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HIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRALSEQUENCEHANS-JOACHIM BAUES AND DAVID BLANCAbstrat. Classial homologial algebra onsiders hain omplexes, resolutions, and derived fun-tors in additive ategories. We desribe �trak algerrbas in dimension n�, whih generalize additiveategories, and we de�ne higher order hain omplexes, resolutions, and dervied funtors. We showthat higher order resolutions exist in higher trak ategories, and that they determine higher order
Ext-groups. In partiular, the Em-term of the Adams spetral sequene (m ≤ n + 2) is a higherorder Ext-group, whih is determined by the trak algebra of higher ohomology operations.IntrodutionTopologists have been working on the problem of alulating the homotopy groups of spheres foraround 80 years, and many methods have been developed for this purpose. One of the most usefulis the Adams spetral sequene E2, E3, E4, . . . , , onverging to the p-ompleted stable homotopygroups of the sphere. Adams omputed the E2-term of the spetral sequene, and showed that it isalgebraially determined:

Es,t
2
∼= Exts,t

A (Fp, Fp) ,where the derived funtor Ext is taken for modules over the mod p Steenrod algebra A of primarymod p ohomology operations (f. [A1℄). Sine the work of Adams in [A2℄, it has been generallybelieved that higher order ohomology operations an be used to ompute the higher terms of theAdams spetral sequene.However, it remained unlear what kind of algebra B(n) would be formed by ohomologyoperations of order (n + 1). For n = 0, the algebra B(0) = A is the Steenrod algebra, whihdetermines E2. It is shown in [B2℄ that the algebra of seondary ohomology operations, B(1), anbe desribed by a di�erential algebra B, whih was omputed in [lo. it.℄, leading to the alulationof E3 as a �seondary Ext-group� over B. For this, the notion of seondary derived funtors wasdeveloped in [BJ2℄ in the ontext of trak ategories � that is, ategories enrihed in groupoids.It is the purpose of this paper to exhibit higher order derived funtors in trak algebras � inpartiular, higher order Ext-groups � whih allow the alulation of the higher terms E∗,∗
n (n ≥ 2)in the Adams spetral sequene. This generalizes Adams' original result for n = 2, and the resultsin [B2, BJ2℄ for n = 3.The elements of the Steenrod algebra A are (stable) homotopy lasses of maps between mod pEilenberg-Ma Lane spaes. Here we onsider the spae of all suh maps, whih together onstitutethe Eilenberg-Ma Lane mapping algebra (see Setion 7 below). We assoiate with eah mappingalgebra a trak algebra of dimension n (n ≥ 0) (see Setion 11 below), and prove as our mainresult:Theorem A. Higher order resolutions exist in a trak algebra of dimension n, and suh resolutionsdetermine higher order Ext-groups Em for m ≤ n+2. If the trak algebra is the one determinedby the Eilenberg-Ma Lane mapping algebra, these higher order Ext-groups ompute the Em-termsof the Admas spetral sequene for m ≤ n + 2.The trak algebra of dimension n assoiated to the Eilenberg-Ma Lane mapping algebra onsti-tutes the algebra B(n) of (n + 1)-st order mod p ohomology operations. It is onjetured in [B3℄that B(n) an be omputed in terms of a suitable di�erential algebra for all n ≥ 0, as is the asefor n = 0 and n = 1.Date: 2nd August 2011.1991 Mathematis Subjet Classi�ation. Primary: 18G10; seondary: 55T15, 55S20.Key words and phrases. Adams spetral sequene, higher hain omplexes, higher ohomology operations, higher

Ext-groups, higher order resolutions, higher trak algebras.1



2 britishH.-J. BAUES AND D. BLANC1. Left ubial setsWe �rst reall some properties of ubial sets, and introdue the notion of left ubial sets, whihare used to desribe higher nullhomotopies.Let I = [0, 1] be the unit interval and let In = I × · · · × I be the n-dimensional ube. Wehave inlusions di
ε : In−1 = Ii−1 × {ε} × In−i ⊂ In for 1 ≤ i ≤ n and ε ∈ {0, 1}. Here I0 isa single point.Let ��� denote the ategory whose objets are ubes In (n ≥ 0), and whose morphisms aregenerated by di

ε and the projetions si : In −→ In−1.A pointed ubial set is a funtor K : ���
op −→ Set∗, where Set∗ is the ategory of pointedsets. As usual, K(In) is denoted Kn and ∗ ∈ Kn is the base point. We write dim(a) = n if

a ∈ Kn. See [C℄, [J℄, or [I℄ for further details on ategory of ubial sets.1.1. De�nition. Let ��� be the subategory of ��� onsisting of objets In (n ≥ 0) and morphismsgenerated by di
0. A left ubial set is a funtor ���

op
→ Set∗. We write ∂i for (di

0)
∗ : Kn → Kn−1(1 ≤ i ≤ n). We also onsider the full subategories ���n ⊂ ��� onsisting of objets Im(0 ≤ m ≤ n). A funtor ���

op

n −→ Set∗ is alled a left n-ubial set.1.2. Remark. Given a pointed ubial set K, one obtains a left ubial set nul(K) by setting
nul(K)m := {a ∈ Km | (di

1)
∗a = ∗ for 1 ≤ i ≤ m}.Aordingly, one gets the left n-ubial set nuln(K) as a restrition of nul(K) to ���

op

n .Note that nul is a funtor from pointed ubial sets to left ubial sets. Its left adjoint
U : (Set∗)���

op

→ (Set∗)���
op may be thought of as a �universal enveloping ubial set� funtor,desribed as follows: given a left ubial set M , the pointed ubial set U(M) has one n-ube In

afor eah left n-ube a ∈M , with (di
1)

∗In
a = ∗ (the base point) for eah 1 ≤ i ≤ n. In addition,there is a degenerate (n + k)-ube:(1.3) (sj1 )∗ . . . (sjk)∗In

a in U(M) for eah iterated projetion sjk . . . sj1 : In+k → In in ���(with identi�ations aording to the ubial identities).It is readily veri�ed that U(M) is indeed a pointed ubial set, with a natural isomorphism:(1.4) Hom
(Set∗)���

op (M, nul(K))
∼=
−→ Hom(Set∗)���op (U(M), K)for K ∈ (Set∗)���

op and M ∈ (Set∗)���
op . Moreover, both funtors preserve dimensions of allubes, so they ommute with the n-skeleton funtor, yielding a left adjoint Un to nuln.For any ubial set K, let CK be the partially ordered set of all k-ubes (k ≥ 0) of K, orderedunder inlusion. We have K ∼= colimIk∈CK
Ik, where eah Ik is thought of as a ubial set. Weuse this to de�ne a monoidal struture on Set���

op , given by:(1.5) K ⊗ L := colimIj∈CK , Ik∈CL
Ij+k(see [J, �3℄). If K and L are pointed, there is a ubial smash funtor(1.6) K⊗L := (K ⊗ L) / ({∗} ⊗ L∐K ⊗ {∗})on (Set∗)���

op , whih also is also de�ned on (Set∗)���
op . Moreover, nul and U are monoidal withrespet to ⊗ on (Set∗)���

op and (Set∗)���
op , respetively.Now, let (X, ∗) be a pointed spae and let S�X be the singular pointed ubial set: thus

(S�X)n is the set of all maps In −→ X , with base point o : In −→ {∗} ⊂ X .Then, nul(X) = nul(S�X) is given by all maps a : In → X with adi
1 = o for 1 ≤ i ≤ n.Aordingly, we let nuln(X) := nuln(S�X)1.7. De�nition. The left n-ubial set Nuln(X) is de�ned by

Nuln(X)m :=

{
nul(X)m for m < n,

nul(X)n/ ≃ for n = m.Here, we set a ≃ b for a, b ∈ nul(X)n if the maps a, b : In −→ X are homotopi relative tothe boundary ∂In of the ube In. Let {a} be the equivalene lass of a; we all {a} an n-trakin X .



britishHIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRAL SEQUENCE 3There is a surjetive map of left n-ubial sets:(1.8) nuln(X) // // Nuln(X) ,whih is the identity in dimension < n and whih arries a with dim(a) = n to the n-trak {a}.We point out that the left n-ubial set Nuln(X) is not the restrition of a ubial set.1.9. Remark. Let △△△ be the ategory with sets {1, 2, . . . , n} (n ≥ 0) as objets, and orderpreserving injetive maps as morphisms. There is an isomorphism of ategories △△△ ∼= ��� whiharries {1, 2, . . . , n} to In and arries {1, . . . , î, . . . , n} ⊂ {1, . . . , n} to di
0. Here, î indiatesthat we omit i. 2. n-graded ategories enrihed in left ubial setsCubial sets, and left ubial sets, have a natural grading by the dimension of the ubes. Thusategories enrihed in (left) ubial sets are in partiular graded ategories, desribed as follows:A graded set K is a sequene of sets Kn (n ≥ 0). We write dim(x) = n if x ∈ Kn. An

n-set L is a �nite sequene L0, . . . , Ln of sets. For example, the n-skeleton K0, . . . , Kn of a gradedset is an n-set. A graded ategory G is a ategory in whih eah morphism f has a dimension
dim(f) ≥ 0 suh that the omposition fg satis�es

dim(fg) = dim(f) + dim(g).Thus, all morphism sets MorG(X, Y ) are graded sets.An n-graded ategory onsists of morphism sets whih are n-sets and omposition fg is de�nedif dim(f) + dim(g) ≤ n. For example, the n-skeleton of a graded ategory is an n-graded ategory.An n-graded ategory enrihed in left ubial sets is a n-graded ategory suh that morphism sets
Mor(X, Y ) are left n-ubial sets with operators (di

0)
∗ = ∂i satisfying(2.1) ∂i(fg) =

{
(∂if)g for i ≤ dim(f)

f(∂i−dim(f)g) for i > dim(f)Moreover, the zero morphisms on ∈ Mor(X, Y )n (n ≥ 0) satisfy
ong = on+dim(g) and fom = odim(f)+m.For example, let C be a ategory enrihed in (Top∗,∧), where ∧ is the smash produt of pointedtopologial spaes. Thus for every X, Y ∈ Obj (C), there is a zero morphism o ∈ MorC(X, Y ),satisfying og = o and fo = o for any f, g ∈MorC. Then nul(C) is given by the left ubialset nul(MorC(X, Y )). The omposition f ⊗ g de�ned by

f ⊗ g : In × Im
f×g // MorC(Y, X)×MorC(Z, Y )

µ // MorC(Z, X) ,where µ is the omposition in C. Thus nul(C) is a ategory enrihed in left ubial sets as above.The n-skeleton of nul(C), denoted by nuln C, is given by the n-ubial sets nuln MorC(X, Y ).One has the quotient funtor
nuln C // // Nuln Cgiven by the quotient maps:

nuln MorC(X, Y ) // Nuln MorC(X, Y )(see (1.8)). Here, Nuln C is an n-graded ategory with the omposition de�ned by the equivalenelass {f ⊗ g} for dim(f) + dim(g) = n. The n-graded ategories nuln C and Nuln C areenrihed in left n-ubial sets.For n = 0, the (0-graded) ategory
Nul0 C = π0Chas morphisms X −→ Y given by the path omponents of MorC(X, Y ).



4 britishH.-J. BAUES AND D. BLANC3. The hain ategory Z⊗A hain omplex in any pointed ategoryM may be de�ned as a pointed funtor from a suitableindexing ategory. To de�ne higher order hain omplexes, we require a more elaborate indexingategory, whih we now desribe.Let ⋆ and J be elements whih generate the free monoid
N := Mon(⋆, J) .Let deg, dim : N −→ (N0, +) be monoid homomorphisms de�ned by

deg(⋆) = 1 deg(J) = 1

dim(⋆) = 0 dim(J) = 1.Elements in N are words whih onsist of letters ⋆ and J . For example, V = ⋆ ⋆ J ⋆ JJ is suha word, with deg(V ) = 6 the length of the word V , and dim(V ) = 3 the number of letters J in
V . Let ∅ be the empty word, whih is the unit in the monoid N .We assoiate with J the unit interval I = [0, 1] and with ⋆ the one point spae {0}. For anyword V , let V be the spae de�ned by

V =






I if V = J

{0} if V = ⋆

V 1 × V 2 if V = V1V2 .We say that V is in the boundary of W with V, W ∈ N if there is an inlusion V ⊂W . Thisimplies deg V = deg W and dimV ≤ dim W . By projeting the spaes {0}, one gets thehomeomorphism
V ∼= Idim V .If V is in the boundary of W , there is a unique inlusion dV,W of ubes in the ategory ��� (seeDe�nition 1.1) suh that

V

��

∼= // Idim V

dV,W

��
W

∼= // Idim Wommutes.Now, onsider elements ⋆ and In (n ≥ 1), whih generate the monoid
M := Mon(⋆, In, n ≥ 1)/In ◦ Im = In+m .The multipliation in M is denoted by ◦. Here, Mon(⋆, In : n ≥ 1) denotes the free monoid. In

M , we divide out the relation In ◦ Im = In+m for n, m ≥ 1.There is a anonial isomorphism of monoids
M

∼= //Nwhih arries ⋆ to ⋆ and In to the n-fold produt Jn = J · · · J . Using this isomorphism, weobtain the funtions deg and dim on M .We introdue on M a further multipliation ⊗ de�ned by(3.1) V ⊗W = V ◦ ⋆ ◦W for V, W ∈M.Here V ×W is the produt of elements V , ⋆, W in the monoid M . The operation ⊗ is assoiative,but it has no unit. For the empty word ∅ ∈M , we get
∅ ⊗ ∅ = ∅ ◦ ⋆ ◦ ∅ = ⋆.3.2. De�nition. We de�ne the hain ategory Z⊗ to be the following graded ategory: the objetsin Z⊗ are the integers i, j, . . . ∈ Z. In addition to the identities 1i, with dim(1i) = 0, themorphisms in Z⊗ onsist of

(i, V ) : i
V // i− deg V − 1 = j



britishHIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRAL SEQUENCE 5for all V ∈ M . The omposition of V : i −→ j and W : j −→ j − deg W − 1 = k (W ∈ M),is de�ned
(i, W ⊗ V ) : i

W⊗V // i− deg(W ⊗ V )− 1 = k .Here we have deg(W ⊗ V ) = deg W + deg V + 1, so that the omposition is well de�ned. We alsoomit ⊗ in the notation of the omposite.More preisely, morphisms in Z⊗ are pairs (i, V ), where i ∈ Z, V ∈M , and i is the soureof the morphism (i, V ) (aslow written V : i −→ j). The target j satis�es j = i− deg V − 1.The ategory Z⊗ is graded by dimension of elements in M . In fat, we have dim(W ⊗ V ) =
dim(W ) + dim(V ). The n-skeleton Z

n
⊗ of Z⊗ (n ≥ 0) is an n-graded ategory. The 0-skeleton

Z
0
⊗ onsists only of identities and of the morphisms V : i→ i− deg V − 1, where V is a power ofthe element ⋆ in M .If V = ∅, then ∅ : i −→ i− 1 is in Z

0
⊗. The omposition is ∅ ⊗ ∅ = ⋆ : i −→ i− 2, and soon. We observe:3.3. Lemma. The ategory Z⊗ is freely generated by the morphisms (i, ∅) : i → i − 1 and

(i, Ik) : i −→ i− k − 1 for i ∈ Z. k ≥ 1.4. Higher order hain omplexesWe are now in a position to de�ne the notion of a higher order hain omplex:Given an n-graded ategory T enrihed in left n-ubial sets (for example, T = Nuln C), weonsider a funtor of n-graded ategories
K : Z

n
⊗

// Twhih arries an objet i ∈ Z to the objet Ki := K(i) in T. We say that K satis�es theinlusion property if the following holds:Given morphisms V, W : i −→ j in Z
n
⊗ suh that V is in the boundary of W , then the induedmorphisms K(V ) and K(W ) in T satisfy the equation(4.1) K(V ) = d∗V,W K(W ) in MorT(Ki, Kj) .Here d∗V,W is de�ned by the struture of MorT(Ki, Kj) as a left ubial set.4.2. De�nition. A funtor K satisfying the inlusion property (4.1) is alled an n-th orderpre-hain omplex in T.Let N > M and Z(N, M) = {k ∈ Z, N ≥ k ≥M}. Then we obtain the full subategory
Z(N, M)⊗ ⊂ Z⊗onsisting of objets k ∈ Z(N, M). We say that K is onentrated in Z(N, M) if K :

Z(N, M)n
⊗ −→ T is a funtor of n-graded ategories.Assume a quotient funtor T0 −→ A is given, whih yields the indued morphisms

δi = K(i, ∅)∗ : Ki
//Ki−1 in Afor eah i ∈ Z. We then say that K is based on the diagram(4.3) KN

// . . . //Ki
δi //Ki−1

δi−1 //Ki−2
// . . . //KMin the ategory A.Now let C be a ategory enrihed in pointed spaes with zero morphisms. For T = Nuln C, weonsider a funtor K with the inlusion property,

K : Z
n
⊗

// Nuln C .We have in Z
n
⊗ the (n + 1)-tuple of morphisms i −→ i− n− 2:(4.4) (i, ∂In+1) =






(i, ∅ ⊗ In),

(i, In ⊗ ∅),

(i, Ir ⊗ Is), r + s = n, r ≥ 1, s ≥ 1whih yields the (n + 1)-tuple of n-traks
K(i, ∂In+1) = (K(i, ∅ ⊗ In), K(i, I1 ⊗ In−1), . . . , K(i, In−1 ⊗ I1), K(i, In ⊗ ∅)).



6 britishH.-J. BAUES AND D. BLANCThese traks are represented by maps In −→ MorC(Ki, Ki−n−2). In fat, these n-traks yield upto homotopy a well de�ned map
α : Sn ≈ ∂(In+1) // MorC(Ki, Ki−n−2)on the boundary of the (n + 1)-ube. Hene, the map α yields an obstrution element(4.5) OK(i, ∂In+1) ∈ Dn(Ki, Ki−n−2) = πn MorC(Ki, Ki−n−2).4.6. De�nition. We say that K is an n-th order hain omplex in Nuln C if the obstrutionelements (4.5) vanish for all i. This is the obstrution property of K.Below, we study the properties of obstrution elements.4.7. De�nition. Let C be as above and let(4.8) K0 K1
δ1oo K2

δ2oo . . .oo Kn+2

δn+2oo , n ≥ 1be a diagram in A = π0(C). Consider all funtors
K : Z(0, n + 2)n

⊗
//T = Nuln Csatisfying the inlusion property, whih are based on the diagram (4.8). Eah suh funtor yieldsan obstrution element

OK(n + 2, ∂In+1) ∈ Dn(Kn+2, K0) = πn MorC(Kn+2, K0).The set of all these elements is the lassial higher order Toda braket
〈δ1, . . . , δn+2〉 ⊂ Dn(Kn+2, K0)(see [W℄).The set an be empty. If there exists a n-th order hain omplex K based on the diagram (4.8),then of ourse 0 ∈ 〈δ1, . . . , δn+2〉 by the obstrution property of K.5. The W -onstrutionAn alternative desription of higher order hain omplexes an be given using the bar onstrution

WK, going bak to Boardman-Vogt (see [BV, �3℄ and [Bo, �6℄). This onstrution is a topologially-enrihed �o�brant replaement� for any small ategory K, whih serves as the indexing ategory forlax versions of funtors K → Top. A ubially enrihed variant of WK was de�ned in [BJT,�3.1℄ and [BB, �3.4℄; we shall require the following pointed setting:5.1.De�nition. Let K be a small ategory enrihed in (Set∗,∧) (so zero morphisms o are de�ned).The pointed W-onstrution on K, denoted by W∗K, is the ategory enrihed in ((Set∗)���
op

,⊗)with objet set Obj K de�ned as follows:First, for every a, b ∈ Obj K, the underlying graded pointed ategory of W∗K has an(indeomposable) morphism (n-ube) In
f•

in W∗K(a, b)n assoiated to eah omposable sequene(5.2) f• = (a = an+1
fn+1

−−−→ an
fn
−→ an−1 . . . a1

f1
−→ a0 = b)of length n + 1 in K. In addition, W∗K(a, b) has a degenerate (n + k)-ube (sj1)∗ . . . (sjk)∗In

f•for eah iterated projetion sjk . . . sj1 : In+k → In in ��� (with identi�ations aording to theubial identities). The zero morphism in degree k is Ik
o := (sk)∗ . . . (s1)

∗I0
o , and we identify In

f•with In
o whenever at least one of the maps f1, . . . , fn+1 is o. Then W∗K is freely generatedas a graded ategory with zero morphisms by these ubes. Composition in the ategory W∗K isdenoted by ⊗.The ubial struture is determined by the fae maps of the non-degenerate indeomposable ubes

In
f•

and the ubial identities, as follows:(a) The i-th 1-fae of In
f•

is In−1
f1◦...◦(fi·fi+1)◦...fn+1

� that is, we arry out (in the ategory K)the i-th omposition in f•.(b) The i-th 0-fae of In
f•

is the omposite Ii
f0◦...◦fi

⊗ In−i−1
fi+1◦...◦fn+1

.() The ubial struture on the omposites Ij
f•

⊗Ik
g•

is de�ned by (1.5) (or (2.1)).



britishHIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRAL SEQUENCE 75.3. De�nition. Let Γ be the ategory enrihed in (Set∗,∧) with objet set Z and a singlenon-zero arrow dk+1 : k + 1→ k for eah k ∈ Z, satisfying dk ◦ dk+1 = o for all k.5.4. Proposition. Let M be a ategory enrihed in ubial sets with zero morphisms. There is aone-to-one orrespondene between pointed ubial funtors W∗Γ→M and pre-hain omplexes in
nulM, whih restrits to a one-to-one orrespondene between pointed ubial funtors skn W∗Γ→
M and n-th order pre-hain omplexes in nulnM.Proof. Sine Z⊗ is a free graded ategory, by Lemma 3.3, we an de�ne a one-to-one funtor ofgraded ategories Φ : Z⊗ → W∗Γ whih is the identity on objets by setting Φ(i, ∅) := I0

di
and

Φ(i, Ik) := Ik
f•

, for f• := (i
di−→ i− 1→ . . . i− k

di−k

−−−→ i− k − 1).We an endow Z⊗ with the struture of a ategory Ẑ⊗ enrihed in ((Set∗)���
op

,⊗) by setting
d∗V,W (W ) = V if V ⊆W , and adding zero morphisms. Note that a funtor K : Z⊗ → nulM isa pre-hain omplex if and only if it indues a pointed ubial funtor K̂ : Ẑ⊗ → nulM.The universal enveloping funtor U : (Set∗)���

op

→ (Set∗)���
op of Remark 1.2 is monoidal withrespet to ⊗, so the adjuntion (1.4) extends to ategories of enrihed funtors. Moreover, Φindues a natural isomorphism of pointed ubial ategories(5.5) U(Ẑ⊗) ∼= W∗Γ ,so left ubial funtors Ẑ⊗ → nulM indeed orrespond to pointed ubial funtors W∗Γ →

M. Sine this orrespondene preserves the grading, the same is true for n-th order pre-hainomplexes. �6. Resolutions and derived funtorsWe now reall some basi de�nitions of resolutions and derived funtors in the ontext of additiveategories:Let A be a ategory enrihed in abelian groups, i.e., a preadditive ategory. Then we denote themorphism sets in A by
HomA(X, Y ) = MorA(X, Y )for objets X , Y in A. This is an abelian group, and morphisms f : X ′ −→ X and g : Y ′ −→ Yin A indue homomorphisms Hom(f, Y ) and Hom(X, g). Let a be a full subategory of A.6.1. De�nition. Let X be an objet in A. An a-resolution of X is a diagram

A• = ( . . .
δ2 //A1

δ1 //A0
δ0 //A−1 )in A with A−1 = X and Ai ∈ a for i ≥ 0, suh that, for all objets B in a, the indued diagram

Hom(B, A•) is an exat sequene of abelian groups; in partiular, Hom(B, δ0) is surjetive.An a-oresolution of Y is a diagram
A• = (A1

δ1 //A0
δ0 //A−1

δ−1 // . . .)in A with A1 = Y and Ai ∈ a for i ≥ 0, suh that for all objets B in a the indued diagram
Hom(A•, B) is an exat sequene of abelian groups. Here Hom(δ1, B) is surjetive.The next result is proved in [BJ2, 1.3℄:6.2. Lemma. Suppose(1) the oprodut of any family of objets of a exists in A and belongs to a again,(2) there is a small subategory g of a suh that every objet of a is a retrat of a oprodut of afamily of objets from g,then every objet of A has an a-resolution.The dual statement also holds: suppose(3) the produt of any family of objets of a exists in A and belongs to a again,(4) there is a small subategory g of a suh that every objet of a is a retrat of a produt of a familyof objets from g,then every objet of A has an a-oresolution.



8 britishH.-J. BAUES AND D. BLANCOne obtains (3) and (4) by replaing the ategories A and a, respetively, in (1) and (2) by theopposite ategories Aop and aop. Given a funtor F : A −→ A, where A is an abelian ategoryand F is linear (i.e., enrihed in the ategory of abelian groups), then derived funtors are de�nedby the homology (respetively, ohomology)
(LnF )(X) = HnF (A•),

(RnF )(Y ) = HnF (A•).Here A• (respetively, A•) is a resolution of X (respetively, a oresolution of Y ).We need the following onept of a Σ-algebra whih allows the de�nition of a bigraded Ext-group.6.3. De�nition. A Σ-algebra A = (A,a, Σ) is an additive ategory A together with an additivesubategory a and an additive endofuntor Σ : A → A of A whih arries a to a and whiharries an a-resolution A• of X in A to an a-resolution ΣA• of ΣX in A. Dually, we de�nean Ω-algebra A = (A,a, Ω) where Ω arries an a-oresolution of X in A to an a-oresolution of
ΩX in A.Given a Σ-algebra A and objets X , Y in A, we de�ne the bigraded Ext-group by the ohomology

Er,s
2 = Extr

A
(ΣsX, Y ),(6.1)

= Hr HomA(ΣsA•, Y ),

= kernelHomA(Σsδr+1, Y )/ imageHomA(Σsδr, Y ).Here Σs = Σ ◦ . . . ◦ Σ is the s-fold omposite of Σ. Suh groups appear in the E2-term of theAdams spetral sequene. 7. Mapping algebrasIn this setion we onsider topologial analogues of Σ-algebras and Ω-algebras of De�nition 6.3,in order to provide a setting for de�ning higher order resolutions, and thus higher order derivedfuntors.7.1. De�nition. Let C be a ategory enrihed in pointed spaes with zero morphisms. Then C isa Σ-mapping algebra if the ategory A = π0C is a Σ-algebra and the bifuntor (n ≥ 1)
Dn : Aop ×A // Ab

Dn(X, Y ) = πn MorC(X, Y )satis�es
τΣ : Dn(X, Y ) = HomA(ΣnX, Y )for X in a and Y in A. Here Σn = Σ ◦ . . . ◦Σ is the n-fold omposite of the endofuntor Σ of a.Dually C is the Ω-mapping algebra if the ategory A = π0C is an Ω-algebra and (n ≥ 1)
τΩ : Dn(X, Y ) = HomA(X, ΩnY )for X in A and Y in a.7.2. De�nition. A Σ-mapping algebra C is omplete if the endofuntor Σ of A = π0C is induedby an endofuntor Σ of C and if a binatural transformation

τΣ : MorC(ΣA, Y ) //Ω MorC(A, Y )is given, where we use the topologial loop spae funtor on pointed spaes. Moreover, the funtor
Σ : C −→ C preserves zero morphisms and oproduts in C.An Ω-mapping algebra C is omplete if the endofuntor Ω of A = π0C is indued by an endo-funtor Ω of C and if a binatural transformation

τΩ : MorC(Y, ΩA) //Ω MorC(Y, A)is given. Moreover, the funtor Ω : C→ C preserves zero morphisms and produts in C. Iterationof τΣ (respetively, τΩ) indues the isomorphisms τΣ (respetively, τΩ) in De�nition 7.1.



britishHIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRAL SEQUENCE 97.3. Example. There are a number of di�erent simpliial model ategories of spetra, inluding the
Γ-spaes of [BF℄, the S-modules of [EKMM℄, and the symmetri spetra of [HSS℄. All of these havepointed versions (f. [Hov, Prop. 1.1.8℄). In this and later setions, we let Spec∗ be any ategoryof pointed spetra whih is enrihed in pointed topologial spaes (or simpliial sets), with funtionspaes of pointed maps

Mor(X, Y ) = Map∗(X, Y ) for X and Y in Spec∗ .We always assume that X and Y are both �brant and o�brant in our hosen model ategory.Clearly zero morphisms o : X → ∗ → Y are de�ned in Spec∗. Let X be a lass of objetsin Spec∗ suh that X is losed under oproduts and suspension Σ:� that is, for A, A′ ∈ X wehave A ∨A′, ΣA ∈ X . Then we have
{X} ⊂ Spec∗ ,where {X} is the full subategory in Spec∗ with objets in X . Then C = Spec∗ with

a = π0{X} ⊂ A = π0C is a omplete Σ-mapping algebra.Dually, let Y be a lass of objets in Spec∗ suh that Y is losed under produts and loopfuntor Ω, that is, for B, B′ ∈ Y, we have B ×B′ (ΩB ∈ Y). Then we have
{Y} ⊂ Spec∗ ,where {Y} is the full subategory in Spec∗ with objets in Y. Then C = Spec∗ with

a = π0{Y} ⊂ A = π0C is a omplete Ω-mapping algebra.7.4. Example. Let p be a prime and let H = H(Z/p) be the Eilenberg-Ma Lane spetrum. Let
Y be given by all produts

Ωn1H × Ωn2H × . . .× ΩnkHwith k ≥ 0, ni ≥ 0 for i = 1, . . . , k. Then C = Spec∗ with a = π0{Y} is a omplete
Ω-mapping algebra, whih we all the Eilenberg-Ma Lane mapping algebra. This is used in theAdams spetral sequene.7.5. Remark. In the examples of mapping algebras above the ategory C = Spec∗ is very large.For omputations, however, we onsider only the mapping algebras C′ whih are generated by
{X} (respetively, {Y}) and two further objets X and Y in Spec∗.8. Existene of higher order resolutionsWe an use the de�nitions of Setion 7 to state our main results on resolutions, whih will beproved subsequently.Let C be a Σ-mapping algebra with a ⊂ A = π0C. If a n-th order hain omplex

K : Z(∞,−1)n
⊗

// Nuln Cis based on an a-resolution in A,
A• = ( . . .

δ2 //A1
δ1 //A0

δ0 //A−1 ) ,of X = A−1, we say that K is an n-th order resolution of X in Nuln C.8.1. Resolution Theorem. If there exists an a-resolution A• of X in A, then there exists an
n-th order resolution K of X in Nuln C (n ≥ 1). In fat, given an a-resolution A• of X in
A, an n-th order resolution K of X exists whih is based on A• .8.2. Remark. The Theorem shows that, if 'minimal' a-resolutions exist (as in the ase of the Adamsspetral sequene), then also an n-th order minimal resolution exists whih is based on a minimalresolution in A. This is of high importane for omputations.Dually, let C be a Ω-mapping algebra with a ⊂ A = π0C. If an n-th order hain omplex

L : Z(+1,−∞)n
⊗

// Nuln Cis based on an a-oresolution in A

A• = (A1
δ1 //A0

δ0 //A−1

δ−1 // . . .) ,with A1 = Y , we say that L is an n-th order oresolution of X in Nuln C.



10 britishH.-J. BAUES AND D. BLANC8.3. Dual Resolution Theorem. If there exists an a-oresolution A• of Y in A, then thereexists an n-th order oresolution L of Y in Nuln C (n ≥ 1). In fat, given an a-oresolution A•of Y in A, an n-th order oresolution L of Y exists whih is based on A•.8.4. Remark. In view of Lemma 3.6 (a) in [BJ2℄, a 1-order resolution in Nul1 C is a seondaryresolution in the sense of [BJ2℄. 9. Left ubial ballsFor the proof of the Resolution Theorems 8.1 and 8.3, we require the notion of a left ubial ball,whih serves as a book-keeping devie to desribe the ombinatoris of higher traks, and allows usto de�ne the assoiated obstrutions.A ball of dimension n is a �nite regular CW-omplex B with a subomplex ∂B and a homeomor-phism of pairs
(En, Sn−1) ≈ (B, ∂B)where En is the Eulidean ball. Two balls B, B′ are equivalent if there is a ellular isomorphism

B ≈ B′. A ball B is a union
B = B1 ∪ . . . ∪Bkof losed n-ells Bi in B. We say that A is a sub-ball of B if A = Bi1 ∪ . . . ∪ Bit

for 1 ≤ i1 <
. . . < it ≤ k is a ball and if for t < k, the losure of the omplement B −A in B is also a ball,denoted by AB, so that B = A ∪AB .If A is also a sub-ball of a ball C with S = A ∩ AB = A ∩ AC , then we obtain the union ofomplements

AB ∪AC = AB ∪s AC ,whih is also a ball.9.1. Example. Let T n
0 be the union of all ells Ii−1 × {0} × In+i−1 in In+1, and let T n

1 bethe union of all ells Ii−1 × {1} × In+i−1 (i = 1, . . . , n + 1). Then T n
0 and T n

1 are balls ofdimension n, with n + 1 losed n-ells.9.2. De�nition. A left ubial ball is a ball B with a 0-vertex 0 ∈ B − ∂B with the followingproperties. Eah losed n-ell Bi is equivalent to In, and eah losed (n − 1)�ell e is equivalentto In−1, suh that for e ⊂ Bi ∩Bj the diagram
Bj e⊃ ⊂ Bi

In

hj ≈

OO

In−1
de,j

oo
de,i

//

≈

OO

In

≈ hi

OOommutes. Here de,j and de,i are morphisms in the left ubial ategory ���. The vertex 0 is alsoa vertex of eah Bi and the equivalene hi : In ≈ Bi arries 0 to 0. Moreover, the union
h1(T

n−1
1 ) ∪ . . . ∪ hk(T n−1

1 ) = ∂Bis the boundary of B.Examples of left ubial balls of dimension 2 appear in in Figures 1 and 2.
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Figure 1. Some left ubial balls of dimension 2
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Figure 2. A 2-dimensional left ubial ball9.3. Example. The push out of In ←− T n−1
0 −→ In, alled the double of In, is a left ubialball. Moreover, T n

0 is a left ubial ball.9.4. Lemma. Let A be a sub-ball of B and C, where B and C are left ubial; then the union ofomplements AB ∪AC is left ubial.9.5. Remark. Let B be a left ubial ball of dimension n with k losed n-ells. Then B is equivalentto the double of In for k = 2 and B is equivalent to T n
0 for k = n + 1. For 2 < k < n + 1,suh a ball does not exist. For k ≥ n + 1 there is a 1-1-orrespondene between left ubial balls(up to equivalene) and simpliial omplexes homeomorphi to the (n − 1)-sphere Sn−1. Theorrespondene arries B to the boundary of a small neighbourhood of 0 in B.10. ObstrutionsLet X be a pointed spae with o ∈ X the base point. Let B be a ball and let a : B −→ X be amap with a(∂B) = o. We obtain the map(10.1) a : Sn ≈ En/Sn−1 ≈ B/∂B

a //X ,whih represents an element O(a) ∈ πn(X) in the n-th homotopy group of X . Now let B =
B1 ∪ . . . ∪Bk be a left ubial ball. Then

In hi //Bi ⊂ B
a //Xis a left n-ube representing an n-trak ai ∈ Nuln(X)n.Then for e ⊂ Bi ∩Bj we have the gluing ondition in B (see De�nition 9.2).(10.2) d∗e,iai = d∗e,jaj .10.3. Lemma. Eah k-tuple (a1, . . . , ak) of n-traks ai in Nuln(X)n satisfying (10.2) yields(up to homotopy relative to the boundary) a well de�ned map a : B → X with a(∂B) = o. Thisde�nes the obstrution OB(a1, . . . , ak) = O(a) in πn(X) as above.Now let B = T n

0 = B1 ∪ . . . ∪ Bn+1 and let a1, . . . , an+1 ∈ Nuln(X)n be n-traks satisfy-ing (10.2). Then we get the boundary property :10.4. Lemma. OT n
0
(a1, . . . , an+1) = 0 if and only if there exist a ∈ Nuln+1(X)n+1 with ∂iarepresenting ai.Proof. We hoose representatives a′

i of ai whih de�ne a map
a : ∂In+1 //X



12 britishH.-J. BAUES AND D. BLANCwith a(T n
1 ) = 0 and a|T n

0
= a′

1 ∪ . . . ∪ a′
n+1. Here a extends to In+1 if and only if

O(a′
1 ∪ . . . ∪ a′

n+1) = 0. �The next result is the Complement Rule.10.5. Lemma. Let B = A1 ∪ . . . ∪Ar ∪B1 ∪ . . . ∪Bt and C = A1 ∪ . . . ∪Ar ∪C1 ∪ . . . ∪Cs beleft ubial balls with the sub-ball A = A1 ∪ . . . ∪Ar. Then
OC(a1, . . . , ar, c1, . . . cs) = 0implies that for D = AB ∪AC

OB(a1, . . . , ar, b1, . . . , bt) = OD(b1, . . . , bt, c1, . . . , cs).Of ourse, there is the following Double Rule:10.6. Lemma. If B = B1 ∪B2 is the double of In then for a1 = a2 we have:
OB(a1, a2) = 0 .10.7. De�nition. Let B = B1 ∪ . . .∪Bk be a left ubial ball. Then for eah 1 ≤ i ≤ k we havea map

εi : In ≈ Bi ⊂ B ≈ En ,where In and En are oriented by the inlusions of In and En in R
n. We set εi = +1if the map εi is orientation preserving, otherwise εi = −1. We all εi the orientation sign of

Bi.Let B = B1 ∪ B2 be the double of In. Then ε1 = −ε2, and we an hoose B1 so that
ε1 = 1, In this ase we de�ne the ation + of α ∈ πn(X) on an n-trak a ∈ Nuln(X)n by the
n-trak a + α whih satis�es O(a + α, a) = α (n ≥ 1).10.8. Lemma. The ation + yields a well de�ned e�etive and transitive ation of the group πn(X)on the set of all n-traks a ∈ Nuln(X)n whih oinide on the boundary (that is, ∂ia = bi, where
(b1, . . . , bn) is �xed).10.9. Lemma. Let B = B1∪ . . .∪Bk be a left ubial ball and let OB(a1, . . . , ak), OB(a′

1, . . . , a
′
k)be de�ned, where {

a′
i = ai for i 6= j

a′
j = aj + α for i = j, α ∈ πn(X).Then we have the Ation Formula:

O(a′
1, . . . , a

′
k) = O(a1, . . . , ak) + εjα .11. n-trak ategoriesWe now de�ne the onept of an n-trak ategory, whih enompasses the properties needed forthe onstrution of higher order resolutions.Let C be a ategory enrihed in pointed spaes with zero morphisms. Let n ≥ 1 and let

T = Nuln C ,

A = π0C ,

D : Aop ×A −→ Ab , D(X, Y ) = πn MorC(X, Y ) ,

OB(a1, . . . , ak) is de�ned in Nuln MorC(X, Y ) (see (10.1)).Then (T,A, D,OB) has the following properties of an n-trak ategory. Here we assume for n = 1that π1 MorC(X, Y ) is abelian for all objets X , Y in C.11.1. De�nition. An n-trak ategory (n ≥ 1)
T = (T,A, D,O)is given by an n-graded ategory T, a quotient funtor T0 −→ A; a bifuntor D : Aop ×A −→ Aband an obstrution operator O. The following properties hold:



britishHIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRAL SEQUENCE 13(1) T is enrihed in left n-ubial sets and has zero morphisms, that is, for all objets X , Y in
T, we have the n-ubial set MorT(X, Y ) with operators (di

o)
∗ = ∂i and zero elements

ot ∈MorT(X, Y )t suh that
∂i(fg) = (∂if)g for i ≤ dim(f)

∂i(fg) = f(∂i−dim(f)g) for i > dim(f)

otg = ot+dim(g)

foh = odim(f)+h .Here fg is the omposite in the n-graded ategory T, whih is de�ned if dim(f)+dim(g) ≤
n.(2) The 0-skeleton T0 is the subategory of T onsisting of morphisms f with dim(f) = 0, thisis a ategory together with a funtor q : T0 −→ A whih is the identity on objets and full(quotient funtor). Moreover, D is a bifuntor

D : Aop ×A // Abinto the ategory of abelian groups. Here D de�nes via q a bifuntor on T0 whih satis�es
(o0)∗ = o and (o0)∗ = o. For a zero morphism o0 : X −→ Y in T0 we obtain the zeromorphism oX,Y = q(o0) in A.For f : X −→ Y in T0, we have q(f) = oX,Y if and only if there is F : X −→ Yin T with dim(F ) = 1 and ∂1F = f . This is the boundary property in dimension 1.(3) The obstrution operator O yields for eah left ubial ball B an element

OB(a1, . . . , ak) ∈ D(X, Y )where a1, . . . , ak ∈ MorT(X, Y )n is a k-tuple satisfying the gluing ondition in B,see (10.2).This obstrution operator satis�es the omplement rule, the double rule, and the ationformula as in Setion 10. Here the ation + of D(X, Y ) on the set MorT(X, Y )n isde�ned by: if OB(a1, a) = α, then a1 = a + α .Here B is the double of In with ε1 = +1.The ation + is transitive and e�etive on the set of all elements a in MorT(X, Y )nwhih oinide on the boundary (that is, ∂ia = bi, where (b1, . . . , bn) is �xed).(4) The obstrution operator satis�es for
f ∈ MorT(X ′, X)0 and g ∈MorT(Y, Y ′)0the naturality rule
OB(ga1, . . . , gak) = g∗OB(a1, . . . , ak)

OB(a1f, . . . , akf) = f∗OB(a1, . . . , ak) .Here f∗ AND g∗ denote the indued maps on D. This implies g(a + α) = ga + g∗αand (a + α)f = af + f∗α.(5) The obstrution operator satis�es the following triviality rule: For morphisms
Z Y

foo X
gooin T with dim(f), dim(g) ≤ n and

dim(f) + dim(g) = n + 1we have the (n + 1)-tuple (a1, . . . , an+1) in MorT(X, Z)n given by
at =

{
(∂tf)g for 1 ≤ t ≤ dim(f),

f(∂t−dim(f)g) for dim(f) < t ≤ n + 1.This (n + 1)-tuple satis�es the gluing ondition in B = Tn
0 . The assoiated obstrution

OB(a1, . . . an+1) = 0is trivial.



14 britishH.-J. BAUES AND D. BLANCWe now are able to de�ne n-th order hain omplexes in an n-trak ategory, for this we replae
Nuln C by T as follows, see Setion 4.11.2. De�nition. Let (T,A, D,O) be an n-trak ategory. A funtor of n-graded ategories

K : Z(N, M)n
⊗

// Tsatisfying the inlusion property (4.1) is an n-th order pre-hain omplex in T. This is an n-thorder hain omplex in T if for i, i− n− 2 ∈ Z(N, M), the obstrutions
OK(i, ∂In+1) = OB(b1, . . . , bn+1) = 0vanish. Here B is the left ubial ball B = Tn

0 , and
K(i, ∂In+1) =






b1 = K(i, ∅ ⊗ In)

br+1 = K(i, Ir ⊗ In−r) for 1 ≤ r ≤ n− 1

bn+1 = K(i, In ⊗ ∅)(see (4.5)). Sine K is a funtor we have
K(i, ∅ ⊗ In) = K(i− n− 1, ∅)K(i, In) = δi−n−1K(i, In)
K(i, Ir ⊗ Is) = K(i− s− 1, Ir)K(i, Is)
K(i, In ⊗ ∅) = K(i− 1, In)K(i, ∅) = K(i− 1, In)δiwhere the right hand side denotes omposition in T. We de�ne higher order Toda brakets in T inthe same way as in De�nition 4.6

〈δ1, . . . , δn+2〉 ⊂ D(Kn+2, K0) .12. Trak ategories and 1-trak ategoriesWe show that eah abelian trak ategory with zero morphisms has the struture of a 1-trakategory. This shows that n-trak ategories are n-dimensional analogues of trak ategories forevery n ≥ 1.A trak ategory is a ategory C enrihed in groupoids. For objets X , Y in C we have thegroupoid MorC(X, Y ) with objets f , g and morphisms F : f −→ g.The morphisms F : f −→ f form the automorphism group AutC(f), and we write f ≃ g ifthere is F : f −→ g. Let dim(f) = 0, dim(F ) = 1, (d1
0)

∗F = f , and (d1
1)

∗F = g. Morphismsof dimension 0 form the ategory C0, and the homotopy relation ≃ de�nes the homotopy ategory
A = π0C = C0/≃ .Let C be abelian, i.e., all automorphism groups AutC(f) are abelian groups. We assume that

C has zero morphisms oX,Y ∈MorC(X, Y )0. Then we get a bifuntor
D : Aop ×A // Ab ,

D(X, Y ) = AutC(oX,Y ).We de�ne the 1-ategory T assoiated to C by
{

MorT(X, Y )0 = MorC(X, Y )0

MorT(X, Y )1 = {(F, f), F : f −→ oX,Y } ⊂ MorC(X, Y )1.Let ∂1 be de�ned by ∂1(F, f) = f , and let the zero elements be given by o0 = oX,Y , o1 =identity of oX,Y .12.1. Proposition. Let C be an abelian trak ategory with zero morphisms. Then C yields the
1-ategory Nul1 C = (T,A, D,O) with T, A and D as above and with the following obstrutionoperator O.Up to equivalene there is only one left ubial ball B of dimension 1: this is the double of
I, whih is equivalent to T 1

0 . Given a1 = (F, f) and a2 = (G, g) with gluing ondition
∂1a1 = f = g = ∂1a2, let

OB(a1, a2) := FG−1 ∈ AutC(oX,Y )



britishHIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRAL SEQUENCE 15be the obstrution. The ation for α ∈ AutC(oX,Y ) and a = (F, f) is given by a + α = (αF, f),with OB(a + α, a) = αFF−1 = α. The triviality rule of O is satis�ed, sine for a diagram
Z Yg

oo
↑G

o

��
X,

f
oo

↑F

o

��in C we have the formula Gf = gF , so that
OB(a1, a2) = o forhsma1 = (∂1F )G and a2 = F (∂1G) .12.2. Example. Let C be a ategory enrihed in groupoids with zero morphisms and let C beabelian. Then the 1-trak ategory Nul1(C) is de�ned and a triple Toda braket

〈δ1, δ2, δ3〉 in Nul1(C)oinides with the lassial triple Toda braket in C. Moreover, a 1-st order hain omplex in
Nul1(C) as de�ned in 11.2 oinides with a seondary hain omplex in C as studied in [BJ2℄.12.3. Remark. Abelian trak ategories are lassi�ed by ohomology, see [BW℄, [BD℄, [P℄, [B1℄, [BJ1℄.It would be interesting to lassify aordingly 1-trak ategories and n-trak ategories for n ≥ 1.13. The indutive step of the resolution theoremAn n-trak ategory T = (T,A, D,O) is a Σ-trak algebra in dimension n if A = (A,a, Σ) is a
Σ-algebra and

D(X, Y ) = HomA(ΣnX, Y )for X in a and Y in A. See De�nition 6.3. We say that T is a Ω-trak algebra in dimension n if
A = (A,a, Ω) is an Ω-algebra and

D(X, Y ) = HomA(X, ΩnY )for Y in a and X in A.13.1. Theorem. Let T be a Σ-trak algebra in dimension n and onsider a funtor of n-gradedategories
K : Z(∞,−1)n

⊗
// Twhih is a pre-hain omplex and whih is based on an a-resolution A• of X in A. Then thereexists a funtor

K ′ : Z(∞,−1)n
⊗

// Twhih oinides with K in dimension ≤ n− 1 and whih is an n-th order hain omplex in T (andis based on A• ).The dual also holds.13.2. Theorem. Let T be an Ω-trak algebra in dimension n and onsider a funtor of n-gradedategories
L : Z(+1,−∞)n

⊗
// Twhih is a pre-hain omplex and whih is based on an a-oresolution A• of Y in A. Then thereexists a funtor

L′ : Z(+1,−∞)n
⊗

// Twhih oinides with L in dimension ≤ n− 1 and whih is an n-th order hain omplex in T (andis based on A•).Proof. The funtor K ′ is determined by K in dimension ≤ n− 1 and by(13.3) K ′(i, In) = K(i, In) + αi, i ≥ n− 1in dimension n. See Lemma 3.3. Here the elements αi are obtained indutively as follows. We haveto hoose αi, i ≥ n, in suh a way that the obstrution(13.4) ξ(αi−1, αi) = OB(δi−n−1K
′(i, In), b2, . . . , bn, K ′(i− 1, In)δi)



16 britishH.-J. BAUES AND D. BLANCvanishes with br+1 = K(i, Ir ⊗ In−r) for 1 ≤ r ≤ n− 1, see 11.2. We start with i = n + 1. In thisase (δ0)∗ is surjetive sine A• is a resolution with δ0 : A0 −→ A−1, A−1 = X . The ation ruleshows(13.5) ξ(αi−1, αi) = ξ(0, 0) + ε1(δi−n−1)∗αi + εn+1(δi)
∗αi−1.Here ε1, . . . , εn+1 are the orientation signs for the left ubial ball B = T n

0 . For i = n + 1 we getfor αn = 0 the equation
ξ(0, αn+1) = ξ(0, 0) + ε1(δ0)∗αn+1.Sine (δ0)∗ is surjetive there is αn+1 with ξ(0, αn+1) = 0. We now onsider (13.5) for

i = n + 2. Then we show that(13.6) (δ0)∗ξ(αn+1, αn+2) = 0.Sine A• is a resolution this shows that(13.7) ξ(αn+1, αn+2) ∈ image(δ1)∗.Sine by (13.5) we have(13.8) ξ(αn+1, αn+2) = ξ(0, 0) + ε1(δ1)∗αn+2 + εn+1δ
∗
n+2αn+1,we an hoose αn+2 with ξ(αn+1, αn+2) = 0. This way we get indutively αi, i ≥ n, suh that

ξ(αi−1, αi) = 0. Hene K ′ de�ned by (13.3) satis�es the obstrution property and hene is an
n-th order hain omplex as in the Theorem. In the next lemma we show that (13.6) holds. �We introdue the following notation on the 'boundary' of In+1, n ≥ 0. Let

∂I1 = ∅ ⊗ ∅and for n ≥ 1 let(13.9) ∂In+1 = (∅ ⊗ In, I1 ⊗ In−1, I2 ⊗ In−2, . . . , In−1 ⊗ I1, In ⊗ ∅).(see (4.5)). We also write
〈n〉 = (I1 ⊗ In−1, I2 ⊗ In−2, . . . , In−1 ⊗ I1) ,so that

∂In+1 = (∅ ⊗ In, 〈n〉, In ⊗ ∅).Given a funtor K ′ : Z(∞,−1)n
⊗ −→ T whih is a pre-hain omplex, we obtain for i ≥ n ≥ 1the obstrution element

OBK ′(i, ∂In+1)where B = T n
0 . This orresponds to (13.4) in the proof above.13.10. Hauptlemma. Let n ≥ 1, i ≥ n + 2, and assume

OBK ′(i− 1, ∂In+1) = 0.Then we also have
OBK ′(i, ∅ ⊗ ∂In+1) = 0.For the proof of Hauptlemma 13.10, we use the following equation given by the triviality rulewith r + s = n + 1, r ≥ 1, s ≥ 1, i ≥ n.(13.11) OBK ′(i, ∂r,s) = 0,where

∂r,s = ((∂Ir)⊗ Is, Ir ⊗ (∂Is)).The assumption implies(13.12) OBK ′(i, (∂In+1)⊗ ∅) = 0by the naturality rule.



britishHIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRAL SEQUENCE 17Proof of Hauptlemma 13.10 for n = 1. In this ase we have the triviality rule (13.11) whih wewrite as(13.13) (∅ ⊗ ∅ ⊗ I1, I1 ⊗ ∅ ⊗ ∅) ∼ 0 .The assumption implies (13.12):(13.14) Y = (∅ ⊗ I1, I1 ⊗ ∅)⊗ ∅ ∼ 0.We have to show(13.15) X = ∅ ⊗ (∅ ⊗ I1, I1 ⊗ ∅) ∼ 0 .In fat, by the omplement rule and (13.13), we get
X ∼ (I1 ⊗ ∅ ⊗ ∅, ∅ ⊗ I1 ⊗ ∅)so that X ∼ 0 by (13.14). �Proof of Hauptlemma 13.10 for n = 2. We omit ⊗ in the notation and write V W for V ⊗W . By(13.11), we �nd:(13.16) ((∅I1, I1∅)I1, I2∅∅) ∼ 0and(13.17) (∅∅I2, I1(∅I1, I1∅)) ∼ 0.By the assumption (13.12) we have(13.18) Y = (∅I2, I1I1, I2∅)∅ ∼ 0.We have to show(13.19) X = ∅(∅I2, I1I1, I2∅) ∼ 0.By the omplement rule and (13.17) (replaing ∅∅I2) we get:

X ∼ (I1(∅I1, I1∅), ∅I1I1, ∅I2∅) = X ′ .By the omplement rule and (13.16) (replaing I2∅∅) we get
Y ∼ (∅I2∅, I1I1∅, (∅I1, I1∅)I1) = Y ′ .Here we have X ′ = Y ′, so that X ∼ X ′ = Y ′ ∼ Y ∼ 0. �Proof of Hauptlemma 13.10. By (13.11) we have the relations(13.20) ∂r,s ∼ 0 for r + s = n + 1, r ≥ 1.By (13.12), the assumption implies that(13.21) Y = (∂In+1)⊗ ∅ ∼ 0 .We have to show that(13.22) X = ∅ ⊗ (∂In+1) ∼ 0.We now apply the omplement rule indutively to Y by use of ∂r,s for s = 1, . . . , [n/2]. Thisyields the equivalene Y ∼ Y ′. Similarly, we apply the omplement rule indutively to X by useof ∂r,s for r = 1, . . . , [n/2]. This yields X ∼ X ′. If n is even, we have Y ′ = X ′, so that

0 ∼ Y ∼ Y ′ = X ′ ∼ X , by (13.21). If n = 2n′ + 1 is odd, we an use ∂n′+1,n′+1 to show that
X ′ ∼ Y ′. By (13.21), this implies that 0 ∼ Y ∼ Y ′ ∼ X ′ ∼ X . �The proof of Hauptlemma 13.10 involves left ubial balls with the number of ells ≤ [n/2](n−
1) + n + 1.



18 britishH.-J. BAUES AND D. BLANC14. Trak algebras and proof of the Resolution TheoremIn order to prove Resolution Theorem 8.1, we need to relate trak ategories of di�erent dimen-sions, as follows:A total n-trak ategory T(≤ n) is a sequene of m-trak ategories
T(m) = (T(m),A, Dm,Om) for m = 1, 2, . . . , ntogether with quotient funtors

q : T(m + 1)m // T(m)whih is the identity on objets and is full and is the identity funtor on (m− 1)-skeleta
q : T(m + 1)m−1 = T(m)m−1 .Moreover, the boundary property of Lemma (10.4) holds � that is, for B = T m

0 , we have
Om

B (a1, . . . , am+1) = 0if and only if there exists a ∈ T(m + 1)m+1 with q(∂ia) representing ai for i = 1, . . . , m + 1.14.1. Example. Let C be a ategory enrihed in pointed spaes with zero morphisms. Then
Nul≤n C := (Nuln C, Nuln−1 C, . . . , Nul1 C)is a total n-trak ategory.We say that T(≤ n) is a Σ-trak algebra if A = (A,a, Σ) is a Σ-algebra as in De�nition 6.3and

Dm(X, Y ) = HomA(ΣmX, Y )for m = 1, . . . , n and X in a and Y in A.Dually we say T(≤ n) is an Ω-trak algebra if A = (A,a, Ω) is an Ω-algebra as in (6.1) and
Dm(X, Y ) = HomA(X, ΩmY )for m = 1, . . . , n and X in A and Y in a.14.2. Example. Let C be a Σ-mapping algebra then Nul≤n C is a Σ-trak algebra. If C is an

Ω-mapping algebra then Nul≤n C is an Ω-trak algebra.We now obtain the following Resolution Theorems, whih generalize those of Setion 8.14.3. Theorem. Let T(≤ n) be a Σ-trak algebra and let A• be an a-resolution of X in A.Then there exists an n-th order hain omplex
K : Z(∞,−1)n

⊗
//T(n)whih is based on A• . We all K an n-th order resolution of X in T(n).14.4. Theorem. Let T(≤ n) be an Ω-trak algebra and let A• be an a-oresolution of Y in A.Then there exists an n-th order hain omplex

L : Z(+1,−∞)n
⊗

//T(n)whih is based on A•. We all L an n-th order oresolution of Y in T(n).Proof. The boundary property shows that there exists a funtor
K ′(1) : Z(∞,−1)1⊗ //T(1)whih satis�es the inlusion property and whih is based on A• . Hene by Theorem 13.1 we �nd a

1-order hain omplex K(1) whih is based on A• . Now the boundary property shows that thereis a funtor
K ′(2) : Z(∞,−1)1⊗ //T(2)whih satis�es the inlusion property and whih based on A• . Again the boundary propertyshows there exists K ′(3), so that by Theorem 13.1 one obtains K(3). Indutively, we thus have

K = K(n). �



britishHIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRAL SEQUENCE 1914.5. Example. Let C be the Eilenberg-Ma Lane Ω-mapping algebra. Then minimal oresolutions
A• of Y are de�ned in A and hene we an �nd an n-th order oresolution of Y in Nul≤n C basedon A•. We all Nul≤n C the algebra of ohomology operations of order ≤ n + 1. This is an
Ω-trak algebra. It is onvenient to onsider the dual of Nul≤n C, whih is a Σ-trak algebra andfor whih a is the ategory of �nitely generated free modules over the Stenrod algebra.14.6. Remark. The main result of [B2℄ omputes the algebra of ohomology operations of order ≤ 2in terms of a bigraded di�erential algebra B over the ring Z/p2. This leads to the onjeturethat also the algebra of ohomology operations of order ≤ n (n ≥ 1), an be desribed up toequivalene by a bigraded di�erential algebra over Z/p2.15. Higher order Ext-groupsIn this setion we dedue from higher order resolutions the assoiated higher order derived fun-tors, whih are higher order Ext -groups. We shall see that the En-term in the Adams spetralsequene is suh a higher order Ext-group for n ≥ 2.It is lassial that the E2 of the Adams spetral sequene is given by the 'primary' Ext-groupsof homologial algebra, see (6.1). In [BJ2℄ we studied the seondary Ext-groups whih determine
E3.Let T(≤ n) (n ≥ 1) be a Σ-trak algebra so that for m = 1, . . . , n we have the m-trakategory(15.1) T(m) = (T(m),A, Dm,Om)with a ⊂ A and Dm(A, X) = HomA(ΣmA, X) for objets A in a and X in A. Let A• be an
a-resolution of X in A and let(15.2) K : Z(∞,−1)n

⊗
//T(n)be a n-th order resolution of X based on A• (see Theorem 14.3). Furthermore, let Y be anotherobjet of A, and onsider the diagram in A:(15.3) . . . // Ar+m+1

// Ar+m
// . . . // Ar

β

��

δr // . . . // A0
// X

YThe row of the diagram is the a-resolution A• of X . We assume that β is a oyle, that is,(15.4) βδr+1 = 0.Then β represents an element {β} in the Ext-group
Er,0

2 = Extr
A

(X, Y )(15.1)
= Hr HomA(A•, Y )

= kernel δ∗r+1/ image δ∗r ,where
δ∗r : HomA(Ar−1, Y ) // HomA(Ar , Y ) .Using the a-resolution ΣsA• of ΣsX , we get aordingly for s ≥ 0 the bigraded Ext-group(see (6.1)),

Er,s
2 = Extr

A
(ΣsX, Y ).We shall de�ne a di�erential(15.5) d2 = dr,s

2 : Er,s
2

//Er+2,s+1
2 .Moreover, indutively for m ≥ 2 we onsider subquotients Er,s

m of Er,s
2 , together withdi�erentials(15.6) dm = dr,s

m : Er,s
m

//Er+m,s+m−1
msatisfying dmdm = 0, and

Er,s
m+1 = kernel(dr,s

m )/ image(dr−m,s−m+1
m ).



20 britishH.-J. BAUES AND D. BLANCWe all Er,0
m for m = 2, . . . , n + 1 the higher order Ext-groups assoiated to the n-th orderresolution K of X above. replaing X by ΣsX , we obtain the groups Er,s

m , aordingly.15.7. De�nition. Let β ∈ Er,0
m+1 be represented by {β} ∈ Er,0

2 (1 ≤ m ≤ n), and let L be a
(m−)�order hain omplex

L : Z(∞, r − 1)m−1
⊗

//T(m− 1)based on the diagram
//Ar+m+1

// . . . //Ar+1
//Ar

β //Y ,in A. We assume also that L restrited to Z(∞, r) oinides with the (m − 1)-skeleton of K in
T(m− 1). The boundary property in T(m) shows that there is a funtor

L̂ : Z(∞, r − 1)m
⊗

//T(m)whih is a pre-hain omplex suh that L̂ restrited to Z(∞, r) oinides with the m-skeleton of
K, and suh that the (m − 1)-skeleton L̂(m − 1) of L̂ satis�es qL̂(m − 1) = L in T(m − 1).We then obtain the obstrution

OL̂(r + m + 1, ∂Im+1) = OB(b1, . . . , bm+1) ∈ HomA(ΣmAr+m+1, Y ) ,where B = T m
0 and

L̂(r + m + 1, ∂Im+1) =






b1 = L̂(r + m + 1, ∅ ⊗ Im),

bk+1 = L̂(r + m + 1, Ik ⊗ Im−1), 1 ≤ k ≤ m− 1,

bm+1 = L̂(r + m + 1, Im ⊗ ∅)(see (4.5)). Now the element OL̂(r + m + 1, ∂Im+1) represents the di�erential
dr,0

m+1(β) ∈ Er+m+1,m
m+1 .15.8. Theorem. Let T(≤ n) = Nul≤n C be the Σ-trak algebra given by the omplete Σ-mappingalgebra C of Example 7.3. Then De�nition 15.7 yields a well de�ned sequene of Ext-groups Er,s

mfor m = 2, . . . , n + 2. These groups depend on the weak equivalene lass of the Σ-trak algebra
T(≤ n), and not on the hoie of the n-th order resolution of X.15.9. Theorem. Let T(≤ n) = Nul≤n C be the Σ-trak algebra given by the dual C of theEilenberg-Ma Lane Ω-mapping algebra. Then the Ext-groups Er,s

m (2 ≤ m ≤ n + 2), yield the
m-term Em of the Adams spetral sequene whih onverges to the stable homotopy set {Y, X}for �nite spetra X and Y .For n = 1 this result is proved in [BJ2, Setion 7℄.16. Stritifiation of higher order resolutionsIn this setion we use the striti�ation of higher order resolutions to prove Theorems 15.8 and15.9.Let C be a Σ-mapping algebra as in Example 7.3. Hene C is given by an underlying modelategory and ubes

In −→ MorC(X, Y )having an adjoint(16.1) (In ×X)/(In × ∗) −→ Y .Here (I×X)/(I×∗) is the pointed ylinder of X . We then have the additive ategory A = π0C,and the full additive subategory a = π0{X} given by the lass of spetra X in 7.3. We de�ne thefull subategory â, with(16.2) a ⊆ â ⊆ A .Here â onsists of all abjets A in A whih are isomorphi in A to an objet in a.



britishHIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRAL SEQUENCE 2116.3. De�nition. Let T be an n-graded ategory (suh as Nuln C or nuln C) with a quotientfuntor q : T0 → A. Let K, L : Z(∞,−1)n
⊗ → T be funtors of n-graded ategories. A weakequivalene τ : K → L over X is a natural transformation τ whih for objets i in Z⊗ onsists ofa map

τi : Ki → Li in T0whih indues an isomorphism qτi in A. For i = −1, the map τ−1 : K−1 = X = L−1 is theidentity of X . For a morphism V : i→ j in Z⊗, we have the ommutative diagram in T:
Ki

τi //

K(V )

��

Li

L(V )

��
Kj

τj // Ljor equivalently, τjK(V ) = L(V )τi. Let ∼ be the equivalene relation generated by weak equivalenesover X .16.4. Lemma. K, L : Z(∞,−1)n
⊗ → Nuln C be n-th order resolutions of X. If K ∼ L are weaklyequivalent over X, then the higher Ext-groups de�ned by K and L are isomorphi.We shall show that the higher Ext-groups atually do not depend on the hoie of resolution of

X . For this, we use the striti�ation of resolutions.16.5.De�nition. Let T be an n-graded ategory (like Nuln C or nuln C) and let K : Z(∞,−1)n
⊗ →

T be a funtor of n-graded ategories. Then we say that K is N -strit with N ≥ 0 if for all i ≤ Nand k = 1, . . . , n we have K(i, Ik) = o. This shows that δi = K(i, ∅) : Ki → Ki−1 yields a sequeneof maps in T0

KN
δ
−→ KN−1

δ
−→ . . .

δ
−→ K0

δ
−→ K−1with K−1 = X and δδ = o This is a strit hain omplex in T0.We say that K is N -�brant if there are �ber sequenes

Zi
ji
−→ Ki

p
→→ Zi−1 p ◦ ji = o ,in the model ategory with δi = ji−1p for i < N , and δN admits a fatorization

KN
p
−→ ZN−1

jN−1

−−−→ KN−1 .Moreover, K is N -exat if for i < N and A in a the indued sequene
HomA(A, Zi) → HomA(A, Ki) → HomA(A, Zi−1)is a short exat sequene of abelian groups.16.6. Theorem. Let n ≥ 1 and N ≥ 0, and let K : Z(∞,−1)n

⊗ → Nuln C be an n-th order resolutionof X based on the a-resolution A• of X in A. Then there exists an N -(strit, �brant, exat) n-thorder resolution L of X based on an â-resolution Â• of X in A suh that L ∼ K are weakly equivalentover X.Here we use the large ategory â in (16.2). The resolutions A• and Â• yield by the weakequivalene L ∼ K over X the ommutative diagram in A:
. . . // A1

δ //

∼=

��

A0

∼=

��

δ // X

=

��
. . . // Â1

δ // Â0
δ // XHere the vertial arrows are isomorphisms in A and we have Ai = Ki and Âi = Li for i ≥ −1.16.7. Remark. The dual of Theorem 16.6 holds for oresolutions.



22 britishH.-J. BAUES AND D. BLANCProof of Theorem 16.6 for n = 1. We use indution over N . Assume the result is true for n = 1and N ≥ 0. Then the map p with δN−1 = jp admits a fatorization(16.8) p : KN
// ∼ // Ln

p // // ZN−1whih de�nes Ln. Hene we get the diagram(16.9) KN+1

δ

��

o

}}

LN

����

KN∼
oo

p

��

H +3

ZN−1

��

ZN−1

j

��
LN−1 KN−1Here H = K(N + 1, I1) satis�es pH : o⇒ o, so that pH is a map α : ΣKN+1 → ZN−2 whih isnullhomotopi, sine jN−2α ≃ o as follows from the obstrution property of K and N -exatness.The lift of jN−2α ∼ o through pN−1 shows that the trak H an be represented by a homotopy

H : pδ ≃ o; that is, the 1-trak {jN−1H} oinides with H . We then get the following diagramwith the ylinder IKN+1 and inlusions i0, i1 of the ylinder. We set LN+1 := KN+1.(16.10) LN+1

δ

��
o

''

// i0 // IKN+1

Ĥ

yyttt
t
t
t
t
t
t
t

KN+1

��
o

ww

oo
i1

oo

LN

����

KN

��

oo
∼

oo H +3

ZN−1 ZN−1Here Ĥ is a lift of H through pN , so that the diagram ommutes with pN Ĥi0 = o. Hene for
δ = Ĥi0, the left hand side is (N + 1)-strit and (N + 1)-�brant. Moreover, the left hand side is
(N + 1)-exat, that is:(16.11) (pN )∗ = HomA(A, pN ) : HomA(A, LN ) → HomA(A, ZN−1)is surjetive for all A in a. In fat, we have for α ∈ HomA(A, ZN−1) the equation δjN−1α = 0,so that by exatness of A• we have jN−1α = δβ = jN−1pNβ, so that α = pNβ by injetivity of
(jN−1)∗. Moreover, (jN )∗ is injetive sine we have the �ber sequene where HomA(A, ΩpN ) =
HomA(ΣA, pN ) is surjetive, sine ΣA ∈ a.We now onstrut weak equivalenes(16.12) L

i0−→ R
i1←− Kwhere i0 and i1 are the identity in degrees < N . In degree N the resolution L is given by thediagram above. In dimension 0, diagram (16.12) is given by the ommutative diagram:(16.13) . . . // KN+2

//

��

KN+1
//

��

KN
//

��

∼

��

KN−1
// . . .

. . . Iδ // IKN+2
Iδ // IKN+1

Ĥ // LN
// KN−1

// . . .

. . . // KN+2
//

OO

KN+1
//

OO

LN
// LN−1

// . . .



britishHIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRAL SEQUENCE 23It is easy to �nd appropriate R(N + 1, I1), R(N + 2, I1), and R(M, I1) = IK(M, I1) for
M ≥ N + 3, so that (16.12) is well de�ned. Here we use the adjoint maps in (16.1). Thisompletes the proof of Theorem 16.6 for n = 1. �16.14.Transport Lemma. Let K be an n-th order resolution of X in Nuln C with (n−1)-skeleton
K(n−1). Let

L(n−1) f
−→ K(n−1) g

−→ R(n−1) in Nuln Cbe weak equivalenes over X. Then there exist unique n-th order resolutions L and R in Nuln Ctogether with weak equivalenes
L

f̃
−→ K

g̃
−→ Rwhih, restrited to (n− 1)-skeleta, oinide with f and g respetively.Proof. We use Proposition II.2.11 in [B1℄ for sets of n-traks. �16.15. Lemma. Let q : nuln C → Nuln C be the quotient map of Setion 2 and let qK, qL be n-thorder resolutions of X in Nuln C . If qK ∼ qL are weakly equivalent, then also K ∼ L are weaklyequivalent over X in nuln C.16.16. Lemma. Let n ≥ 2 and N ≥ 1, and let K be an n-th order resolution of X in Nuln C .Assume that the (n− 1)-skeleton K(n−1) in nuln C is (N − 1)-(strit, �brant, exat). Then there isan n-th order resolution L of X whih is is N -(strit, �brant, exat), suh that L ∼ K are weaklyequivalent.Proof. Let i ≤ N . Sine the (n− 1)-skeleton is strit, the n-trak K(i, In) is given by an element

αi ∈ HomA(ΣnKi, Ki−n−1) i− n− 1 ≥ −1 .By the obstrution property of K we have δαi ± αi−1δ = 0.We now use the indution over i and assume αj = 0 for j < i. Then δαi = 0, and theexatness yields β with αi = βδ. We onstrut weak equivalenes L→ R← K in Nuln C whihin dimension 0 are given by the ommutative diagram
. . . // Ki+1

//

��

Ki
//

��

Ki−1
// . . . , K

i0

��
. . . Iδ // IKi+1

// IKi
// Ki−1

// . . . , R

. . . // Ki+1
//

OO

Ki
//

OO

Ki−1
// . . . , L

i1

OOThe (n− 2))-skeleton of R is strit. We de�ne R(i, In−1) by β. Then we an hoose R(i, In) suhthat i0 is a well-de�ned map and L is i-strit in Nuln C . �Proof of Theorem 16.6 for n ≥ 2. By indution on n, we assume that the Theorem holds for n−1.Let K be a resolution of X in Nuln C, and let K(n−1) be the (n − 1)-skeleton of K in nuln C.For qK(n−1) we get by assumption a weak equivalene qK(n−1) ∼ qL(n−1), where L is N -strit.Hene by Lemma 16.15 we have K(n−1) ∼ L(n−1), and by the Transport Lemma 16.14 we get
K ∼ L in Nuln C, where L(n−1) is strit. Now Lemma 16.16 yields L ∼ L′ in Nuln C, where
L′ is N -strit. �Proof of Theorem 15.8. Let K and L be two resolutions of X in Nuln C. By Theorem 16.6 wehave L ∼ L′ and K ∼ K ′, where L′ and K ′ are N -(strit, �brant, exat) for large N . This yieldsa map of spetral sequenes EK → EL whih indues an isomorphism on the E2-term. Hene
EK → EL is also an isomorphism. �Proof of Theorem 15.9. An N -(strit, �brant, exat) oresolution of X for large N , as in Remark16.7, orresponds to the X-oaugmented sequene in [BJ2, �6.7℄ given by the Adams �ber tower[BJ2, 7.1℄. �16.17. Remark. Striti�ation results for ∞-homotopy ommutative diagrams appear in [BV, Theo-rem IV.4.37℄ and [DKS, Theorem 2.4℄, inter alia. However, these do not yield the preise ase neededfor Theorem 16.6. The expliit onstrution given in this ontext may be of independent interest.



24 britishH.-J. BAUES AND D. BLANC17. The differential d2The �rst interesting higher order Ext3-group involves the d2-di�erential of the spetral sequene,whih we now desribe:Let T(≤ 1) be a Σ-trak algebra and let K be a resolution in T(1) of X , based on A• in
A, see (15.2). Then we de�ne

d2 : Extr
A

(X, Y ) // Extr+1
A

(ΣX, Y )as follows. For {β} ∈ ExtrA(X, Y ) with β : Ar → Y in A, we have βδr+1 = 0, so that thereis a 1-trak H with ∂1H = βδr+1. On the other hand K yields a 1-trak G with ∂1G = δr+1δr+2.Then the obstrution of De�nition 15.7 is(17.1) ω = OL̂(r + 2, ∂I2) = O(Hδr+2, βG) ∈ [ΣAr+2, Y ]and this element represents d2{β} = {ω}.17.2. Lemma. The di�erential d2 is well de�ned.Proof. We �rst hek that ω is a oyle. In fat,
ω(Σδr+3) = O(Hδr+2, βG)(Σδr+3)

= O(Hδr+2δr+3, βGδr+3)(1)
= O(Hδr+2δr+3, βδr+1G

′)(2)
= 0.(3)Here (1) holds by na,turality of O. Moreover, G′ in (2) is the 1-trak with ∂1G′ = δr+2δr+3 givenby the resolution K so that O(Gδr+3, δr+1G

′) = 0. Hene by naturality also O(βGδr+3, βδr+1G
′) =

0, so that (2) holds by the omplement rule in the Appendix below. Finally (3) holds by the trivialityrule.Next we show that {ω} does not depend on the hoie of H . If we hoose H ′ instead, there isan α with H ′ = H + α, and we get
ω′ = O((H + α)δr+2, βG) = ω ± αδr+2by the ation rule. Hene ω − ω′ is a oboundary, so that {ω′} = {ω}.Finally, we hek that d2{β} is trivial if β is a oboundary � that is, β = β′δr. In fat, wean then hoose H to be the 1-trak β′G′′, where G′′ with δ1G′′ = δrδr+1 is given by K, sothat O(G′′δr+2, δrG) = 0. Hene also O(β′G′′δr+2, β

′δrG) = 0, so that O(Hδr+2, βG) = 0. �The Lemma is proved in [BJ2℄ in the ontext of trak ategories, above we use only 1-trakategories. The proof that d2d2 = 0 requires the produt rule below.Next we prove that the assumption on L in De�nition 15.7 is satis�ed for m = 2. This leads tothe de�nition of the di�erential d3.17.3. Lemma. Let d2{β} = 0. Then for m = 2 here is a hain omplex L as in De�nition 15.7.Proof. The assumption d2{β} = 0 shows that ω = O(Hδr+2, βG) = αδr+2 is a oboundary.Hene we get by the ation rule H ′ = H ± α, so that O(H ′δr+2, βG) = 0. Hene we de�ne thehain omplex L by H ′ and by K. �In the ontext of a Σ-trak algebra T(≤ n) (n ≥ 1), the following result an be proved whihis the higher dimensional analogue of Lemma 17.2.17.4. Proposition. Given L, L̂ and
ω = OL̂(r + m + 1, ∂Im+1)as in De�nition 15.7, then ω is a oyle, that is:

ω(Σmδr+m+2) = 0 .Moreover, if β is a oboundary, then L and L̂ an be hosen suh that ω = 0. Let L be given andlet L̂, L be two hoies as in De�nition 15.7. Then ω = OL(r + m + 1, ∂Im+1) and ω di�er by aoboundary; that is: ω − ω = α(Σmδr+m+1).



britishHIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRAL SEQUENCE 25Appendix: Complete trak algebrasDe�nition 15.7 of the di�erential dm+1 makes sense in any Σ-trak algebra T(≤ n), but ingeneral one annot show that it has the properties needed to de�ne the higher Ext-groups, suhas dm+1dm+1 = 0. The striti�ation proess desribed in Setion 16 shows that the higher Ext-groups are well-de�ned in the Example 7.3, and that the di�erential in the Adams spetral sequeneis indeed given by De�nition 15.7.We now introdue the notion of a omplete Σ-trak algebra, to ollet together the assumptionsneeded to show that the di�erential desribed above yields well-de�ned higher Ext-groups. Theseassumptions are satis�ed in partiular for the Σ-trak ategory Nul≤n C, where C is a ompletemapping algebra as in De�nition 7.2.Let C be a omplete Σ-mapping algebra. Then the endofuntor Σ : C −→ C indues anendofuntor(18.1) Σ : Nul≤n C −→ Nul≤n Cof Σ-trak algebras satisfying(18.2) ΣOB(b1, . . . , bk) = OB(Σb1, . . . , Σbk)for eah left ubial ball of dimension ≤ n, see (11.1) (3).18.3. De�nition. Let T(≤ n) be a Σ-trak algebra and let
Σ : T(≤ n) //T(≤ n)be an endofuntor of T(≤ n), similarly to (18.1), satisfying (18.2), suh that Σ indues theendofuntor Σ : A −→ A of the Σ-algebra A. Then T(≤ n) is a omplete Σ-trak algebra if thesum rule and the produt rule below are satis�ed.18.4. De�nition (sum rule). Let m ≤ n. Given a pre-hain omplex L in T(m) based on(1) Y A0

αoo A1
δ1oo . . .oo Am+1

ooand given a pre-hain omplex L′ in T(m− 1) based on(2) Y ΣA1
βoo ΣA2

Σδ2oo . . .oo ΣAm+1
oosuh that L′ restrited to Z(m + 1, 1) oinides with ΣL, there exists a pre-hain omplex L′′in T(m) based on (1) suh that L′′ restrited to Z(m + 1, 0) oinides with L and(3) OL′′(m + 1, ∂Im+1) = OL(m + 1, ∂Im+1) +OL′(m + 1, ∂Im)‘.This is the sum rule in dimension m.18.5. Proposition. The sum rule is satis�ed in Nul≤n C in (18.1).Proof. Let I ≈ [0, 2] = I ∪ I be the homeomorphism of intervals arrying t ∈ I to 2t. Then wehave:

Ik+1 = I × Ik ≈ (I ∪ I)× Ik = Ik+1 ∪ Ik+1 .(1)for eah k ≥ 0.For eah j = 1, . . . , m + 1, L′ yields the left (j − 1)-ube aj = L′(j + 1, Ij−1) in
MorC(ΣAj+1, Y ), whih by τΣ in De�nition 7.2 yields the j-ube aj in MorC(Aj+1, Y )adjoined to τΣaj . Using (1), we de�ne the j ube

L′′(j + 1, Ij) = L(j + 1, Ij) ∪ aj .This de�nes L′′ ompletely, sine L′′ restrited to Z(m + 1, 0) oinides with L. One an nowhek that the sum formula (18.4) (3) holds. �Let T be an (n+k)-ategory enrihed in left ubial (n+k)-sets and let Tn be the n-skeleton of
T. Then Tn is an n-graded ategory enrihed in n-ubial sets. We onsider a pre-hain omplex

R : Z(∞, 0)n
⊗

//Tn .



26 britishH.-J. BAUES AND D. BLANC18.6. De�nition. A hain module with operators in R is a funtor L whih arries a morphism
V : i −→ −1 (i ≥ 0) in Z(∞,−1)n

⊗ to an element
L(V ) ∈MorT(R, Y )dim(V )+ksuh that the inlusion property
L(V ) = (dV,W ⊗ Ik)∗L(W )holds if V is in the boundary of W and suh that for a omposite V ⊗ V ′ of morphisms in

Z(∞,−1)n
⊗ the equation

L(V ⊗ V ′) = L(V )R(V ′)holds, where the right hand side denotes the omposite in the (n + k)-ategory T.18.7. Lemma. A hain module L with operators in R is determined by the elements
L(m, Im) ∈ MorT(Rm, Y )m+kwhere I0 = ∅ and m = 0, . . . , n.Now let B = B1 ∪ . . .∪Bs be a left ubial ball of dimension k with ells Bi and gluing maps

de,i as in De�nition 9.2). An s-tuple (L1, . . . , Ls) of hain modules Li with operators in Rsatis�es the gluing ondition in B if for V : m→ −1 we have(18.8) (Idim(V ) × de,i)
∗Li(V ) = (Idim(V ) × de,j)

∗Lj(V ) .The left ubial ball C = T n
0 has ells C1, . . . , Cn+1. The produt B × C is a left ubialball with ells Bi × Cj . Let (c1, . . . , cn+2) = ∂In+1, see (4.4).18.9. Lemma. Given (L1, . . . Ls) as in (18.8) we obtain the tuple of (m + k)-ubes (r = n + 1)

Li(r, cj) satisfying the gluing ondition in B × C, so that the obstrution
OB×C(Li(r, cj), i = 1, . . . , s and j = 1, . . . , n + 1) in HomA(Σn+kRr, Y )is de�ned in the Σ-trak algebra T = T(n + k). Also the tuple Li(0, ∅) satis�es the gluingondition, so that the obstrution

OB(L1(0, ∅), . . . , Ls(0, ∅)) ∈ HomA(ΣkR0, Y )is de�ned in T(k).18.10. De�nition (produt rule). Let R and L1, . . . , Ls be given as above where R is based on
. . . //Rn+1

//Rn
// . . .

δ1 //R0.Let α ∈ HomA(ΣkR0, Y ) be given by OB(Li(0, ∅)). Then there exists a pre-hain omplex L′based on
ΣkRn+1

//ΣkRn
// . . .

Σkδ1 //ΣkR0
α //Ysuh that the equation

OC(L′(n + 1, ∂In+1)) = OB×C(Li(0, cj))holds in HomA(Σk+nRn+1, Y ) and L′ restrited to Z(n + 1, 0) oinides with ΣkR. This isthe produt rule in T(n + k).18.11. Proposition. Let C be a omplete Σ-mapping algebra. Then Nul≤(n+k)(C) satis�es theprodut rule.Proof. We have the homeomorphism Sk = B/∂B, so that we an replae ΣkRi by (B/∂B)∧Ri.Then gluing the various Li yields L′. �18.12. Remark. If T(≤ 2n) is a omplete Σ-trak algebra (De�nition 18.3) the higher Ext-groups
Er,s

m are well-de�ned by De�nition15.7 for m = 2, . . . , n+2. A proof an be given along the lonesof the argument given below to show that d2d2 = 0.Sine a omplete Σ-mapping algebra C yields a omplete Σ-trak algebra Nul≤2n(C), the higher
Ext-groups are well de�ned in this ase.



britishHIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRAL SEQUENCE 2718.13. Example. We prove that d2d2 = 0, as an appliation of the produt rule. By (15.3) weget the diagram
Ar+4

δ4 // Ar+3
δ3 // Ar+2

δ2 //
↑G

o

%%
Ar+1

δ1 //

↓F

o

;;Ar

β // Y

R2 R1 R0For B = T 1
0 = B1 ∪ B2, we hoose L1(0, ∅) = Fδ2 and L2(0, ∅) = βG, where F and G are

1-ubes with G = K(r + 2, I1) given by the resolution K. Then
α = d2β = OB(L1(0, ∅), L2(0, ∅)).(1)Now let C = T 1

0 = C1 ∪C2 and (c1, c2) = (I1 ⊗ ∅, ∅ ⊗ I1). Then Li(2, cj) is de�ned as follows:
L1(2, c1) = L1(2, I1 ⊗ ∅) = FK(r + 3, I1)δ4

L1(2, c2) = L1(2, ∅ ⊗ I1) = Fδ2K(r + 4, I1)
L2(2, c1) = L2(2, I1 ⊗ ∅) = βK(r + 3, I2)δ4

L2(2, c2) = L2(2, ∅ ⊗ I1) = βK(r + 2, I1)K(r + 4, I1)Now the produt rule shows that
d2d2β = d2α = OB×C(Li(0, cj)) = 0(2)and the rules in a 2-trak ategory show that this obstrution is trivial. In fat, we have

O(I1I1∅, ∅I2∅, I1∅I1, ∅I1I1)(3)
=O(I1I1∅, ∅∅I2, I1∅I1)(4)
=0(5)Here (3) is the obstrution (2) and (4) is a onsequene of the omplement rule and
O(∅I2, I1I1, I2∅) = 0as follows from the fat that K is a resolution, the naturality yields
O(∅∅I2, ∅I1I1, ∅I2∅) = 0.Moreover (5) follows from the triviality rule.Referenes[A1℄ J.F. Adams, �On the struture and appliations of the Steenrod algebra�, Comm. Math. Helv. 32 (1958),180�214.[A2℄ J.F. Adams, �On the non-existene of elements of Hopf invariant one�, Ann. Math. (2) 72 (1960), 20�104.[B1℄ H.-J. Baues, Algebrai homotopy, Cambridge studies in Advaned Math. 15, Cambridge 1989, ISBN 0-521-33376-8.[B2℄ H.-J. Baues, The Algebra of seondary ohomology operations, Progress in Math. 247, Birkhäuser, 2006[B3℄ H.-J. Baues, �Higher order trak ategories and the algebra of higher order ohomology operations�, Geor-gian Math. J. 17 (2010), 25�55.[BB℄ H.-J. Baues & D. Blan �Comparing ohomology obstrutions�, J. Pure & Appl. Alg. 215 (2011), 1420�1439.[BD℄ H.-J. Baues & W. Drekmann, �The ohomology of homotopy ategories and the general linear group�,

K-Theory 3 (1989), 307�338.[BJ1℄ H.-J. Baues & M. Jibladze, �Classi�ation of abelian trak ategories�, K-Theory 25 (2002), 299�311[BJ2℄ H.-J. Baues & M. Jibladze, �Seondary derived funtors and the Adams spetral sequene�, Topology 45(2006), 295�324.[BM℄ H.-J. Baues & F. Muro, �The homotopy ategory of pseudofuntors and translation ohomology�, J. PureAppl. Alg. 211 (2007), 821�850[BW℄ H.-J. Baues & G. Wirshing, �Cohomology of small ategories�, J. Pure Appl. Alg. 38 (1985), 187�211[BJT℄ D. Blan, M.W. Johnson, & J.M. Turner, �Higher homotopy operations and ohomology�, J. K-Theory 5(2010), 167�200.[Bo℄ J.M. Boardman, �Homotopy Strutures and the Language of Trees",�, Algebrai Topology (Univ. Wisonsin,Madison, WI, 1970), Pro. Symp. Pure Math. 22, AMS, Providene, RI, 1971, 37�58.[BV℄ J.M. Boardman & R.M. Vogt, Homotopy Invariant Algebrai Strutures on Topologial Spaes, Springer--Verlag Le. Notes Math. 347, Berlin-New York, 1973.
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