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ABSTRACT

In this article we study Shimura sums related to modular forms with multiplicative

coefficients which are products of Dedekind η−functions of various arguments. These

modular forms are called multiplicative η−products. The author proves several families of

identities involving Shimura sums. The type of identity obtained depends on the splitting

of primes in certain imaginary quadratic number fields.
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1. Introduction.

In this article, we study the properties of multiplicative η−products. These modu-
lar forms are products of Dedekind η−functions of various arguments corresponding to
partitions of the number 24 with multiplicative coefficients. They were discovered by D.
Dummit, H. Kisilevsky, J. McKay in 1985 [1]. Also these functions can be completely
described by the following conditions:

1. they are cusp forms of integral weight with characters;
2. they are eigenforms for all Hecke operators;
3. they have zeroes only in the cusps and every zero has the multiplicity 1.
This fact was proved in [2]. The condition that the multiplicity is equal to 1 is essential.

These functions have been studied from various points of view in works [1] - [20].
Shimura sums have been used in investigations of relations between modular forms of

integral and half-integral weights. Ken Ono in his article [3] has considered Shimura sums
related to the multiplicative η−product η2(8z)η(4z)η(2z)η2(z). In this article we study
Shimura sums related to other multiplicative η−products. The author proves several
families of identities involving Shimura sums. The type of identity obtained depends on
the splitting of primes in certain imaginary quadratic number fields.

We can express by Shimura sums the connections between coefficients of various mod-
ular forms. It is very useful because the calculation of coefficients of modular forms of
weight 1 is easier then the calculation of coefficients of modular forms of weights greater
then 1 . These expressions help to calculate the coefficients.

2. Multiplicative η−products.

Here we give the complete list of multiplicative η−products with weights, levels and
characters.

The Dedekind η−function η(z) is defined by the formula

η(z) = q1/24
∞
∏

n=1

(1 − qn), q = e2πiz,

z belongs to the upper complex half-plane.
Table 1.
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f(z) k N χ(d)

η(23z)η(z) 1 23
(

−23
d

)

η(22z)η(2z) 1 44
(

−11
d

)

η(21z)η(3z) 1 63
(

−7
d

)

η(20z)η(4z) 1 80
(

−5
d

)

η(18z)η(6z) 1 108
(

−3
d

)

η(16z)η(8z) 1 128
(

−2
d

)

η2(12z) 1 144
(

−1
d

)

η4(6z) 2 36 1
η2(8z)η2(4z) 2 32 1
η2(10z)η2(2z) 2 20 1

η(12z)η(6z)η(4z)η(2z) 2 24 1
η(15z)η(5z)η(3z)η(z) 2 15 1
η(14z)η(7z)η(2z)η(z) 2 14 1

η2(9z)η2(3z) 2 27 1
η2(11z)η2(z) 2 11 1

η3(6z)η3(2z) 3 12
(

−3
d

)

η6(4z) 3 16
(

−1
d

)

η2(8z)η(4z)η(2z)η2(z) 3 8
(

−2
d

)

η3(7z)η3(z) 3 7
(

−7
d

)

η2(6z)η2(3z)η2(2z)η2(z) 4 6 1
η4(5z)η4(z) 4 5 1

η8(3z) 4 9 1
η4(4z)η4(2z) 4 8 1

η4(4z)η2(2z)η4(z) 5 4
(

−1
d

)

η6(3z)η6(z) 6 3 1
η12(2z) 6 4 1

η8(2z)η8z) 8 2 1
η24(z) 12 1 1

We add to this list two cusp forms of half-integral weight, η(24z), η3(8z). Their coef-
ficients are also multiplicative.

3. Shimura sums. Theorems Cipra and K. Ono.

Definition.
Let a(n) be an arithmetic function and c a positive integer.
Then for m ≥ 1 the Shimura sum Sh(m, a, c) is defined by the formula:

Sh(m, a, c) =
m−1
∑

j=1

a

(

m2 − j2

c

)

.

If the argument of the function a(n) is fractional then its value is equal to 0.
Let f(z) be a cusp form of integral weight k,
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Θ(z) = 1 + 2
∞
∑

n=1

qn2

,

F (z) = f(4z)Θ(z) =
∞
∑

n=1

b(n)qn2 ∈ Sk+ 1

2

(4N, χ).

Let t be a square-free positive integer.
We define At(n) by the formal product:

∞
∑

n=1

At(n)

ns
= L(s − k + 1, χ

(k)
t )

∞
∑

m=1

b(tm2)

ms
.

Here χ
(k)
t (m) = χ(m)

(

−1
m

)k (
t
m

)

is a Dirichlet character mod 4Nt,

χ
(k)
1 (m) = χ(m)

(

−1
m

)k
.

The image of F (z) under the Shimura lift is defined by the formula

St(F ) =
∞
∑

n=1

At(n)qn.

G.Shimura proved [4] that St(F ) ∈ S2k(2N, χ2) if k > 1,
St(F ) ∈ M2k(2N, χ2) if k = 1.
Theorem Cipra. Let

f(z) =
∞
∑

n=1

a(n)qn ∈ Sk(N, χ)

be an integral weight newform, and

F (z) = f(4z)Θ(z) =
∞
∑

n=1

b(n)qn2

.

Then

S1(F ) = f 2(z) − 2k−1χ(2)f 2(2z).

In this case

A(n) = A1(n) =
∑

d|n

dk−1χ
(k)
1 (d)b(

n2

d2
),

b(m2) = a(
m2

4
) + 2

m−1
∑

j=1

a

(

m2 − j2

4

)

= a(
m2

4
) + 2Sh(m, a, 4).

This theorem was proved in [5].
Also we see that Sh(2n, a, 4) = Sh(n, a, 1).
Theorem Ono.

If η2(8z)η(4z)η(2z)η2(z) =
∞
∑

n=1

a(n)qn ∈ S3(8, χ),

then
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1) If p is inert in K = Q(
√
−2), then

p =

√

− Sh(4p, a, 4)

2
.

2) If p splits or ramifies in K = Q(
√
−2), then

p =

√

a2(p) +
Sh(4p, a, 4)

2
.

This theorem was proved in [16]. In this case χ(2) = 0 and a(4) 6= 0. This condition
is essential. For many other multiplicative η−products if χ(2) 6= 0 then a(2n) = 0,
and we cannot use the similar arguments in our considerations. Also we cannot find the
expressions for p from the Cipra theorem when the weight k = 1.

We shall study the Shimura sums related to some other multiplicative η−products
without the Cipra theorem in the sections 4 and 5 and discuss the application of this
theorem in the section 6.

4. The coefficients of multiplicative η−products and Shimura sums.

Here we prove the following
Theorem 1.

If f(z) =
∞
∑

n=1

a(n)qn ∈ Sk(N, χ) is such a multiplicative η − product that

h(z) = f 2(
z

2
) =

∞
∑

n=1

c(n)qn ∈ S2k(N) is also a multiplicative η − product then

c(p) = 2Sh(p, a, 1) + a2(p); (4.1.)
c(p2) = 2Sh(p2, a, 1) + 2χ(p)pk−1Sh(p, a, 1) + a2(p2); (4.2.)
p2k−1 = (2Sh(p, a, 1) + a2(p))2 − 2Sh(p2, a, 1) − a2(p2) − 2χ(p)pk−1Sh(p, a, 1) =
(2Sh(p, a, 1) + a2(p))2 − 2Sh(p2, a, 1) − a2(p2) − 2(a2(p) − a(p2))Sh(p, a, 1). (4.3.)
Proof.
There are 13 pairs of such functions (f(z),h(z)). We point them out in the following

table.
Table 2.
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f(z) k N χ(p) h(z)

η(22z)η(2z) 1 44
(

−11
p

)

η2(11z)η2(z)

η(20z)η(4z) 1 80
(

−5
p

)

η2(10z)η2(2z)

η(18z)η(6z) 1 108
(

−3
p

)

η2(9z)η2(3z)

η(16z)η(8z) 1 128
(

−2
p

)

η2(8z)η2(4z)

η2(12z) 1 144
(

−1
p

)

η4(6z)

η4(6z) 2 36 1 η8(3z)
η2(8z)η2(4z) 2 32 1 η4(4z)η4(2z)
η2(10z)η2(2z) 2 20 1 η4(5z)η4(z)

η(12z)η(6z)η(4z)η(2z) 2 24 1 η2(6z)η2(3z)η2(2z)η2(z)

η3(6z)η3(2z) 3 12
(

−3
p

)

η6(3z)η6(z)

η6(4z) 3 16
(

−1
p

)

η12(2z)

η4(4z)η4(2z) 4 8 1 η8(2z)η8(z)
η12(2z) 6 4 1 η24(z)

In all these cases a(2m) = 0, a(1) = 1. So we consider only a(n) for odd n in all our
sums. Of course we mean that χ(2) = 0 in all these cases because levels N are even.

1) c(p) =
2p−1
∑

j=1

a(j)a(2p − j) = 2
p−1
∑

j=1

a(j)a(2p − j) + a2(p) = [t = p − j] =

= 2
p−1
∑

t=1

a(p − t)a(p + t) + a2(p) = 2
p−1
∑

t=1

a(p2 − t2) + a2(p) = 2Sh(p, a, 1) + a2(p).

If p − t and p + t are odd and 1 ≤ t ≤ p − 1 then d = gcd(p − t, p + t) = 1, because
d| 2p. We use the multiplicativity of the coefficients a(n).

2) c(p2) =
2p2−1
∑

j=1

a(j)a(2p2 − j) = 2
p2−1
∑

j=1

a(j)a(2p − j) + a2(p2) =

= 2
p2−1
∑

j=1,j 6=pl

a(j)a(2p2 − j) + 2
p−1
∑

l=1

a(pl)a(2p2 − pl) + a2(p2) =

= 2
p2−1
∑

j=1,j 6=pl

a(j)a(2p2 − j) + 2a2(p)
p−1
∑

l=1

a(l)a(2p − l) + a2(p2) =
[

t = p2 − j
]

=

= 2
p2−1
∑

t=1,(t,p)=1

a(p2 − t)a(p2 + t) + 2a2(p)Sh(p, a, 1) + a2(p).

2Sh(p2, a, 1) = 2
p2−1
∑

t=1,(t,p)=1

a(p4 − t2) + 2
p−1
∑

l=1

a(p4 − p2l2) =

= 2
p2−1
∑

t=1,(t,p)=1

a(p2 − t2)a(p2 + t2) + 2a(p2)
p−1
∑

l=1

a(p2 − l2) =
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= 2
p2−1
∑

t=1,(t,p)=1

a(p2 − t)a(p2 + t) + 2a(p2)Sh(p, a, 1).

If p2 − t and p2 + t are odd and (t, p) = 1 then d = gcd(p2 − t, p2 + t) = 1, because d| 2p2.

We use the multiplicativity of the coefficients a(n). Comparing these two expressions we
obtain:

c(p2) = 2Sh(p2, a, 1) + 2(a2(p2) − a(p2))Sh(p, a, 1) + a2(p2).
Multiplicative η−products are Hecke eigenforms and χ(p)pk−1 + a(p2) = a2(p).
From this relation we have
c(p2) = 2Sh(p2, a, 1) + 2χ(p)pk−1Sh(p, a, 1) + a2(p2).
3) From the condition p2k−1 = c2(p) − c(p2) we obtain
p2k−1 = (2Sh(p, a, 1) + a2(p))2 − 2Sh(p2, a, 1) − a2(p2) − 2χ(p)pk−1Sh(p, a, 1).
In many cases we can simplify these basic expressions.
Example 1.
f(z) = η(20z)η(4z), χ(p) =

(

−5
p

)

, χ(2) = 0, p = 7, k = 1.

χ(7) = 1, a(49) = 0, Sh(7, a, 1) = a(45) = 1, Sh(49, a, 1) = a(801) = a(9)a(89) = −2.
Other summands are equal to 0.
In the expression (4.3.) in theorem 1 we have the values: 7 = 4 + 4 + 1 − 2 · 1.
Corollary.
Let f(z) and h(z) be multiplicativeη−products and let K be a quadratic number field

as given in Table 3. If p is inert in K then c(p) = 2Sh(p, a, 1).
Table 3.

f(z) h(z) K

η(22z)η(2z) η2(11z)η2(z) Q(
√
−11)

η(20z)η(4z) η2(10z)η2(2z) Q(
√
−5)

η(18z)η(6z) η2(9z)η2(3z) Q(
√
−3))

η(16z)η(8z) η2(8z)η2(4z) Q(
√
−2)

η2(12z) η4(6z) Q(
√
−1)

η4(6z) η8(3z) Q(
√
−3)

η2(8z)η2(4z) η4(4z)η4(2z) Q(
√
−1)

η3(6z)η3(2z) η6(3z)η6(z) Q(
√
−3)

η6(4z) η12(2z) Q(
√
−1)

Proof. We know [1] that in the cases we consider, if p is inert in K, then a(p) = 0.
The corollary follows from the formula (4.1.).

5. The arithmetic of quadratic fields and Shimura sums.

Theorem 2.

Let f(z) be η(18z)η(6z) =
∞
∑

n=1

a(n)qn ∈ S1(108, χ).

1) If p is inert in K = Q(
√
−3), then

p = −2Sh(p2, a, 1) − 1.
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2) If p splits in K = Q(
√
−3), then

p = (2Sh(p, a, 1) + a2(p))2 − 2Sh(p2, a, 1) − a2(p2) − 2Sh(p, a, 1).

In particular, if |a(p)| = 1, then

p = 4Sh2(p, a, 1) − 2Sh(p2, a, 1) + 2Sh(p, a, 1) + 1;

if |a(p)| = 2, then

p = 4Sh2(p, a, 1) − 2Sh(p2, a, 1) + 14Sh(p, a, 1)− 5.

Proof.
In this case we have

h(z) = η2(9z)η2(3z) =
∞
∑

n=1

c(n)qn ∈ S2(27).

1) It is known [1] that if p is inert in Q(
√
−3) then a(p) = 0, c(p) = 0, a2(p2) = 1.

We have 2Sh(p, a, 1) + a2(p) = c(p). Hence, Sh(p, a, 1) = 0. From the formula (4.3.) we
have p = −2Sh(p2, a, 1) − 1.

2) In this case χ(p) = 1. From the relation χ(p)+a(p2) = a2(p) we obtain: if |a(p)| = 1
then a2(p2) = 0, and if |a(p)| = 2 then a2(p2) = 9. The formulas for p are obtained from
(4.3).

Example 2.
p= 7.
a(7) = −1, Sh(7, a, 1) = a(13) = −1,
Sh(49, a, 1) = a(2257) + a(2077) + a(1825) + a(1501) + a(97) =
= a(37)a(61)+a(31)a(67)+a(25)a(73)+a(19)a(79)+a(97) = 1− 2− 1+1− 1 = −2.
Other summands are equal to 0.
In the expression p = 4Sh2(p, a, 1) − 2Sh(p2, a, 1) + 2Sh(p, a, 1) + 1 in theorem 2 we

have the values: 7 = 4 + 4 − 2 + 1.
p= 5.
Sh(25, a, 1) = a(19)a(31) + a(13)a(37) + a(7)a(43) = −2 + 1 − 2 = −3.

Other summands are equal to 0.
In the expression p = −2Sh(p2, a, 1) − 1 in theorem 2 we have the values:
5 = (−2) · (−3) − 1.
Theorem 3.

Let f(z) be η2(12z) =
∞
∑

n=1

a(n)qn ∈ S1(144, χ).

1) If p is inert in K = Q(
√
−3), then

p = −2Sh(p2, a, 1) − 1.

2) If p splits in K = Q(
√
−3), then p = l2 + 3m2, where

( l
3
) l = Sh(p, a, 1) + 2.

p = (2Sh(p, a, 1) + a2(p))2 − 2Sh(p2, a, 1) − a2(p2) − 2Sh(p, a, 1).
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Proof.
In this case we have

h(z) = η4(6z) =
∞
∑

n=1

c(n)qn ∈ S2(36).

1) It is known [1] that if p is inert in Q(
√
−3) then a(p) = 0, c(p) = 0, a2(p2) = 1.

We have 2Sh(p, a, 1) + a2(p) = c(p). Hence, Sh(p, a, 1) = 0. From the formula (4.3.) we
have p = −2Sh(p2, a, 1) − 1.

2) From the known formula

η4(6z) =
∞
∑

l=1

(−1)l−1(
l

3
)lql2 +

∞
∑

l,m=1

(−1)l+m−1(
l

3
)lql2+3m2

.

we see that

c(p) =

{

2( l
3
) l, if p = l2 + 3m2.

0, otherwise.

If p ∼= 1(3) then |a(p)| = 2, and we obtain from the formula (4.1.) the relation
( l

3
) l = Sh(p, a, 1) + 2.

The last formula in our theorem is proved as in the theorem 2.
Example 3.
p= 5.
Sh(25, a, 1) = a(1)a(49) + a(13)a(37) = 1 − 4 = −3.
p = −2Sh(p2, a, 1) − 1 = 5 = (−2) · (−3) − 1.
p = 37.
37 = 52 + 3 · 22.

Sh(37, a, 1) = −7, and 5 = l = −Sh(37, a, 1) − 2 = 7 − 2.
Theorem 4.
Let us consider

η4(6z) =
∞
∑

n=1

a(n)qn ∈ S2(36).

1) If p is inert in K = Q(
√
−3), then

p3 = −2Sh(p2, a, 1) − a2(p2).

2) If p splits in K = Q(
√
−3), then

p3 = (2Sh(p, a, 1) + a2(p))2 − 2Sh(p2, a, 1) − a2(p2) − 2(a2(p) − a(p2))Sh(p, a, 1).

Proof.
In this case we have

h(z) = η8(3z) =
∞
∑

n=1

c(n)qn ∈ S4(9).

1) It is known [1] that if p is inert in Q(
√
−3) then a(p) = 0, c(p) = 0, a2(p2) = 1.

We have 2Sh(p, a, 1) + a2(p) = c(p). Hence, Sh(p, a, 1) = 0. From the formula (4.3.) we
have p = −2Sh(p2, a, 1) − 1.
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2) The formula for p3 is obtained from (4.3) in case k = 2.
Theorem 5.

Let f(z) be η(16z)η(8z) =
∞
∑

n=1

a(n)qn ∈ S1(128, χ).

1) If p splits in Q(
√
−1) and in Q(

√
−2) then

p = 4Sh2(p, a, 1) − 2Sh(p2, a, 1) + 14Sh(p, a, 1)− 5.

2) If p is inert in Q(
√
−1), then

p = −2Sh(p2, a, 1) − 1.

3) If p splits in Q(
√
−1), and p is inert in Q(

√
−2), then

p = 4Sh2(p, a, 1) − 2Sh(p2, a, 1) + 2Sh(p, a, 1) − 1.

Proof.
The character χ(p) = (−2

p
), p − odd, χ(2) = 0.

1) In this case χ(p) = 1, p ∼= 1(8). It can be proved by elementary methods that if
a(p) 6= 0 then |a(p)| = 2. From the relation χ(p) + a(p2) = 4 we obtain a(p2) = 3. The
formula for p follows from (4.3.).

2) In this case p ∼= 3(8) and p ∼= 7(8). We see that a(p) = 0 and c(p) = 0 for such p.

we obtain from (4.1.) Sh(p, a, 1) = 0 and from (4.3.) p = −2Sh(p2, a, 1) − 1.
3) In this case p ∼= 5(8), χ(p) = −1. In this case a(p) = 0, a2(p2) = 1. The formula

for p follows from (4.3.).

6. The application of the Cipra theorem.

For the modular forms listed in the table 1 χ(2) = 0 (N is even), a(2) = 0, c(2p) =
A(4p).

Also we have Sh(2n, a, 4) = Sh(n, a, 1), Sh(4, a, 4) = Sh(2, a, 1) = a(3), c(2) = 2a(3).
From the Cipra theorem we obtain:

A(4p) = a(4p2)+χ(p)pk−1a(4)+2pk−1χ(p)Sh(4, a, 4)+2Sh(4p, a, 4) = c(2)c(p) = 2a(3)c(p).

We obtain the formula
a(3)χ(p)pk−1 = −Sh(2p, a, 1) + a(3)(c(p). (6.1.)
For the functions
η(20z)η(4z), η(18z)η(6z), η(16z)η(8z), η2(12z), η4(6z), η2(8z)η2(4z), η6(4z)
the coefficient a(3) = 0 and Sh(2p, a, 1) = 0.
For other six modular forms from the table 1 a(3) 6= 0. In Table4, we give analogous

results for five of them. The remaining form, η3(6z)η3(2z) , is considered in Theorem 5.
Table 4.

f(z) χ(p)pk−1

η(22z)η(2z) (−11
p

) = Sh(2p, a, 1) + 2Sh(p, a, 1) + a2(p)

η2(10z)η2(2z) p = 1
2
· Sh(2p, a, 1) + 2Sh(p, a, 1) + a2(p)

η(12z)η(6z)η(4z)η(2z) p = Sh(2p, a, 1) + 2Sh(p, a, 1) + a2(p)
η4(4z)η4(2z) p3 = 1

4
· Sh(2p, a, 1) + 2Sh(p, a, 1) + a2(p)

η12(2z) p5 = 1
12

· Sh(2p, a, 1) + 2Sh(p, a, 1) + a2(p)
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Theorem 6.

If η3(6z)η3(2z) =
∞
∑

n=1

a(n)qn ∈ S3(12, χ),

then

1) If p is inert in Q(
√
−3), then

p =

√

− Sh(2p, a, 1)

3
− 2Sh(p, a, 1) .

2) If p splits in Q(
√
−3), then

p =

√

Sh(2p, a, 1)

3
+ 2Sh(p, a, 1) + a2(p) .

In particular, 3|Sh(2p, a, 1).
Proof.
We know [1] that a(p) = 0 if p is inert in Q(

√
−3), a(3) = −3.

The theorem follows from the formulas (4.1.) and (6.1.).
Example 4 .
p = 5.
In this case χ(5) = −1, a(5) = 0, Sh(10, a, 1) = −93, Sh(5, a, 1) = 3.

p =
√

− Sh(2p,a,1)
3

− 2Sh(p, a, 1) = 5 =
√

− (−93)
3

− 2 · 3.
p = 7.
In this case χ(7) = 1, a(7) = 2, Sh(14, a, 1) = 267, Sh(7, a, 1) = −22.

p =
√

Sh(2p,a,1)
3

+ 2Sh(p, a, 1) + a2(p) = 7 =
√

267
3

+ 2 · (−22) + 4.

7. The relations between Shimura sums for different multiplicative
η−products .

Proposition 1.

If f(z) = η(21z)η(3z) =
∞
∑

n=1

a(n)qn ∈ S1(63, χ),

g(z) = η(16z)η(8z) =
∞
∑

n=1

c(n)qn ∈ S1(128, χ),

h(z) = η(14z)η(7z)η(2z)η(z) =
∞
∑

n=1

d(n)qn ∈ S2(14),

then

1) d(n) =
∑

2j+l=3n

a(j)a(l) =
∑

7j+l=8n

c(j)c(l),

2) d(p) = Sh(3p, a, 8) + χ(p) = Sh(4p, c, 7) + χ̃(p).

In these sums j > 1, l > 1, p is prime.

χ(p) = (−7
p

), χ̃(p) = (−2
p

), χ̃(2) = 0.
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In particular, if (−7
p

) = (−2
p

), p > 2, then

Sh(3p, a, 8) = Sh(4p, c, 7).

Proof.
1) Let us consider

f(2z)f(z) = η(42z)η(6z)η(21z)η(3z) =
∞
∑

n=1

u(n)qn.

We have
u(3n) = d(n); u(3n) =

∑

2j+l=3n

a(j)a(l).

For p = 2 we calculate Sh(6, a, 8) = 0, Sh(8, c, 7) = −1, d(2) = −1,
and d(p) = Sh(3p, a, 8) + χ(p) = Sh(4p, c, 7) + χ̃(p).
In the case p > 2.

Sh(3p, a, 8) =
3p−1
∑

t=1,(t,p)=1

a

(

(3p)2 − t2

8

)

+ a(p2) = [t = 3p − 2l] =

=

3p−1

2
∑

l=1,(l,p)=1

a

(

(6p − l)(2l)

8

)

+ a(p2) =

=

3p−1

2
∑

l=1,(l,p)=1

a

(

(3p − l)l

2

)

+ a(p2) =
1

2
· (

3p−1
∑

l=1,(l,p)=1

a

(

(3p − l)l

2

)

+ 2a(p2)) =

1

2
· (

3p−1
∑

l=1,(l,p)=1

a

(

(3p − l)l

2

)

+ 2a(p2)) =

1

2
· (

3p−1
∑

l=1,(l,p)=1,l−odd

a

(

(3p − l)l

2

)

+
1

2
· (

3p−1
∑

l=1,(l,p)=1,l−even

a

(

(3p − l)l

2

)

+ 2a(p2)) =

1

2
· (

3p−1
∑

l=1,(l,p)=1,l−odd

a

(

(3p − l)

2

)

a(l)+

1

2
· (

3p−1
∑

l=1,(l,p)=1,l−even

a(3p − l)a

(

l

2

)

+ 2a(p2)) =

1

2
· (d(p) − a2(p) + d(p) − a2(p) + 2a(p2)) = d(p) − χ(p).

We have d(p) = Sh(3p, a, 8) + χ(p).
2) Now let us consider

g(7z)g(z) = η(112z)η(56z)η(16z)η(8z) =
∞
∑

n=1

v(n)qn.

We have
v(8n) = d(n); v(8n) =

∑

7j+l=8n

c(j)c(l).
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Sh(8p, c, 7) =
8p−1
∑

t=1,(t,p)=1

c

(

(4p)2 − t2

7

)

+ c(p2) = [t = 4p − l] =

=
8p−1
∑

l=1,(l,p)=1

c

(

(8p − l)l

8

)

+ c(p2) =

1

2
· (

8p−1
∑

l=1,(l,7p)=1

c

(

(8p − l)

7

)

c(l) +
1

2
· (

8p−1
∑

l=1,(l,p)=1,7|l

c(8p − l)c

(

l

7

)

+ 2c(p2)) =

1

2
· (d(p) − c2(p) + d(p) − c2(p) + 2c(p2)) = d(p) − χ̃(p).

We have d(p) = Sh(8p, c, 7) + χ̃(p).
In the proof we use the the multiplicativity of the coefficients a(n) and c(n)
and the properties: a(n) = 0 except n ∼= 1(3), c(n) = 0 except n ∼= 1(8).
Example 5.
p = 5.
χ(5) = −1, χ̃(5) = −1, d(5) = 0,
Sh(15, a, 8) = a(7) + a(25) + a(28) = −1 + 1 + 1 = 1, Sh(20, c, 7) = c(25) = 1.
d(5) = 0 = 1 − 1 = 1 − 1.
Analogously we can prove the following propositions.
Proposition 2.

If f(z) = η(18z)η(6z) =
∞
∑

n=1

a(n)qn ∈ S1(108, χ),

g(z) = η(16z)η(8z) =
∞
∑

n=1

c(n)qn ∈ S1(128, χ̃),

h(z) = η(12z)η(6z)η(4z)η(z) =
∞
∑

n=1

d(n)qn ∈ S2(12),

then

1) d(n) =
∑

2j+l=3n

a(j)a(l) =
∑

3j+l=4n

c(j)c(l),

2) d(p) = Sh(3p, a, 8) + χ(p) = Sh(2p, c, 3) + χ̃(p).

In these sums j > 1, l > 1, p is prime.

χ(p) = (−3
p

), χ̃(p) = (−2
p

) for p > 2; χ(2) = χ̃(2) = 0.

In particular, if (−3
p

) = (−2
p

), p > 2, then

Sh(3p, a, 8) = Sh(2p, c, 3).

Example 6.
p = 5.
χ(5) = −1, χ̃(5) = −1, d(5) = −2,
Sh(15, a, 8) = a(7) + a(13) + a(25) = −1 − 1 + 1 = −1,
Sh(10, c, 3) = c(17) + c(25) = −2 + 1 = −1.
d(5) = −2 = −1 − 1 = −1 − 1.
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Proposition 3.

If f(z) = η(20z)η(4z) =
∞
∑

n=1

a(n)qn ∈ S1(80, χ),

g(z) = η(18z)η(6z) =
∞
∑

n=1

c(n)qn ∈ S1(108, χ̃),

h(z) = η(15z)η(5z)η(3z)η(z) =
∞
∑

n=1

d(n)qn ∈ S2(15),

then

1) d(n) =
∑

3j+l=4n

a(j)a(l) =
∑

5j+l=6n

c(j)c(l),

2) d(p) = Sh(2p, a, 3) + χ(p) = Sh(3p, c, 5) + χ̃(p).

In these sums j > 1, l > 1, p is prime.

χ(p) = (−5
p

), χ̃(p) = (−3
p

) for p > 2; χ(2) = χ̃(2) = 0.

In particular, if (−5
p

) = (−3
p

), p > 2, then

Sh(2p, a, 3) = Sh(3p, c, 5).

Example 7.
p = 7.
χ(7) = 1, χ̃(7) = 1, d(7) = 0,
Sh(14, a, 3) = a(9) + a(25) + a(49) = −1 + 1 − 1 = −1, Sh(21, c, 5) = c(37) = −1.
d(7) = 0 = −1 + 1 = −1 + 1.
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