra

Kalg(F,-) . Kalg(go) — Kalg(gl)
are homotopy equivalent and analogously for LY and K*©P;

2. Let G be a groupoid. Suppose that G is connected, i.e there is ¢ morphism between any
two objects. For an object z € Ob(G), let G, be the full subgroupoid with precisely one
object, namely x. Then the inclusion iz : G — G induces a homotopy equivalence

K*8(i,) : K¥*%(G,) — K¥8(G)

and K¥8(G,) is isomorphic to the spectrum K& associated to the group ring R autg(z).
The analogous statements hold for LY and K*°P,

Proof : Obviously 2.) follows from 1.). We indicate the proof of 1.) in the case of
K"P, the other cases are analogous if one inspects the definitions in [28] and [33]. One easily
checks that a natural transformation between Fjy to F] induces a natural transformation from
the induced functors from (Iso(P(C}Gog)})” to (Iso(P(C}Gi1g)))" . Let [1] be the category
having two objects, namely 0 and 1 and three morphisms, namely the identities on 0 and
1 and one morphism from 0 to 1. Then the natural transformation above can be viewed as
a functor of topological categories from (Iso(P(C;Gog)))”™ x [1] to (Iso(P(C}G1g)))". Since
the classifying space of a product is the product of the classifying spaces and the classifying
space of [1] is [0, 1], we obtain a map

h: B(Iso(P(C2Gog)))™ X [0,1] — B(Iso(P(C:Grg))) .

One casily checks that this induces the desired homotopy of maps of spectra. [ ]
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3. CW-Approximations and Homotopy Limits

In this section we give the basic definitions and properties of spaces and CW-complexes
over a small category C. We show that the Whitehead Theorem and C'W-approximations
carry over from spaces to C-spaces. We emphasize the parallels between a category and a
group, thinking of a group as a category with a single object, all of whose morphisms are
invertible. We define EC, the universal free contractible C-space, and use this to define the
homotopy colimit EC ®¢ X, the analogue of the Borel construction EG x¢o X.

Consider the set Ob(C) as a small category in the trivial way, i.e. the set of objects is
Ob(C) itself and the only morphisms are the identity morphisms. A map of two Ob(C)-spaces
is a collection of maps {f(¢) : X{(¢) — Y(c¢) | ¢ € Ob(C)}. There is a forgetful functor

F:C-SPACES — Ob(C)-SPACES

Define a functor

B : Ob(C)-SPACES — (-SPACES
by sending a contravariant Ob(C)-space X (—) to Heeoney more(—, ¢) x X(¢). In the covari-
ant case one uses moreg(c, —).

Lemma 3.1 The functor B s the left adjoint of F.

Proof : This means that there is a natural bijection

T(X,Y) : home(B(X),Y) — homgyy(X, F(Y))

for all Ob(C)-spaces X and for all C-spaces Y. Actually 7(X,Y") will even be a homeomor-
phism. For f: B(X) = [[.cone) more(—,¢) x X{(¢} — Y (=) define T(f)(—) by restricting
fto X{(=)={id_} x X(=). The inverse T(X,Y) ™! assigns to a map g of Ob(C)-spaces the
following transformation

B(X) = H more(—,¢) x X{(¢) — Y(-), (¢, z) = Y () o g(c)(z). ]

cEOL(C)

Let R be a ring. There is also an adjoint to the forgetful functor from RC-MOD to
Ob{(C)-SETS. It is defined as B(X(—)) = Bceob(c) R{more(—, ¢) x X(c)). A free RC-module
is a module isomorphic to one in the image of B. Notice the analogy between Lemma 3.1
and the case of the forgetful functor from K-modules to sets and the functor assigning to a
set S the free R-module RS generated by S.

We have already mentioned that the category of Or(G,1)-spaces is the category of
G-spaces and the category Ob{Or(G, 1)-spaces) is the category of spaces. Under this iden-
tification the forgetful functor F' just forgets the G-action and B sends a space Z to the
G-space G x Z where G acts in the obvious way.
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Notice that the notions of coproduct, product, pushout, pullback, colimit, and limit
exist in the category of C-spaces. They are constructed by applying these notions in
the category SPACES objectwise. For instance, the pushout of a diagram of C-spaces
X1 +—— Xy — X, is defined as the functor X : C — SPACES whose value at an object
c in C is the pushout of the diagram of spaces X, (c) +— Xg(c) — Xz{c). We mention that
sometimes in the literature the terms direct limit and inverse limit are used instead of colimit
and limit. We will always use the names colimit and limit.

A map f: X — Y of C-spaces is a cofibration (fibration) of C-spaces if it has the
homotopy extension property (homotopy lifting property) for all C-spaces. If f is a (co)-
fibration of C-spaces, its evaluation f(c): X(¢) — Y'(c) is a (co)-fibration of aut(c)-spaces
for all objects ¢ in C. The proof of this fact is a simple abstract manipulation of the homotopy
lifting (extension) property and various adjunctions. Notice that the converse is not true.

Next we extend the notion of a ClW-complex for spaces to C-spaces. We will see
that the notion of a free C-CW-complex is very similar to the the notion of an ordinary
CW-complex and that standard results and their proofs for CW-complexes generalize in a
straightforward manner to the case of free C-CW-complexes. This leads to easy proofs of
known and new results whose strategy is very close to classical ideas and patterns.

Definition 3.2 A contravariant free C-CW-complex X is a contravariant C-space X to-
gether with a filtration

b=X,CcXocXiCXp...CcXoC...CX=[]X,

n>0

such that X = colim, A, and for any n > 0 the n-skeleton X,,, is obtained from the
(n — 1)-skeleton X, _; by attaching frec C-n-cells, i.e. there exists a pushout of C-spaces of
the form

Uiein more(—, ¢} x S*1 —— X,

l !

Hieln I'llOI'c(—, C*l) x D" ? Xﬂ

where the vertical maps are inclusions, I, is an index set, and the ¢; are objects of C. We
refer to the inclusion functor morc(—,¢;) x int D* — X as a free C-n-cell based at c;.
A free C-CW -complez has dimension < n if X = X,,. The definition of a covariant free
C-CW-complex is analogous. [ ]

A C-CW-complex was defined by Dror Farjoun [10, 1.16 and 2.1] (see also [30]). We
shall deal almost exclusively with free C-CW-complexes. For a free C-CW-complex X, the
cellular chain compler C.(X)(=), ¢ —= C.(X)(c} is a C-chain complex of free ZC-modules.
Notice that a free C-CW-complex X defines a functor from C to CW-COMPLEXES, but
not any functor from C to CW-COMPLEXES is a free C-CW-complex.
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If Y is a G-CW-complex, then mapg{(—,Y) (which sends G/H — Y!) is an example
of a free Or(G)-CW-complex. A G-cell of Y of orbit type G/H corresponds to a Or(G)-cell
of mapg(—,Y) based at G/H. Recall that the category of Or(G,1)-spaces coincides with
the category of G-spaces. Under this identification a free Or(G, 1)-CW-complex is the same
as a free G-C'W-complex.

Given a C-space X and a space Y, we obtain the C-space X' x Y by assigning to an
object ¢ the space X(¢) x V. Taking Y = [0,1], it is now clear what a homotopy of maps
of C-spaces means.. Recall that a map f: X — Y of spaces is n-connected for n > 0 if and
only if for all points = in X the induced map m(f,z) : m (X, z) — me(Y, f(z)) is bijective
for all £ < n and surjective for k = n. It 1s a weak homotopy equivalence if it is n-connected
for all n > 0.

Definition 3.3 A map f: X — Y of C-spaces is n-connected (a weak homotopy equiv-
alence) if for all objects ¢ the map of spaces f(c): X(c) — Y(c) is n-connected (a weak
homotopy equivalence). |

The constant map EG — {x} is a weak homotopy equivalence, but not a homotopy
equivalence of Or(G, 1)-spaces.

The following result is well-known for ordinary CW-complexes [42, IV. Theorem 7.16
and 7.17 on page 182]. See also [10, Proposition 2.9] and [30, Theorem 3.4].

Theorem 3.4 Let f:Y — Z be a map of C-spaces and X be a C-space. The map on
homotopy classes of maps between C-spaces induced by composition with f s denoted by
Lo XY — [X, Z]6.

1. Then f is n-connected if and only if f. is bijective for any free C-CW -compler: X with

dim(X) < n and surjective for any free C-CW -complez X with dim(X) < n;

2. Then f is a weak homotopy equivalence if and only if f. is bijective for any free C-
CW -complez X .

Proof : We only give the proof of the second assertion in the special case where Z is the
trivial C-space, i.e. Z(c) = {*} for all objects ¢ in C. Then it is easy to figure out the full
proof following the classical proof in [42, IV. Theorem 7.16 and 7.17 on page 182].

We begin with the if statement. Suppose that [X, Y] consists of one clement for each
free C-CW-complex X. We then choose X = mor¢(—,c) x S¥, for a fixed ¢ € Ob(C). From
Lemma 3.1 we obtain a natural homeomorphism

home (more(—, ¢) x §¥,Y) — map(S¥, Y (c))
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and thus a natural bijection
[more(—,c) x S5, Y€ — [S%, Y (<)].

Hence for all objects ¢ in C any map from S* to ¥(c) is nullhomotopic. This implies that f
is a weak homotopy equivalence.

Next we prove the only if statement. Suppose that f is a weak homotopy equiva-
lence. We must show for any free C-CW-complex X that any map of C-spaces g: X — Y
is nullhomotopic, or in other words, extends to the cone on X. The cone on X is ob-
tained from X by attaching C-cells. Therefore it suffices to show that any map of C-spaces
more(—,¢) x S*~! — Y can be extended to a map more(~,c) x D®™ — V. Such a prob-
lem reduces to extending a map from S"~! to Y{(c) to D". This can be done as Y (c) has the
weak homotopy type of a point by assumption. [ ]

Corollary 3.5 A weak homotopy equivalence between free C-CW -complezes is a homotopy
equivalence.

Proof : Let f:Y — X be a weak homotopy equivalence between free C-CW-complexes.
By Theorem 3.4, there is a ¢ : X' — Y so that f.[¢] = [f o g] = [idx]. Thus g is a weak
homotopy equivalence. To show that ¢ is the homotopy inverse of f, we need only show that
g has a right homotopy inverse, but this follows by Theorem 3.4 again. [ ]

Definition 3.6 Let (X, A) be a pair of C-spaces. A C-CW -approximation
(u,v) : (N, A} — (X, A)
consists of a free C-CW -pair (X', A") together with a map of pairs (u,v) of C-spaces such

that both v and v are weak homotopy equivalences of C-spaces. A C-CW-approximation of a
space X is a C-CW -approzimation of the pair (X, 0). [ ]

This is a categorical generalization of the notion of a C'W-approximation for a topo-
logical space X (see [42, V.3]. By taking (f, ¢) to be the identity in Theorem 3.7 below we
see that C-C'W-approximations exist and are unigue up to homotopy.

Theorem 3.7 Let (X, A) be a pair of C-spaces.

1. (ezistence) There ezists a C-CW -approzimnation of (X, A);

2. (uniqueness) Given a map of pairs (f, g} : (X, A) — (Y, B) of C-spaces and given
C-CW -approzimations (u,v) : (X', A") — (X, A) and (a,b) : (Y',B") — (Y, B),
then there exists a map of pairs (f',¢') . (X', A") — (Y, B') so that the diagram
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(x4 2 (X, A)

(f',a’)l l(f-ﬂ)

v, B % (v, B)

comrnutes up to homotopy. Furthermore the map (f', g') is unique up to homotopy.

Proof : Existence of a C-CW-approximation is an inductive construction done by attaching
n-cells to obtain a n-connected map and finally taking a colimit. Uniqueness follows from
the relative versions of Theorem 3.4 and Corollary 3.5. |

Definition 3.8 Let EC denote any free C-CW -complez so that EC(c) is contractible for all
objects c. »

Since EC is a C-CW-approximation of the trivial C-space, EC exists and is unique up
to homotopy type. Note there is a contravariant EFC and a covariant EC. They are not
closely related, but one can identify the contravariant FEC with the covariant £C°P. There
are functorial constructions of C-C'W-approximations and hence for EC, which we describe
at the end of this section. However, often it is useful to have smaller and more flexible
models.

If C = Or(G, 1), then EC can be identified with EG, a contractible free G-CW -complex.
If C has a final object, then we may take the contravariant EC to be the trivial C-space,
which is a single C-0-cell based at the final object. Similarly, if C has an initial object, the
trivial C-space is a covariant EC. If G is a crystallographic group, i.e. a discrete subgroup
of the isometries of R" so that R* /G is compact, then (G/H — (R*)) is a contravariant
E Or(G, FINY}, where FIN is the family of finite subgroups. More generally, if E(G,F) is
classifying space for a family of subgroups of a discrete group G, then (G/H — E(G, F)')
is a model for E Or(G, F). This example is expanded on in Section 7.

Example 3.9 Let w be the category whose objects are the non-negative integers and whose
morphisms are given by the arrows below, their composites, and the identity maps.

0—1—02—3—-..

Then we may take the contravariant Fw to be (Fw)(i) = [i,00), whose zero skeleton is
obtained by intersecting each space with the integers. For each non-negaiive integer 7, there
is C-0-cell and a C-1-cell based at i. We may take the covariant Fw to be the trivial C-space.
]

Definition 3.10 The classifying space of a category C is the space BC = EC Q¢ {*}, where
{*} is the trivial C-space and EC is a contravariant C-CW -approzimation of the trivial C-
space. [
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The classifying space BC is a CW-complex defined only up to homotopy type. We will
recall its functorial definition later in this section.

Theorem 3.11 Let f:Y — Z be a weak homotopy equivalence of covariant C-spaces.
Then for any contravariant free C-CW -complex X the induced map

i(]x@cf!)\r@c}, — X@CZ

is a weak homotopy equivalence. A similar statement holds for weak homotopy equivalences
of contravariant C-spaces.

Let X be a covariant (contravariant) free C-CW -complex and f:Y —— Z be a weak
homotopy equivalence of covariant (contravariant) C-spaces. Then the induced map

home(id, f) : home(X,Y) — hom¢(X, Z)

ts a weak homotopy equivalence.

Proof : We will prove the claim by induction over the skeletons and the cells in X. We
only consider the case idy ®:f. The functor — ®¢ Y is compatible with colimits, using
the standard trick from category theory that a functor with a right adjoint commutes with
arbitrary colimits (see [24, Chapter V, section 5]). Hence the pushout specifying how X, is
obtained from X, _, by attaching cells remains a pushout after applying — ®. Y. Moreover,
the left vertical arrow in this pushout is a cofibration and idy, ®¢f is the pushout of three
weak homotopy equivalences. Hence it is itself a weak homotopy equivalence by excision
theorem of Blakers-Massey [42, VII.7]. Analogously one argues to show that the colimit of
the maps idy, ®c¢f is idy ®¢f and each inclusion X, @ ¥ — X, & Y is a cofibration.
This implies that idy ®cY is a weak homotopy equivalence. The proof of the assertion for
hom is similar. |

Next we give some definitions, which arc in close analogy with group cohomology and

homological algebra.

Definition 3.12 Let M be a covariant ZC-maodule, X a covariant C-space, and E a covariant
C-spectrum. Define the colimit and the limit of M over C to be the abelian groups

colcimM = Z®zc M and liénM = homgc(Z, M).

Define the colimit of X over C and the limit of X over C to be the topological spaces

colcimX = {*} @ X and liCmX = home({x}, X).

Define the colimit of E over C and the limit of E over C to be the spectra

co}:imE = {x} @ E and liénE = hom¢({*}, E). u
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The above definitions are standard and the universal properties follow from the ad-
junctions in Lemma 1.5 and Lemma 1.6. Here Z represents the trivial ZC-module, with
Z(c) = Z and {x} is the trivial C-space. It is also convenient to define colimits and limits of
contravariant functors over C, by applying the above definitions to the functors considered

as covariant functors on C°®. We next discuss the higher derived functors of the above limits.

Definition 3.13 If M is a covariant ZC-module, define
Hi(C;M) = H{C.(EC) ®zc M) and HY(C; M) = H'(Homge(C.(EC), M)).

If X is a covariant C-space, define the homotopy colimit and the homotopy limit of X over

C as
hocglimX = ECQc X and hoéimX = home(EC, X).

If E is a covariant C-spectrum, define the homotopy colimit and the homotopy limit of E
over C as

hocglimE = EC®:E and hoéimE = hom¢(EC, E). (]

One must be careful about the variances on EC in the above definitions. In the left-
hand appearances of £C we are taking the contravariant version, while on the right we want
the covariant version. In the definition of the higher limits H* and colimits H;, the ZC-chain
complex C,(EC) can be replaced by any projective ZC-resolution of Z. As above we define
homology, cohomology, hocolimits, and holimits of contravariant functors by considering
them as functors defined on the opposite category. For properties of H; and H') see, for
example, [23] and for properties of homotopy limits see for instance [4], [11, §9] and [21].
One obtains the functorial definitions if one uses the functorial construction E®*C for EC.
Since EC maps to {*}, there are maps hocolimg X — colime X and limg X' — holime X.
They are not, in general, weak homotopy equivalences, unless X is a free C-CW-complex.
The basic property of homotopy limits is that if X — Y is a weak homotopy equivalence,
then so are the induced maps hocolimge X' — hocolimg Y and holime ¥ — holime X; this
follows from Theorem 3.11.

Example 3.14 Let w be the category from Example 3.9. Let A and N be covariant and con-
travariant ZC-modules respectively. Then it is easy to see that H;(w; M) is colim; e M (j)
for i = 0 and zero for 7 > 0, that H'(w; M) is M(0) for 7 = 0 and zero for ¢ > 0, that
H;(w; N) is N(0) for ¢ = 0 and zero for ¢ > 0, and that H*(w; N) is lim;,0 N(j) for ¢ = 0,

Milnor’s limj_,,, N(j) for i =1, and zero for i > 1.

Let X and Y be covariant and contravariant C-spaces respectively. Then with the Fw’s
from Example 3.9 hocolim,, X is the infinite mapping telescope of

X(0) — X(1) — X(2) — X(3) — -
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Clearly holim, X = X(0) and hocolim, Y = ¥(0). Now holim, Y is a bit bigger, it is the
subspace of

map([0, 00}, Y'(0)) x map([1, 00}, Y (1)) x map([2,00), Y(2)) x map(f, Y (3)) x -- -,

consisting of all tuples (vo,¥1,72, - ) so that the composite of [¢,00) = ¥ (i) — Y (i = 1)
equals y;_y restricted to [z, 00). ]

Definition 3.15 Let X be a C-space and M a ZC-module. Let X' — X be o C-CW -ap-
promimation. If X is contravariant and M is covariant, define

HS(X; M) = Hy(C.(X") ®zc M),

where C.(X') s the cellular chain complez of X'. There is a similar definition if X 1s
covariant and M is contravariant. If X and M have the same variance, define

HE(X; M) = HP(homgc(C (X)), M)). ]

When C = Or(G, 1), HS(X; M) is Borel equivariant homology HY(X; M) = H,(EG ¢
X;M). When C = Or(G) and X is the the fixed point functor G/H — Z% of a G-CW-
complex Z, then H;" (X'; M) is Bredon equivariant homology of Z with coefficients in M.

Remark 3.16 One of the original motivations for Bredon’s introduction of the orbit cate-
gory was equivariant obstruction theory, and it is clear that all the ingredients are in place for
the development of obstruction theory for the study of C-maps between a free C-CW-space
and a C-space, but we lcave the task of finding the precise formulation to a reader motivated
by specific applications. Local coefficient systems are particularly subtle, see {26]. [ ]

Next we recall functorial constructions of classifying spaces and C-C'W-approximations
(see for instance {4}, 21], [34]). We will need some of the details later in Section 6. View the
ordered set [p] = {0,1,2,...,p} as a category, namely, objects are the elements and there is
precisely one morphism from i to j if ¢ < j and no morphism otherwise. Continuing with
the terminology from Example 1.7, we get a covariant functor

[1: A — CATEGORIES

from the category of finite ordered sets into the category of small categories. The nerve of a
category C is the simplicial set

NC:N — SETS, [p] — func({p], C).
More explicitly, N,C consists of diagrams in C of the form

bp—
Cgie')clﬁ-)CQg...p—;Cp.
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The bar resolution model B"*C for the classifying space of a category C is the gecometric
realization |N.C| of its nerve where we regard a simplicial set as a simplicial space by us-
ing the discrete topology. It has the nice properties (see [34]) that it is functorial, that
BY"(C x D) = B"™C x B D, that B (C = BP*(C°P), and that a natural transformation
from a functor Fy to a functor F, induces a homotopy between the maps BP* Fy and B F,
on the bar resolution models. In particular an equivalence of categories gives a homotopy
equivalence on the bar resolution models of the classifying spaces. From Example 1.7 we
get that B®*'C comes with a canonical CW-complex structure such that there is a bijective
correspondence between the set of sequences of composable morphisms
coﬂ)cl—gl—)cgg...%—_i%
where no morphism is the identity and the set of p-cells. Any functor induces a cellular map.
We will justify the term “model of the classifying space” shortly.

Given two objects 7 and ?7 in C, define the category 7JC |77 as follows. An object is a
} t
diagram ? 5 ¢ Zyrrine. A morphism from ? = ¢ 222 t07 % ¢ 24 27 is a commutative
diagram in C of the shape

Let more (7, 77) be the category whose set of objects is more(?, 77) and whose only morphisms
are the identity morphism of objects. Consider the functor

pr: 700127 — more(7, 77) (?—Q-mﬁ)??) = (Boa:? —T7).

Lemma 3.17 The map of contravariant C x C°P-spaces
B pr: BYT? 1 C 17?7 — B more(?,77) = more(?, 77)
is a C x CP-C'W -approrimation.

Proof : First we verify that B pr is a weak homotopy equivalence. Fix objects ¢, ¢’ of C.
Define functors

J :more(c, &) — ¢lClc (c N c’) — (c RPN c’) )
pr(c,d): ¢lCld — more(c, &) (c 3d £)c’) = (Boa: c— ().

These give homotopy equivalences after applying B since pr(c,¢) o j is the identity and
there is a natural transformation S : j o pr(¢,¢’) — id defined by assigning to an object
cSd LN ¢ in ¢lClc the morphism in ¢lCl¢

28



id Poa

c y ¢ s ¢
ool
a B
c » d y ¢

We next show that B2 7 C |77 is a free C x C°P-CW-complex. The canonical skeletal
filtration on the classifying space of a category induces a filtration on B®2* ? | C |77 such that

BT ?70C47 = colim B 70C1?7.
PO

Moreover, there is a pushout of contravariant C x C°P-spaces

(n.d.N, 7LC177) x §P=F —— Bb 71C |77

l !

(nd.N7LCY??) x DP —— B ?LC |77

where n.d.Np 7LC 177 is the set of non-degenerate p-simplices of the nerve of ?LC|77. This
set can be identified with the disjoint union of the C-C-sets morc (7, ¢g) X morc(c,, ?7) where
the disjoint union runs over the sequences

) [
CO—)61“¢—1)02'—?1)...F—)CP

where no morphism ¢; is the identity. Such sequences thus give the indexing set for the
p-cells. [ ]

From Example 1.7 we get that for any C-space X, there is a weak homotopy equivalence
of C-spaces
t|S.X| — X.

such that [S.X| is functor from C to CW-COMPLEXES. Notice that this does not mean
that |S.X| itself is a free C-CW-complex.

Definition 3.18 Let X be a contravariant C-space. The tensor product taking over the
variable 7?7 yields contravariant C-spaces X ®c B** 71LC 1?7 and X ®; more(?,7?). Define
a map of contravariant C-spaces

id ®c¢ Bb20 pr
—_—

Px D¢ ®c Bbar 7ic¢?? X Qc mOI’C(?, ??) E> X

where the second map is the canonical isomorphism given by © ® ¢ — X(¢)(z). Define a
map of contravariant C-spaces

ay ¢ |SX|®c B 7,C17? B9 X @. B 017 BN N,
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Lemma 3.19 Let X be a contravariant C-space. Then:

1. px is a weak homotopy equivalence of contravariant C-spaces, i.e. px(c) is a weak
equivalence of spaces for all objects ¢ in C;

2. Suppose that X is a contravariant functor from C to CW-COMPLEXES, i.e. there is
a CW -structure on X (c) for each object ¢ in C such that each morphism f:¢c— ¢
in C induces a cellular map X(f) : X(¢) — X(c). Suppose Y is a contravariant free
D x CP-CW -complex. Then the contravariant D-space X ®¢ Y inherits the structure
of a free D-CW -complez;

3. The map ay : |S.X|®¢ BY ?,CL?? — X is a C-CVW -approzimation.

Proof : 1.) Fix an object ¢ in C. Then

Bpr(c,??) : B ¢|C|??7 — more(c, 77)

is a weak homotopy equivalence of free C-CW -complexes, hence is a C-homotopy equivalence.
Thus px(c) is a homotopy equivalence.

2.) We will only indicate what the skeleta and cells are. The p-skeleton of X ®¢ V is
Uitj=p Ni®c Y. A free D x CP-j-cell of Y based at (d, c) together with a i-cell of X(c) gives
rise to a free D-i + j-cell based at d. More precisely, if ® : D' — X(c) is a characteristic
map for a i-cell of X(c) and if ¥ : morp(?,d) x more(c,??) x D? — Y is a characteristic
map for a free D x C°P-j-cell of ¥ based at (d, ¢), then the characteristic map

morp(?,d) x D' x D! — X ®: Y
is given by
(f,a,b) = [®(a), ¥(f,id., b)].
3.) follows from Lemma 3.17, 1.), 2.}, and Theorem 3.11. »

If one takes X = {x} in the construction above, one obtains the contravariant bar
C-CW -approzimation of {x}

EPC = {x} ®c B 7iC|77.

More explicitly it is given as follows. For an object 7 in C let 7|C be the category of
objects under C. An object in 7)C is a morphism ¢:? — ¢ in C with ? as source. A
morphismin 7] C from ¢ : 7 — ¢g to ¢ : 7 — ¢, is given by a morphism h : ¢g — ¢; inC
satisfying ¢, = h o ¢p. A morphism ¢ : ¢ — d in C defines a functorp L C:d L C — ¢ | C
by composition with % from the right. Then

EPC.C — SPACES, c— B clC.

One easily checks that EYC ® {*} = B"*C and thereby justifies our notation.
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4.. (Co-)Homology Associated to Spectra over a
Category

In this section we introduce the homology and cohomology theories associated to a
spectrum over a category. We then explain a kind of Atiyah-Hirzebruch type spectral se-
quence.

Definition 4.1 Let (X, A) be a pair of pointed C-spaces. Denote the reduced cone of the
pointed space A by cone(A). For a C-spectrum E of the opposite variance as (X, A) define

Eg(X, A) = m(X Uy cone(A) @c E).
Given a C-spectrum E of the same variance as (X, A), define
EL(X,A) = m_,(hom¢(X U, cone(A), E)).

If A 1s just a point, we omit A from the notation. [

If C is the trivial category consisting of precisely one object and one morphism, then
the homology and cohomology as defined in Definition 4.1 reduces to the classical definition
of the reduced homology and cohomology of a pair with coefficients in a spectrum. This is
obvious for homology whereas for cohomology one uses the natural bijection induced by the
adjunction

Tpre{map(X, E(k))) — [X A SPHE E(k)).

Notice that writing homology and cohomology in terms of tensor product and mapping space
spectra is analogous to the definition of the homology and cohomology of a chain complex
C. with coefficients in a module M as the homology of C, ® M respectively Hom(C,, A).

Lemma 4.2 The homology and cohomology groups defined in Definition 4.1 are generalized
reduced homology and cohomology theories for pointed C-spaces.

Proof : The proof is exactly as in the case of spaces, i.c. where C is the trivial category.
For instance, let us check the long cohomology sequence of a pair (X, A) of pointed C-spaces.
The following diagram is a pushout

A 5 XU (AA[0,1)4)

pl lq

{*} —— XU,concd
where 1 is the cofibration given by the inclusion and p and ¢ are the projections. The functor
home(—, Y} for a fixed pointed covariant C-space Y has a left adjoint, nammely —®¢ Y. Hence

the following diagram is a pullback and home(7,idg)) is a fibration for all n € Z.
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home{g,idg(n))
_—

home (X Uy cone(A), E(n)) home(X Ua (AN[0,1]4), E(n))

llomc(j-ids(n))l ll’omc(i,ids(n))

home ({*}, E(n))

home{p,idg(n))
—

home (A, E(n))

Hence we get for n € Z fibrations of pointed spaces

homC(QlidE(u))
—_—

home (X U, cone(A), E(n)) home (X Uq (AA[0,1)4), E(n))

] i g (n))
M) hom¢(A, E(n)).

They are compatible with the structure maps. Now the colimit over their long homotopy
sequences yields the desired long cohomology sequence of the pair since the canonical pro-
jection from X U (A A [0,1]4) to X is a homotopy equivalence of pointed C-spaces.

The suspension isomorphism is induced by the following identifications
Tprrak(home (X A SY E(K))) = 7pr10x(map(St, home (X, E(k)))

= Tpr1+x(home (X, E(k))) = mppr(home(X, E(K))). »

Recall that a weak homotopy equivalence of C-spaces is a C-map X — Y so that
X(c) — Y(c) is a weak homotopy equivalence for all objects ¢ € Ob(C). The WHE-axiom
says that a weak homotopy equivalence f : X' — Y of pointed spaces induces isomorphisms
on homology resp. cohomology. This is not necessarily satisfied for E,C, and EL as the
following example shows. Let G be a group and C = Or(G,1). Recall that a contravariant
pointed Or(G, 1)-space is a space with a base point prescrving right G-action. Let E be the
ordinary Eilenberg-MacLane spectrum with mo(E)} = Z, considered as a covariant Or(G, 1)-
spectrum by the trivial G-action. The projection p: EG. — {x}, is a weak homotopy
equivalence of pointed Or(G, 1)-spaces. We get

ECCD(EGL) = H(BG)  and  BXED({x},) = Hy({+}).
where H, is ordinary homology. Obviously these two groups do not coincide in general.

Our goal is to get unreduced homology and cohomology theories for (unpointed) C-
spaces which satisfy both the disjoint union axiom and the WHE-axiom. To be more precise,
a homology theory means that homotopic maps of pairs of C-spaces induce the same maps on
the homology groups, that there are long exact sequences of pairs (X, A), and for a pushout
of C-spaces

i)

JYU — ;\’1

s

Xy L) X
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the map (72,%1) : (X3, Xo) — (X, X;) induces an isomorphism on homology provided that
iy : Xg — X3 is a cofibration of C-spaces. If the homology theory satisfies the WHE-axiom,
it suffices to require that for each object ¢ the map i5(c) : Xo(c) — X3(c¢) is a cofibration of
spaces. The disjoint union axiom says that for an arbitrary disjoint union the obvious map
from the direct sum of the homology groups of the various summands to the homology of
the disjoint union is an isomorphism. (For cohomology the direct sum has to be substituted
by the direct product and the map goes the other way round.) For this purpose we need
C-CW -approximations (Definition 3.6) in order to generalize the usual procedure for spaces
to C-spaces (cf [38, 7.68]).

Definition 4.3 Let (X, A) be a pair of C-spaces. Let (u,v) : (X', A") — (X, A) be a
C-CW -approzimation. For a C-spectrum E of the opposite variance as (X, A), define the
homology of (X, A) with coefficients in E by

HS(X, A;E) = ES(X), AlL).
and
HS(X;E) = H(X,;E).

Given a C-spectrum E of the same variance as (X, A), define the cohomology of (X, A) with
coefficients in E by

and
HY(X;E) = HE(X,0;E). ]

The above homology and cohomology arc well-defined by the existence and uniqueness
of C-C'W-approximations. Furthermore, by Theorem 3.4, given a map of pairs of C-spaces
(X, A) — (Y, B), there is an induced map of their C-CW-approximations which s uniquely
up to homotopy determined by the property that the following diagram commutes up to
homotopy

(X, A") — (X, A)

! l

(Y',BY — (Y, B)
Thus for a map of C-pairs, there are corresponding maps of homology and cohomology
groups. We always have natural maps
HS(X, A;E) — ES(X, A)

and
EZ(X,A) — Hg(X,A;E).

They are isomorphisms if (X, A) is a free C-CW-pair, but not in general.
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Lemma 4.4 HS(X, A; E) and HE(X, A; E) are unreduced homology and cohomology theories
on pairs of C-spaces which satisfy the WHE-aziom. The homology theory satisfies the disjoint
union azxiomn. The cohomology theory satisfies the disjoint union axiom provided that E is a
C-Q-spectrum.

Proof : The first claim follows from Lemma 4.2 and Theorem 3.4.

The homology theory satisfies the disjoint union axiom for finite disjoint unions. We get
the disjoint union axiom for arbitrary coproducts, if we show for that the homology theory
commutes with arbitrary colimits. This follows from the fact that the functor — ®@c E(k)
has a right adjoint and commutes therefore with arbitrary colimits and that two colimits of
systems of abelian groups commute.

To check the disjoint union axiom for the cohomology theory, it suffices to do this for
a disjoint union ], X; of free C-CW-complexes. We conclude from Theorem 3.11 for any
free C-C'W-complex Y that home (Y, E) is a Q-spectrum since E is a C-Q-spectrum and hence

ﬂp(hOInC(Yi E)) = Tpt+k (hOI'Ilc(X, E(k)))7

provided p + k£ > 0. Now the claim follows from the adjunction homeomorphism

i€l el

home (H,\’,-) E(k) | S [[home (X))+, E(R)). =
+

Notice that without the condition that E is a C-Q2-spectrum the associated cohomology
theory does not have to satisfy the disjoint union axiom.

Lemma 4.5 Let X be a C-space with a filtration
=X_1CX0CX1 CJYQC -..C:\r

such that X' = colim, o X,,. Let E be a C-spectrum with the opposite respectively the same
vartance as X.

1. The natural map
: Cyyr . Crv.
cno_l};}} H,(X.; E) — H;(X;E)
15 an tsomorphism for p € Z;
2. Let E be a C-Q-spectrum. There is a natural exact sequence

{0} — Li_l}llH{:’"l(J\’ﬂ;E) — HE(X;E) — lim H2(X;E) — {0}

n—od

for allp € Z.
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Proof : The proof is exactly as in the case where C is the trivial category which is due to
Milnor and can be found for instance in [38, 7.53,7.66,7.73] or [42, Theorem XIIL.1.1 on page
604 and Theorem XIT1.1.3 on page 605]. u

Lemma 4.4 and Lemma 4.5 imply

Lemma 4.6 Let E and F be C-spectra and f : E — F be a (strong) map of C-spectra. It
induces a natural transformation

f,: HS(X;E) — HS(X;F).

If f is @ weak equivalence, then f, is an isomorphism . The analogous statemnent holds for
cohomology provided that E and F are C-{2-spectra. [ ]

Any cohomology theory on the category of CW-complexes satisfying the disjoint union
axiom can bhe represented by a 2-spectrum. This is a consequence of Brown’s representation
theorem and proven for instance in [38, chapter 9]. The proof goes through with some
obvious modifications also in the case of free C-C'W-complexes. This does not contradict the
remark in {10, 5.8] since in our setting we allow for free C-CW-complexes only cells of the
type mor(—, ¢} and the objects of C form a set by assumption whereas in [10] all homotopy
types of orbits can occur and these homotopy types do not form a set.

Finally, we remark that a filtration of X gives a spectral sequence.

Theorem 4.7 Let X be a contravariant C-space with a filtration
0‘—‘){_1 C.X()C/\’l CAXyC...Cc X

such that X = colim, o0 Xp.

1. Let E be a covariant C-spectrum E. Then there is a spectral (homology) sequence
Er o dn i BN — B | whose Ey-term s given by

g’ p—rg+T—
1 _ C r r .
E\, = HS (X, X,—1;E)

and the first differential is the composition

d,,: E) = HS (Xp, Xp_1,E) — HC., (X,_1,E)

P ptq
C - r N _ 1
’ Hp+q-|(f\p—1:f\p—2)E) - Ep—l,q

where the first map is the boundary operator of the pair (X,, X,—1) and the second
induced by the inclusion. The E*®-term s given by

E® = colim ET .
»y P00 p.q

This spectral sequence converges to H§+q

Fym-pHE(X,E) of HS(X,E) such that
FpqHS, (X, E)/Fyr g HS (X, E) = EX:

ptgq »e

(X E), i.e. there is an ascending filtration

35



2. Let B be a contravariant C-Q-spectrum. Then there is a spectral (cohomology) sequence
Epa, it EF — B+ whose E'-term is given by

EP? = HEY(X,,X,.1;E)
and the first differential is the composition

dzll,q : E;.q = H£+q(/YP:J\’P—l:E) — Hg+q(‘Yp>E) - Hg+q+1("yp+l:/\’p; E) =FE,

p+l.g

where the first map is induced by the inclusion and the second is the boundary operator
of the pair (X,41,X,). The E®-term is given by

o0 __ : T
Ep,q - TIHEO Ep,q'
There is a descending filtration FP™Plim, o HI (X4 E) of limy, oo HP (X E) such
that there is an ezact sequence

0 — FP lim HEY (X B)/FPF70 lim HEY(X, E) — B2

n—00 n—eo
CR + e o, 1 prptar v - .
— lim Hg q(“\p-l-m: z\p, E) — lIim HC (AP+’"1 "\p—ly E)
m-—r0oQ m—rCQ

If one of the following conditions is satisfied

(a) The filtration is finite, i.e. there isn > —1 such that X = X,,;

(b) The inclusion of X, into X, is p-connected for p € Z and there is m € Z such
that m,(E(C)) vanishes for all objects ¢ € Ob(C) and ¢ > m;

then the spectral sequence converges to HY"( X E), i.e. there is a descending filtration
Fr-PHMX,E) of HP'(X,E) such that

FPAHPY(XGE)/FPH HEY( X E) & RS

oo

Proof : Again this is a variation of the case where C is the trivial category (see [38, 7.75,15.6
and Remark 3 on page 352]) or [42, Theorem XIIL.3.2. on page 614 and Theorem XIIL.3.6.
on page 616]. [

Suppose in Theorem 4.7 that X is a free C-CW-complex and X, its n-skeleton. Then
the E%-term respectively Esp-term of the spectral sequence in Theorem 4.7 can be identified
with

El, = Hy(X;H{({+};E)) = Hy(X;m,(E))
respectively
EY? = HUX;HU{*}E)) = HI(X;m_(E)).

One gets the same spectral sequence as in Theorem 4.7 if one takes a dual point of
view. Namely, one does not filter X by its skeleta, but uses a Postnikov decomposition of

E. The Atiyah-Hirzebruch spectral sequence [38, 15.7]) is a special case of Theorem 4.7.
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Quinn’s spectral sequence [32, Theorem 8.7] coincides with Theorem 4.7 when the stratified
system of fibrations is given by a group action.

Taking X = EC, filtering by skeleta, and identifying the E? and E*-terms, one gets
the homotopy colimit spectral sequence

Hy(C;my(E)) = 1r,,+q(hocglim E)

and the homotopy limit speciral sequence

HP(C;m_4(E)) = W,p__q(ho}:im E)

analogous to those of Bousfield-Kan [4] [XIT,5.7 on page 339 and XI,7.1 on page 309].
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-5. Assembly Maps and Isomorphism Conjectures

In this section we give three equivalent definitions of assembly maps, each of which
corresponds to a certain point of view. Then we explain the Isomorphism Conjectures for
the three Or(G)-spectra introduced in Section 2. We will define assembly maps given the
following data: a (discrete) group G, a non-empty family of subgroups F, closed under
inclusion and conjugation, and a covariant Or(G)-spectrum E.

1. Assembly by Extension from Homogeneous Spaces to G-Spaces

Let E be a covariant Or(G)-spectrum. We define an extension of E to the category of
G-spaces by

Eq : G-SPACES — SPECTRA X — mapg(—, X)4 ®orc) E

Recall that
mapg(—, X)+ Qor) E = H XY AB(G/H)/ ~
HeF
where ~ is the equivalence relation gencrated by (z¢,y) ~ (z, dy) for z € XX,y € E(G/H)
and ¢ : G/H — G/K. This construction is functorial in E, i.e. a map of Or(G)-spectra
T : E — F induces a map of G-SPACES-spectra Ty, : Eg, — Fo.

Let E(G,F) be a classifying space of G with respect to a family F (see [5] or [9]),
i.e a G-CW-complex such that the H-fixed point set is contractible if H € F and empty
otherwise. Such classifying spaces were introduced by tom Dieck [8], [9] and are unique up
to G-homotopy type. We will give another point of view on these spaces in Section 7. The
projection induces a map

Eq(pr) : Eq(E(G, F)) — Ex(G/G) = E(G/G)

which is called assembly map. The map 7. (Eg(pr)) is the (E, F, G)-assembly map referred
to in the introduction. ]

2. Assembly as Homotopy Colimit

We first discuss the behavior of homotopy limits under change of category. Consider
a covariant functor £ :C — D. We introduced F,X in Definition 1.8. Since EC is a free
C-CW-complex, we can apply Theorem 3.4 to the weak homotopy equivalence of C-spaces
F*ED — {*}, and get a C-map EC — F*ED, which is unique up to homotopy. It induces
a map of D-spaces f: F,EC — ED by Lemma 1.9. Let X be a covariant D-space. Then
the assembly map
F, hocglim X — hocglim X
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is given by the composition
BC®: F'N HF.EC®, X 1229 ED®p X

where the map ¢ is the homeomorphism from Lemma 1.9. This assembly map is unique
up to homotopy. There is also an assembly map if the covariant D-space X is replaced by
a covariant D-spectrum E. If one uses the functorial models E**C and EP* D, there is a
functorial construction of the map E**C — F*EY D and hence of the assembly map.

Let
I:0r(G,F) — Or(G)

be the inclusion functor. Define the assembly map

I, : hocolim I"E — hocolim E = E(G/G).
or(G,F) or(G)

where the homotopy colimit over the orbit category of E is E(G/G) because the orbit cate-

gory has the terminal object G/G. This assembly map can be identified with the assembly

map defined earlier by taking E Or(G) = {*} and E Or(G,F) = mapg(—, E(G,F)). The

(E, F, G)-assembly map is obtained by applying homotopy groups. (]

3. Assembly from the Homological Point of View

Let {#}» be the Or(G)-space defined by setting {*}-(G/H) to be a point if H € F
and to be empty otherwise. Let inc : {x} — {*} be the inclusion map of Or(G)-spaces.
It follows from definitions that the (E, F, G)-assembly map can be identified with the map

H?'(G)(inc) : HiC)r(G)({*}}_; E) — HiOr(G)({*}; E) = T(,(E(G/G)) n

Definition 5.1 The (E, F, G)-Isomorphism Conjecture for a discrete group G, a family of
subgroups F, and o covariant Or(G)-spectrum E is that the (E, F, G)-assembly map is an
isomorphism. For an integeri, the (E, F, G, i)-Isomorphism Conjecture is that the (E, F,G)-
assembly map is an isomorphism in dimension 1.

Of course for an arbitrary (E, F,G), the Isomorphism Conjecture need not be valid.
However, the Isomorphism Conjecture is always true (and therefore pointless!) when F is
the family of all subgroups. The main problem is given G and E to find a small family F
for which the Isomorphism Conjecture is true. The proper F to choose for the functors K,
LY, and K*P will be discuss later in this section.

The main point of the validity of the (E,F,G)-Isomorphism Conjecture is that it
allows the computation of 7.(E{(G/G)) from 7, (E(G/H)) for H € F and the structure
of the restricted orbit category Or(G,F). Here are two examples which were historically
important in algebraic /i'-theory.
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Example 5.2 Let G be an amalgamated free product of H; and H; along a subgroup K.
Let F be the smallest family (closed under subgroups and conjugation) containing H, and
Hj. The E(G, F) can be taken to be a tree, where the isotropy group of an edge is conjugate
to K and the isotropy group of a vertex is conjugate to Hy or Hy. The (E, F, G)-Isomorphism
Conjecture and the material in Section 4, give a long exact Mayer-Vietoris exact sequence

Example 5.3 Let G be a semidirect product given by the action of an infinite cyclic group
on a group K. Let F be the family of all subgroups of K. Then F(G,F) can be taken to
be a R, with the isotropy group K at every point. The (E, F, G)-Isomorphism Conjecture
and the material in Section 4, give a long exact Wang exact sequence

- — m(B(G/K)) — m(E(G/G)) — m (E(G/K)) — -

The following observation both motivates [somorphism Conjectures and can be helpful
in computation of H.(B(G) for a generalized homology theory H and a discrete group G.

Lemma 5.4 Let S be a fized spectrum and G be ¢ discrete group. Define an Or(G)-spectrum
E by E(G/H) = (EG x¢ G/H)+ AS. For any family F of subgroups of G, the (E, F,G)-
Isomorphism Congjecture 1s valid.

Proof : Let V : Or(G) — SPACES be the covariant functor V(G/H) = G/H. Note that
the Or(G)-space V has a left G-action defined by left multiplication of an element g on G/H.
We have

Eu(E(G,F)) = E(G,F)" ®orc) (EG xa G/H)+ A S)
(EG x¢ (F(G, f)” Rowe) V). AS
= (EGx¢ E(G,F)4+AS

2y (BEG xgG/G). AS

Eq(G/G).

The first, second, and fourth equalities are clear. The third equality holds since one can
identify any left G-space X with the left G-space X" ®c. ) V by by Theorem 7.4 (a).
The map A is the assembly map Eg(pr). Since {e} € F, we see E(G,F) = E(G, F)le is
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contractible, and hence EG x¢ E(G,F) — EG x¢ G/G is a homotopy equivalence. The
Atiyah-Hirzebruch spectral sequence then shows A is a weak homotopy equivalence. [ ]

Given a contravariant functor E : Or(G) — Q-SPECTRA, there is a dual assembly
map obtained by reversing arrows and replacing ®o(gy by homey(ey, hocolimits by holimits,
and homology by cohomology. The analogue of the last lemma remains valid.

Now we consider the covariant Or{G)-spectra of Section 2. When E equals the algebraic
K-theory spectra K& or the algebraic L-theory spectra L% of Section 2 and F is the
family YW of virtually cyclic subgroups of G, then the Isomorphism Conjecture is the one
of Farrell-Jones [14]. An element of W is a subgroup of G which in turn has a cyclic
subgroup of finite index. Farrell and Jones use Quinn’s version of the assembly map which
can be identified with the one presented here by the characterization given in Section 6 and
the fact that the source of Quinn’s assembly map i1s a homology theory on the category
of G-MC-C'W-complexes (32, Proposition 8.4 on page 421]. The Isomorphism Conjecture
computes the algebraic K- resp. L{~*)-groups of the integral group ring of G in terms of the
corresponding groups for all virtually cyclic subgroups of G. The Isomorphism Conjecture
for K*# has been proven rationally for discrete cocompact subgroups of virtually connected
Lie groups by Farrell and Jones [14]. The (K28 W, G, )-Isomorphism Conjecture for such
groups with ¢ < 2 also follows from [14]. The Isomorphism Conjecture for LY has been
proven for crystallographic groups if one inverts 2 by Yamasaki [43]. Notice that after
inverting 2 the spectrum L% is independent of j. The Isomorphism Conjecture for K2
and L{~* together imply the Novikov Conjecture and (for dimensions greater than 4) the
Borel Conjecture. The Borel Conjecture says that two aspherical closed manifolds with
isomorphic fundamental groups are homeomorphic and any homotopy equivalence between
them is homotopic to a homeomorphism. A survey on these conjectures is given in [15].
Related issues are discuss in [40, Chapter 14)].

When E equals the topological K-theory spectrum K'P defined in Section 2 and F
is the famnily FZA of finite subgroups of G, then the Isomorphism Conjecture is the Baum-
Connes Conjecture [3, Conjecture 3.15 on page 254]. The identification is not obvious. It
follows from the material in Section 6 if one reformulates the Baum-Connes Conjecture in
terms of spectra. Such a reformulation has been constructed very recently by Higson, Roe
and Stolz [20]. Namely, they construct a functor

K¢ : G-CW-COMPLEXES — SPECTRA

with the following properties:

1. For a G-C'W-complex X the homotopy groups of K¢(X) can be identified with the
equivariant K-homology groups in the sense of Kasparov, provided that X is proper
and cocompact, and hence with the source of the Baum-Connes map, provided that
X is proper;

2. Under this identification the map K% (E(G, FIN)) — K%(G/G) coming from the
projection induces the Baum-Connes map on homotopy groups;
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3. K is weakly excisive for the family F of all groups in the sense of Section 6. (For our
purposes it suffices to know that it is FZN -excisive);

4. There is a weak equivalence of Or(G)-spectra from KGIO,(G) to K'°P,
For more information on the Baum-Connes map we refer to [19)].

Example 5.5 Let E be a contravariant Or(G)-spectrum and F = 1 the trivial family. The
domain of the (E,1,G)-assembly map is E4(E(G,1)) = EG. Aq E(G/1). Now suppose
there is a functor J : GROUPOIDS™ -— SPECTRA so that E(G/H) = J(G/H). Then
the morphism of groupoids G/1 —— 1/1 gives a map of spectra E(G/1) — E(1/1) which is
G-equivariant, where E(G/1) is given the G = autoyg)(G/1)-action and E(1/1) is given the
trivial G-action. Now suppose J has the additional property that given functors of groupoids
F; : Gy — G, for © = 0,1 and a natural transformation T : Fy — F\, then the maps of
spectra J(Fp) and J(F;) are homotopic. (See Lemma 2.4 to see that these hypotheses are
valid where E is K8, L, or K'*°?) Since G/1 — 1/1 is a natural equivalence of groupoids,
the map E(G/1) — E(1/1) is a homotopy equivalence, which is in addition a G-map. It
follows that

E%(E(G/l)) = EG+ /\G E(G/l) — BG+ A E(l/l)
is a weak homotopy equivalence.

Thus the (E, 1, G)-assembly map for the three Or{G)-spectra of Section 2 can be iden-
tified with the “classical” assembly maps

A: Hi(BG; K*$(Z)) — K(ZG),

A Hy(BG; LE®NZ)) — LTN(ZG),
A Hy{ BG,K"P(C)) — K'P(C).

The last map has an interpretation in terms of taking the index of elliptic operators. The
Novikov Conjecture is equivalent to the conjecture that the bottom two maps are rationally
injective.

[t is easy to check that there are finite groups G for which none of the three assembly
maps above is an isomorphism. However, it is conjectured that when G is torsion-free, that all
three maps are isomorphisms. Indeed, the (K9, G), (L™ W, G), and (K'*P, FIN', G)
Isomorphism Conjectures applied to a torsion free group G are equivalent to the conjectures
that the maps labeled A are isomorphisms. This is obvious in the (K'?, FIN, G)-case, and
is shown by Farrell-Jones [14, 1.6.1 and Remark A.11] is the other two cases. |
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6. Characterization of Assembly Maps

In this section we characterize assembly maps by a universal property. This is useful
for identifying different constructions of assembly maps and generalizes work of Weiss and
Williams [41] from the case of a trivial group to the case of a general discrete group G.

We associate to a covariant Or(G, F)-spectrum E an extension
EZ : G-SPACES — SPECTRA X = mapg(—, X)+ Qowe,r) E.

Notice that this construction depends on F. If E is a Or(G)-spectrum, we have introduced
Eg already in Section 5. There is a natural transformation S : (E |oxe 7)) — Ey of
G-SPACES-spectra. A G-F-space (G-F-CW -complez) is a G-space (G-CW-complex) such
that the isotropy group G of each point z € X is contained in the family F. The map S(X)
is an isomorphism if X is a G-F-CW-complex but not in general. For instance for X = G/G
and F the trivial family 1 we get (E |owc,7))%(G/G) = E(G/1)/G and Eq(G/G) = E(G/G).
We will omit the superscript F in Eg when it is clear from the context. Notice that this
construction is functorial in E, i.e. a map of Or(G, F)-spectra T : E — F induces a map
of G — SPACES-spectra Ty, : Eyy — Fy,.  Recall that a map (isomorphism) of spectra
f: E — F is a collection of maps (homeomorphisms) f(n}: E(n) — F(n) which are¢ com-
patible with the structure maps. An isomorphism of C-spectra is a map of C-spectra whose
evaluation at each object is an isomorphism of spectra.

Lemma 6.1 Let E be a covariant Or(G, F)-spectrum. Then:

1. The canonical map By (X) U, () E4(Y) ~— Eq(X Uy Y) is an isomorphism, where
f:A—Y is a G-map and A is a closed, G-invariant subset of X;

2. The canonical map colim,, Eg(X,) — Eg(colim, o X, ) is an isomorphism, where
Xo — X| — Xy — ... 18 a sequence of G-cofibrations;

3. The canonical map Zy ANEg(X) — Eg(Z x X) is an isomorphism, where Z is a
space and X 1s a G-space;

4. The canonical map Eg(G/H) — E(G/H) is an isomorphism for all H € F.

Proof : It can be checked directly that the H-fixed point set functor mapg(G/H, —)
commutes with attaching a G-space to a G-space along a G-map and with colimits of G-
cofibrations indexed by the non-negative integers. Parts 1. and 2. follow from the fact that
— ®or(c,7) B commutes with colimits, since it has an right adjoint by Lemma 1.5. Parts 3.
and 4. follow from the definition of Eg,. [ ]

Lemma 6.2 Let E is a covariant Ov(G, F)-spectrum. Then the eztension E — Eg 1s
uniquely determined on the category of G-F-CW -complezes up to isomorphism of G-F-
CW -COMPLEXES-spectra by the properties of Lemma 6.1
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Proof : Let E +—» Eg be another such extension. There is a (a priori not necessarily
continuous) set-theoretic natural transformation

T(X) : Eg(X) = X} ®or(c,r) E — Es(X)

which sends an element represented by (z: G/H — X,e) € mapg(G/H,X) x E(G/H) to
Eg(z)(e). Since any G-F-CW-complex is constructed from orbits G/H with H € F via
products with disks, attaching a G-space to a G-space along a G-map, and colimits over the
non-negative integers, T(X')} is continuous and is an isomorphism for all G-F-CW -complexes
X. u

Lemma 6.2 is a characterization of E — Eg up to isomorphism. Next we give a
homotopy theoretic characterization.

A covariant functor E : G-F-CW-COMPLEXES — SPECTRA is called (weakly) F-
homotopy invartant if it sends G-homotopy equivalences to (weak) homotopy equivalences
of spectra. The functor E is (weakly) F-ezcisive if it has the following four properties.
First, it is (weakly) F-homotopy invariant. Second, E(#) is contractible. Third, it respects
homotopy pushouts up to (weak) homotopy equivalence, i.e. if the G-F-CW-complex X is
the union of G-C'W-subcomplexes X; and X; with intersection Xj, then the canonical map
from the homotopy pushout of E(X,) — E(X() «— E(X3), which is obtained by gluing
the mapping cylinders together along E(Xy), to E(X) is a (weak) homotopy equivalence
of spectra. Finally, E respects countable disjoint unions up to (weak) homotopy, i.c. the
natural map Vie;E(X;) — E(][;¢; Xi) is a (weak) homotopy equivalence for all countable
index sets I. The last condition implies that the natural map from the homotopy colimit
of the system E(X,) coming from the skeletal filtration of a G-F-CW-complex X, i.e. the
infinite mapping telescope, to E(X) is a (weak) homotopy equivalence of spectra. Notice that
E is weakly F-excisive if and only if m,(E(X)) defines a homology theory on the category of
G-F-CW -complexes, satisfying the disjoint union axiom for countable disjoint unions.

Theorem 6.3 1. Suppose E : Or(G,F) — SPECTRA 1s a covariant functor. Then
Ko is F-ezcisive;

2. Let T:E — F be a transformation of (weakly) F-ezcisive functors E and F from
G-F-CW-COMPLEXES to SPECTRA so that T(G/H) is a (weak) homotopy equiva-
lence of spectra for all H € F. Then T(X) is a (weak) homotopy equivalence of specira
for all G-F-CW -complezes X ;

3. For any (weakly) F-homotopy invariant functor E from G-F-CW-COMPLEXES to
SPECTRA, there is a (weakly) F-excisive functor E% from G-F-CW-COMPLEXES
to SPECTRA and there are natural transformations

Ap:E* — E;
Bg:E* — (E lor(c,7))%;

which induce (weak) homotopy equivalences of spectra Ag(G/H) for all H € F and
(weak) homotopy equivalences of spectra Bg(X) for all G-F-CW -compleres X. E is
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(weakly) F-excisive if and only if Ag(X) is a (weak) homotopy equivalence of spectra
for all G-F-CW -complezes X .

Proof : 1.) follows from Lemma 6.1.

2.) Use the fact that a (weak) homotopy colimit of homotopy equivalences of spectra is again
a (weak) homotopy equivalence of spectra.

3.) Define E®(X) by the spectrum
mapG(— x A.,x\’)d ®Or(G,f‘)xA Bb”?J,Or(G,}') X Al?'? ®Or(G,}')xA E(— X A)

where — resp. . runs over Or(G) resp. A, the subscript d in mapg(— X A, X)y indicates
that we equip this mapping space in contrast to the usual convention with the discrete
topology and B®* ? | Or(G, F) x A|?? was introduced at the end of Section 3. Define the
transformation Ag(X) : E#(X) — E(X) by the following diagram '

E(X)

T

mapg(— X A, X)4 Qorc,ryxa E(— x A)
p"’“pG('XA'-X)d®idT

mapg(— X A, X)a ®ora,myxa B 7LOr(G, F) x AL?? Qorcrixa E(— x A))

where pmapg(-xa.,x), was introduced in Definition 3.18 and here and in the next diagram
¢ refers to the canonical map whose definition is obvious from the context. Define the
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transformation Bg(X) : E*(X) — (E |orc,7))%(X) by the following diagram

ma.pG(— bed A., ‘X)d ®Or(G,}')xA Bbar ?‘LO[(G, .7'—) X AJ,?? ®Or(G,}')xA E(-— X A)
id®id @E(pr)
mapg(— X A., X)a Qora,F)xa B 7L00(G, F) x AL?? Qorc,r)xa E(-)
id @ca@id | &
mapg(— X A, X)4 ®orc,r)xa B** 7L0r(G, F) L7 x BP™ 7L AL?? Qowa,r)xa E(~)

c3 | =

"

(mapg(— X A, X)y®a B 7, AL7? ®a {}) ®ow. 7 B¥ ?L0r(G, F){7? ®orc,r) E(-)
(i ®ca)@id ®id | &
(mapg(— x A, X)g®a B*?> 7| A) @o,(};,f) B 7 10r(G, F) 17?7 @or(a,r) E(—)
(c®id)@id ®id | =
(map(A., mapg(—, X))a ®a B 7| A ) ®or(a,7) B"* 7L0r(G, F) 17?7 ®orc.r) E(-)
(id@q@id®id

(map(A., mapg(—, X)})a ®a A.) Qowa,7) B 7LOr(G, F)1?? Qor.ry B(—)

"nm])G(—,,\')®id

mape(—, X) o7y E(—)

where the canonical map g : B 2L A —s A, is defined in [4, Example XI.2.6 on page 293]
and Gmapg(-,x) was introduced in Definition 3.18.

Next we show that Bg(XX') is a (weak) homotopy equivalence provided that X is a G-F-
CW-complex. Since E is (weakly) F-excisive, the map E(pr) : E(G/H x A,) — E(G/H)
is a {weak) homotopy equivalence for all H € F. Hence the first map in the diagram above
id ® id @E(pr) is a weak homotopy equivalence because of Theorem 3.11. The next four
maps are all isomorphisms. The map

id®q : map(A.,maps(—, X))« ®a B 7 A — map(A., mapgs(—, X))a ®@a A.

is a weak homotopy equivalence of Or(G, F)-spaces [4, XII.3.4 on page 331]. Because of
Theorem 3.11 the map

(id®qg) ®id : (map(A., mapg(—, X))¢ ®a B ?LA) Qor(e,7) B ? L Or(G, F) 177

— (map(A., mapg(—, X))a ®a A) ®ora,7) B 1L0r(G, F)L7?

is a weak Or(G, F)-homotopy equivalence of Or(G, F)-spaces. Since the domain and target
are free Or(G, F)-CW-complexes by Lemma 3.19, it is a homotopy equivalence of Or(G)-

spaces by Corollary 3.5. Hence the map (id ®¢) ® id ® id in the diagram above is a homotopy
equivalence.
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As we assume that X is a G-F-CW-complex mapg(—, X) is a Or(G, F)-CW-complex.
Since @mapg(—,x) 15 a Or(G, F)-CW-approximation by Lemma 3.19 Corollary 3.5 implies
that it is a homotopy equivalence of Or(G, F)-CW-complexcs. Hence the last map in the
diagram above amap.(—,x) ®id is a homotopy equivalence. This shows that Bg(X) is a
(weak) homotopy equivalence.

In the case X = G/H for H € F the composition of the {weak) homotopy equiva-
lence Bg(G/H) with the canonical isomorphism mapg(—, G/H) ®ornc,r) E(-) — E(G/H)
agrees with Ag(G/H). Hence Ag(G/H) is a (weak) homotopy equivalence for all G/H with
H ¢ F. This finishes the proof of Theorem 6.3. (]

The map Ag is called an assembly map for E.

Example 6.4 For a topological space X, the fundamental groupoid I1(X) is the category
whose objects are points in X and whose morphism set morpx)(z,y) is given by equivalence
classes of paths from z to y, where the equivalence relation is homotopy rel {0,1}. A map
of spaces gives a map of fundamental groupoids. A homotopy equivalence of spaces gives a
natural equivalence of fundamental groupoids. If X is path-connected and zg € X, then the
inclusion of the fundamental group 7 (X, zy) — II(X) is a natural equivalence of groupoids.

Let K28 : GROUPOIDS —s SPECTRA be the functor from Section 2. By Lemma
2.4, K*# has the property that a natural equivalence of groupoids gives a homotopy equiv-
alence of spectra.

One can define a homotopy invariant functor E : CW-COMPLEXES — SPECTRA
by E(X) = K¥8(FI(X)). We apply Theorem 6.3 in the case where G is the trivial group (note
that for G = 1, Theorem 6.3 is due to Weiss-Williams [41]}. The map Bg gives a homotopy
cquivalence from E®(X) to X, AK¥8(Z), wherc K¥8(Z) is the algebraic K-spectrum of the
ring Z. After one applies the n-th homotopy group to the assembly map

Ag : E*(X) — E(X)
one obtains the algebraic K-theory assembly map

A H (X;K¥(Z)) — K*8(Zn, X).

Next consider a discrete group G and a family of subgroups F. One can then define
an F-homotopy invariant functor

E: G-CW-COMPLEXES — SPECTRA

by setting E(X) = K*#(TI(EG x¢ X)). If X is simply-connected, there is a natural equiva-
lence of groupoids

G =0r(G,1) — II{(EG x¢g X).
Using this identification, we have a fourth point of view on the (K*& F, G)-assembly map,
namely it is

1 (AR(E(G, F)) : m(B*E(G, F))) — m(B(B(G, F))).
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The case of algebraic L-theory is analogous. For a map of spaces X — Y, the map
of groupoids I(X) — T1(Y) need not be a morphism in GROUPOIDS™. However, all
relevant maps in the definition of Ag and Bg have this property, so that the analogous
statement holds also for the topological K'-theory of C*-algebras. ]

Next we explain why Theorem 6.3 characterizes the asscmbly map in the sense that
Ag : E?® — E is the universal approximation from the left by a (weakly) F-excisive functor
of a {(weakly) F-homotopy invariant functor E from G-F-CW-COMPLEXES to SPECTRA.
The argument is the same as in [41, page 336]. Namely, let T : F — E be a transformation
of functors from G-F-CW-COMPLEXES to SPECTRA such that F is (weakly) F-excisive
and T(G/H) is a (weak) homotopy equivalence for all H € F. Then for any G-F-CW-
complex X the following diagram commutes

Fh(x) 229 poxy

T%(,\’)l J(T(;\’)

E%(x) 225 By

and Ap(X) and T?(X) arc (weak) homotopy cquivalences. Hence one may say that T(X)
factorizes over Ag(X).

One may be tempted to define a natural transformation S : E¢; — E as indicated in
the proof of Lemma 6.2. Then S(X) is a well-defined bijection of sets but is not necessarily
continuous because we do not want to assume that E is continuous, i.e. that the induced
map from hom¢(X,Y) to home(E(X),E(Y)} is continuous for all G-F-CW-complexes X
and Y. The construction above uses the (weak) F-homotopy invariance of E instead.

Finally we give for a covariant Or(G)-spectrum E an equivalent definition of E%
which is closer to the construction in [41]. Let simpg(XX') be the category having as mor-
phisms pairs (G/H % [n],o) which consists of an object G/H x [n] in Or(G,F) x A and
a G-map o:G/H x A, — X. A morphism from (G/H x [n],0) to (G/K x [m], T} is a
morphism f X v : G/H x [n] — G/K x [m] in Or(G, F) x A such that the induced map
G/H x A, — G/K x A,, composed with 7 is ¢. This is the equivariant version of the
construction in [35, Appendix A] applied to the simplicial set S.X associated to a space
X. Obviously we obtain a covariant functor E(— x A.) from simpg(X) to SPECTRA by
(G/K x [m],0) — E(G/K x A,,) We briefly indicate how one can identify

E”?(X) = hocolimE(- x A.).

simpg(X)

Let P :simpgs(X) — Or(G) x A be the obvious forgetful functor. It suffices to construct
a natural isomorphism of Or(G) x A-spaces

B 7 Lsimpg(X) ®simpe(x) MoTora)xa (77, P(7)) —
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mapg(— X A, X) ®orc)xa B ?7L01(G) x A} — x.

1t will be implemented by the following natural bijection of simplicial sets for a given object
G/K x [m] in Or(G) x A where p runs over 0,1,2,...

N, 71 simpe(X) ®gimps(x) MOrowc)xa(G/K x [m], P(?)) —
mapg(— X A, X) Qorayxa Ny G/K x [m]lOr(G) x Al — x..
An element in the source is represented for ? = (G/H x [n], o) by the pair
((G/H x [n),0) — (G/Hq % [no],00) — -+ — (G/H, x [ny)],0,))
X (G/K x m| — G/H x [n]).
It is sent to the element in the target represented by
(0p: G/Hp x Ap, — X)
X(G/K x [m] — G/H x [n]| — G/Hp x [ng} — -+ — G/H, X [n,]) .

This is indeed a bijection since G/Hy X [ng] — -+ — G/H, x [n,] and o, determine oy,
veey Op—1.
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7. G-Spaces and Or(G)-spaces

In this section we discuss the orbit category in more detail, and give a correspondence
between G-spaces with isotropy in F and Or(G, F)-spaces. This in turn will give a corre-
spondence between classifying spaces of G with respect to F and models of £ Or(G, F) and
will thereby give a source of natural examples. As usual, let G be a discrete group and F
a non-empty family of subgroups closed under conjugation and inclusion. A G-space X is a
G-F-space if the isotropy subgroup of each point in X is contained in F. Let Or{G, F) be
the restricted orbit category whose objects are G/H for H € F and whose morphisms are
G-maps.

Next we explain how one gets from G-F-spaces to Or(G, F)-spaces and vice versa. We
will get a correspondence up to homeomorphism, not only up to homotopy (cf. [10, Theorem
3.11], [12], [30)).

Definition 7.1 Given a left G-space Y, define the associated contravariant Or(G, F)-space
mapg(—, Y) by
Or(G, F) — SPACES G/H ~ mapg(G/H,Y)=Y".

Let V be the covariant Or(G, F)-space given by sending G/ H to itself. Given a contravariant
Or(G, F)-space X define the associated left G-F-space X by

/‘? = X ®or(G,F) V.
The left action of an element g € G is given by id ®or(,7) Ly where Ly : G/H — G/H s
the map of covariant Or(G, F)-spaces given by left multiplication with g. (]

The notation for the functor V is intended to be reminiscent of the cosimplicial space
A. from Example 1.7.

Lemma 7.2 The functors in Definition 7.1 are adjoint, i.e. for a contravariant Or(G, F)-
space X and a left G-space Y there 1s a natural homeomorphism

TX,Y): mapG(}?,Y) — homgoy e 7)(X, mapg(—,Y)).

Proof : If we neglect the G-action on Y, we get from Lemma 1.6 a natural homeomorphism

map(X,Y) — homog, 7 (X, map(—, Y)).

Using the transformations L, and the G-action on Y one defines appropriate G-actions on
the source and target of this map and checks that this map is G-equivariant. Hence it induces
a homeomorphism on the G-fixed point set which is just T(X,Y). Of course one can define
for instance T(X, Y)~! explicitly. Given f: X — mapg(—,Y) we define T(X,Y)"(f) by
specifying for each G/H a map X(G/H) x G/H — Y. It sends (z,gH) to the value of
F(G/H)(z) at gH. ~ m
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Lemma 7.3 The map R
f: X(G/1) — X z = [z,1]

18 a G-homeomorphism.

Proof : The inverse f~!: X — X(G/1) assigns to an clement represented by (z, gH) the
element X (gon)(z) where qo : G/1 — G/H sends ¢’ to g'gH. [

Let X be a contravariant Or(G, F)-space. Obviously the projection pr: G/1 — G/H
induces a map X(pr) : X(G/H) — X(G/1). Now one easily checks using Lemma 7.3
above.

Theorem 7.4 1. Given a left G-F-space Y, the adjoint of the identity on mapg(—,Y)
under the adjunction of Lemma 7.2 1s a natural G-homeomorphism

T(Y): mapa/(:, Y) — Y.
It is induced by the map

[] map(G/H, V) x G/H — Y, (6, 9H) — ¢(gH),
HeF

2. Given a contravariant Or(G, F)-space X, the adjoint of the identity on X under the
adjunction of Lemma 7.2 is a natural map of Or(G, F)-spaces

S(X): X — mapg(—,X).
Given H € F, the map S(X)(G/H) maps the element € X(G/H) to the element
in map(G/H, X)) = (X ®owc,7) V)H represented by (z,eH) € X(G/H)x G/H. It
is an isomorphism of Or(G, F)-spaces if and only if for each H € F the projection
pr: G/1 — G/H induces a homeomorphism X (pr): X(G/H) — X(G/1). This
condition is satisfied if X is a free Or(G, F)-CW -complex,

3. If Y is left G-F-CW -complez, then maps(—,Y) is a free Ov(G,F)-CW -complez.
There is a bijective correspondence between the G-cells in Y of type G/H and the
Or(G, F)-cells in Or(Y,F) based at the object G/H. The analogous statement holds

for a free Or(G, F)-CW -complez X and X.

The bar resolution is a natural construction, however, it is a “very big” model. Models
with a fewer number of cells can be very convenient for concrete calculations and arise often
as follows.

Definition 7.5 Let (¢ be a group and F be a family of subgroups. A classifying space
E(G,F) of G with respect to F is a left G-CW -complex such that E(G, F)! is contractible

for H € F and empty otherwise. [ ]
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The existence of E(G, F) and proofs that for any G-F-CW-complex X there is precisely
one G-map up to G-homotopy from X to E(G,F) and thus that two such classifying spaces
arc G-homotopy equivalent, is given in [8],(9, I.6]. Another construction and proof of the
results above come from Theorem 3.4 and the following result which is a direct consequence
of Theorem 7.4.

Lemma 7.6 Let G be a group and F be o family of subgroups.

1. If E(G, F) is a classifying space of G with respect to F, then the associated contravari-
ant Or(G, F)-space
mapg(—, £(G, F))
is a model for EOr(G,F);

2. Giwen a model E Or(G,F), then the G-space EOr(G,F) is a classifying space of G

with respect to F. [

Example 7.7 Sometimes geometry yields small examples of classifying spaces and resolu-
tions. We have already mentioned this in the case where G is a crystallographic group.
Generalizing this, let G be a discrete subgroup of a Lie group L with a finite number of com-
ponents. If K is a maximal compact subgroup of L, then L/K is homeomorphic to R* and
L/K can be taken as a model for E(G, FIN'), where FIN is the family of finite subgroups.
Generalizing further, let G’ be a group of finite virtual cohomological dimension. Then there
is finite-dimensional classifying space E(G, FIN) (see [36, Proposition 12]) and hence a finite
dimensional model for £ Or(G, FIN'). Many cxamples of such groups are discussed by Serre
in [36). More examples of nice geometric models for E(G, FIN') can be found in [3, section
2]. ]
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