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HIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRALSEQUENCEHANS-JOACHIM BAUES AND DAVID BLANCAbstra
t. Classi
al homologi
al algebra 
onsiders 
hain 
omplexes, resolutions, and derived fun
-tors in additive 
ategories. We des
ribe �tra
k algerrbas in dimension n�, whi
h generalize additive
ategories, and we de�ne higher order 
hain 
omplexes, resolutions, and dervied fun
tors. We showthat higher order resolutions exist in higher tra
k 
ategories, and that they determine higher order
Ext-groups. In parti
ular, the Em-term of the Adams spe
tral sequen
e (m ≤ n + 2) is a higherorder Ext-group, whi
h is determined by the tra
k algebra of higher 
ohomology operations.Introdu
tionTopologists have been working on the problem of 
al
ulating the homotopy groups of spheres foraround 80 years, and many methods have been developed for this purpose. One of the most usefulis the Adams spe
tral sequen
e E2, E3, E4, . . . , , 
onverging to the p-
ompleted stable homotopygroups of the sphere. Adams 
omputed the E2-term of the spe
tral sequen
e, and showed that it isalgebrai
ally determined:

Es,t
2
∼= Exts,t

A (Fp, Fp) ,where the derived fun
tor Ext is taken for modules over the mod p Steenrod algebra A of primarymod p 
ohomology operations (
f. [A1℄). Sin
e the work of Adams in [A2℄, it has been generallybelieved that higher order 
ohomology operations 
an be used to 
ompute the higher terms of theAdams spe
tral sequen
e.However, it remained un
lear what kind of algebra B(n) would be formed by 
ohomologyoperations of order (n + 1). For n = 0, the algebra B(0) = A is the Steenrod algebra, whi
hdetermines E2. It is shown in [B2℄ that the algebra of se
ondary 
ohomology operations, B(1), 
anbe des
ribed by a di�erential algebra B, whi
h was 
omputed in [lo
. 
it.℄, leading to the 
al
ulationof E3 as a �se
ondary Ext-group� over B. For this, the notion of se
ondary derived fun
tors wasdeveloped in [BJ2℄ in the 
ontext of tra
k 
ategories � that is, 
ategories enri
hed in groupoids.It is the purpose of this paper to exhibit higher order derived fun
tors in tra
k algebras � inparti
ular, higher order Ext-groups � whi
h allow the 
al
ulation of the higher terms E∗,∗
n (n ≥ 2)in the Adams spe
tral sequen
e. This generalizes Adams' original result for n = 2, and the resultsin [B2, BJ2℄ for n = 3.The elements of the Steenrod algebra A are (stable) homotopy 
lasses of maps between mod pEilenberg-Ma
 Lane spa
es. Here we 
onsider the spa
e of all su
h maps, whi
h together 
onstitutethe Eilenberg-Ma
 Lane mapping algebra (see Se
tion 7 below). We asso
iate with ea
h mappingalgebra a tra
k algebra of dimension n (n ≥ 0) (see Se
tion 11 below), and prove as our mainresult:Theorem A. Higher order resolutions exist in a tra
k algebra of dimension n, and su
h resolutionsdetermine higher order Ext-groups Em for m ≤ n+2. If the tra
k algebra is the one determinedby the Eilenberg-Ma
 Lane mapping algebra, these higher order Ext-groups 
ompute the Em-termsof the Admas spe
tral sequen
e for m ≤ n + 2.The tra
k algebra of dimension n asso
iated to the Eilenberg-Ma
 Lane mapping algebra 
onsti-tutes the algebra B(n) of (n + 1)-st order mod p 
ohomology operations. It is 
onje
tured in [B3℄that B(n) 
an be 
omputed in terms of a suitable di�erential algebra for all n ≥ 0, as is the 
asefor n = 0 and n = 1.Date: 2nd August 2011.1991 Mathemati
s Subje
t Classi�
ation. Primary: 18G10; se
ondary: 55T15, 55S20.Key words and phrases. Adams spe
tral sequen
e, higher 
hain 
omplexes, higher 
ohomology operations, higher

Ext-groups, higher order resolutions, higher tra
k algebras.1



2 britishH.-J. BAUES AND D. BLANC1. Left 
ubi
al setsWe �rst re
all some properties of 
ubi
al sets, and introdu
e the notion of left 
ubi
al sets, whi
hare used to des
ribe higher nullhomotopies.Let I = [0, 1] be the unit interval and let In = I × · · · × I be the n-dimensional 
ube. Wehave in
lusions di
ε : In−1 = Ii−1 × {ε} × In−i ⊂ In for 1 ≤ i ≤ n and ε ∈ {0, 1}. Here I0 isa single point.Let ��� denote the 
ategory whose obje
ts are 
ubes In (n ≥ 0), and whose morphisms aregenerated by di

ε and the proje
tions si : In −→ In−1.A pointed 
ubi
al set is a fun
tor K : ���
op −→ Set∗, where Set∗ is the 
ategory of pointedsets. As usual, K(In) is denoted Kn and ∗ ∈ Kn is the base point. We write dim(a) = n if

a ∈ Kn. See [C℄, [J℄, or [I℄ for further details on 
ategory of 
ubi
al sets.1.1. De�nition. Let ��� be the sub
ategory of ��� 
onsisting of obje
ts In (n ≥ 0) and morphismsgenerated by di
0. A left 
ubi
al set is a fun
tor ���

op
→ Set∗. We write ∂i for (di

0)
∗ : Kn → Kn−1(1 ≤ i ≤ n). We also 
onsider the full sub
ategories ���n ⊂ ��� 
onsisting of obje
ts Im(0 ≤ m ≤ n). A fun
tor ���

op

n −→ Set∗ is 
alled a left n-
ubi
al set.1.2. Remark. Given a pointed 
ubi
al set K, one obtains a left 
ubi
al set nul(K) by setting
nul(K)m := {a ∈ Km | (di

1)
∗a = ∗ for 1 ≤ i ≤ m}.A

ordingly, one gets the left n-
ubi
al set nuln(K) as a restri
tion of nul(K) to ���

op

n .Note that nul is a fun
tor from pointed 
ubi
al sets to left 
ubi
al sets. Its left adjoint
U : (Set∗)���

op

→ (Set∗)���
op may be thought of as a �universal enveloping 
ubi
al set� fun
tor,des
ribed as follows: given a left 
ubi
al set M , the pointed 
ubi
al set U(M) has one n-
ube In

afor ea
h left n-
ube a ∈M , with (di
1)

∗In
a = ∗ (the base point) for ea
h 1 ≤ i ≤ n. In addition,there is a degenerate (n + k)-
ube:(1.3) (sj1 )∗ . . . (sjk)∗In

a in U(M) for ea
h iterated proje
tion sjk . . . sj1 : In+k → In in ���(with identi�
ations a

ording to the 
ubi
al identities).It is readily veri�ed that U(M) is indeed a pointed 
ubi
al set, with a natural isomorphism:(1.4) Hom
(Set∗)���

op (M, nul(K))
∼=
−→ Hom(Set∗)���op (U(M), K)for K ∈ (Set∗)���

op and M ∈ (Set∗)���
op . Moreover, both fun
tors preserve dimensions of all
ubes, so they 
ommute with the n-skeleton fun
tor, yielding a left adjoint Un to nuln.For any 
ubi
al set K, let CK be the partially ordered set of all k-
ubes (k ≥ 0) of K, orderedunder in
lusion. We have K ∼= colimIk∈CK
Ik, where ea
h Ik is thought of as a 
ubi
al set. Weuse this to de�ne a monoidal stru
ture on Set���

op , given by:(1.5) K ⊗ L := colimIj∈CK , Ik∈CL
Ij+k(see [J, �3℄). If K and L are pointed, there is a 
ubi
al smash fun
tor(1.6) K⊗L := (K ⊗ L) / ({∗} ⊗ L∐K ⊗ {∗})on (Set∗)���

op , whi
h also is also de�ned on (Set∗)���
op . Moreover, nul and U are monoidal withrespe
t to ⊗ on (Set∗)���

op and (Set∗)���
op , respe
tively.Now, let (X, ∗) be a pointed spa
e and let S�X be the singular pointed 
ubi
al set: thus

(S�X)n is the set of all maps In −→ X , with base point o : In −→ {∗} ⊂ X .Then, nul(X) = nul(S�X) is given by all maps a : In → X with adi
1 = o for 1 ≤ i ≤ n.A

ordingly, we let nuln(X) := nuln(S�X)1.7. De�nition. The left n-
ubi
al set Nuln(X) is de�ned by

Nuln(X)m :=

{
nul(X)m for m < n,

nul(X)n/ ≃ for n = m.Here, we set a ≃ b for a, b ∈ nul(X)n if the maps a, b : In −→ X are homotopi
 relative tothe boundary ∂In of the 
ube In. Let {a} be the equivalen
e 
lass of a; we 
all {a} an n-tra
kin X .
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tive map of left n-
ubi
al sets:(1.8) nuln(X) // // Nuln(X) ,whi
h is the identity in dimension < n and whi
h 
arries a with dim(a) = n to the n-tra
k {a}.We point out that the left n-
ubi
al set Nuln(X) is not the restri
tion of a 
ubi
al set.1.9. Remark. Let △△△ be the 
ategory with sets {1, 2, . . . , n} (n ≥ 0) as obje
ts, and orderpreserving inje
tive maps as morphisms. There is an isomorphism of 
ategories △△△ ∼= ��� whi
h
arries {1, 2, . . . , n} to In and 
arries {1, . . . , î, . . . , n} ⊂ {1, . . . , n} to di
0. Here, î indi
atesthat we omit i. 2. n-graded 
ategories enri
hed in left 
ubi
al setsCubi
al sets, and left 
ubi
al sets, have a natural grading by the dimension of the 
ubes. Thus
ategories enri
hed in (left) 
ubi
al sets are in parti
ular graded 
ategories, des
ribed as follows:A graded set K is a sequen
e of sets Kn (n ≥ 0). We write dim(x) = n if x ∈ Kn. An

n-set L is a �nite sequen
e L0, . . . , Ln of sets. For example, the n-skeleton K0, . . . , Kn of a gradedset is an n-set. A graded 
ategory G is a 
ategory in whi
h ea
h morphism f has a dimension
dim(f) ≥ 0 su
h that the 
omposition fg satis�es

dim(fg) = dim(f) + dim(g).Thus, all morphism sets MorG(X, Y ) are graded sets.An n-graded 
ategory 
onsists of morphism sets whi
h are n-sets and 
omposition fg is de�nedif dim(f) + dim(g) ≤ n. For example, the n-skeleton of a graded 
ategory is an n-graded 
ategory.An n-graded 
ategory enri
hed in left 
ubi
al sets is a n-graded 
ategory su
h that morphism sets
Mor(X, Y ) are left n-
ubi
al sets with operators (di

0)
∗ = ∂i satisfying(2.1) ∂i(fg) =

{
(∂if)g for i ≤ dim(f)

f(∂i−dim(f)g) for i > dim(f)Moreover, the zero morphisms on ∈ Mor(X, Y )n (n ≥ 0) satisfy
ong = on+dim(g) and fom = odim(f)+m.For example, let C be a 
ategory enri
hed in (Top∗,∧), where ∧ is the smash produ
t of pointedtopologi
al spa
es. Thus for every X, Y ∈ Obj (C), there is a zero morphism o ∈ MorC(X, Y ),satisfying og = o and fo = o for any f, g ∈MorC. Then nul(C) is given by the left 
ubi
alset nul(MorC(X, Y )). The 
omposition f ⊗ g de�ned by

f ⊗ g : In × Im
f×g // MorC(Y, X)×MorC(Z, Y )

µ // MorC(Z, X) ,where µ is the 
omposition in C. Thus nul(C) is a 
ategory enri
hed in left 
ubi
al sets as above.The n-skeleton of nul(C), denoted by nuln C, is given by the n-
ubi
al sets nuln MorC(X, Y ).One has the quotient fun
tor
nuln C // // Nuln Cgiven by the quotient maps:

nuln MorC(X, Y ) // Nuln MorC(X, Y )(see (1.8)). Here, Nuln C is an n-graded 
ategory with the 
omposition de�ned by the equivalen
e
lass {f ⊗ g} for dim(f) + dim(g) = n. The n-graded 
ategories nuln C and Nuln C areenri
hed in left n-
ubi
al sets.For n = 0, the (0-graded) 
ategory
Nul0 C = π0Chas morphisms X −→ Y given by the path 
omponents of MorC(X, Y ).



4 britishH.-J. BAUES AND D. BLANC3. The 
hain 
ategory Z⊗A 
hain 
omplex in any pointed 
ategoryM may be de�ned as a pointed fun
tor from a suitableindexing 
ategory. To de�ne higher order 
hain 
omplexes, we require a more elaborate indexing
ategory, whi
h we now des
ribe.Let ⋆ and J be elements whi
h generate the free monoid
N := Mon(⋆, J) .Let deg, dim : N −→ (N0, +) be monoid homomorphisms de�ned by

deg(⋆) = 1 deg(J) = 1

dim(⋆) = 0 dim(J) = 1.Elements in N are words whi
h 
onsist of letters ⋆ and J . For example, V = ⋆ ⋆ J ⋆ JJ is su
ha word, with deg(V ) = 6 the length of the word V , and dim(V ) = 3 the number of letters J in
V . Let ∅ be the empty word, whi
h is the unit in the monoid N .We asso
iate with J the unit interval I = [0, 1] and with ⋆ the one point spa
e {0}. For anyword V , let V be the spa
e de�ned by

V =






I if V = J

{0} if V = ⋆

V 1 × V 2 if V = V1V2 .We say that V is in the boundary of W with V, W ∈ N if there is an in
lusion V ⊂W . Thisimplies deg V = deg W and dimV ≤ dim W . By proje
ting the spa
es {0}, one gets thehomeomorphism
V ∼= Idim V .If V is in the boundary of W , there is a unique in
lusion dV,W of 
ubes in the 
ategory ��� (seeDe�nition 1.1) su
h that

V

��

∼= // Idim V

dV,W

��
W

∼= // Idim W
ommutes.Now, 
onsider elements ⋆ and In (n ≥ 1), whi
h generate the monoid
M := Mon(⋆, In, n ≥ 1)/In ◦ Im = In+m .The multipli
ation in M is denoted by ◦. Here, Mon(⋆, In : n ≥ 1) denotes the free monoid. In

M , we divide out the relation In ◦ Im = In+m for n, m ≥ 1.There is a 
anoni
al isomorphism of monoids
M

∼= //Nwhi
h 
arries ⋆ to ⋆ and In to the n-fold produ
t Jn = J · · · J . Using this isomorphism, weobtain the fun
tions deg and dim on M .We introdu
e on M a further multipli
ation ⊗ de�ned by(3.1) V ⊗W = V ◦ ⋆ ◦W for V, W ∈M.Here V ×W is the produ
t of elements V , ⋆, W in the monoid M . The operation ⊗ is asso
iative,but it has no unit. For the empty word ∅ ∈M , we get
∅ ⊗ ∅ = ∅ ◦ ⋆ ◦ ∅ = ⋆.3.2. De�nition. We de�ne the 
hain 
ategory Z⊗ to be the following graded 
ategory: the obje
tsin Z⊗ are the integers i, j, . . . ∈ Z. In addition to the identities 1i, with dim(1i) = 0, themorphisms in Z⊗ 
onsist of

(i, V ) : i
V // i− deg V − 1 = j
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omposition of V : i −→ j and W : j −→ j − deg W − 1 = k (W ∈ M),is de�ned
(i, W ⊗ V ) : i

W⊗V // i− deg(W ⊗ V )− 1 = k .Here we have deg(W ⊗ V ) = deg W + deg V + 1, so that the 
omposition is well de�ned. We alsoomit ⊗ in the notation of the 
omposite.More pre
isely, morphisms in Z⊗ are pairs (i, V ), where i ∈ Z, V ∈M , and i is the sour
eof the morphism (i, V ) (aslow written V : i −→ j). The target j satis�es j = i− deg V − 1.The 
ategory Z⊗ is graded by dimension of elements in M . In fa
t, we have dim(W ⊗ V ) =
dim(W ) + dim(V ). The n-skeleton Z

n
⊗ of Z⊗ (n ≥ 0) is an n-graded 
ategory. The 0-skeleton

Z
0
⊗ 
onsists only of identities and of the morphisms V : i→ i− deg V − 1, where V is a power ofthe element ⋆ in M .If V = ∅, then ∅ : i −→ i− 1 is in Z

0
⊗. The 
omposition is ∅ ⊗ ∅ = ⋆ : i −→ i− 2, and soon. We observe:3.3. Lemma. The 
ategory Z⊗ is freely generated by the morphisms (i, ∅) : i → i − 1 and

(i, Ik) : i −→ i− k − 1 for i ∈ Z. k ≥ 1.4. Higher order 
hain 
omplexesWe are now in a position to de�ne the notion of a higher order 
hain 
omplex:Given an n-graded 
ategory T enri
hed in left n-
ubi
al sets (for example, T = Nuln C), we
onsider a fun
tor of n-graded 
ategories
K : Z

n
⊗

// Twhi
h 
arries an obje
t i ∈ Z to the obje
t Ki := K(i) in T. We say that K satis�es thein
lusion property if the following holds:Given morphisms V, W : i −→ j in Z
n
⊗ su
h that V is in the boundary of W , then the indu
edmorphisms K(V ) and K(W ) in T satisfy the equation(4.1) K(V ) = d∗V,W K(W ) in MorT(Ki, Kj) .Here d∗V,W is de�ned by the stru
ture of MorT(Ki, Kj) as a left 
ubi
al set.4.2. De�nition. A fun
tor K satisfying the in
lusion property (4.1) is 
alled an n-th orderpre-
hain 
omplex in T.Let N > M and Z(N, M) = {k ∈ Z, N ≥ k ≥M}. Then we obtain the full sub
ategory
Z(N, M)⊗ ⊂ Z⊗
onsisting of obje
ts k ∈ Z(N, M). We say that K is 
on
entrated in Z(N, M) if K :

Z(N, M)n
⊗ −→ T is a fun
tor of n-graded 
ategories.Assume a quotient fun
tor T0 −→ A is given, whi
h yields the indu
ed morphisms

δi = K(i, ∅)∗ : Ki
//Ki−1 in Afor ea
h i ∈ Z. We then say that K is based on the diagram(4.3) KN

// . . . //Ki
δi //Ki−1

δi−1 //Ki−2
// . . . //KMin the 
ategory A.Now let C be a 
ategory enri
hed in pointed spa
es with zero morphisms. For T = Nuln C, we
onsider a fun
tor K with the in
lusion property,

K : Z
n
⊗

// Nuln C .We have in Z
n
⊗ the (n + 1)-tuple of morphisms i −→ i− n− 2:(4.4) (i, ∂In+1) =






(i, ∅ ⊗ In),

(i, In ⊗ ∅),

(i, Ir ⊗ Is), r + s = n, r ≥ 1, s ≥ 1whi
h yields the (n + 1)-tuple of n-tra
ks
K(i, ∂In+1) = (K(i, ∅ ⊗ In), K(i, I1 ⊗ In−1), . . . , K(i, In−1 ⊗ I1), K(i, In ⊗ ∅)).



6 britishH.-J. BAUES AND D. BLANCThese tra
ks are represented by maps In −→ MorC(Ki, Ki−n−2). In fa
t, these n-tra
ks yield upto homotopy a well de�ned map
α : Sn ≈ ∂(In+1) // MorC(Ki, Ki−n−2)on the boundary of the (n + 1)-
ube. Hen
e, the map α yields an obstru
tion element(4.5) OK(i, ∂In+1) ∈ Dn(Ki, Ki−n−2) = πn MorC(Ki, Ki−n−2).4.6. De�nition. We say that K is an n-th order 
hain 
omplex in Nuln C if the obstru
tionelements (4.5) vanish for all i. This is the obstru
tion property of K.Below, we study the properties of obstru
tion elements.4.7. De�nition. Let C be as above and let(4.8) K0 K1
δ1oo K2

δ2oo . . .oo Kn+2

δn+2oo , n ≥ 1be a diagram in A = π0(C). Consider all fun
tors
K : Z(0, n + 2)n

⊗
//T = Nuln Csatisfying the in
lusion property, whi
h are based on the diagram (4.8). Ea
h su
h fun
tor yieldsan obstru
tion element

OK(n + 2, ∂In+1) ∈ Dn(Kn+2, K0) = πn MorC(Kn+2, K0).The set of all these elements is the 
lassi
al higher order Toda bra
ket
〈δ1, . . . , δn+2〉 ⊂ Dn(Kn+2, K0)(see [W℄).The set 
an be empty. If there exists a n-th order 
hain 
omplex K based on the diagram (4.8),then of 
ourse 0 ∈ 〈δ1, . . . , δn+2〉 by the obstru
tion property of K.5. The W -
onstru
tionAn alternative des
ription of higher order 
hain 
omplexes 
an be given using the bar 
onstru
tion

WK, going ba
k to Boardman-Vogt (see [BV, �3℄ and [Bo, �6℄). This 
onstru
tion is a topologi
ally-enri
hed �
o�brant repla
ement� for any small 
ategory K, whi
h serves as the indexing 
ategory forlax versions of fun
tors K → Top. A 
ubi
ally enri
hed variant of WK was de�ned in [BJT,�3.1℄ and [BB, �3.4℄; we shall require the following pointed setting:5.1.De�nition. Let K be a small 
ategory enri
hed in (Set∗,∧) (so zero morphisms o are de�ned).The pointed W-
onstru
tion on K, denoted by W∗K, is the 
ategory enri
hed in ((Set∗)���
op

,⊗)with obje
t set Obj K de�ned as follows:First, for every a, b ∈ Obj K, the underlying graded pointed 
ategory of W∗K has an(inde
omposable) morphism (n-
ube) In
f•

in W∗K(a, b)n asso
iated to ea
h 
omposable sequen
e(5.2) f• = (a = an+1
fn+1

−−−→ an
fn
−→ an−1 . . . a1

f1
−→ a0 = b)of length n + 1 in K. In addition, W∗K(a, b) has a degenerate (n + k)-
ube (sj1)∗ . . . (sjk)∗In

f•for ea
h iterated proje
tion sjk . . . sj1 : In+k → In in ��� (with identi�
ations a

ording to the
ubi
al identities). The zero morphism in degree k is Ik
o := (sk)∗ . . . (s1)

∗I0
o , and we identify In

f•with In
o whenever at least one of the maps f1, . . . , fn+1 is o. Then W∗K is freely generatedas a graded 
ategory with zero morphisms by these 
ubes. Composition in the 
ategory W∗K isdenoted by ⊗.The 
ubi
al stru
ture is determined by the fa
e maps of the non-degenerate inde
omposable 
ubes

In
f•

and the 
ubi
al identities, as follows:(a) The i-th 1-fa
e of In
f•

is In−1
f1◦...◦(fi·fi+1)◦...fn+1

� that is, we 
arry out (in the 
ategory K)the i-th 
omposition in f•.(b) The i-th 0-fa
e of In
f•

is the 
omposite Ii
f0◦...◦fi

⊗ In−i−1
fi+1◦...◦fn+1

.(
) The 
ubi
al stru
ture on the 
omposites Ij
f•

⊗Ik
g•

is de�ned by (1.5) (or (2.1)).
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ategory enri
hed in (Set∗,∧) with obje
t set Z and a singlenon-zero arrow dk+1 : k + 1→ k for ea
h k ∈ Z, satisfying dk ◦ dk+1 = o for all k.5.4. Proposition. Let M be a 
ategory enri
hed in 
ubi
al sets with zero morphisms. There is aone-to-one 
orresponden
e between pointed 
ubi
al fun
tors W∗Γ→M and pre-
hain 
omplexes in
nulM, whi
h restri
ts to a one-to-one 
orresponden
e between pointed 
ubi
al fun
tors skn W∗Γ→
M and n-th order pre-
hain 
omplexes in nulnM.Proof. Sin
e Z⊗ is a free graded 
ategory, by Lemma 3.3, we 
an de�ne a one-to-one fun
tor ofgraded 
ategories Φ : Z⊗ → W∗Γ whi
h is the identity on obje
ts by setting Φ(i, ∅) := I0

di
and

Φ(i, Ik) := Ik
f•

, for f• := (i
di−→ i− 1→ . . . i− k

di−k

−−−→ i− k − 1).We 
an endow Z⊗ with the stru
ture of a 
ategory Ẑ⊗ enri
hed in ((Set∗)���
op

,⊗) by setting
d∗V,W (W ) = V if V ⊆W , and adding zero morphisms. Note that a fun
tor K : Z⊗ → nulM isa pre-
hain 
omplex if and only if it indu
es a pointed 
ubi
al fun
tor K̂ : Ẑ⊗ → nulM.The universal enveloping fun
tor U : (Set∗)���

op

→ (Set∗)���
op of Remark 1.2 is monoidal withrespe
t to ⊗, so the adjun
tion (1.4) extends to 
ategories of enri
hed fun
tors. Moreover, Φindu
es a natural isomorphism of pointed 
ubi
al 
ategories(5.5) U(Ẑ⊗) ∼= W∗Γ ,so left 
ubi
al fun
tors Ẑ⊗ → nulM indeed 
orrespond to pointed 
ubi
al fun
tors W∗Γ →

M. Sin
e this 
orresponden
e preserves the grading, the same is true for n-th order pre-
hain
omplexes. �6. Resolutions and derived fun
torsWe now re
all some basi
 de�nitions of resolutions and derived fun
tors in the 
ontext of additive
ategories:Let A be a 
ategory enri
hed in abelian groups, i.e., a preadditive 
ategory. Then we denote themorphism sets in A by
HomA(X, Y ) = MorA(X, Y )for obje
ts X , Y in A. This is an abelian group, and morphisms f : X ′ −→ X and g : Y ′ −→ Yin A indu
e homomorphisms Hom(f, Y ) and Hom(X, g). Let a be a full sub
ategory of A.6.1. De�nition. Let X be an obje
t in A. An a-resolution of X is a diagram

A• = ( . . .
δ2 //A1

δ1 //A0
δ0 //A−1 )in A with A−1 = X and Ai ∈ a for i ≥ 0, su
h that, for all obje
ts B in a, the indu
ed diagram

Hom(B, A•) is an exa
t sequen
e of abelian groups; in parti
ular, Hom(B, δ0) is surje
tive.An a-
oresolution of Y is a diagram
A• = (A1

δ1 //A0
δ0 //A−1

δ−1 // . . .)in A with A1 = Y and Ai ∈ a for i ≥ 0, su
h that for all obje
ts B in a the indu
ed diagram
Hom(A•, B) is an exa
t sequen
e of abelian groups. Here Hom(δ1, B) is surje
tive.The next result is proved in [BJ2, 1.3℄:6.2. Lemma. Suppose(1) the 
oprodu
t of any family of obje
ts of a exists in A and belongs to a again,(2) there is a small sub
ategory g of a su
h that every obje
t of a is a retra
t of a 
oprodu
t of afamily of obje
ts from g,then every obje
t of A has an a-resolution.The dual statement also holds: suppose(3) the produ
t of any family of obje
ts of a exists in A and belongs to a again,(4) there is a small sub
ategory g of a su
h that every obje
t of a is a retra
t of a produ
t of a familyof obje
ts from g,then every obje
t of A has an a-
oresolution.



8 britishH.-J. BAUES AND D. BLANCOne obtains (3) and (4) by repla
ing the 
ategories A and a, respe
tively, in (1) and (2) by theopposite 
ategories Aop and aop. Given a fun
tor F : A −→ A, where A is an abelian 
ategoryand F is linear (i.e., enri
hed in the 
ategory of abelian groups), then derived fun
tors are de�nedby the homology (respe
tively, 
ohomology)
(LnF )(X) = HnF (A•),

(RnF )(Y ) = HnF (A•).Here A• (respe
tively, A•) is a resolution of X (respe
tively, a 
oresolution of Y ).We need the following 
on
ept of a Σ-algebra whi
h allows the de�nition of a bigraded Ext-group.6.3. De�nition. A Σ-algebra A = (A,a, Σ) is an additive 
ategory A together with an additivesub
ategory a and an additive endofun
tor Σ : A → A of A whi
h 
arries a to a and whi
h
arries an a-resolution A• of X in A to an a-resolution ΣA• of ΣX in A. Dually, we de�nean Ω-algebra A = (A,a, Ω) where Ω 
arries an a-
oresolution of X in A to an a-
oresolution of
ΩX in A.Given a Σ-algebra A and obje
ts X , Y in A, we de�ne the bigraded Ext-group by the 
ohomology

Er,s
2 = Extr

A
(ΣsX, Y ),(6.1)

= Hr HomA(ΣsA•, Y ),

= kernelHomA(Σsδr+1, Y )/ imageHomA(Σsδr, Y ).Here Σs = Σ ◦ . . . ◦ Σ is the s-fold 
omposite of Σ. Su
h groups appear in the E2-term of theAdams spe
tral sequen
e. 7. Mapping algebrasIn this se
tion we 
onsider topologi
al analogues of Σ-algebras and Ω-algebras of De�nition 6.3,in order to provide a setting for de�ning higher order resolutions, and thus higher order derivedfun
tors.7.1. De�nition. Let C be a 
ategory enri
hed in pointed spa
es with zero morphisms. Then C isa Σ-mapping algebra if the 
ategory A = π0C is a Σ-algebra and the bifun
tor (n ≥ 1)
Dn : Aop ×A // Ab

Dn(X, Y ) = πn MorC(X, Y )satis�es
τΣ : Dn(X, Y ) = HomA(ΣnX, Y )for X in a and Y in A. Here Σn = Σ ◦ . . . ◦Σ is the n-fold 
omposite of the endofun
tor Σ of a.Dually C is the Ω-mapping algebra if the 
ategory A = π0C is an Ω-algebra and (n ≥ 1)
τΩ : Dn(X, Y ) = HomA(X, ΩnY )for X in A and Y in a.7.2. De�nition. A Σ-mapping algebra C is 
omplete if the endofun
tor Σ of A = π0C is indu
edby an endofun
tor Σ of C and if a binatural transformation

τΣ : MorC(ΣA, Y ) //Ω MorC(A, Y )is given, where we use the topologi
al loop spa
e fun
tor on pointed spa
es. Moreover, the fun
tor
Σ : C −→ C preserves zero morphisms and 
oprodu
ts in C.An Ω-mapping algebra C is 
omplete if the endofun
tor Ω of A = π0C is indu
ed by an endo-fun
tor Ω of C and if a binatural transformation

τΩ : MorC(Y, ΩA) //Ω MorC(Y, A)is given. Moreover, the fun
tor Ω : C→ C preserves zero morphisms and produ
ts in C. Iterationof τΣ (respe
tively, τΩ) indu
es the isomorphisms τΣ (respe
tively, τΩ) in De�nition 7.1.
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ial model 
ategories of spe
tra, in
luding the
Γ-spa
es of [BF℄, the S-modules of [EKMM℄, and the symmetri
 spe
tra of [HSS℄. All of these havepointed versions (
f. [Hov, Prop. 1.1.8℄). In this and later se
tions, we let Spec∗ be any 
ategoryof pointed spe
tra whi
h is enri
hed in pointed topologi
al spa
es (or simpli
ial sets), with fun
tionspa
es of pointed maps

Mor(X, Y ) = Map∗(X, Y ) for X and Y in Spec∗ .We always assume that X and Y are both �brant and 
o�brant in our 
hosen model 
ategory.Clearly zero morphisms o : X → ∗ → Y are de�ned in Spec∗. Let X be a 
lass of obje
tsin Spec∗ su
h that X is 
losed under 
oprodu
ts and suspension Σ:� that is, for A, A′ ∈ X wehave A ∨A′, ΣA ∈ X . Then we have
{X} ⊂ Spec∗ ,where {X} is the full sub
ategory in Spec∗ with obje
ts in X . Then C = Spec∗ with

a = π0{X} ⊂ A = π0C is a 
omplete Σ-mapping algebra.Dually, let Y be a 
lass of obje
ts in Spec∗ su
h that Y is 
losed under produ
ts and loopfun
tor Ω, that is, for B, B′ ∈ Y, we have B ×B′ (ΩB ∈ Y). Then we have
{Y} ⊂ Spec∗ ,where {Y} is the full sub
ategory in Spec∗ with obje
ts in Y. Then C = Spec∗ with

a = π0{Y} ⊂ A = π0C is a 
omplete Ω-mapping algebra.7.4. Example. Let p be a prime and let H = H(Z/p) be the Eilenberg-Ma
 Lane spe
trum. Let
Y be given by all produ
ts

Ωn1H × Ωn2H × . . .× ΩnkHwith k ≥ 0, ni ≥ 0 for i = 1, . . . , k. Then C = Spec∗ with a = π0{Y} is a 
omplete
Ω-mapping algebra, whi
h we 
all the Eilenberg-Ma
 Lane mapping algebra. This is used in theAdams spe
tral sequen
e.7.5. Remark. In the examples of mapping algebras above the 
ategory C = Spec∗ is very large.For 
omputations, however, we 
onsider only the mapping algebras C′ whi
h are generated by
{X} (respe
tively, {Y}) and two further obje
ts X and Y in Spec∗.8. Existen
e of higher order resolutionsWe 
an use the de�nitions of Se
tion 7 to state our main results on resolutions, whi
h will beproved subsequently.Let C be a Σ-mapping algebra with a ⊂ A = π0C. If a n-th order 
hain 
omplex

K : Z(∞,−1)n
⊗

// Nuln Cis based on an a-resolution in A,
A• = ( . . .

δ2 //A1
δ1 //A0

δ0 //A−1 ) ,of X = A−1, we say that K is an n-th order resolution of X in Nuln C.8.1. Resolution Theorem. If there exists an a-resolution A• of X in A, then there exists an
n-th order resolution K of X in Nuln C (n ≥ 1). In fa
t, given an a-resolution A• of X in
A, an n-th order resolution K of X exists whi
h is based on A• .8.2. Remark. The Theorem shows that, if 'minimal' a-resolutions exist (as in the 
ase of the Adamsspe
tral sequen
e), then also an n-th order minimal resolution exists whi
h is based on a minimalresolution in A. This is of high importan
e for 
omputations.Dually, let C be a Ω-mapping algebra with a ⊂ A = π0C. If an n-th order 
hain 
omplex

L : Z(+1,−∞)n
⊗

// Nuln Cis based on an a-
oresolution in A

A• = (A1
δ1 //A0

δ0 //A−1

δ−1 // . . .) ,with A1 = Y , we say that L is an n-th order 
oresolution of X in Nuln C.



10 britishH.-J. BAUES AND D. BLANC8.3. Dual Resolution Theorem. If there exists an a-
oresolution A• of Y in A, then thereexists an n-th order 
oresolution L of Y in Nuln C (n ≥ 1). In fa
t, given an a-
oresolution A•of Y in A, an n-th order 
oresolution L of Y exists whi
h is based on A•.8.4. Remark. In view of Lemma 3.6 (a) in [BJ2℄, a 1-order resolution in Nul1 C is a se
ondaryresolution in the sense of [BJ2℄. 9. Left 
ubi
al ballsFor the proof of the Resolution Theorems 8.1 and 8.3, we require the notion of a left 
ubi
al ball,whi
h serves as a book-keeping devi
e to des
ribe the 
ombinatori
s of higher tra
ks, and allows usto de�ne the asso
iated obstru
tions.A ball of dimension n is a �nite regular CW-
omplex B with a sub
omplex ∂B and a homeomor-phism of pairs
(En, Sn−1) ≈ (B, ∂B)where En is the Eu
lidean ball. Two balls B, B′ are equivalent if there is a 
ellular isomorphism

B ≈ B′. A ball B is a union
B = B1 ∪ . . . ∪Bkof 
losed n-
ells Bi in B. We say that A is a sub-ball of B if A = Bi1 ∪ . . . ∪ Bit

for 1 ≤ i1 <
. . . < it ≤ k is a ball and if for t < k, the 
losure of the 
omplement B −A in B is also a ball,denoted by AB, so that B = A ∪AB .If A is also a sub-ball of a ball C with S = A ∩ AB = A ∩ AC , then we obtain the union of
omplements

AB ∪AC = AB ∪s AC ,whi
h is also a ball.9.1. Example. Let T n
0 be the union of all 
ells Ii−1 × {0} × In+i−1 in In+1, and let T n

1 bethe union of all 
ells Ii−1 × {1} × In+i−1 (i = 1, . . . , n + 1). Then T n
0 and T n

1 are balls ofdimension n, with n + 1 
losed n-
ells.9.2. De�nition. A left 
ubi
al ball is a ball B with a 0-vertex 0 ∈ B − ∂B with the followingproperties. Ea
h 
losed n-
ell Bi is equivalent to In, and ea
h 
losed (n − 1)�
ell e is equivalentto In−1, su
h that for e ⊂ Bi ∩Bj the diagram
Bj e⊃ ⊂ Bi

In

hj ≈

OO

In−1
de,j

oo
de,i

//

≈

OO

In

≈ hi

OO
ommutes. Here de,j and de,i are morphisms in the left 
ubi
al 
ategory ���. The vertex 0 is alsoa vertex of ea
h Bi and the equivalen
e hi : In ≈ Bi 
arries 0 to 0. Moreover, the union
h1(T

n−1
1 ) ∪ . . . ∪ hk(T n−1

1 ) = ∂Bis the boundary of B.Examples of left 
ubi
al balls of dimension 2 appear in in Figures 1 and 2.
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Figure 1. Some left 
ubi
al balls of dimension 2
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Figure 2. A 2-dimensional left 
ubi
al ball9.3. Example. The push out of In ←− T n−1
0 −→ In, 
alled the double of In, is a left 
ubi
alball. Moreover, T n

0 is a left 
ubi
al ball.9.4. Lemma. Let A be a sub-ball of B and C, where B and C are left 
ubi
al; then the union of
omplements AB ∪AC is left 
ubi
al.9.5. Remark. Let B be a left 
ubi
al ball of dimension n with k 
losed n-
ells. Then B is equivalentto the double of In for k = 2 and B is equivalent to T n
0 for k = n + 1. For 2 < k < n + 1,su
h a ball does not exist. For k ≥ n + 1 there is a 1-1-
orresponden
e between left 
ubi
al balls(up to equivalen
e) and simpli
ial 
omplexes homeomorphi
 to the (n − 1)-sphere Sn−1. The
orresponden
e 
arries B to the boundary of a small neighbourhood of 0 in B.10. Obstru
tionsLet X be a pointed spa
e with o ∈ X the base point. Let B be a ball and let a : B −→ X be amap with a(∂B) = o. We obtain the map(10.1) a : Sn ≈ En/Sn−1 ≈ B/∂B

a //X ,whi
h represents an element O(a) ∈ πn(X) in the n-th homotopy group of X . Now let B =
B1 ∪ . . . ∪Bk be a left 
ubi
al ball. Then

In hi //Bi ⊂ B
a //Xis a left n-
ube representing an n-tra
k ai ∈ Nuln(X)n.Then for e ⊂ Bi ∩Bj we have the gluing 
ondition in B (see De�nition 9.2).(10.2) d∗e,iai = d∗e,jaj .10.3. Lemma. Ea
h k-tuple (a1, . . . , ak) of n-tra
ks ai in Nuln(X)n satisfying (10.2) yields(up to homotopy relative to the boundary) a well de�ned map a : B → X with a(∂B) = o. Thisde�nes the obstru
tion OB(a1, . . . , ak) = O(a) in πn(X) as above.Now let B = T n

0 = B1 ∪ . . . ∪ Bn+1 and let a1, . . . , an+1 ∈ Nuln(X)n be n-tra
ks satisfy-ing (10.2). Then we get the boundary property :10.4. Lemma. OT n
0
(a1, . . . , an+1) = 0 if and only if there exist a ∈ Nuln+1(X)n+1 with ∂iarepresenting ai.Proof. We 
hoose representatives a′

i of ai whi
h de�ne a map
a : ∂In+1 //X
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1 ) = 0 and a|T n

0
= a′

1 ∪ . . . ∪ a′
n+1. Here a extends to In+1 if and only if

O(a′
1 ∪ . . . ∪ a′

n+1) = 0. �The next result is the Complement Rule.10.5. Lemma. Let B = A1 ∪ . . . ∪Ar ∪B1 ∪ . . . ∪Bt and C = A1 ∪ . . . ∪Ar ∪C1 ∪ . . . ∪Cs beleft 
ubi
al balls with the sub-ball A = A1 ∪ . . . ∪Ar. Then
OC(a1, . . . , ar, c1, . . . cs) = 0implies that for D = AB ∪AC

OB(a1, . . . , ar, b1, . . . , bt) = OD(b1, . . . , bt, c1, . . . , cs).Of 
ourse, there is the following Double Rule:10.6. Lemma. If B = B1 ∪B2 is the double of In then for a1 = a2 we have:
OB(a1, a2) = 0 .10.7. De�nition. Let B = B1 ∪ . . .∪Bk be a left 
ubi
al ball. Then for ea
h 1 ≤ i ≤ k we havea map

εi : In ≈ Bi ⊂ B ≈ En ,where In and En are oriented by the in
lusions of In and En in R
n. We set εi = +1if the map εi is orientation preserving, otherwise εi = −1. We 
all εi the orientation sign of

Bi.Let B = B1 ∪ B2 be the double of In. Then ε1 = −ε2, and we 
an 
hoose B1 so that
ε1 = 1, In this 
ase we de�ne the a
tion + of α ∈ πn(X) on an n-tra
k a ∈ Nuln(X)n by the
n-tra
k a + α whi
h satis�es O(a + α, a) = α (n ≥ 1).10.8. Lemma. The a
tion + yields a well de�ned e�e
tive and transitive a
tion of the group πn(X)on the set of all n-tra
ks a ∈ Nuln(X)n whi
h 
oin
ide on the boundary (that is, ∂ia = bi, where
(b1, . . . , bn) is �xed).10.9. Lemma. Let B = B1∪ . . .∪Bk be a left 
ubi
al ball and let OB(a1, . . . , ak), OB(a′

1, . . . , a
′
k)be de�ned, where {

a′
i = ai for i 6= j

a′
j = aj + α for i = j, α ∈ πn(X).Then we have the A
tion Formula:

O(a′
1, . . . , a

′
k) = O(a1, . . . , ak) + εjα .11. n-tra
k 
ategoriesWe now de�ne the 
on
ept of an n-tra
k 
ategory, whi
h en
ompasses the properties needed forthe 
onstru
tion of higher order resolutions.Let C be a 
ategory enri
hed in pointed spa
es with zero morphisms. Let n ≥ 1 and let

T = Nuln C ,

A = π0C ,

D : Aop ×A −→ Ab , D(X, Y ) = πn MorC(X, Y ) ,

OB(a1, . . . , ak) is de�ned in Nuln MorC(X, Y ) (see (10.1)).Then (T,A, D,OB) has the following properties of an n-tra
k 
ategory. Here we assume for n = 1that π1 MorC(X, Y ) is abelian for all obje
ts X , Y in C.11.1. De�nition. An n-tra
k 
ategory (n ≥ 1)
T = (T,A, D,O)is given by an n-graded 
ategory T, a quotient fun
tor T0 −→ A; a bifun
tor D : Aop ×A −→ Aband an obstru
tion operator O. The following properties hold:
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hed in left n-
ubi
al sets and has zero morphisms, that is, for all obje
ts X , Y in
T, we have the n-
ubi
al set MorT(X, Y ) with operators (di

o)
∗ = ∂i and zero elements

ot ∈MorT(X, Y )t su
h that
∂i(fg) = (∂if)g for i ≤ dim(f)

∂i(fg) = f(∂i−dim(f)g) for i > dim(f)

otg = ot+dim(g)

foh = odim(f)+h .Here fg is the 
omposite in the n-graded 
ategory T, whi
h is de�ned if dim(f)+dim(g) ≤
n.(2) The 0-skeleton T0 is the sub
ategory of T 
onsisting of morphisms f with dim(f) = 0, thisis a 
ategory together with a fun
tor q : T0 −→ A whi
h is the identity on obje
ts and full(quotient fun
tor). Moreover, D is a bifun
tor

D : Aop ×A // Abinto the 
ategory of abelian groups. Here D de�nes via q a bifun
tor on T0 whi
h satis�es
(o0)∗ = o and (o0)∗ = o. For a zero morphism o0 : X −→ Y in T0 we obtain the zeromorphism oX,Y = q(o0) in A.For f : X −→ Y in T0, we have q(f) = oX,Y if and only if there is F : X −→ Yin T with dim(F ) = 1 and ∂1F = f . This is the boundary property in dimension 1.(3) The obstru
tion operator O yields for ea
h left 
ubi
al ball B an element

OB(a1, . . . , ak) ∈ D(X, Y )where a1, . . . , ak ∈ MorT(X, Y )n is a k-tuple satisfying the gluing 
ondition in B,see (10.2).This obstru
tion operator satis�es the 
omplement rule, the double rule, and the a
tionformula as in Se
tion 10. Here the a
tion + of D(X, Y ) on the set MorT(X, Y )n isde�ned by: if OB(a1, a) = α, then a1 = a + α .Here B is the double of In with ε1 = +1.The a
tion + is transitive and e�e
tive on the set of all elements a in MorT(X, Y )nwhi
h 
oin
ide on the boundary (that is, ∂ia = bi, where (b1, . . . , bn) is �xed).(4) The obstru
tion operator satis�es for
f ∈ MorT(X ′, X)0 and g ∈MorT(Y, Y ′)0the naturality rule
OB(ga1, . . . , gak) = g∗OB(a1, . . . , ak)

OB(a1f, . . . , akf) = f∗OB(a1, . . . , ak) .Here f∗ AND g∗ denote the indu
ed maps on D. This implies g(a + α) = ga + g∗αand (a + α)f = af + f∗α.(5) The obstru
tion operator satis�es the following triviality rule: For morphisms
Z Y

foo X
gooin T with dim(f), dim(g) ≤ n and

dim(f) + dim(g) = n + 1we have the (n + 1)-tuple (a1, . . . , an+1) in MorT(X, Z)n given by
at =

{
(∂tf)g for 1 ≤ t ≤ dim(f),

f(∂t−dim(f)g) for dim(f) < t ≤ n + 1.This (n + 1)-tuple satis�es the gluing 
ondition in B = Tn
0 . The asso
iated obstru
tion

OB(a1, . . . an+1) = 0is trivial.



14 britishH.-J. BAUES AND D. BLANCWe now are able to de�ne n-th order 
hain 
omplexes in an n-tra
k 
ategory, for this we repla
e
Nuln C by T as follows, see Se
tion 4.11.2. De�nition. Let (T,A, D,O) be an n-tra
k 
ategory. A fun
tor of n-graded 
ategories

K : Z(N, M)n
⊗

// Tsatisfying the in
lusion property (4.1) is an n-th order pre-
hain 
omplex in T. This is an n-thorder 
hain 
omplex in T if for i, i− n− 2 ∈ Z(N, M), the obstru
tions
OK(i, ∂In+1) = OB(b1, . . . , bn+1) = 0vanish. Here B is the left 
ubi
al ball B = Tn

0 , and
K(i, ∂In+1) =






b1 = K(i, ∅ ⊗ In)

br+1 = K(i, Ir ⊗ In−r) for 1 ≤ r ≤ n− 1

bn+1 = K(i, In ⊗ ∅)(see (4.5)). Sin
e K is a fun
tor we have
K(i, ∅ ⊗ In) = K(i− n− 1, ∅)K(i, In) = δi−n−1K(i, In)
K(i, Ir ⊗ Is) = K(i− s− 1, Ir)K(i, Is)
K(i, In ⊗ ∅) = K(i− 1, In)K(i, ∅) = K(i− 1, In)δiwhere the right hand side denotes 
omposition in T. We de�ne higher order Toda bra
kets in T inthe same way as in De�nition 4.6

〈δ1, . . . , δn+2〉 ⊂ D(Kn+2, K0) .12. Tra
k 
ategories and 1-tra
k 
ategoriesWe show that ea
h abelian tra
k 
ategory with zero morphisms has the stru
ture of a 1-tra
k
ategory. This shows that n-tra
k 
ategories are n-dimensional analogues of tra
k 
ategories forevery n ≥ 1.A tra
k 
ategory is a 
ategory C enri
hed in groupoids. For obje
ts X , Y in C we have thegroupoid MorC(X, Y ) with obje
ts f , g and morphisms F : f −→ g.The morphisms F : f −→ f form the automorphism group AutC(f), and we write f ≃ g ifthere is F : f −→ g. Let dim(f) = 0, dim(F ) = 1, (d1
0)

∗F = f , and (d1
1)

∗F = g. Morphismsof dimension 0 form the 
ategory C0, and the homotopy relation ≃ de�nes the homotopy 
ategory
A = π0C = C0/≃ .Let C be abelian, i.e., all automorphism groups AutC(f) are abelian groups. We assume that

C has zero morphisms oX,Y ∈MorC(X, Y )0. Then we get a bifun
tor
D : Aop ×A // Ab ,

D(X, Y ) = AutC(oX,Y ).We de�ne the 1-
ategory T asso
iated to C by
{

MorT(X, Y )0 = MorC(X, Y )0

MorT(X, Y )1 = {(F, f), F : f −→ oX,Y } ⊂ MorC(X, Y )1.Let ∂1 be de�ned by ∂1(F, f) = f , and let the zero elements be given by o0 = oX,Y , o1 =identity of oX,Y .12.1. Proposition. Let C be an abelian tra
k 
ategory with zero morphisms. Then C yields the
1-
ategory Nul1 C = (T,A, D,O) with T, A and D as above and with the following obstru
tionoperator O.Up to equivalen
e there is only one left 
ubi
al ball B of dimension 1: this is the double of
I, whi
h is equivalent to T 1

0 . Given a1 = (F, f) and a2 = (G, g) with gluing 
ondition
∂1a1 = f = g = ∂1a2, let

OB(a1, a2) := FG−1 ∈ AutC(oX,Y )
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tion. The a
tion for α ∈ AutC(oX,Y ) and a = (F, f) is given by a + α = (αF, f),with OB(a + α, a) = αFF−1 = α. The triviality rule of O is satis�ed, sin
e for a diagram
Z Yg

oo
↑G

o

��
X,

f
oo

↑F

o

��in C we have the formula Gf = gF , so that
OB(a1, a2) = o forhsma1 = (∂1F )G and a2 = F (∂1G) .12.2. Example. Let C be a 
ategory enri
hed in groupoids with zero morphisms and let C beabelian. Then the 1-tra
k 
ategory Nul1(C) is de�ned and a triple Toda bra
ket

〈δ1, δ2, δ3〉 in Nul1(C)
oin
ides with the 
lassi
al triple Toda bra
ket in C. Moreover, a 1-st order 
hain 
omplex in
Nul1(C) as de�ned in 11.2 
oin
ides with a se
ondary 
hain 
omplex in C as studied in [BJ2℄.12.3. Remark. Abelian tra
k 
ategories are 
lassi�ed by 
ohomology, see [BW℄, [BD℄, [P℄, [B1℄, [BJ1℄.It would be interesting to 
lassify a

ordingly 1-tra
k 
ategories and n-tra
k 
ategories for n ≥ 1.13. The indu
tive step of the resolution theoremAn n-tra
k 
ategory T = (T,A, D,O) is a Σ-tra
k algebra in dimension n if A = (A,a, Σ) is a
Σ-algebra and

D(X, Y ) = HomA(ΣnX, Y )for X in a and Y in A. See De�nition 6.3. We say that T is a Ω-tra
k algebra in dimension n if
A = (A,a, Ω) is an Ω-algebra and

D(X, Y ) = HomA(X, ΩnY )for Y in a and X in A.13.1. Theorem. Let T be a Σ-tra
k algebra in dimension n and 
onsider a fun
tor of n-graded
ategories
K : Z(∞,−1)n

⊗
// Twhi
h is a pre-
hain 
omplex and whi
h is based on an a-resolution A• of X in A. Then thereexists a fun
tor

K ′ : Z(∞,−1)n
⊗

// Twhi
h 
oin
ides with K in dimension ≤ n− 1 and whi
h is an n-th order 
hain 
omplex in T (andis based on A• ).The dual also holds.13.2. Theorem. Let T be an Ω-tra
k algebra in dimension n and 
onsider a fun
tor of n-graded
ategories
L : Z(+1,−∞)n

⊗
// Twhi
h is a pre-
hain 
omplex and whi
h is based on an a-
oresolution A• of Y in A. Then thereexists a fun
tor

L′ : Z(+1,−∞)n
⊗

// Twhi
h 
oin
ides with L in dimension ≤ n− 1 and whi
h is an n-th order 
hain 
omplex in T (andis based on A•).Proof. The fun
tor K ′ is determined by K in dimension ≤ n− 1 and by(13.3) K ′(i, In) = K(i, In) + αi, i ≥ n− 1in dimension n. See Lemma 3.3. Here the elements αi are obtained indu
tively as follows. We haveto 
hoose αi, i ≥ n, in su
h a way that the obstru
tion(13.4) ξ(αi−1, αi) = OB(δi−n−1K
′(i, In), b2, . . . , bn, K ′(i− 1, In)δi)



16 britishH.-J. BAUES AND D. BLANCvanishes with br+1 = K(i, Ir ⊗ In−r) for 1 ≤ r ≤ n− 1, see 11.2. We start with i = n + 1. In this
ase (δ0)∗ is surje
tive sin
e A• is a resolution with δ0 : A0 −→ A−1, A−1 = X . The a
tion ruleshows(13.5) ξ(αi−1, αi) = ξ(0, 0) + ε1(δi−n−1)∗αi + εn+1(δi)
∗αi−1.Here ε1, . . . , εn+1 are the orientation signs for the left 
ubi
al ball B = T n

0 . For i = n + 1 we getfor αn = 0 the equation
ξ(0, αn+1) = ξ(0, 0) + ε1(δ0)∗αn+1.Sin
e (δ0)∗ is surje
tive there is αn+1 with ξ(0, αn+1) = 0. We now 
onsider (13.5) for

i = n + 2. Then we show that(13.6) (δ0)∗ξ(αn+1, αn+2) = 0.Sin
e A• is a resolution this shows that(13.7) ξ(αn+1, αn+2) ∈ image(δ1)∗.Sin
e by (13.5) we have(13.8) ξ(αn+1, αn+2) = ξ(0, 0) + ε1(δ1)∗αn+2 + εn+1δ
∗
n+2αn+1,we 
an 
hoose αn+2 with ξ(αn+1, αn+2) = 0. This way we get indu
tively αi, i ≥ n, su
h that

ξ(αi−1, αi) = 0. Hen
e K ′ de�ned by (13.3) satis�es the obstru
tion property and hen
e is an
n-th order 
hain 
omplex as in the Theorem. In the next lemma we show that (13.6) holds. �We introdu
e the following notation on the 'boundary' of In+1, n ≥ 0. Let

∂I1 = ∅ ⊗ ∅and for n ≥ 1 let(13.9) ∂In+1 = (∅ ⊗ In, I1 ⊗ In−1, I2 ⊗ In−2, . . . , In−1 ⊗ I1, In ⊗ ∅).(see (4.5)). We also write
〈n〉 = (I1 ⊗ In−1, I2 ⊗ In−2, . . . , In−1 ⊗ I1) ,so that

∂In+1 = (∅ ⊗ In, 〈n〉, In ⊗ ∅).Given a fun
tor K ′ : Z(∞,−1)n
⊗ −→ T whi
h is a pre-
hain 
omplex, we obtain for i ≥ n ≥ 1the obstru
tion element

OBK ′(i, ∂In+1)where B = T n
0 . This 
orresponds to (13.4) in the proof above.13.10. Hauptlemma. Let n ≥ 1, i ≥ n + 2, and assume

OBK ′(i− 1, ∂In+1) = 0.Then we also have
OBK ′(i, ∅ ⊗ ∂In+1) = 0.For the proof of Hauptlemma 13.10, we use the following equation given by the triviality rulewith r + s = n + 1, r ≥ 1, s ≥ 1, i ≥ n.(13.11) OBK ′(i, ∂r,s) = 0,where

∂r,s = ((∂Ir)⊗ Is, Ir ⊗ (∂Is)).The assumption implies(13.12) OBK ′(i, (∂In+1)⊗ ∅) = 0by the naturality rule.
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ase we have the triviality rule (13.11) whi
h wewrite as(13.13) (∅ ⊗ ∅ ⊗ I1, I1 ⊗ ∅ ⊗ ∅) ∼ 0 .The assumption implies (13.12):(13.14) Y = (∅ ⊗ I1, I1 ⊗ ∅)⊗ ∅ ∼ 0.We have to show(13.15) X = ∅ ⊗ (∅ ⊗ I1, I1 ⊗ ∅) ∼ 0 .In fa
t, by the 
omplement rule and (13.13), we get
X ∼ (I1 ⊗ ∅ ⊗ ∅, ∅ ⊗ I1 ⊗ ∅)so that X ∼ 0 by (13.14). �Proof of Hauptlemma 13.10 for n = 2. We omit ⊗ in the notation and write V W for V ⊗W . By(13.11), we �nd:(13.16) ((∅I1, I1∅)I1, I2∅∅) ∼ 0and(13.17) (∅∅I2, I1(∅I1, I1∅)) ∼ 0.By the assumption (13.12) we have(13.18) Y = (∅I2, I1I1, I2∅)∅ ∼ 0.We have to show(13.19) X = ∅(∅I2, I1I1, I2∅) ∼ 0.By the 
omplement rule and (13.17) (repla
ing ∅∅I2) we get:

X ∼ (I1(∅I1, I1∅), ∅I1I1, ∅I2∅) = X ′ .By the 
omplement rule and (13.16) (repla
ing I2∅∅) we get
Y ∼ (∅I2∅, I1I1∅, (∅I1, I1∅)I1) = Y ′ .Here we have X ′ = Y ′, so that X ∼ X ′ = Y ′ ∼ Y ∼ 0. �Proof of Hauptlemma 13.10. By (13.11) we have the relations(13.20) ∂r,s ∼ 0 for r + s = n + 1, r ≥ 1.By (13.12), the assumption implies that(13.21) Y = (∂In+1)⊗ ∅ ∼ 0 .We have to show that(13.22) X = ∅ ⊗ (∂In+1) ∼ 0.We now apply the 
omplement rule indu
tively to Y by use of ∂r,s for s = 1, . . . , [n/2]. Thisyields the equivalen
e Y ∼ Y ′. Similarly, we apply the 
omplement rule indu
tively to X by useof ∂r,s for r = 1, . . . , [n/2]. This yields X ∼ X ′. If n is even, we have Y ′ = X ′, so that

0 ∼ Y ∼ Y ′ = X ′ ∼ X , by (13.21). If n = 2n′ + 1 is odd, we 
an use ∂n′+1,n′+1 to show that
X ′ ∼ Y ′. By (13.21), this implies that 0 ∼ Y ∼ Y ′ ∼ X ′ ∼ X . �The proof of Hauptlemma 13.10 involves left 
ubi
al balls with the number of 
ells ≤ [n/2](n−
1) + n + 1.
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k algebras and proof of the Resolution TheoremIn order to prove Resolution Theorem 8.1, we need to relate tra
k 
ategories of di�erent dimen-sions, as follows:A total n-tra
k 
ategory T(≤ n) is a sequen
e of m-tra
k 
ategories
T(m) = (T(m),A, Dm,Om) for m = 1, 2, . . . , ntogether with quotient fun
tors

q : T(m + 1)m // T(m)whi
h is the identity on obje
ts and is full and is the identity fun
tor on (m− 1)-skeleta
q : T(m + 1)m−1 = T(m)m−1 .Moreover, the boundary property of Lemma (10.4) holds � that is, for B = T m

0 , we have
Om

B (a1, . . . , am+1) = 0if and only if there exists a ∈ T(m + 1)m+1 with q(∂ia) representing ai for i = 1, . . . , m + 1.14.1. Example. Let C be a 
ategory enri
hed in pointed spa
es with zero morphisms. Then
Nul≤n C := (Nuln C, Nuln−1 C, . . . , Nul1 C)is a total n-tra
k 
ategory.We say that T(≤ n) is a Σ-tra
k algebra if A = (A,a, Σ) is a Σ-algebra as in De�nition 6.3and

Dm(X, Y ) = HomA(ΣmX, Y )for m = 1, . . . , n and X in a and Y in A.Dually we say T(≤ n) is an Ω-tra
k algebra if A = (A,a, Ω) is an Ω-algebra as in (6.1) and
Dm(X, Y ) = HomA(X, ΩmY )for m = 1, . . . , n and X in A and Y in a.14.2. Example. Let C be a Σ-mapping algebra then Nul≤n C is a Σ-tra
k algebra. If C is an

Ω-mapping algebra then Nul≤n C is an Ω-tra
k algebra.We now obtain the following Resolution Theorems, whi
h generalize those of Se
tion 8.14.3. Theorem. Let T(≤ n) be a Σ-tra
k algebra and let A• be an a-resolution of X in A.Then there exists an n-th order 
hain 
omplex
K : Z(∞,−1)n

⊗
//T(n)whi
h is based on A• . We 
all K an n-th order resolution of X in T(n).14.4. Theorem. Let T(≤ n) be an Ω-tra
k algebra and let A• be an a-
oresolution of Y in A.Then there exists an n-th order 
hain 
omplex

L : Z(+1,−∞)n
⊗

//T(n)whi
h is based on A•. We 
all L an n-th order 
oresolution of Y in T(n).Proof. The boundary property shows that there exists a fun
tor
K ′(1) : Z(∞,−1)1⊗ //T(1)whi
h satis�es the in
lusion property and whi
h is based on A• . Hen
e by Theorem 13.1 we �nd a

1-order 
hain 
omplex K(1) whi
h is based on A• . Now the boundary property shows that thereis a fun
tor
K ′(2) : Z(∞,−1)1⊗ //T(2)whi
h satis�es the in
lusion property and whi
h based on A• . Again the boundary propertyshows there exists K ′(3), so that by Theorem 13.1 one obtains K(3). Indu
tively, we thus have

K = K(n). �
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 Lane Ω-mapping algebra. Then minimal 
oresolutions
A• of Y are de�ned in A and hen
e we 
an �nd an n-th order 
oresolution of Y in Nul≤n C basedon A•. We 
all Nul≤n C the algebra of 
ohomology operations of order ≤ n + 1. This is an
Ω-tra
k algebra. It is 
onvenient to 
onsider the dual of Nul≤n C, whi
h is a Σ-tra
k algebra andfor whi
h a is the 
ategory of �nitely generated free modules over the Stenrod algebra.14.6. Remark. The main result of [B2℄ 
omputes the algebra of 
ohomology operations of order ≤ 2in terms of a bigraded di�erential algebra B over the ring Z/p2. This leads to the 
onje
turethat also the algebra of 
ohomology operations of order ≤ n (n ≥ 1), 
an be des
ribed up toequivalen
e by a bigraded di�erential algebra over Z/p2.15. Higher order Ext-groupsIn this se
tion we dedu
e from higher order resolutions the asso
iated higher order derived fun
-tors, whi
h are higher order Ext -groups. We shall see that the En-term in the Adams spe
tralsequen
e is su
h a higher order Ext-group for n ≥ 2.It is 
lassi
al that the E2 of the Adams spe
tral sequen
e is given by the 'primary' Ext-groupsof homologi
al algebra, see (6.1). In [BJ2℄ we studied the se
ondary Ext-groups whi
h determine
E3.Let T(≤ n) (n ≥ 1) be a Σ-tra
k algebra so that for m = 1, . . . , n we have the m-tra
k
ategory(15.1) T(m) = (T(m),A, Dm,Om)with a ⊂ A and Dm(A, X) = HomA(ΣmA, X) for obje
ts A in a and X in A. Let A• be an
a-resolution of X in A and let(15.2) K : Z(∞,−1)n

⊗
//T(n)be a n-th order resolution of X based on A• (see Theorem 14.3). Furthermore, let Y be anotherobje
t of A, and 
onsider the diagram in A:(15.3) . . . // Ar+m+1

// Ar+m
// . . . // Ar

β

��

δr // . . . // A0
// X

YThe row of the diagram is the a-resolution A• of X . We assume that β is a 
o
y
le, that is,(15.4) βδr+1 = 0.Then β represents an element {β} in the Ext-group
Er,0

2 = Extr
A

(X, Y )(15.1)
= Hr HomA(A•, Y )

= kernel δ∗r+1/ image δ∗r ,where
δ∗r : HomA(Ar−1, Y ) // HomA(Ar , Y ) .Using the a-resolution ΣsA• of ΣsX , we get a

ordingly for s ≥ 0 the bigraded Ext-group(see (6.1)),

Er,s
2 = Extr

A
(ΣsX, Y ).We shall de�ne a di�erential(15.5) d2 = dr,s

2 : Er,s
2

//Er+2,s+1
2 .Moreover, indu
tively for m ≥ 2 we 
onsider subquotients Er,s

m of Er,s
2 , together withdi�erentials(15.6) dm = dr,s

m : Er,s
m

//Er+m,s+m−1
msatisfying dmdm = 0, and

Er,s
m+1 = kernel(dr,s

m )/ image(dr−m,s−m+1
m ).



20 britishH.-J. BAUES AND D. BLANCWe 
all Er,0
m for m = 2, . . . , n + 1 the higher order Ext-groups asso
iated to the n-th orderresolution K of X above. repla
ing X by ΣsX , we obtain the groups Er,s

m , a

ordingly.15.7. De�nition. Let β ∈ Er,0
m+1 be represented by {β} ∈ Er,0

2 (1 ≤ m ≤ n), and let L be a
(m−)�order 
hain 
omplex

L : Z(∞, r − 1)m−1
⊗

//T(m− 1)based on the diagram
//Ar+m+1

// . . . //Ar+1
//Ar

β //Y ,in A. We assume also that L restri
ted to Z(∞, r) 
oin
ides with the (m − 1)-skeleton of K in
T(m− 1). The boundary property in T(m) shows that there is a fun
tor

L̂ : Z(∞, r − 1)m
⊗

//T(m)whi
h is a pre-
hain 
omplex su
h that L̂ restri
ted to Z(∞, r) 
oin
ides with the m-skeleton of
K, and su
h that the (m − 1)-skeleton L̂(m − 1) of L̂ satis�es qL̂(m − 1) = L in T(m − 1).We then obtain the obstru
tion

OL̂(r + m + 1, ∂Im+1) = OB(b1, . . . , bm+1) ∈ HomA(ΣmAr+m+1, Y ) ,where B = T m
0 and

L̂(r + m + 1, ∂Im+1) =






b1 = L̂(r + m + 1, ∅ ⊗ Im),

bk+1 = L̂(r + m + 1, Ik ⊗ Im−1), 1 ≤ k ≤ m− 1,

bm+1 = L̂(r + m + 1, Im ⊗ ∅)(see (4.5)). Now the element OL̂(r + m + 1, ∂Im+1) represents the di�erential
dr,0

m+1(β) ∈ Er+m+1,m
m+1 .15.8. Theorem. Let T(≤ n) = Nul≤n C be the Σ-tra
k algebra given by the 
omplete Σ-mappingalgebra C of Example 7.3. Then De�nition 15.7 yields a well de�ned sequen
e of Ext-groups Er,s

mfor m = 2, . . . , n + 2. These groups depend on the weak equivalen
e 
lass of the Σ-tra
k algebra
T(≤ n), and not on the 
hoi
e of the n-th order resolution of X.15.9. Theorem. Let T(≤ n) = Nul≤n C be the Σ-tra
k algebra given by the dual C of theEilenberg-Ma
 Lane Ω-mapping algebra. Then the Ext-groups Er,s

m (2 ≤ m ≤ n + 2), yield the
m-term Em of the Adams spe
tral sequen
e whi
h 
onverges to the stable homotopy set {Y, X}for �nite spe
tra X and Y .For n = 1 this result is proved in [BJ2, Se
tion 7℄.16. Stri
tifi
ation of higher order resolutionsIn this se
tion we use the stri
ti�
ation of higher order resolutions to prove Theorems 15.8 and15.9.Let C be a Σ-mapping algebra as in Example 7.3. Hen
e C is given by an underlying model
ategory and 
ubes

In −→ MorC(X, Y )having an adjoint(16.1) (In ×X)/(In × ∗) −→ Y .Here (I×X)/(I×∗) is the pointed 
ylinder of X . We then have the additive 
ategory A = π0C,and the full additive sub
ategory a = π0{X} given by the 
lass of spe
tra X in 7.3. We de�ne thefull sub
ategory â, with(16.2) a ⊆ â ⊆ A .Here â 
onsists of all abje
ts A in A whi
h are isomorphi
 in A to an obje
t in a.
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ategory (su
h as Nuln C or nuln C) with a quotientfun
tor q : T0 → A. Let K, L : Z(∞,−1)n
⊗ → T be fun
tors of n-graded 
ategories. A weakequivalen
e τ : K → L over X is a natural transformation τ whi
h for obje
ts i in Z⊗ 
onsists ofa map

τi : Ki → Li in T0whi
h indu
es an isomorphism qτi in A. For i = −1, the map τ−1 : K−1 = X = L−1 is theidentity of X . For a morphism V : i→ j in Z⊗, we have the 
ommutative diagram in T:
Ki

τi //

K(V )

��

Li

L(V )

��
Kj

τj // Ljor equivalently, τjK(V ) = L(V )τi. Let ∼ be the equivalen
e relation generated by weak equivalen
esover X .16.4. Lemma. K, L : Z(∞,−1)n
⊗ → Nuln C be n-th order resolutions of X. If K ∼ L are weaklyequivalent over X, then the higher Ext-groups de�ned by K and L are isomorphi
.We shall show that the higher Ext-groups a
tually do not depend on the 
hoi
e of resolution of

X . For this, we use the stri
ti�
ation of resolutions.16.5.De�nition. Let T be an n-graded 
ategory (like Nuln C or nuln C) and let K : Z(∞,−1)n
⊗ →

T be a fun
tor of n-graded 
ategories. Then we say that K is N -stri
t with N ≥ 0 if for all i ≤ Nand k = 1, . . . , n we have K(i, Ik) = o. This shows that δi = K(i, ∅) : Ki → Ki−1 yields a sequen
eof maps in T0

KN
δ
−→ KN−1

δ
−→ . . .

δ
−→ K0

δ
−→ K−1with K−1 = X and δδ = o This is a stri
t 
hain 
omplex in T0.We say that K is N -�brant if there are �ber sequen
es

Zi
ji
−→ Ki

p
→→ Zi−1 p ◦ ji = o ,in the model 
ategory with δi = ji−1p for i < N , and δN admits a fa
torization

KN
p
−→ ZN−1

jN−1

−−−→ KN−1 .Moreover, K is N -exa
t if for i < N and A in a the indu
ed sequen
e
HomA(A, Zi) → HomA(A, Ki) → HomA(A, Zi−1)is a short exa
t sequen
e of abelian groups.16.6. Theorem. Let n ≥ 1 and N ≥ 0, and let K : Z(∞,−1)n

⊗ → Nuln C be an n-th order resolutionof X based on the a-resolution A• of X in A. Then there exists an N -(stri
t, �brant, exa
t) n-thorder resolution L of X based on an â-resolution Â• of X in A su
h that L ∼ K are weakly equivalentover X.Here we use the large 
ategory â in (16.2). The resolutions A• and Â• yield by the weakequivalen
e L ∼ K over X the 
ommutative diagram in A:
. . . // A1

δ //

∼=

��

A0

∼=

��

δ // X

=

��
. . . // Â1

δ // Â0
δ // XHere the verti
al arrows are isomorphisms in A and we have Ai = Ki and Âi = Li for i ≥ −1.16.7. Remark. The dual of Theorem 16.6 holds for 
oresolutions.



22 britishH.-J. BAUES AND D. BLANCProof of Theorem 16.6 for n = 1. We use indu
tion over N . Assume the result is true for n = 1and N ≥ 0. Then the map p with δN−1 = jp admits a fa
torization(16.8) p : KN
// ∼ // Ln

p // // ZN−1whi
h de�nes Ln. Hen
e we get the diagram(16.9) KN+1

δ

��

o

}}

LN

����

KN∼
oo

p

��

H +3

ZN−1

��

ZN−1

j

��
LN−1 KN−1Here H = K(N + 1, I1) satis�es pH : o⇒ o, so that pH is a map α : ΣKN+1 → ZN−2 whi
h isnullhomotopi
, sin
e jN−2α ≃ o as follows from the obstru
tion property of K and N -exa
tness.The lift of jN−2α ∼ o through pN−1 shows that the tra
k H 
an be represented by a homotopy

H : pδ ≃ o; that is, the 1-tra
k {jN−1H} 
oin
ides with H . We then get the following diagramwith the 
ylinder IKN+1 and in
lusions i0, i1 of the 
ylinder. We set LN+1 := KN+1.(16.10) LN+1

δ

��
o

''

// i0 // IKN+1

Ĥ

yyttt
t
t
t
t
t
t
t

KN+1

��
o

ww

oo
i1

oo

LN

����

KN

��

oo
∼

oo H +3

ZN−1 ZN−1Here Ĥ is a lift of H through pN , so that the diagram 
ommutes with pN Ĥi0 = o. Hen
e for
δ = Ĥi0, the left hand side is (N + 1)-stri
t and (N + 1)-�brant. Moreover, the left hand side is
(N + 1)-exa
t, that is:(16.11) (pN )∗ = HomA(A, pN ) : HomA(A, LN ) → HomA(A, ZN−1)is surje
tive for all A in a. In fa
t, we have for α ∈ HomA(A, ZN−1) the equation δjN−1α = 0,so that by exa
tness of A• we have jN−1α = δβ = jN−1pNβ, so that α = pNβ by inje
tivity of
(jN−1)∗. Moreover, (jN )∗ is inje
tive sin
e we have the �ber sequen
e where HomA(A, ΩpN ) =
HomA(ΣA, pN ) is surje
tive, sin
e ΣA ∈ a.We now 
onstru
t weak equivalen
es(16.12) L

i0−→ R
i1←− Kwhere i0 and i1 are the identity in degrees < N . In degree N the resolution L is given by thediagram above. In dimension 0, diagram (16.12) is given by the 
ommutative diagram:(16.13) . . . // KN+2

//

��

KN+1
//

��

KN
//

��

∼

��

KN−1
// . . .

. . . Iδ // IKN+2
Iδ // IKN+1

Ĥ // LN
// KN−1

// . . .

. . . // KN+2
//

OO

KN+1
//

OO

LN
// LN−1

// . . .



britishHIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRAL SEQUENCE 23It is easy to �nd appropriate R(N + 1, I1), R(N + 2, I1), and R(M, I1) = IK(M, I1) for
M ≥ N + 3, so that (16.12) is well de�ned. Here we use the adjoint maps in (16.1). This
ompletes the proof of Theorem 16.6 for n = 1. �16.14.Transport Lemma. Let K be an n-th order resolution of X in Nuln C with (n−1)-skeleton
K(n−1). Let

L(n−1) f
−→ K(n−1) g

−→ R(n−1) in Nuln Cbe weak equivalen
es over X. Then there exist unique n-th order resolutions L and R in Nuln Ctogether with weak equivalen
es
L

f̃
−→ K

g̃
−→ Rwhi
h, restri
ted to (n− 1)-skeleta, 
oin
ide with f and g respe
tively.Proof. We use Proposition II.2.11 in [B1℄ for sets of n-tra
ks. �16.15. Lemma. Let q : nuln C → Nuln C be the quotient map of Se
tion 2 and let qK, qL be n-thorder resolutions of X in Nuln C . If qK ∼ qL are weakly equivalent, then also K ∼ L are weaklyequivalent over X in nuln C.16.16. Lemma. Let n ≥ 2 and N ≥ 1, and let K be an n-th order resolution of X in Nuln C .Assume that the (n− 1)-skeleton K(n−1) in nuln C is (N − 1)-(stri
t, �brant, exa
t). Then there isan n-th order resolution L of X whi
h is is N -(stri
t, �brant, exa
t), su
h that L ∼ K are weaklyequivalent.Proof. Let i ≤ N . Sin
e the (n− 1)-skeleton is stri
t, the n-tra
k K(i, In) is given by an element

αi ∈ HomA(ΣnKi, Ki−n−1) i− n− 1 ≥ −1 .By the obstru
tion property of K we have δαi ± αi−1δ = 0.We now use the indu
tion over i and assume αj = 0 for j < i. Then δαi = 0, and theexa
tness yields β with αi = βδ. We 
onstru
t weak equivalen
es L→ R← K in Nuln C whi
hin dimension 0 are given by the 
ommutative diagram
. . . // Ki+1

//

��

Ki
//

��

Ki−1
// . . . , K

i0

��
. . . Iδ // IKi+1

// IKi
// Ki−1

// . . . , R

. . . // Ki+1
//

OO

Ki
//

OO

Ki−1
// . . . , L

i1

OOThe (n− 2))-skeleton of R is stri
t. We de�ne R(i, In−1) by β. Then we 
an 
hoose R(i, In) su
hthat i0 is a well-de�ned map and L is i-stri
t in Nuln C . �Proof of Theorem 16.6 for n ≥ 2. By indu
tion on n, we assume that the Theorem holds for n−1.Let K be a resolution of X in Nuln C, and let K(n−1) be the (n − 1)-skeleton of K in nuln C.For qK(n−1) we get by assumption a weak equivalen
e qK(n−1) ∼ qL(n−1), where L is N -stri
t.Hen
e by Lemma 16.15 we have K(n−1) ∼ L(n−1), and by the Transport Lemma 16.14 we get
K ∼ L in Nuln C, where L(n−1) is stri
t. Now Lemma 16.16 yields L ∼ L′ in Nuln C, where
L′ is N -stri
t. �Proof of Theorem 15.8. Let K and L be two resolutions of X in Nuln C. By Theorem 16.6 wehave L ∼ L′ and K ∼ K ′, where L′ and K ′ are N -(stri
t, �brant, exa
t) for large N . This yieldsa map of spe
tral sequen
es EK → EL whi
h indu
es an isomorphism on the E2-term. Hen
e
EK → EL is also an isomorphism. �Proof of Theorem 15.9. An N -(stri
t, �brant, exa
t) 
oresolution of X for large N , as in Remark16.7, 
orresponds to the X-
oaugmented sequen
e in [BJ2, �6.7℄ given by the Adams �ber tower[BJ2, 7.1℄. �16.17. Remark. Stri
ti�
ation results for ∞-homotopy 
ommutative diagrams appear in [BV, Theo-rem IV.4.37℄ and [DKS, Theorem 2.4℄, inter alia. However, these do not yield the pre
ise 
ase neededfor Theorem 16.6. The expli
it 
onstru
tion given in this 
ontext may be of independent interest.



24 britishH.-J. BAUES AND D. BLANC17. The differential d2The �rst interesting higher order Ext3-group involves the d2-di�erential of the spe
tral sequen
e,whi
h we now des
ribe:Let T(≤ 1) be a Σ-tra
k algebra and let K be a resolution in T(1) of X , based on A• in
A, see (15.2). Then we de�ne

d2 : Extr
A

(X, Y ) // Extr+1
A

(ΣX, Y )as follows. For {β} ∈ ExtrA(X, Y ) with β : Ar → Y in A, we have βδr+1 = 0, so that thereis a 1-tra
k H with ∂1H = βδr+1. On the other hand K yields a 1-tra
k G with ∂1G = δr+1δr+2.Then the obstru
tion of De�nition 15.7 is(17.1) ω = OL̂(r + 2, ∂I2) = O(Hδr+2, βG) ∈ [ΣAr+2, Y ]and this element represents d2{β} = {ω}.17.2. Lemma. The di�erential d2 is well de�ned.Proof. We �rst 
he
k that ω is a 
o
y
le. In fa
t,
ω(Σδr+3) = O(Hδr+2, βG)(Σδr+3)

= O(Hδr+2δr+3, βGδr+3)(1)
= O(Hδr+2δr+3, βδr+1G

′)(2)
= 0.(3)Here (1) holds by na,turality of O. Moreover, G′ in (2) is the 1-tra
k with ∂1G′ = δr+2δr+3 givenby the resolution K so that O(Gδr+3, δr+1G

′) = 0. Hen
e by naturality also O(βGδr+3, βδr+1G
′) =

0, so that (2) holds by the 
omplement rule in the Appendix below. Finally (3) holds by the trivialityrule.Next we show that {ω} does not depend on the 
hoi
e of H . If we 
hoose H ′ instead, there isan α with H ′ = H + α, and we get
ω′ = O((H + α)δr+2, βG) = ω ± αδr+2by the a
tion rule. Hen
e ω − ω′ is a 
oboundary, so that {ω′} = {ω}.Finally, we 
he
k that d2{β} is trivial if β is a 
oboundary � that is, β = β′δr. In fa
t, we
an then 
hoose H to be the 1-tra
k β′G′′, where G′′ with δ1G′′ = δrδr+1 is given by K, sothat O(G′′δr+2, δrG) = 0. Hen
e also O(β′G′′δr+2, β

′δrG) = 0, so that O(Hδr+2, βG) = 0. �The Lemma is proved in [BJ2℄ in the 
ontext of tra
k 
ategories, above we use only 1-tra
k
ategories. The proof that d2d2 = 0 requires the produ
t rule below.Next we prove that the assumption on L in De�nition 15.7 is satis�ed for m = 2. This leads tothe de�nition of the di�erential d3.17.3. Lemma. Let d2{β} = 0. Then for m = 2 here is a 
hain 
omplex L as in De�nition 15.7.Proof. The assumption d2{β} = 0 shows that ω = O(Hδr+2, βG) = αδr+2 is a 
oboundary.Hen
e we get by the a
tion rule H ′ = H ± α, so that O(H ′δr+2, βG) = 0. Hen
e we de�ne the
hain 
omplex L by H ′ and by K. �In the 
ontext of a Σ-tra
k algebra T(≤ n) (n ≥ 1), the following result 
an be proved whi
his the higher dimensional analogue of Lemma 17.2.17.4. Proposition. Given L, L̂ and
ω = OL̂(r + m + 1, ∂Im+1)as in De�nition 15.7, then ω is a 
o
y
le, that is:

ω(Σmδr+m+2) = 0 .Moreover, if β is a 
oboundary, then L and L̂ 
an be 
hosen su
h that ω = 0. Let L be given andlet L̂, L be two 
hoi
es as in De�nition 15.7. Then ω = OL(r + m + 1, ∂Im+1) and ω di�er by a
oboundary; that is: ω − ω = α(Σmδr+m+1).
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k algebrasDe�nition 15.7 of the di�erential dm+1 makes sense in any Σ-tra
k algebra T(≤ n), but ingeneral one 
annot show that it has the properties needed to de�ne the higher Ext-groups, su
has dm+1dm+1 = 0. The stri
ti�
ation pro
ess des
ribed in Se
tion 16 shows that the higher Ext-groups are well-de�ned in the Example 7.3, and that the di�erential in the Adams spe
tral sequen
eis indeed given by De�nition 15.7.We now introdu
e the notion of a 
omplete Σ-tra
k algebra, to 
olle
t together the assumptionsneeded to show that the di�erential des
ribed above yields well-de�ned higher Ext-groups. Theseassumptions are satis�ed in parti
ular for the Σ-tra
k 
ategory Nul≤n C, where C is a 
ompletemapping algebra as in De�nition 7.2.Let C be a 
omplete Σ-mapping algebra. Then the endofun
tor Σ : C −→ C indu
es anendofun
tor(18.1) Σ : Nul≤n C −→ Nul≤n Cof Σ-tra
k algebras satisfying(18.2) ΣOB(b1, . . . , bk) = OB(Σb1, . . . , Σbk)for ea
h left 
ubi
al ball of dimension ≤ n, see (11.1) (3).18.3. De�nition. Let T(≤ n) be a Σ-tra
k algebra and let
Σ : T(≤ n) //T(≤ n)be an endofun
tor of T(≤ n), similarly to (18.1), satisfying (18.2), su
h that Σ indu
es theendofun
tor Σ : A −→ A of the Σ-algebra A. Then T(≤ n) is a 
omplete Σ-tra
k algebra if thesum rule and the produ
t rule below are satis�ed.18.4. De�nition (sum rule). Let m ≤ n. Given a pre-
hain 
omplex L in T(m) based on(1) Y A0

αoo A1
δ1oo . . .oo Am+1

ooand given a pre-
hain 
omplex L′ in T(m− 1) based on(2) Y ΣA1
βoo ΣA2

Σδ2oo . . .oo ΣAm+1
oosu
h that L′ restri
ted to Z(m + 1, 1) 
oin
ides with ΣL, there exists a pre-
hain 
omplex L′′in T(m) based on (1) su
h that L′′ restri
ted to Z(m + 1, 0) 
oin
ides with L and(3) OL′′(m + 1, ∂Im+1) = OL(m + 1, ∂Im+1) +OL′(m + 1, ∂Im)‘.This is the sum rule in dimension m.18.5. Proposition. The sum rule is satis�ed in Nul≤n C in (18.1).Proof. Let I ≈ [0, 2] = I ∪ I be the homeomorphism of intervals 
arrying t ∈ I to 2t. Then wehave:

Ik+1 = I × Ik ≈ (I ∪ I)× Ik = Ik+1 ∪ Ik+1 .(1)for ea
h k ≥ 0.For ea
h j = 1, . . . , m + 1, L′ yields the left (j − 1)-
ube aj = L′(j + 1, Ij−1) in
MorC(ΣAj+1, Y ), whi
h by τΣ in De�nition 7.2 yields the j-
ube aj in MorC(Aj+1, Y )adjoined to τΣaj . Using (1), we de�ne the j 
ube

L′′(j + 1, Ij) = L(j + 1, Ij) ∪ aj .This de�nes L′′ 
ompletely, sin
e L′′ restri
ted to Z(m + 1, 0) 
oin
ides with L. One 
an now
he
k that the sum formula (18.4) (3) holds. �Let T be an (n+k)-
ategory enri
hed in left 
ubi
al (n+k)-sets and let Tn be the n-skeleton of
T. Then Tn is an n-graded 
ategory enri
hed in n-
ubi
al sets. We 
onsider a pre-
hain 
omplex

R : Z(∞, 0)n
⊗

//Tn .



26 britishH.-J. BAUES AND D. BLANC18.6. De�nition. A 
hain module with operators in R is a fun
tor L whi
h 
arries a morphism
V : i −→ −1 (i ≥ 0) in Z(∞,−1)n

⊗ to an element
L(V ) ∈MorT(R, Y )dim(V )+ksu
h that the in
lusion property
L(V ) = (dV,W ⊗ Ik)∗L(W )holds if V is in the boundary of W and su
h that for a 
omposite V ⊗ V ′ of morphisms in

Z(∞,−1)n
⊗ the equation

L(V ⊗ V ′) = L(V )R(V ′)holds, where the right hand side denotes the 
omposite in the (n + k)-
ategory T.18.7. Lemma. A 
hain module L with operators in R is determined by the elements
L(m, Im) ∈ MorT(Rm, Y )m+kwhere I0 = ∅ and m = 0, . . . , n.Now let B = B1 ∪ . . .∪Bs be a left 
ubi
al ball of dimension k with 
ells Bi and gluing maps

de,i as in De�nition 9.2). An s-tuple (L1, . . . , Ls) of 
hain modules Li with operators in Rsatis�es the gluing 
ondition in B if for V : m→ −1 we have(18.8) (Idim(V ) × de,i)
∗Li(V ) = (Idim(V ) × de,j)

∗Lj(V ) .The left 
ubi
al ball C = T n
0 has 
ells C1, . . . , Cn+1. The produ
t B × C is a left 
ubi
alball with 
ells Bi × Cj . Let (c1, . . . , cn+2) = ∂In+1, see (4.4).18.9. Lemma. Given (L1, . . . Ls) as in (18.8) we obtain the tuple of (m + k)-
ubes (r = n + 1)

Li(r, cj) satisfying the gluing 
ondition in B × C, so that the obstru
tion
OB×C(Li(r, cj), i = 1, . . . , s and j = 1, . . . , n + 1) in HomA(Σn+kRr, Y )is de�ned in the Σ-tra
k algebra T = T(n + k). Also the tuple Li(0, ∅) satis�es the gluing
ondition, so that the obstru
tion

OB(L1(0, ∅), . . . , Ls(0, ∅)) ∈ HomA(ΣkR0, Y )is de�ned in T(k).18.10. De�nition (produ
t rule). Let R and L1, . . . , Ls be given as above where R is based on
. . . //Rn+1

//Rn
// . . .

δ1 //R0.Let α ∈ HomA(ΣkR0, Y ) be given by OB(Li(0, ∅)). Then there exists a pre-
hain 
omplex L′based on
ΣkRn+1

//ΣkRn
// . . .

Σkδ1 //ΣkR0
α //Ysu
h that the equation

OC(L′(n + 1, ∂In+1)) = OB×C(Li(0, cj))holds in HomA(Σk+nRn+1, Y ) and L′ restri
ted to Z(n + 1, 0) 
oin
ides with ΣkR. This isthe produ
t rule in T(n + k).18.11. Proposition. Let C be a 
omplete Σ-mapping algebra. Then Nul≤(n+k)(C) satis�es theprodu
t rule.Proof. We have the homeomorphism Sk = B/∂B, so that we 
an repla
e ΣkRi by (B/∂B)∧Ri.Then gluing the various Li yields L′. �18.12. Remark. If T(≤ 2n) is a 
omplete Σ-tra
k algebra (De�nition 18.3) the higher Ext-groups
Er,s

m are well-de�ned by De�nition15.7 for m = 2, . . . , n+2. A proof 
an be given along the lonesof the argument given below to show that d2d2 = 0.Sin
e a 
omplete Σ-mapping algebra C yields a 
omplete Σ-tra
k algebra Nul≤2n(C), the higher
Ext-groups are well de�ned in this 
ase.
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ation of the produ
t rule. By (15.3) weget the diagram
Ar+4

δ4 // Ar+3
δ3 // Ar+2

δ2 //
↑G

o

%%
Ar+1

δ1 //

↓F

o

;;Ar

β // Y

R2 R1 R0For B = T 1
0 = B1 ∪ B2, we 
hoose L1(0, ∅) = Fδ2 and L2(0, ∅) = βG, where F and G are

1-
ubes with G = K(r + 2, I1) given by the resolution K. Then
α = d2β = OB(L1(0, ∅), L2(0, ∅)).(1)Now let C = T 1

0 = C1 ∪C2 and (c1, c2) = (I1 ⊗ ∅, ∅ ⊗ I1). Then Li(2, cj) is de�ned as follows:
L1(2, c1) = L1(2, I1 ⊗ ∅) = FK(r + 3, I1)δ4

L1(2, c2) = L1(2, ∅ ⊗ I1) = Fδ2K(r + 4, I1)
L2(2, c1) = L2(2, I1 ⊗ ∅) = βK(r + 3, I2)δ4

L2(2, c2) = L2(2, ∅ ⊗ I1) = βK(r + 2, I1)K(r + 4, I1)Now the produ
t rule shows that
d2d2β = d2α = OB×C(Li(0, cj)) = 0(2)and the rules in a 2-tra
k 
ategory show that this obstru
tion is trivial. In fa
t, we have

O(I1I1∅, ∅I2∅, I1∅I1, ∅I1I1)(3)
=O(I1I1∅, ∅∅I2, I1∅I1)(4)
=0(5)Here (3) is the obstru
tion (2) and (4) is a 
onsequen
e of the 
omplement rule and
O(∅I2, I1I1, I2∅) = 0as follows from the fa
t that K is a resolution, the naturality yields
O(∅∅I2, ∅I1I1, ∅I2∅) = 0.Moreover (5) follows from the triviality rule.Referen
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