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On Some Properties of Graph Maps:
Spectral Decomposition, Misiurewicz Conjecture
and Abstract Sets of Periods

A.M.BLOKH

Abstract. We completely characterize sets of periods of cycles which arbitrary continuous
graph maps may have. We also verify the conjecture of M.Misiurewicz and prove that for
any graph X there exists a number L=L(X) such that any continuous self-mapping of X with
cycles of periods 1,2,...,L has in fact cycles of all possible periods. In this studying we need
the spectral decomposition for graph maps [B3] which we describe briefly in Section 1.

0. Introduction

Let us call one-dimensional branched manifolds graphs. We study properties of a set
P(f) of periods of cycles of a graph map f. One of the well-known and impressive results
on this topic is Sharkovskii theorem [S1] about the co-existence of periods of cycles for
maps of the real line. To formulate it let us introduce the following Sharkovskit ordering

for positive integers:
(*) 345 <7<+ <2:3<2:5<2-T<---<8<4<2<<1

Denote by S(k) the set of all such integers m that k¥ < m or £ = m and by S(2°°) the set
(1,2,4,8,...}.

Theorem[S1]. Let ¢ : R — R be a continuous map. Then either P(g) = @ or there
exists such k € N U 2% that P(g) = S(k). Moreover for any such k there exists a map
g:{0,1) — [0,1] with P(g) = S(k) and there exists a map gp : R — R with P(gp) = §.

Other information about sets of periods of cycles for one-dimensional maps is contained
in papers [AL,M] for maps of the circle, [ALM] for maps of the letter Y and [Ba] for maps
of the n-od.

Sharkovskii theorem implies that if a map f : R :— R has a cycle of period 3 then
it has cycles of all possible periods. The following conjecture, which was formulated by
M.Misiurewicz at the Problem Session at Czecho-Slovak Summer Mathematical School
near Bratislava in 1990, seems to be closely related to the mentioned property of maps of

the real line.
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Misiurewicz Conjecture. For a graph X there exists an integer L = L(X) such that

for a continuous map f: X — X inclusion P(f) D {1,2,...,n} implies P(f) = N.

We verify Misiurewicz conjecture in Section 2. Clearly it implies that sets of periods of
cycles of graph maps have some general properties no matter what graph is considered.
Moving in this direction we describe in Section 3 sets A C N, for which there exists a
graph Y and a continuous map ¢ : ¥ — Y with P(g) = A. Namely, a set A C N is
called an absiract set of periods (= ASP)iff there exist a graph X and a continuous map
f: X — X such that P(f) = A. A set B is called an 0-abstract set of periods (= ASP)
iff there exist a graph X and a continuous map ¢ : X — X such that A(f) =0, P(f) = B.
Set 1Z = {li: i > 1}, Q(n) = {2'n: 4 > 0}. The main theorem of Section 3 is the following

Theorem 3.1. 1) A set A C N is an ASP iff it almost coincides with a finite union of

some sets {Z or Q(n).

2) A set A C Nis an ASP, iff it almost coincides with a finite union of some sets Q(n).

In what follows we need the spectral decomposition for graph maps [B3] similar to that

for maps of the interval [B1,B2]; the decomposition is briefly described in Section 1.
Notations

int Z is the interior of a set Z;

9 Z is the boundary of Z;

Z is the closure of Z:

F" is the n-fold iterate of a map f;

orbz = {f"z}32, is the orbit (trajectory) of z;

w(z) is the limit set of orbz;

N={1,2,3,...} is the set of natural numbers;

Per f is the set of all periodic points of a map f;

P(f) is the set of all periods of periodic points of a map f;

h(f) is a topological entropy of a map f.



1. The Spectral Decomposition

In this section we briefly describe the spectral decomposition for one-dimensional maps
(for the proofs see [B3]). Let us begin with some historical remarks.

A.N.Sharkovskii constructed the decomposition of the set w(f) = |J,¢;w(z) for con-
tinuous interval maps f : I — I in [S2]. Then in [JR] Jonker and Rand constructed for
unimodal maps the decomposition which is in fact close to that of Sharkovskii; however
they used completely different methods based on symbolic dynamics. In [H} the decom-
position for piecewise-monotone maps with discontinuities was constructed by Hofbauer
and then Nitecki in {N] considered the decomposition for piecewise-monotone continuous
maps from more geometrical point of view. The author’s papers [B1,B2] were devoted to
the case of arbitrary continuous interval maps; they contained the different approach to
the problem in question which allowed us to obtain some new corollaries (e.g. describing
generic properties of invariant measures for interval maps). The similar approach was used
in [B3] to construct the decomposition for graph maps and now we pass to the desription
of the results of the paper [B3].

Let X be a graph, f : X — X be a continuous map. We use terms edge, vertez,
endpoint in the usual sense; the numbers of edges and endpoints of X are denoted by
Edg(X), End(X). If necessary we add some "artificial” vertices to make all edges of a
graph homeomorphic to an interval. We construct the decomposition of the set w(f),
which is defined similar to that for interval maps. First we need some definitions. A
closed connected set Y C X is called subgraph. A subgraph Y is called periodic ( af period
k) if Y, fY,..., f*='Y are pairwise disjoint and f*Y = Y the union of all iterations of
Y is denoted by orbY and called a cycle of subgraphs. Let Yy D Y7 D ... be periodic
subgraphs of periods mg,my,...; then m;4, is divided by m; (¥i). If m; — oo then the
subgraphs Y;, 7 = 1,2,... are said to be generating. We call any invariant closed set
S C Q =nN(orb Y;) a solenoidal set and denote the solenoidal set @ Nw(f) by S.(Q) (note
that w(f) is closed for graph maps, see [B3]).

One can use a transitive shift in an Abelian zero-dimensional infinite group as a model

for the map on a solenoidal set. Namely, let D = {n;} be a sequence of integers, n;4i
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is divided by n; (Vi) and n; — oo. Let us consider a subgroup H(D) C Z,, X Z,,, X ...

defined in the following way:
H(D)={(ro,r1,... ) rig1 =r; (mod m;)(Vi)}.

Denote by 7 the minimal shift in H(D) by the element (1,1,...).

Theorem 1.1{B3]. Suppose that {Y;} are generating subgraphs and that they have
periods {m;}. Let Q = nizo orbY;. Then there exists a continuous surjective map
¢ : QQ — H(D) with the following properties:

1) Top = o f(iep semiconjugates f|Q to 7);

2) there exists the unique set S C Q N Per f such that w(z) = S for any z € @ and if
w(z)NQ # @ then S Cw(z) C Su;

3) for any ¥ € H(D) the set J = ¢~ (F) is a connected component of @ and ¢|S,, is at
most 2-to-1;

4) h(£1Q) = 0.

Let us turn to another type of an infinite limit set. Let {¥;}!_, be a collection of
connected graphs, I = U:=1 Y;. A continuous map 3 : K — K which permutes these
graphs cyclically is called non-strictly periodic or non-strictly I-periodic; for example if Y is
a periodic subgraph then florbY is non-strictly periodic. In what follows we will consider
monotone semiconjugations between non-strictly periodic graph maps (a continuous map
g : X — Y is monotone provided ¢g~?(Y) is connected for any y € Y'). We need the

following

Lemma 1.1. Let X be a graph. Then there exists a numberr = r(X) such that f M C X
is a cycle of subgraphs and ¢ : M — Y is monotone then the following property holds for
any y € M: card{d(g~'(y))} < r(X)(Vy € M).

Lemma 1.1 makes natural the following definition. If ¢ : K — M is continuous, mono-
tone, semiconjugates a non-strictly periodic map f : K — K to a non-strictly periodic
map g : M — M and there is a closed f-invariant set F' C K such that ¢(F) = M and
e N Y)NF C e~ (y)) (Vy € M) then we say that o almost conjugates f|F to g.
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Let Y be an n-periodic subgraph, orbY = M. Denote by E(M, f) the following set:
E(M, f)={z € M : for any open U 3 z,U C M we have orbU = M}

provided it is infinite. We call the set E(M,F) a basic set and denote it by B(M, f) provided
Per (f|M) # @; otherwise we denote E(M, f) by C(M, f) and call it a circle-like set.

Theorem 1.2[B3]. Let ¥ be an n-periodic subgraph, M = orbY and E(M, f) # 0.
Then there exist a transitive non-strictly n-periodic map ¢ : K — K and a monotone
continuous surjection ¢ : M — K which almost conjugates f|E(M, f) to g. Furthermore,
the following properties hold:

1) E(M, f) is a perfect set;

2) f|E(M, f) is transitive;

3) ifw(z) > B(M, ) then w(z) = E(M, f);

4) if E(M, f) = C(M, f) is a circle-like set then K is a union of n circles, g permutes
them, g™ on any of them is an irrational rotation and h(g) = h(f|E(M, f)) = 0;

5) if E(M, f) = B(M, f) is a basic set then h(f|B(M, f)) > 0, B(M, f) C Perf and
there exist a number k and a closed subset D C B(M, f) such that ¢(D) is connected,
sets f'D N f7D and o(f'D)N(f'D)(0 < i < j < kn) are finite, f*"D = D,
Uf:o_l fiD = B(M, f) and f*"|D, ¢*"|¢D are topologically mixing.

A number kn from the statement 5) of Theorem 1.2 is called ¢ period of B(M, f).
In Section 3 we will need some results which can be easily deduced from Theorem 1.2
and establish the connection between a period of B(M, f) and periods of cycles belonging

to M. One of them is Lemma 1.2; let us formulate here another one.

Assertion 1.1. Let M be a cycle of subgraphs, y € M be a periodic point with
period I, B(M, f) be the correspondent basic set of period m, D C B(M, f) and ¢ have
the same sense as in Theorem 1.2. Then the following statements are true:

1) m < 1-r(X), where r(X) was defined in Lemma 1.1;

2) if | is not divided by m then p(f'y) ¢ int(wD) for any i.

To formulate the decomposition theorem denote by Z; the set of all cycles maximal by

inclusion among all limit sets of f.



Theorem 1.3[B3]. Let f : X — X be a continuous graph map. Then there exist a

finite number of circle-like sets {C(K;, f)}E.,, an at most countable family of basic sets

{B(Lj, f)} and a family of solenoidal sets {S,(Q«)} such that

k
w(f)=2; YU e UU BE:) UUBAQ))-

Moreover, there exist numbers ¥(X) and v(X) such that k < (X)), the only possible
intersections in the decomposition are between basic sets and at most v(X) basic sets can

intersect.

Theorem 1.3 shows that one can consider mixing graph maps as models for graph maps
on basic sets. The following theorem seems to be important in this connection; to formulate

it we need the definition of maps with the specification property (see, for example, [DGS]).

Theorem 1.4[B3]. Let f: X — X be a continuous mixing graph map. Then f has the

specification property.

It is well-known [DGS] that maps with the specification have nice properties concerning
the set of invariant measures. Using them and Theorems 1.1 - 1.4 we can describe generic
properties of invariant measures for graph maps. First we need some definitions. Let
T : X — X be a map of a compact metric space into itself. The set of all T-invariant
Borel normalized measures is denoted by Dr. A measure u4 € Dy with supp u containing
in one cycle is said to be a CO - measure. The set of all CO-measures concentrated on
cycles with minimal period p is denoted by Pr(p). Let V(z) be the set of accumulation
points of time-averages of iterations of the point x. A point z € X is said to have mazimal

oscillation if Vp(z) = Drp.

Theorem 1.5[B3]. Let B be a basic set. Then:

1) for any [ the set |y, Ps1a(p) is dense in Dgp;

2) the set of all ergodic non-atomic invariant measures p with supp . = B is a residual
subset of Dy p;

3) if V C Dy, p is a non-empty closed connected set then the set of all such points z that

V(z) =V is dense in X (in particular every measure 1 € Dy g has a generic point);
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4) points with maximal oscillation are residual in B.

Theorem 1.6[B3]. Let p be an invariant measure. Then the following properties of p
are equivalent:

1) there exists such a point z that supppu C w(z);

2) i has generic points;

3) u is concentrated on a circle-like set or can be approximated by CO-measures.

In particular, CO-measures are dense in all ergodic neasures which are not concentrated

on circle-like sets.

Let us introduce two notions. If n > 1 then set nZ = {in: i > 1}, Q(n) = {2'n: i > 0}.
Then if A and B are such sets that A \ B and B \ A are finite then say that A aelmost
coincides with B and if B\ 4 is finite then say that A almost contains B and denote it by
A :a) B. In Lemma 1.2 we need the following easy property of maps with the specification.

Property 1.1. If T is a map with the specification then P(T) almost coincides with N.
Assertion 1.1, Property 1.1 and Theorem 1.2 easily imply the following

Lemma 1.2. Let f: X — X be a graph map, B be a basic set of f, m be a period of B.
Then P(f|B) almost coincides with mZ.

Lemma 1.2 show how sets mZ appear in abstract sets of periods; at the same time sets
Q(n) correspond roughly speaking to the invariant subgraphs on which a map has zero
entropy. Let us call a subset of a graph an interval if it is homeomorphic to the interval
[0,1] (we use for intervals standart notations [a, b],[a,b),(a,b],(a,d)). To conclude this

section let us formulate the following

Lemma 1.3[{B3]. Suppose that y, — v, y, € Per f and there exists an interval I with
an endpoint y such that y, € I(Vn). Let

F=F{yi})={z:0rbya NU # @ for any open U 3 z and infinitely many n}.

Then fF = F, F is a cycle or an infinite set and there exists such ¢ that w(z) O F and

w(z) is not a circle-like set.



2. Misiurewicz Conjecture

During the Problem Session at Czecho-Slovak Summer Mathematical School near

Bratislava in 1990 M.Misiurewicz formulated the following

Conjecture. For a graph X there exists an integer L = L(X') such that for a continuous

map f: X — X inclusion P(f) D {1,2,...,n} implies P(f) = N.

We verify this conjecrure and give a sketch of the proof. First let us formulate the

following

Lemma 2.1. Let R be a positive integer. Then one can find such N = N(R) > R that
for any M > N there exist positive integers 0 = ap < a; < a3 < ++- < ay = M with the
following properties:

1)ajp1~a; 2 R0O< 1< I);

2) for any proper divisor s of M there exists j,1 < j < I such that a; is divided by s.

PROOF: Let M = p']" . .pi", where py, ..., px are prime integers. Set m; = Hp—" 1<:< k.
H

Clearly numbers {m;} have the required property 2). So it is sufficient to find numbers

ay=1<ay <+ <a =M such that ;47 —a; 2 R, 0 <2 <! and for any j there exists

such ¢ that a; is divided by m;. To this end suppose that {¢1 < g2 < --- < ¢,} is the set

1 1
of all prime integers less that R 4+ 1 and set a = min(q— - E-):]l, N = max(g, 3qr).
i+1 i
Now if > R then M——MZ M >R . If M < R then
PkPk-1 Pi  Piy1 PkPk—1 PkPk—1
P1,P2, - <pk-2 <R andso
M M
mi—mip1=—— — 2aM>aN2>R(1<i<k-2).
Di Din
M M M

Thus it remains to consider the differences which is left to the

Pk-1  Pk-2 Pk Pk-1
reader. Clearly we may assume that N(R) increases with R. I

Now let us fix for the rest of this section a graph X and a continuous map f: X — X.
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Lemma 2.2. There exists a number m = m(X) such that ifa € X and [a, b1],[a, b2],...,

[a, byn41] are intervals then one of them contains some of others.

PRroOF: Left to the reader. |

Suppose that there exist an edge I = {a,b] C X and two periodic points, P € I of prime
period p > m(X) and @ € X of prime period ¢ > m(z), p # ¢ such that if [P, Q] C I then
(P,Q) N(orb QU orb P) = @; fix them for Lemmas 2.3 - 2.7.

Lemma 2.3. We have fPU-U™XP Q] D orbQ, fIP-U™X)NP Q] D orbP and so
fHP, Q) D orbQUorb P for t > pgm(X) — min(p, ¢) - m(X).

PRroOF: Consider all the intervals of type {T; = [P, ¢;]}%.,, where ¢; € orb@Q, containing
no points of orb@ but ¢; (some of points {¢;} may coincide with each other). Then
k < m(X) and we may assume @ = ¢;,[P, @} = 77. On the other hand for any i there
exists 7 = 7(2) such that fPT; O T;. Hence there exist such numbers ! and n that I+n <k
and, say, fP'Ty O Ty, fP"Ty D Ty which implies that fP™T, > {f?™¢,}i_,. But p,q are
prime numbers and n < m(X) < ¢; thus {f?"¢;}{=, = orb@ and fPre=D+#[P Q] D
orb@ (recall that Ty = [P,Q]). It implies that fP4=D™(X)[P Q] 5 orbQ. Similarly
FAP—=1mX)[P Q] O orb P and we are done.

Let us call subintervals of I with endpoints from orb @ or orb P basical intervals provided
their interiors contain no points from orb P or orb (). In what follows basical interval will
be called P-interval, Q-interval or PQ-interval depending on periodic orbits containing
its endpoints. Furthermore, suppose that there are two intervals G C X and H C X and
a continuous map ¢ : X — X such that ¢(G) DO H and there is a subinterval K C G
such that ¢(K) = H; then say that G ¢ — covers H. Note the following property: if
G @-covers H and H 1i-covers M then G o p-covers M.

Lemma 2.4. Let Z C X be an interval, Y = [a, 8] C X be an edge and g : X — X be
a continuous map; suppose that «, € g(Z). Then there are points v,§ € Y such that
9(ZYNY = [a,7]VU[6,8] and Z g-covers [a,v]and[$, f).

PRrOOF: Left to the reader. |



Lemma 2.5. Let A be a PQ-interval. Then for any 1 > pgm(X) this interval fi-covers

all basical intervals except at most one.
PRroOOF: Follows from Lemmas 2.3 and 2.4. §

Lemma 2.6. Suppose that card(orbPN1I) > 4, card(orb@Q NI) > 4. Then the following
statements are true.

1) Either for any P-interval M there exists ¢ < p? such that f'M contains a PQ-interval
or there exist two P-intervals Y and Z such that each of them  fi-covers both of them
fori> (p—1)%.

2) Either for any Q-interval N there exists i < ¢* such that f'N contains a PQ-interval
or there exist two Q-intervals Y’ and Z' such that each of them  f'-covers both of them

fori > (p—1)%

PRrROOF: We will prove only statement 1). Consider a P-interval [¢, d] which has a neigh-
bouring PQ-interval, say, [d, e]. Let the point ¢ be closer to the point a than the point d
(recall that I = [a,b] D [¢,d] U[d, e]). Divide the proof by steps.

Step 1. If f'[c,d] contains a PQ-interval then for any P-interval M there exists such

j < p—1+1 that f/M contains a PQ-interval.

Indeed, for any P-interval A one can find such m < p that either f™M D [¢,d] or
f™M D {d, e] which implies the required.

Step 2. Suppose there exists such i < (p —1)? that f'[c,d] contains a PQ-interval. Then
for any P-interval M there exists an integer j < (p — 1)? + p such that f/M contains a
PQ-interval.

Step 2 easily follows from Step 1.
Denote by z the closest to e point from orb P lying to the other side of e than d; clearly

z may not exist.
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Step 3. Suppose that fi[c,d] does not contain PQ-intervals for i < (p — 1)®. Then for
i > (p—1)(p — 2) the interval [c,d] f*-covers [a,d] (and [z, b] provided z exists).

Let I < p be such that flc = d. Then f'[c, d] D [c, d] and moreover [¢c,d] f'-covers [c, d].
But p is a prime integer which as in Lemma 2.3 implies that f[c,d] D orb P for every
¢ > I(p — 2). Since fi[c,d] does not contain [d, €] for I(p — 2) < i < I{p— 1) we have by
Lemma 2.4 that [¢,d] fi-covers [a,d] (and [z, b] provided z exists). But [c,d] fi-covers
[¢, d] which easily implies that for any ¢ > I(p — 2) the interval [c,d] f'-covers [a,d] (and

[z, b] provided z exists).

Step 4. Suppose that f'[c,d] does not contain PQ-intervals fori < (p—1)% 4+ p. Then for
any P-interval M and i > (p — 1)? we have that M f'-covers [a,d] (and [z, b] provided =

exists).

Clearly there exists I < p such that either M f!-covers [¢c,d]or M f'-covers[d, e]. Now
by Step 3 fP=DP=2[c d] D M; soif M f'-covers [d, e] then fP=Dr=2H[c 4] 5 [d, €]
which is a contradiction. Thus M f'-covers [c,d] and by Step 3 we get the required.

Now suppose there exists a P-interval M such that f*M contains no PQ-intervals for
i+ < p®. Then by Step 1 fi[c, d] contains no PQ-intervals fori < p* — (p—1) = (p—1)* +p.
Applying Step 4 and using simple geometrical arguments we may assert that there exist
two P-intervals ¥ and Z such that Y N Z = @ and for any ¢ > (p — 1)? the interval
Y fi-covers intervals Y, Z and the interval Z f'-covers intervals Y, Z which completes
the proof of Lemma 2.6. I

Lemma 2.7. Suppose that card(orbP N1I) > 4, card(orbQ N1I) > 4. Let
T = T(p, q) = N(pgm(X) — min(p, q) - m(X) + [max(p, ¢)]*)

(recall that function N{z) was defined in Lemma 2.1). Then P(f) D {i : 1 2 T} and
h(f) > 0.

PROOF: Let us make use of Lemmas 2.1 and 2.6 and consider all possible cases.
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Case A. There exist such P-intervals Y and Z that each of them f*-covers both of them
for: > (p—1)%.

Let k > N((p — 1)?) be an integer. By Lemma 2.1 one can easily see that there exist
integers 1 = ap < a1 < -+ < ar = k,aiy1 —a; 2 (p— 1)2 such that for any proper
divisior s of k there exists a; which is divided by s. Properties of fi-covering imply that
there exists an interval X C Y such that f%K C Z forany 1 < i < [ and f*K = Y.
Hence there exists a point { € Y such that f*¢ € Z for 0 < 7 < [ and f*¥¢ = (; by the
properties of the numbers {a;} it implies that k is the minimal period of the point ( and
so P(f)D{i:i>2 N((p—1)%)} D {i:i>T}. Standart one-dimensional arguments show
also that h(f) > 0 (see, for example, [BGMY]).

Case B. There are such Q-intervals Y' and Z' that each of them f'-covers both of them
fori> (g —1)2.

Similarly to Case A we have P(f) D {i:¢> N((¢—1)?)} D {i:i> T} and h(f) > 0.

Case C. For any basical interval M there exists a number s = s(M) < [max(p, ¢)]* such
that f°*M contains a PQ-interval.

Let for definitness p > ¢. Then similarly to Lemma 2.5 we can conclude by Lemmas 2.3
and 2.4 that any basical interval M  f'-covers all basical intervals except at most one of
them for 1 > H = pgm(X) — gm(X) + p*. Choose four basical intervals {M;}4_, which
are pairwise disjoint and show that for any & > N(H) there exists a periodic point { of
minimal period k.

Let £ > N(H). As in Case A choose integers 1 = ap < a1 < -+ < a1 = k with
the properties from Lemma 2.1. Let u = a; — aj—;. Then it is easy to see that there
exists such basical interval, say, M;, that at least two other basical intervals, say M, and
Mj, f%-cover M;. On the other hand one can easily show that there are two numbers
i,7 € {2,3,4} and two intervals I{; C My and K; C M; such that forany 1 < v <1~2
we have f®v(K;) C M,y and f*(K;) C My, where r(v), t(v) € {2, 3,4} are appropriate
integers and moreover f*-'I{; = M;, f*-'K; = M;. Clearly one of the numbers i, j

belongs to the set {2,3}; let, say, 7 = 2. Then choosing correspondent subintervals and
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using simple properties of f-coverings one can easily find an interval X C M, such that
foKNM =0,1<v<!-1,and f*K = M,. Thus f has a periodic point of minimal

period k. Moreover, it is clear that h(f) > 0 which completes the proof. I

Theorem 2.1. Let X be a graph, s = Edg(X)+1 and {p;}!-, be s ordered prime integers
greater than 4Edg(X). Set L = L(X) = T(ps,ps—1). If a continuous map f: X — X is
such that P(f) D {1,2,...,L} then P(f) =N and h(f) > 0.

Proor: Clearly in the situation of Theorem 2.1 one can find two periodic points with

properties from Lemma 2.7. It completes the proof. I

Remark 1[B4]. If X is a tree then one may set L(X) = 2(p — 1)End(X) where p is the
least prime integer greater than End(X).

The preliminary version of Sections 1,2 was a subject of the author’s talk at the Confer-
ence on Dynamical Systems and Ergodic Theory in the memory of Dr. Prof. H.Michel in
Giistrow, October 1990 (that version will probably appear in the volume of Proceedings

of the Conference in Giistrow in Lecture Notes in Mathematics).

3. Abstract Sets of Periods for Graph Maps

One of the well-known results about periods of cycles of graph maps is the famous
Sharkovskii theorem on the co-existence of periods of cycles for maps of the real line. To

formulate it let us introduce the following Sharkovskii ordering for positive integers:
(%) 3<5<T<-+<2:3<2-5<2-7T<---<8<4<2<<1

Denote by S(k) the set of all such integers m that £ < m or k = m and by 5(2°°) the set
(1,2,4,8,...}.

Theorem(S1]. Let ¢ : R — R be a continuous map. Then either P(g) = @ or there
exists such k € NU 2% that P(g) = S(k). Moreover for any such k there exists a map
g:[0,1] — [0,1] with P(g) = S(k) and there exists a map go : R — R with P(go) = 0.

In what follows we need the following corollary of Sharkovskii theorem.
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Corollary S. Suppose that I C J C R are closed intervals, f : I — J is a continuous map
onto and either I = J or there is a periodic point y such that orby C I and endpoints of
I belong to orby. Consider the set Per f of all periodic points of f with orbits belonging
to I. Then the set P(f) of their periods is S(k) for some k € N U 2%,

PRrOOF: It is sufficient to consider the case when I = [a,b] C [¢,d] = J, a,b € orbjy. Define
g:J — J as follows: g|[a,b] = f, g|[c,a) = f(a), g][b,d] = f(b). Then P(g) = S(k) for
some k € NU2%, At the same time the only possible g-periodic but not f-periodic points
are those with orbits entering [c,a} U [b,d]; clearly it means that these points belong to
f-orbit of y and so Per f = Per g and P(f) = P(g) = S(k). §

Other information about sets of periods of cycles for one-dimensional maps is contained
in papers [AL,M] for maps of the circle, [ALM] for maps of the letter Y and [Ba} for maps
of the n-od.

We describe in Section 3 possible sets of periods of cycles for graph maps with no
restrictions on a graph. Namely, a set A C N is called an abstract set of periods (= ASP)
iff there exist a graph X and a continuous map f : X — X such that P(f) = A. A set B
is called an 0-abstract set of pertods (= ASPy) iff there exist a graph X and a continuous
map ¢ : X — X such that h(f) = 0, P(f) = B. Recall also that {Z = {li : ¢ > 1},
HQ(n) = {2'n: i > 0}. The main theorem of Section 3 is the following

Theorem 3.1. 1) A set A C N is an ASP iff it almost coincides with a finite union of
some sets IZ or Q(n).

2) A set AC N is an ASP, iff it almost coincides with a finite union of some sets Q(n).

A key role will play the following

Lemma 3.1. Let f : X — X be a continuous graph map, y; be f-periodic points of
periodsn;. Then taking a subsequence we may assume that one of the following possibilities
A) and B) holds.

A) There are a sequence of cycles of subgraphs M; O orby; and a number p such that
for any i there exists a basic set B(M;, f) of period p and n; is divided by p.
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B) There are a sequence of pairs of intervals J; D I; and a number p such that f*I; = J;,
intervals fI;,..., fP~1I; J; are pairwise disjoint, orby; C f;; fAI; (Vi) and either

fPI; = Ji or endpoints of I; belong to orby;.

ProOF: We may assume that n; / 00,y; — y and there is an interval [a,y] such that
[a,y) contains no vertices of X and y; € [a,y)(Vz). Consider the set F = F({y;}) (see

Lemma 1.3) using Theorems 1.1 - 1.3 and Lemma 1.3.
Case 1. The point y belongs to a circle-like set.

This possibility is excluded (see Lemma 1.3).
Case 2. The set F is not a cycle.

According to the spectral decomposition and Lemma 1.3 we need to consider two sub-

cases.
Subcase 2a. The set F belongs to a solenoidal set.

In this case there exists a p-periodic interval I containing no vertices of X and such that
orby; C orb[I for all sufficiently large i. Clearly it is enough to set I; = J; = I; then the
possibility B) of Lemma 3.1 holds.

Subcase 2b. The set F' belongs to a basic set B = B(M, f).

Let p be a period of B. Furthermore, let ¢ : K — K be a transitive non-strictly periodic
graph map and ¢ : M — K be a monotone continuous surjection which almost conjugates
f|B to g (such a map ¢ exists by Theorem 1.2). Finally let the set D be the same as in
Theorem 1.2.5).

The fact that F' is not a cycle and Lemma 1.3 imply that F is infinite and so (taking
if necessary a subsequence) we may assume that ¢(f7y;) € int(¢D) for any ¢ and some
r = r(1). By Assertion 1.1 it implies that n; is divided by p for any i, i.e. the possibility
A) of Lemma 3.1 holds.
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Case 3. The set F is a cycle (i.e. y € Per f,orby; — orby = F).

Let a period of y be k. Consider a map ¥ = f*. Clearly we may assume that there are
small intervals [y, z;] = T,..., [y, z:] = Ti such that n; > I(V7) and the following holds:

1) (y,25) N (y,2) = B(s # t);

i) the set U = Ui=1[y, z,) 1s a neighbourhood of y;

i) y; € Ty, card(orb y; N T1) > 1 and orby yi C U (Vi);

iv) there exists a neighbourhood V = U:'=1 R; of the point y such that for any ¢ we have
R; ={y,¢) D [v,2i), V \y contains no vertices of X, U C V for 0 < j <! and also
FEVNfV =0(0<e<d<k).

Denote by Y,.(i) the smallest subinterval of T, containing {orby y; N T} }; if Y,Si) # 0 then

set Yr(") = [an), Si)] where ﬁ,(ni) is closer to the point y than af-i) . Consider some subcases.

Subcase 3a. There is an infinite set C of such integers ¢ that for any j < I, r < | we have

y ¢ YY),

Let : € C and z1,z2 € orby; belong to the same interval, say, T,.. Then by iv) and
the hypothesis of Subcase 3a we may conclude that for any 0 < m < [ the set ¥™[z;, z4]
belongs to one of the intervals from the family {R;}. So for every i € C there exists
a number 0 < s; < [ such that t,[;"‘YI(i) C (y,¢1] and moreover del(") N f"Yl(i) = § for
0 < d < e < s;k. Taking a subsequence E C C we may assume that s; = s < (Vi € E), so
the number p = ks, the intervals Yl(i) = I; and z,b"Yl(") = f’”Yl(i) = J; are those required

in possibility B) of Lemma 3.1.

Subcase 3b. For any sufficiently large ¢ there exist such j = j(z) < land r = r(i) <1
that y € %3 (¥i{V).

To consider Subcase 3b we need the following Assertion 3.1 which is more or less easy
and traditional for one-dimensional dynamics (cf. [BGMY]) so that we leave the proof to

the reader.
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Assertion 3.1. In the situation of Subcase 3b there exist intervals
(9) (¢) ) (¥
L; C Yr('i) = [ar‘(i)’ﬁrzi)]’ N; C [lBrEi)’y]

and a number t; = t such that y'N; = ¢'L; = [as,?'.),y]. Moreover, there exists a 1*-
invariant set ¥; with the following properties:

1) *|Z; is at most 2-to-1 semiconjugated to the full Bernoulli shift with two states;

2) for every ( € &, every small open interval W such that ( € W and every integer d
there exist an open interval U,{ € U C W and such integer s that ¥**U = [af_?i),y] and
YU C N; U L; (0 < m < sd);

3) there exists a point & such that I; = wy(z) C wy(z).

Now consider a basic set B; = B(M;, f) D wyg(z) D ;. Then by the definition we have
M;D [af,?'-), y]. By Assertion 1.1.1) we may assume that all B; have the same period, say,
p. Moreover, we may assume that there is a number » < [ such that »(z) = r (V7).

Let g, ¢, D; C B; have the same meaning as in Theorem 1.2.5) and be chosen so that
(Z; N D;) is infinite. We will prove that t,o[crs."),y] C @(D;). Indeed, take such a point
z € ;N D; that ¢(z) € int(pD;), then (using Assertion 3.1) take a small neghbourhood
W,z € W and a number s such that oW C int(pD;), ¥*?W = [ag),y] .Clearly by prop-
erties of ¢ we have ¥*'? C pD;, so (,o[a(ri),y] C oD;. But ,B,(ﬂi) lies in [asfl)] between sets
N; N Z; and L; N X; belonging to By; together with the properties of ¢ it implies that
0B € int(pD;).

Now by Assertion 1.1.2) the fact that wﬂii) € int(pD;) implies that f-period n; of ﬁ,(f.)
(which is equal to that of y;) is divided by p. So we get to the possibility A) of Lemma
3.1 which concludes the proof.

Theorem 3.1. 1) A set A C N is an ASP iff it almost coincides with a finite union of
some sets Z or Q(n).

2) A set AC Nis an ASP, iff it almost coincides with a finite union of some sets Q(n).

PROOF: 1.i) Let us prove first that if f : X — X is a continuous graph map then P(f)

has the required form. To this end let us introduce some notions.
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Consider the family A of all sets T(d,n) = {di : i > n} belonging to P(f). Suppose
that for some number d there exists such number n that T(d,n) € A; then d is called
difference. Denote for any difference d by n(d) the minimai such integer that T'(d, n(d) € A;
denote also the family of all sets T(d, n(d)) € A by R. Clearly, ’?’ is a partial ordering in
R and if T(d,n) is a maximal element of R then d is not divided by any other difference.

Denote the family of all ?-maximal elements of R by R .qz and call minimal differences
all those d that T(d,n(d)) € Rmaz. By the definition for any T'(d,n) € A there exists
T(d',n') € Rpyaz such that T(d',n') > T(d;n). For any minimal difference d denote by
m(d) a prime integer greater than n(d); moreover, choose m(d) so that if d, # d; then
m(d;) # m(dz). Let us also call starting periods numbers d - m(d) where d is a minimal
difference.

Now consider the family B of all sets Q(m) = {2'm : 1 > 0} C P(f) for which there is
no set T'(d,n) ? Q(m). Sets from B are partially ordered by inclusion; let us denote by
Binaz the family of all maximal elements of B and call roots all those m that Q(m) € By,qz.
Finally let us call a number [ € P(f) a period of finite type if it does not belong to sets
from either R,ae Or Bz, the set of all periods of finite type is denoted by F.

To prove Theorem 3.1 it is enough to show that Rz, Bmaz, F are finite sets. Suppose
this is not the case; it means that the set of all minimal differences, roots and periods
of finite type is infinite. Let us show that then the set of all starting periods, roots and
periods of finite type is infinite. Indeed, none of roots are equal to each other or to some
starting periods. At the same time one starting period may correspond to no more than
finite number of minimal differences. So the set in question is infinite. Take for every
starting period, root and period of finite type the correspondent periodic point. This way
we get an infinite sequence {y;} of periodic points of periods n; and we may assume that

ni /" co. Let us apply Lemma 3.1 and consider some cases.

Case A. There is a sequence of cycles of subgraphs M; and a number p such that for
every i y; € M;, there exists a basic set B; = B(M;, f) of period p and n; is divided by
p.
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By Lemma 1.2 P(f|B;) almost coincides with pZ; so there exists a set T(d,n) € Romaz
such that T(d,n) O P(f|B;) D pZ. At the same time n; € pZ (Vi). Hence n; € T(d,n)
and n; is divided bay d for all sauﬁiciently large 7. If d =1 then we are done because P(f)
almost coincides with N. On the other hand if d > 1 then the choice of starting periods
shows that if e - m(e) is a starting period divided by d then e is divided by d or m(e)
is divided by d (because m(e) is a prime integer); the same argument proves that there
are no more than one integer of type m(e) divided by d (namely, in this case d = m(e)
must be a prime number). But the properties of minimal differences show that a minimal
difference e may be divided by d only if e = d. So there are only finitely many starting
periods among numbers {n;}. Moreover, it is easy to see that there are only finitely many
roots and periods of finite type among numbers {n;} which is a contradiction. Note that

in fact we have proved that there is no such d that T(d,n) O {n;} where T(d,n) € A.

Case B. There is a sequence of pairs of intervals J; D I; 3 y; and a number p such that for
any 1 we have fPI; = J;, intervals fI;,..., fPI; = J; are pairwise disjoint, orby; C Uf;é I
and either fPI; = I; = J; or endpoints of I; belong to orby;.

Let us apply Corollary S to fPI;. Consider the set R of periods of all periodic points ¢

for which there exists such : that orb( C ?;; fiI;. Then {n;} C R and by Corollary S
there exists such k that R = pS(k) (here either & € N or k = 2°°). Consider two subcases.

Cubcase B1. k€N

Clearly the property n; — oo implies that k = 2/(2m +1),m > 1. Then we see that
T(2'p,2!p(2m + 1)) € A and at the same time T(2/p, 2'p(2m + 1)) D R D {n;}; so we are
done by what has been proved in Case A.

Subcase B2, k =2%

If there is a set T(d,n) € A such that T(d,n) D R then we get to the same contradiction
as earlier. Suppose there is no such set T'(d, n). Tahen R € B and thereis aset Q(m) € B,s
such that R C Q(m). Hence {n;} C @(m). But it is easy to see that there are only finitely
many starting periods, roots and periods of finite type belonging to @(m) which is a

contradiction. It concludes the proof of the first part of statement 1) of Theorem 3.1.
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1.ii) Now suppose there is a set A which almost coincides with the finite union of some
sets {Z and Q(m). To construct a graph map f: X — X such that P(f) = A let us first
note that we do not suppose X to be connected. So it is enough to show that the following

two statements are true.

Statement 1. For any m > 0 there exists a graph map g : Y — Y such that we have
P(g)={1:12m} =T(1,m)

By the results of [AL,M] it is easy to see that there exists a map g, : S* — S§! with
P(gm) =T(1,m).

Statement 2. There is a map ¥ : [0,1] — [0,1] such that P(3)) = {1,2,4,8,...} = Q(1).

This fact is well-known.

Taking into account the existence of graph maps g with Perg = 0 (e.g. irrational
rotation) one can easily construct the required graph map, so the rest of construction is
left to the reader. It completes the proof of the first statement of Theorem 3.1.

2.1) To prove that every graph map ¢ with zero entropy has a set of periods P(g¢) which
- almost coincides with a finite union of some sets Q(!) one could repeat the same arguments
as in the proof of the first statement of Theorem 3.1 taking into account that graph maps
with zero entropy have no basic set (since a map on a basic set has a positive entropy,
Theorem 1.2.5). An alternative proof follows from Theorem 2.1 which implies that a graph
map g with zero entropy cannot contain a set of type nZ in its set of periods P(g).

2.1i) The construction is similar to that in the proof of the first statement of Theorem

3.1 and is left to the reader.
Corollary 3.1. There are no graph maps f,g with h(f) = 0,h(g) > 0, P(f) = P(g). 1

Corolloary 3.2. Suppose that f: X — X is a graph map. Then the following properties

are equivalent:
1) h(f) > 0;
2) there is a number n such that P(f) D nZ;
3) there are numbers d,r such that P(fa) :a) {r,r+d,7v+2d,...};
4) a density of P(f) is positive;
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5) an upper density of P(f) is positive. |
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