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POINCARE AUTOMORPHISMS FOR NONDEGENERATE CR
QUADRICS

VLADIMIR V. EZOV AND GERD SCHMALZ

ABSTRACT. In this paper we suggest a formula for holomorphic automorphisms of
an arbitrary nondegenerate quadric CR manifold which comprises all of the formerly
described automorphism groups for quadrics of codimension 2 and of RAQ quadrics.
This formula is a generalization of the formula of H.Poincaré for Aut S3.

1. INTRODUCTION

In 1907, Poincaré [9] proved that any germ of a holomorphic isotropic automor-
phism of the sphere S° = {(z,w) € C*: Imw = zz} is a fractional linear transfor-
mation of the form:

c(z + aw)
1 — 2iaz — (r + iaa)w’
pw
1 — 2iaz — (r + ida)w’

(1) 2"

[
w =

where a,c € C, r € R, and p = [¢|%.

In 1962, Tanaka [10] proved the analogous result for arbitrary nondegenerate hy-
perquadrics in C**': {(z,w) € C*xC : Imw = (z,2)}, where (-, -) is a nondegenerate
Hermitian form in C".

Nondegenerate hyperquadrics serve as quadratic models of hypersurfaces in C**!
with nondegenerate Levi form.

Nondegenerate quadrics in C"** are the quadratic models of surfaces with nonde-
generate (in sense of Baouendi - Treves - Beloshapka) vector-valued Levi form:

(2) Q={(z,w) e C" x C* : Imw = (z,2)},
where (z, z) is a R*-valued Hermitian form in C* with the properties:
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i) (z,b) =0, for all z € C", implies b =0,
i) If f({z,2)) = 0, for some linear functional f € (RF)’, then f = 0.

Beloshapka proved that these properties are necessary and sufficient for having a
finite dimensional automorphism group [1].

Any quadric  (not necassarily nondegenerate) can be equipped with a canonical
group structure. If (z,w) € Q, and (p, ¢) € @, then (z+p,w+ ¢+ 2i{z,p)) € Q. The
group @ will be called Heisenberg-group. Since this group operation is holomorphic
with respect to the first argument, we obtain a transitive family of holomorphic
automorphisms being parametrized by @ itself. Thus, @ is a homogeneous manifold.
Therefore, it is sufficient to find the automorphisms which preserve a fixed point, say
the origin. We denote the connected component of the unit of the group of local
automorphisms of Q at 0 by Auty Q.

Any automorphism ® € Auty ) can be uniquely decomposed into a linear auto-
morphism ®¢, € Auty;,, Q@ : z = Cz, w+— pw (where C € GL(n,C), p € GL(k,R)
with {(Cz,Cz) = p{z,z), for all z) and an automorphism ®;q € Autg;q Q@ with the
property that the restriction of d®;; to the complex tangent space at 0 is the identical
map.

Using the reflection principle, Henkin, and Tumanov (8] proved that the local
automorphisms from Autg ;g4 ¢ admit a birational extension to Crt-.

Beloshapka [2] obtained a description of the Lie algebra of the infinitesimal au-
tomorphisms of (), and he proved also that the quadrics of codimension £ > 2 in
general position are rigid, i.e., their isotropy groups consist of trivial automorphisms
z — cz, w — |c|*w, for some complex number ¢ (see [3]).

Recently, Forstneri¢ [7] formulated the problem about the description of Aut,Q
once again.

The authors described the automorphisms in the case k = 2 (see [5]), and defined,
in the case n = k, a class of quadrics with large automorphism groups being called real
associative quadrics (RAQ), and wrote the explicit formula for their automorphisms
[6).

Generalizing these results, we prove in the present paper the following

Theorem 1. Let Q be o nondegenerate quadric in C*t* and a : C¥ — C" be a linear
operator, A be a C™-valued bilinear form on C* @ C*, r be an R*-valued Hermitian
form on C*, and B be a C*-valued bilincar form on C* @ C™ which are connected by
the relations

(3) (A(,(),6) = (z,a(& Q)
(4) (B(w,(),6) = r(w,(£0)),

for all 2,(,6 € C* and w € C*, then the map
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(5) z° = (id =21A(z,") — B(w,") — iA(aw, ")) (z + aw),
w' = (id =2i{z, @) — r(w,?) — i{aw, a?)) " w,
is an automorphism from Autg ¢ Q.
We call the automorphisms which can be written by formula (5) Poincaré-auto-
morphisms.
We emphasize that we do not know any example of non-Poincaré automorphisms.

2. ALGEBRAS CORRESPONDING TO QUADRICS

Let @ be a quadric in C"** as above (not necessarily nondegenerate).
Consider the set U of pairs of matrices (D,d) € gl(n,C) x gl(k,C) with the
property (Dz,() = d(z,(}, for all z,{ € C*.

Proposition 1. The set A is an algebra with a unit.

Proof. 1t is clear that 2 is a linear space containing (id,id). Let (D,,dy), (D,,d;) € &
then, obviously, (D; Dyz,() = didy(2,¢). O

Proposition 2. If Q is nondegenerate, then a pair (D, d) is uniquely determined by
d as well as by D.

Proof. Let (D1,d), (D,,d) € ¥, then ((D; — D3)z,() = 0, for all z,{. By (i) of the
nondegeneracy condition follows that D; — Dy = 0.

Since, by (ii) of the nondegeracy condition R* is spanned by vectors of the form
(z,z), D determines d. O

Therefore, we can interprete 2 as a subalgebra of gli(k, C), or of gl(n,C).
Proposition 3. For any dy,dy € A, we have dydy = dyd,.

Proof. Tt follows from (Dz,() = d{z,(}, for all z,¢ € C", that (z, D() = d(z,(), for
all z,¢{ € C*. Then, dydy(z,() = (D12, D,) = dydi{z,(). O

Remark. In general, d € 2 does not imply that d € 2.

Definition 1. Two quadrics @y and @Q, are equivelent, if there exist matrices C €
GL(n,C) and p € GL(k,R) such that (z,z); = p7*{Cz,Cz);.

Proposition 4. If two quadrics Q and Q, are equivalent, then the corresponding
algebras U are isomorphic.

Proof. 1f (2,{), = p~Y{C2,C¢)y and (Dz,()2 = d{z,(}s, then p~{CDz,C(} =
(Dz,C)a = d(2,C)y = dp(C2, CO)r.
Hence, (CDC Y, pdp™') € U;. O
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Proposition 5. A guadric @ of type (n,k) is the direct product of two quadrics
Q1 X Q; of type (ny, ky) resp. (n—ny, k—ky) if and only if the corresponding algebra
A splits into A, & A,.

Proof. Tt is clear that Q) = ¢}, X @, implies A = 2A; & A,.

Now, let A = A, @ A,, and let (E,, ), and (E3,e;) be the units in A; resp. A,.
Then, (E,® E;,e;®ey) is the unit in A, and e; = €;, e,e; = eqe; = 0. Set z = 2/ 4 2",
w=w +w”, where 2’ = E,z, 2" = Eyz, w' = eyw, w" = e;w. Now, the equation of
() can be written

'U” = (z”’ zﬂ').
Thus, @ =@, x Q. O

It is easy to observe that ¢}y x J; is nondegenerate, if and only if @, and @), are
nondegenerate. Beloshapka [3] proved that Aute(Q; X Q3) = Aute @y X Auty Q5.

Let ¢ be nondegenerate, and g be the Lie algebra corresponding to the Lie group
Auti, @. Then g can be identified with some real subalgebra of gI(C,n), since, for
any (X, s) € g, s is uniquely determined by X.

Proposition 6. For nondegenerate quadrics, 2 = gNig.

Proof. If (X, s), and (zX,s') € g, then

(X(2)+ (¢, X2y = s((,z2),
(IX( 2y + {1 Xz) = §'{(,2).
Hence, (X(,2) = 1(s — is')}{(, 2).
If D e, then

(D¢, z) + {(,Dz) = 2Red{(,z),
(1D, z) + ((,1Dz) = =2Imd{(,2).
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3. POINCARE AUTOMORPHISMS AND CHAINS

Using the terminology of the previous section, it is easy to prove Theorem 1:

Proof. (3), (4) imply that (A(z,'),(z,a7}) and (B(w,-),r(w,)) take values in the
algebra .
Representing the operators

(id —2:A(z,-) = B(w, ) — iA(aw,-))7, (id —=2i(z,a") — r(w,~) — i{aw, ™))™

as geometric progression, one proves that they also take values in 2.
Using this, Proposition 3, and the Hermitian symmetry of r, one directly verifies
that (5) is indeed an automorphism. O

According to Chern-Moser [4], we introduce the notion of a chain.

Definition 2. A chain is a k-dimensional real submanifold of the quadric Q which
can be mapped by an holomorphic automorphism to the plane {z = 0,Imw = 0}.

We call a chain Poincaré chain if and only if it can be mapped to the plane {z =
0,Imw = 0} by means of some Poincaré automorphism.

Corollary 1. Poincaré chains passing through the origin coincide with the intersec-
tions of Q with compler k-planes {z = aw}, where a : C* — C" is a linear map
satisfying (3), for some bilinear form A.

In the remaining part of the paper we give some arguments concerning the question
whether any automorphism of a quadric is a Poincaré automorphism.

We begin with a description of the group Autizo as Heisenberg group for some
quadric.

Let A be the complex vector space of linear maps @ : CF — C" such that there
exists a C™-valued quadratic form A on C*, satisfying

-

(6) (A(2),2) = (2, 4z, 2)),

and, let R be the real vector space of symmetric R*-valued bilinear forms # on R*
such that there exists a C"-valued bilinear form B on C* @ C*, satisfying

-

(7) fﬁ{.e(B(u,z),z) = 7(u,{z,2)),
(8) Im(B({z,2),2),z) = 0.

Now, Beloshapka’s uniqueness theorem can be reformulated as follows: The map

Autigo @ — A X R, being defined by
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2
1ReaG

or) 1
o 2 (Ow)?

or =@,

is bijective. This bijection induces the following group structure on 4 x R:

9) <I)=(F,G)'—>(

(&1,1‘1) 0 (&2, 1’[:2) = (&1 + (Alg,'f'] + 1:2 - 211’1’1(&1, fl.g))

It follows that (a;-,a,') takes values in R ® C.
Therefore, the equation

Im#(u, w) = (a(u), a(u)),

defines a quadric in 4 X R @ C. The group A x R = Autg;q ¢ is then isomorphic
to the Heisenberg group of this quadric via

(@, 7) — (@, 7(u,u) + t{alu), a(u))).
The parameters A and B have the following interpretation:
_ 1 0°F
T 4i (02)?

Using the isomorphism from above, we see that any ® € Autg;q @), corresponding
to {(a,7), can be uniquely decomposed into ®; o ®;, corresponding to (a,0), resp.

(0,7). Then,

0

L O*F;
T 920w

satisfies the equations (7) and (8).

If @ is a Poincaré automorphism of @, then we obtain, by direct computation, that
a=a, B= B, A(z,z) = A(z,2), and r(u,u) = 7#(u,u),

We denote the subspaces of A and R, consisting of (a,r) which define Poincaré
automorphisms, by Ap and Rp.

The example below shows that, on the contrary to A, 7, the tensors A and r need
not be symmetric:

0

Example 1. Let Q be the quadric in CC:

U1 — |zl|2,
vt o= |22,
v® = Rez'z?,
v! = Imz'z
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The algebra A is isomorphic to gl(2,C). We represent a vector w € C* as 2 x 2- |

matriz
ﬂ — Wy W2 — wl w3 + iw"
Wor W2 w3 — qw? w? .
Set ImQ = (0 — Q%) where Q" is the transposed, conjugate matriz to Q. Then
the equation of ) takes the form

Imf) = (2;) (E’ 22).

For any a € C?, and any Hermitian 2 X 2-matriz ©, we introduce a map A, o :
CG — QI(Q:C))

— 9 2N g, Wil Wy 011 012 a1 g
A o(z,0) =2i (32) (a (L)—}-(wn ey Oy 0o til 2 (al a) .

Then, any ® € Autpiq Q has the form

;o= (id-A,e(z0)™ (”Q(z;))
0 = (d-A.e(zm)7' 0.

B ((—tlzlgl +&221C2)

(—LIZZCI + azzzc'z
rw,w) = w! w? + 1wt rt r3 4 i ! @ + ot
’ w® — qw? w? 73—t r? o3 — it @° '

The linear automorphisms are

= (¢,
cOCr,

L W
|

for C € GL(2,C).
The existence of non-Poincaré automorphisms is equivalent to the existence of
solutions (&,7, A, B) of the system (6), (7), (8) such that the system (3) and (4) is

unsolvable for « = @, B = B.
We will call a nondegenerate quadric Q C C™** regular if A = Ap, and R = Rp.

Corollary 2. If Q s reqular, then any ® € AutiqoQ is a Poincaré automorphism.
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It follows that the real associative quadrics (RAQ), the quadrics of codimension
< 2, and of codimension n? are regular.

4. FRACTIONAL LINEAR AUTOMORPHISMS AND REDUCED QUADRICS
We show that Poincaré automorphisms generalize fractional linear automorphisms.

Definition 3. We call a nondegenerate quadric Q strictly nondgenerate if, instead
of the nondegeneracy condition i), the following stronger condition holds:

i’) There ezists a linear functional f € (R¥)' such that the scalar Hermitian form
f((-,-)) is nondegenerate.

Otherwise, () is called nullquadric.

Proposition 7. Let Q be a nondegenerate quadric and @ :

(z + aw),

L]
w o= w,

1
1 — ¢(z) — p(w)
1
1 - 4(z) — P(w)
a fractional linear automorphism of Q).
Then, ® is a Poincaré automorphism.

If the codimension k > 1, then ¥ = 1¢(a*).
If k> 1, and Q is strictly nondegenerate, then ¢ = =0,

Proof. Since, in the case k = 1, the assertion follows from the explicit automorphism
formula, we can restrict ourselves to the case k > 1.

From 2i(z,a{{,()) = ¢(2){¢,€), we obtain, that A(z,{) := ¢(2)( is a solution of
(3).
Set

W) = $(u) - 3H().

Then, it follows that r(w,w) = P'(w)w = ¢'(@)w. Since k > 1, then 3’ = 0 and,
hence, r = 0.

It remains to prove that ¢ = 0, 1if @ is strictly nondegenerate.

Without loss of generality, we may assume that (z*), (w*) are coordinates such
that

n

vl = Z E#lzplza

=1
where ¢, € {—1,1}. B
For any z € C", we define the & X n matrix Z, having the property (z,{) = Z(.
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From ¢(z)w = 2i(z, aw), we obtain ¢(z)id = 2{Za. The first row of this matrix
identity implies that all columns of a, except the first one, are zeroes.
If £ > 1, then the second row of this identity implies that ¢{(z) =0. O

Definition 4. We cell a quadric ) reduced if the corresponding algebra A = C.

Proposition 8. For a reduced quadric @, any Poincaré automorphism is fractional
linear, and, therefore, linear in the corresponding projective space.

Proof. Condition (3) implies that {z,a-) takes values in A = C. Therefore, it equals
#(z)id, where ¢ is some linear functional. Analogously, we obtain r(w,”) = ¥(w)id.
Then @ takes the form

¥ = L (z + mu)
1= 2id(2) = P(w) — id(aw)
o= ! w
YT T 28(2) - plw) — iglaw)

O

Corollary 3. Let Q be a reduced strictly nondegenerate quadric. Then, either Q) is
a hyperquadric (k = 1), or any Poincaré automorphism of Q is identical.

Proof. This follows from Propositions 7, and 8. 0O

5. SUMS OF QUADRICS

For two quadrics @, in C™*¥, and Q, in C™**, with the same codimension we
define the sum @, + Q; by

(10) @1+ Q, = {(z,w) € C"*1™ x Cr:Imw = (z,2), + (2,2),}.

If @y, and Q, both satisfy (i), and, at least one of them, satisfies (ii) of the nonde-
generacy condition then @y + (J7 is nondegenrate.

It is easy to verify that the algebra 2, corresponding to @y + Q2 equals A; N 2A,.

We consider now the following question: which automorphisms of @, can be lifted
to automorphisms of the sum ¢, + Q5.

Proposition 9. Let (}, be « nondegerate quadric of codimension k, and Q) be a
quedric of the same codimension, satisfying (i) of the nondegeneracy condition. If
A, C AUy, then any Poincaré automorphism of Q1 can be lifted to a Poincaré auto-

morphism of Q1 + Q2.
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Proof. Let (a,r, Ay, By) be the parameters defining a Poincaré automorphism @, of
1. Then the operators {z,a), and r(w,~) are contained in U;, and, therefore,
also in ;. Hence, for any z,w there exist uniquely determined A;(z,-), By(w,-)
from GL(n,, C). Thus, (¢,r, Ay ® A,, By @ B;) defines a Poincaré automorphism on

G +Q2 O
Corollary 4. Any fractional linear automorphism of Qy can be lifted to @y + Q..

Now, let @ be a nondegenerate quadric. Considering the system (6)-(8) for @ + Q
we obtain that (a @ &’,r) are the parameters of some automorphism if and only if
(a,r) and (a’, ) define automorphisms of @, and a has a solution A of (3). Thus, the
Poincaré property (3) for a is necessary for lifting an automorphism to @ + Q.

We illustrate the introduced calculus in the case of codimension k = 1.

If £ = 1, then always A = C. Moreover, hyperquadrics are sums of spheres in
C?. By these reasons automorphisms of hyperquadrics have a quite simple struc-
ture. They can be lifted from automorphisms (1) of 5%, by means of the described
construction.

6. SOME QUESTIONS AND CONJECTURES

At the end of the paper we list some open problems and conjectures:

1. Is any nondegenerate quadric regular?

It would be also interesting to know the answer in the following special cases:

1’. Is any automorphism of a reduced quadric fractional linear?

17, Is any automorphism of a reduced, strictly nondegenerate quadric of codimen-
sion k > 1 linear?

Conjecture 1. The questions 1, 1’, and 1” have an affirmative answer.

One can give a rough estimate of dimg A by nk, and of dimgR by kz%l. However,
in the cases when the explicit groups are known, the dimension of the first space does
not exceed n and that of the second space does not exceed k.

2. Is always dimcA < n, and dimgR < k7
2. Is dimcAp < n, and dimgRp < k7

Conjecture 2. The questions 2 and 2’ have an affirmative answer.

Remark. If () is reduced, then the answer to question 2’ follows from Proposition

8.

We have showed above that, for any « € A, the quadratic form (au,au) € R. In
the cases of RAQ), as well as for quadrics of codimension < 2, any » € R is a linear
combination of such forms.

3. Does there exist a nondegenerate quadric ¢ and some r € R which cannot be
represented as a linear combination of {au,au) € R, where a € A?
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