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HIGHER ORDER DERIVED FUNCTORS AND THE ADAMS SPECTRAL
SEQUENCE

HANS-JOACHIM BAUES AND DAVID BLANC

ABsTrACT. Classical homological algebra considers chain complexes, resolutions, and derived func-
tors in additive categories. We describe “track algerrbas in dimension n”, which generalize additive
categories, and we define higher order chain complexes, resolutions, and dervied functors. We show
that higher order resolutions exist in higher track categories, and that they determine higher order
Ext-groups. In particular, the E,-term of the Adams spectral sequence (m <n+2) is a higher
order Ext-group, which is determined by the track algebra of higher cohomology operations.

INTRODUCTION

Topologists have been working on the problem of calculating the homotopy groups of spheres for
around 80 years, and many methods have been developed for this purpose. One of the most useful
is the Adams spectral sequence FEs, Fs, Fy, ..., , converging to the p-completed stable homotopy
groups of the sphere. Adams computed the Fs-term of the spectral sequence, and showed that it is
algebraically determined:

E;t = EXtiit(Fpan) )
where the derived functor Ext is taken for modules over the mod p Steenrod algebra A of primary
mod p cohomology operations (cf. [AT]). Since the work of Adams in [A2], it has been generally
believed that higher order cohomology operations can be used to compute the higher terms of the
Adams spectral sequence.

However, it remained unclear what kind of algebra B,y would be formed by cohomology
operations of order (n+1). For n =0, the algebra By = A is the Steenrod algebra, which
determines Fs. It is shown in [B2] that the algebra of secondary cohomology operations, By, can
be described by a differential algebra B, which was computed in [loc. cit.], leading to the calculation
of E3 as a“secondary Ext-group” over 5. For this, the notion of secondary derived functors was
developed in [BJI2] in the context of track categories — that is, categories enriched in groupoids.

It is the purpose of this paper to exhibit higher order derived functors in track algebras — in
particular, higher order Ext-groups — which allow the calculation of the higher terms E** (n > 2)
in the Adams spectral sequence. This generalizes Adams’ original result for n = 2, and the results
in [B2, B.J2] for n = 3.

The elements of the Steenrod algebra A are (stable) homotopy classes of maps between mod p
Eilenberg-Mac Lane spaces. Here we consider the space of all such maps, which together constitute
the FEilenberg-Mac Lane mapping algebra (see Section [ below). We associate with each mapping
algebra a track algebra of dimension n (n > 0) (see Section [l below), and prove as our main
result:

Theorem A. Higher order resolutions exist in a track algebra of dimension n, and such resolutions
determine higher order Ext-groups E,, for m <n+2. Ifthe track algebra is the one determined
by the Eilenberg-Mac Lane mapping algebra, these higher order Ext-groups compute the FE,,-terms
of the Admas spectral sequence for m < n + 2.

The track algebra of dimension n associated to the Eilenberg-Mac Lane mapping algebra consti-
tutes the algebra B,y of (n+ 1)-st order mod p cohomology operations. It is conjectured in B3]
that B(,) can be computed in terms of a suitable differential algebra for all n >0, as is the case
for n=0 and n=1.
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1. LEFT CUBICAL SETS

We first recall some properties of cubical sets, and introduce the notion of left cubical sets, which
are used to describe higher nullhomotopies.

Let I =[0,1] be the unit interval and let I"™ =1 x ---x I be the n-dimensional cube. We
have inclusions di: "1 =T"1x {e} x """ CI"® for 1<i<n and €€ {0,1}. Here I° is
a single point.

Let O denote the category whose objects are cubes I™  (n > 0), and whose morphisms are
generated by d’ and the projections s*: " — ["71

A pointed cubical set is a functor K : O°® — Set™, where Set™ is the category of pointed
sets. As usual, K(I™) isdenoted K, and € K, isthe base point. We write dim(a) =n if
a € K,,. See [C], [1], or [I] for further details on category of cubical sets.

1.1. Definition. Let O be the subcategory of O consisting of objects I™ (n > 0) and morphisms
generated by di. A left cubical set is a functor O — Set*. We write 9' for (di)* : Ky — Kp—1
(1 < i < n). We also consider the full subcategories 0, cO consisting of objects I™
(0 <m <n). A functor ﬁzp — Set™ s called a left n-cubical set.

1.2. Remark. Given a pointed cubical set K, one obtains a left cubical set nul(K) by setting
nul(K), = {a€ K, | (d)*a=x* for 1<i<m}.

Accordingly, one gets the left n-cubical set nul,(K) as a restriction of nul(K) to O, .

Note that nul is a functor from pointed cubical sets to left cubical sets. Its left adjoint
U : (Set*)':'op — (Set™)"””  may be thought of as a “universal enveloping cubical set” functor,
described as follows: given a left cubical set M, the pointed cubical set U (M) has one n-cube I
for each left n-cube a € M, with (d})*I" = * (the base point) for each 1 <i < n. In addition,

there is a degenerate (n + k)-cube:
(1.3)  (s5)*...(s")*I" in U(M) for each iterated projection s7*...s/t : "% — " in O

(with identifications according to the cubical identities).
It is readily verified that U(M) is indeed a pointed cubical set, with a natural isomorphism:

(1.4) H e (M, mul(K)) = Hom ggpeymor (U(M), K)

Om(Set

for K € (Set*)®” and M € (Set*)':'op. Moreover, both functors preserve dimensions of all
cubes, so they commute with the n-skeleton functor, yielding a left adjoint U, to nul,.

For any cubical set K, let Cx be the partially ordered set of all k-cubes (k> 0) of K, ordered
under inclusion. We have K 2 colimsce, I*, where each I* is thought of as a cubical set. We

use this to define a monoidal structure on SetDop, given by:
(1.5) K®L := colimyjce,, rrec, [tk
(see [ §3]). If K and L are pointed, there is a cubical smash functor

(1.6) KL = (K®L)/ ({*x} @ LIK ® {x})

on (Set*)H”, which also is also defined on (Set*)ﬁop. Moreover, nul and U are monoidal with
respect to ® on (Set*)5”  and (Set*)H ", respectively.

Now, let (X,*) be a pointed space and let SgX be the singular pointed cubical set: thus
(SgX), is the set of all maps I™ — X, with base point o: 1" — {x} C X.

Then, nul(X) = nul(SpX) is given by all maps a: 1" — X with adi =0 for 1<i<n.
Accordingly, we let nul, (X) := nul, (SgX)

1.7. Definition. The left n-cubical set Nul,,(X) is defined by

nul(X),, for m <n,

Nul,,(X),, :=
) {nul(X)n/ ~ for n=m.

Here, we set a ~b for a,b € nul(X), if the maps a,b:I" — X are homotopic relative to
the boundary OI™ of the cube I". Let {a} be the equivalence class of a; we call {a} an n-track
in X.
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There is a surjective map of left n-cubical sets:
(1.8) nul, (X )—— Nul,,(X) ,

which is the identity in dimension < n and which carries a with dim(a) = n to the n-track {a}.
We point out that the left n-cubical set Nul,(X) is not the restriction of a cubical set.

1.9. Remark. Let A be the category with sets {1,2,...,n} (n > 0) as objects, and order
preserving injective maps as morphisms. There is an isomorphism of categories A = [0 which
carries {1,2,...,n} to I™ and carries {1,...,4,...,n} C{l,...,n} to dji. Here, i indicates

that we omit 7.

2. n-GRADED CATEGORIES ENRICHED IN LEFT CUBICAL SETS

Cubical sets, and left cubical sets, have a natural grading by the dimension of the cubes. Thus
categories enriched in (left) cubical sets are in particular graded categories, described as follows:

A graded set K is a sequence of sets K, (n >0). We write dim(z) =n if € K,,. An
n-set L is a finite sequence Ly, ..., L, of sets. For example, the n-skeleton Kj,..., K, of agraded
set is an m-set. A graded category G is a category in which each morphism f has a dimension
dim(f) > 0 such that the composition fg satisfies

dim(fg) = dim(f) + dim(g).

Thus, all morphism sets Morg(X,Y) are graded sets.
An n-graded category consists of morphism sets which are n-sets and composition fg is defined
if dim(f)+ dim(g) < n. For example, the n-skeleton of a graded category is an n-graded category.
An n-graded category enriched in left cubical sets is a n-graded category such that morphism sets
Mor(X,Y) are left n-cubical sets with operators (d})* = ' satisfying

. d'f)g for ¢ < dim(f
1) oi(tg) =49 < dim(f)
f(o g)  for i> dim(f)
Moreover, the zero morphisms o™ € Mor(X,Y), (n >0) satisfy
Ong — On—i-dim(g) and fom — Odim(f)-l-m-
For example, let C be a category enriched in (Top*, A), where A is the smash product of pointed
topological spaces. Thus for every X,Y € Obj(C), there is a zero morphism o € Morc(X,Y),

satisfying og =0 and fo=o0 forany f,g€ Morc. Then nul(C) is given by the left cubical
set nul(Morc(X,Y)). The composition f® g defined by

F@g: I x ™% Morg(Y, X) x Morg(Z,Y)—> Morc(Z, X) |,

where p is the composition in C. Thus nul(C) is a category enriched in left cubical sets as above.
The n-skeleton of nul(C), denoted by nul,, C, is given by the n-cubical sets nul, Morc(X,Y).
One has the quotient functor

nul,, C——= Nul,, C
given by the quotient maps:
nul, Morc(X,Y)—— Nul, More(X,Y)

(see ([CH)). Here, Nul, C is an n-graded category with the composition defined by the equivalence
class {f® g} for dim(f)+ dim(g) =n. The n-graded categories nul, C and Nul, C are
enriched in left n-cubical sets.

For n =0, the (0-graded) category

Nulo C= 7T()C

has morphisms X — Y given by the path components of Morc(X,Y).
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3. THE CHAIN CATEGORY Zg

A chain complex in any pointed category M may be defined as a pointed functor from a suitable
indexing category. To define higher order chain complexes, we require a more elaborate indexing
category, which we now describe.

Let x and J be elements which generate the free monoid

N := Mon(*,J) .
Let deg,dim: N — (Ngp,+) be monoid homomorphisms defined by
deg(x) =1 deg(J) =1
dim(*) =0 dim(J) = 1.
Elements in N are words which consist of letters x and .J. For example, V = %xJxJJ issuch
a word, with deg(V) =6 the length of the word V, and dim(V) =3 the number of letters J in
V. Let §) be the empty word, which is the unit in the monoid N.

We associate with .J the unit interval [ = [0,1] and with x the one point space {0}. For any
word V', let V be the space defined by

I it V=J
V=< {0} if V=x
VixVsy if V=Wl.

We say that V is in the boundary of W with V,W € N if there is an inclusion V C W. This
implies degV = degW and dimV < dimW. By projecting the spaces {0}, one gets the
homeomorphism

V o~ IdimV .

If V is in the boundary of W, there is a unique inclusion dyw of cubes in the category O (see
Definition [T]) such that

V i> IdimV

e

W = Jdim W
commutes.

Now, consider elements x and I, (n > 1), which generate the monoid

M := Mon(x,I,,n>1)/I,01, = Litm .
The multiplication in M is denoted by o. Here, Mon(x,I, : n > 1) denotes the free monoid. In

M, we divide out the relation I, o I, = Iy, for n,m > 1.
There is a canonical isomorphism of monoids

IR

M—N

which carries x to x and I, to the n-fold product J" = J---J. Using this isomorphism, we
obtain the functions deg and dim on M.
We introduce on M a further multiplication ® defined by

(3.1) VW = VoxoW for VW e M.

Here V x W is the product of elements V', x, W in the monoid M. The operation ® is associative,
but it has no unit. For the empty word 0§ € M, we get

P00 = Poxol =

3.2. Definition. We define the chain category Zg to be the following graded category: the objects
in Zg are the integers 4,j,... € Z. In addition to the identities 1;, with dim(1;) = 0, the
morphisms in Zg consist of

(i,V):i —L> i—degV —1=j
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for all V € M. The compositionof V:i—j and W:j— j—degW —-1=k (W e M),
is defined

(WaV):i Y2% i _degWeV)—1=Fk.
Here we have deg(W ® V) = degW +degV + 1, so that the composition is well defined. We also
omit ® in the notation of the composite.

More precisely, morphisms in Zg are pairs (i,V), where i € Z, V € M, and i is the source
of the morphism (:,V) (aslow written V :i — j). The target j satisfies j =i —degV — 1.

The category Zg is graded by dimension of elements in M. In fact, we have dim(W @ V) =
dim(W) 4+ dim(V). The n-skeleton Z{ of Zg (n >0) is an n-graded category. The 0-skeleton
Z% consists only of identities and of the morphisms V :i —i—degV — 1, where V is a power of
the element x in M.

If V=0, then 0:i —i—1 isin ZY. The compositionis 0 @0 =*:i— i—2, and so
on. We observe:

3.3. Lemma. The category Zg is freely generated by the morphisms (i,0) : 7 — i—1 and
(i,Iy) ;i —i—k—-1 for i€Z. k=>1.
4. HIGHER ORDER CHAIN COMPLEXES
We are now in a position to define the notion of a higher order chain complex:

Given an n-graded category T enriched in left n-cubical sets (for example, T = Nul,, C)
consider a functor of n-graded categories

we

K:Z4——~T

which carries an object ¢ € Z to the object K; := K(i) in T. We say that K satisfies the
inclusion property if the following holds:

Given morphisms V,W :4 — j in Z{ such that V is in the boundary of W, then the induced
morphisms K (V) and K(W) in T satisfy the equation

(4.1) K(V)=djwK(W) in Morp(K;, K;) .
Here dy,y, is defined by the structure of Morr(Kj;, K;) as a left cubical set.

4.2. Definition. A functor K satisfying the inclusion property EII) is called an n-th order
pre-chain complex in T.

Let N>M and Z(N,M)={ke€Z,N >k > M}. Then we obtain the full subcategory
Z(N,M)g C Zg
consisting of objects k € Z(N,M). We say that K is concentrated in Z(N,M) if K :
Z(N,M)% — T is a functor of n-graded categories.
Assume a quotient functor T® — A is given, which yields the induced morphisms
0 = K(1,0)s : K;——K,;_3 in A
for each ¢ € Z. We then say that K is based on the diagram

; i1
(4.3) Ky K K N K Ky

in the category A.
Now let C be a category enriched in pointed spaces with zero morphisms. For T = Nul,, C, we
consider a functor K with the inclusion property,

K Z%—>NulnC .

We have in Z¢ the (n + 1)-tuple of morphisms ¢ — i —n — 2:

(1,0 @ I,),
(4.4) (i,0Ln 1) = < (i, 1, @ 0),
(4,1, ®1Is), r+s=nr>1s>1
which yields the (n + 1)-tuple of n-tracks
K(i,0lh41) = (K(i,00 1), K(i,[y ® I,_1), ..., K(i,I,_1 ® 1)), K(i,I, ® 0)).
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These tracks are represented by maps I™ — Morc(K;, K;—n—2). In fact, these n-tracks yield up
to homotopy a well defined map

a: St 8(["+1)—> MOrc(KZ', Ki,n,Q)
on the boundary of the (n + 1)-cube. Hence, the map « yields an obstruction element
(45) OK(Z, 8In+1) S Dn(K“ Ki,nfg) =Tn MOrc(Ki, Ki,n,Q).

4.6. Definition. We say that K is an n-th order chain complexr in Nul, C if the obstruction
elements () vanish for all 4. This is the obstruction property of K.

Below, we study the properties of obstruction elements.

4.7. Definition. Let C be as above and let

1 2 On
(4.8) Ko< K, <" K, e Kns,  n>1

be a diagram in A = my(C). Consider all functors
K :7Z(0,n+2)——T = Nul,, C

satisfying the inclusion property, which are based on the diagram X). Each such functor yields
an obstruction element

OK(TL + 2, 8In+1) € Dn(Kn+2, Ko) =Tn MOrc(Kn+2, Ko)
The set of all these elements is the classical higher order Toda bracket
<51, ceey 5n+2> C Dn(KnJrQ, Ko)

(see [W1).

The set can be empty. If there exists a n-th order chain complex K based on the diagram ES),
then of course 0 € (d1,...,0n42) by the obstruction property of K.

5. THE W-CONSTRUCTION

An alternative description of higher order chain complexes can be given using the bar construction
WK, going back to Boardman-Vogt (see [BV], §3] and [Bal §6]). This construction is a topologically-
enriched “cofibrant replacement” for any small category I, which serves as the indexing category for
lax versions of functors K — Top. A cubically enriched variant of WK was defined in [B.JT],
§3.1] and [BBL §3.4]; we shall require the following pointed setting:

5.1. Definition. Let K be a small category enriched in (Set™, A) (so zero morphisms o are defined).
The pointed W-construction on K, denoted by W.,K, is the category enriched in ((Set*)H” ®)
with object set Obj K defined as follows:

First, for every a,b € Obj K, the underlying graded pointed category of W,K  has an
(indecomposable) morphism (n-cube) I} in W.K(a,b), associated to each composable sequence
(5.2) f.:(a:an+1%anhan,l...algaozb)
of length n+1 in K. In addition, W,K(a,b) has a degenerate (n+k)-cube (s/1)*...(s/*)*I},
for each iterated projection s7*...s7t : [*T* — [m in O (with identifications according to the
cubical identities). The zero morphism in degree k is I¥ := (s;)*...(s1)*I0, and we identify Iy,
with I7' whenever at least one of the maps fi,..., fn41 is 0. Then W,.K is freely generated
as a graded category with zero morphisms by these cubes. Composition in the category W,.K is
denoted by R®.

The cubical structure is determined by the face maps of the non-degenerate indecomposable cubes

Ii, and the cubical identities, as follows:
(a) The i-th 1-face of I} is I}le.l..o(fi-fiﬂ)o..,fnﬂ — that is, we carry out (in the category K)
the i-th composition in f,.

(b) The i-th 0-face of I7, is the composite I}, . ® I35, .

(c) The cubical structure on the composites I};@I; is defined by ([TH) (or EII)).
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5.3. Definition. Let T' be the category enriched in (Set*,A) with object set Z and a single
non-zero arrow di41:k+1—k foreach k€ Z, satisfying di odg+1 =0 for all k.

5.4. Proposition. Let M be a category enriched in cubical sets with zero morphisms. There is a
one-to-one correspondence between pointed cubical functors W,I' — M and pre-chain complezes in
nul M, which restricts to a one-to-one correspondence between pointed cubical functors sk, W,.I' —
M and n-th order pre-chain complexes in nul, M.

Proof. Since Zg is a free graded category, by Lemma B3l we can define a one-to-one functor of
graded categories @ : Zg — W,I'  which is the identity on objects by setting ®(i,0) := Igi and

; di—k .
O(i, [y) = 1%, for for=(i i1 ik i k1)
We can endow Zg with the structure of a category Zg enriched in ((Set*)Dop,®) by setting
dyw(W) =V if V.CW, and adding zero morphisms. Note that a functor K :Zg — nul M is
a pre-chain complex if and only if it induces a pointed cubical functor K: i@ — nul M.

The universal enveloping functor U : (Set*)ﬁop — (Set*)H”™  of Remark is monoidal with
respect to ®, so the adjunction ([[d]) extends to categories of enriched functors. Moreover, ®
induces a natural isomorphism of pointed cubical categories

(5.5) UZg) = W,T,

so left cubical functors Z® — nul M indeed correspond to pointed cubical functors W,I' —
M. Since this correspondence preserves the grading, the same is true for n-th order pre-chain
complexes. O

6. RESOLUTIONS AND DERIVED FUNCTORS

We now recall some basic definitions of resolutions and derived functors in the context of additive
categories:
Let A be a category enriched in abelian groups, i.e., a preadditive category. Then we denote the
morphism sets in A by
Homa (X,Y) = Mora (X,Y)
for objects X, Y in A. This is an abelian group, and morphisms f: X' — X and ¢g:Y — Y
in A induce homomorphisms Hom(f,Y) and Hom(X,g). Let a be a full subcategory of A.

6.1. Definition. Let X be an object in A. An a-resolution of X is a diagram

b2 o1 do

A.:( Al AO Afl)

in Awith A_; =X and A; € a for i >0, such that, for all objects B in a, the induced diagram
Hom(B, A,) is an exact sequence of abelian groups; in particular, Hom(B,dy) is surjective.
An a-coresolution of Y is a diagram

01

A = (A Ao
in A with Ay =Y and A; €a for i>0, such that for all objects B in a the induced diagram
Hom(A®, B) is an exact sequence of abelian groups. Here Hom(d1, B) is surjective.

The next result is proved in [B.J2, 1.3]:

6.2. Lemma. Suppose

(1) the coproduct of any family of objects of a exists in A and belongs to a again,

(2) there is a small subcategory g of a such that every object of a is a retract of a coproduct of a
family of objects from g,

then every object of A has an a-resolution.

The dual statement also holds: suppose

(8) the product of any family of objects of a exists in A and belongs to a again,

(4) there is a small subcategory g of a such that every object of a is a retract of a product of a family
of objects from g,

then every object of A has an a-coresolution.
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One obtains (3) and (4) by replacing the categories A and a, respectively, in (1) and (2) by the
opposite categories A°® and a°?. Given a functor F': A — A, where A is an abelian category
and F is linear (i.e., enriched in the category of abelian groups), then derived functors are defined
by the homology (respectively, cohomology)

(L F)(X) = Ho F'(Aa),
(R"F)(Y) = H'F(A*).

Here A, (respectively, A®) is a resolution of X (respectively, a coresolution of Y').
We need the following concept of a ¥-algebra which allows the definition of a bigraded Ext

-group.

6.3. Definition. A Y-algebra A = (A,a,X) is an additive category A together with an additive
subcategory a and an additive endofunctor ¥ : A — A of A which carries a to a and which
carries an a-resolution A, of X in A to an a-resolution XA, of XX in A. Dually, we define

an Q-algebra A = (A,a,Q) where Q carries an a-coresolution of X in A to an a-coresolution of
QX in A.

Given a Y-algebra A and objects X, Y in A, we define the bigraded Ext-group by the cohomology
(6.1) Ey® = Ext) (X°X,Y),
= H" Homa (X°A4,,Y),
= kernel Homa (2°6,41,Y")/ image Homa (3°4,,Y).

Here >»°* =Y o...0X% is the s-fold composite of 3. Such groups appear in the Es-term of the
Adams spectral sequence.

7. MAPPING ALGEBRAS

In this section we consider topological analogues of Y-algebras and Q-algebras of Definition 3,
in order to provide a setting for defining higher order resolutions, and thus higher order derived
functors.

7.1. Definition. Let C be a category enriched in pointed spaces with zero morphisms. Then C is
a X-mapping algebra if the category A = moC is a Y-algebra and the bifunctor (n > 1)

D, : A®® x A——= Ab

D, (X,Y) = m, Morc(X,Y)
satisfies
s : Dp(X,Y) = Homa (3" X, Y)

for Xina andY in A. Here X" =X o...0X is the n-fold composite of the endofunctor X of a.
Dually C is the Q-mapping algebra if the category A = 7(C is an Q-algebra and (n > 1)

T : Dp(X,Y) = Homa (X, Q"Y)
for X in A and Y in a.

7.2. Definition. A Y-mapping algebra C is complete if the endofunctor ¥ of A = 7(C is induced
by an endofunctor ¥ of C and if a binatural transformation

75 : Morg(ZA,Y)——=QMorg(4,Y)

is given, where we use the topological loop space functor on pointed spaces. Moreover, the functor
¥ : C — C preserves zero morphisms and coproducts in C.

An Q-mapping algebra C is complete if the endofunctor Q of A = 7yC is induced by an endo-
functor 2 of C and if a binatural transformation

70 : Morg (Y, QA)——=Q Morg (Y, A)

is given. Moreover, the functor € : C — C preserves zero morphisms and products in C. Iteration
of 7s (respectively, 7q) induces the isomorphisms 7y (respectively, 7q) in Definition [
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7.3. Example. There are a number of different simplicial model categories of spectra, including the
I-spaces of [BE], the S-modules of [EKMM], and the symmetric spectra of [HSS]. All of these have
pointed versions (cf. [Hovl, Prop. 1.1.8]). In this and later sections, we let Spec® be any category
of pointed spectra which is enriched in pointed topological spaces (or simplicial sets), with function
spaces of pointed maps

Mor(X,Y) =Map*(X,Y) for X and Y in Spec™ .

We always assume that X and Y are both fibrant and cofibrant in our chosen model category.

Clearly zero morphisms o : X — % — Y are defined in Spec®. Let X be a class of objects
in Spec® such that X is closed under coproducts and suspension X:, that is, for A, A’ € X we
have AV A',¥A € X. Then we have

{X} C Spec™ ,
where {X} is the full subcategory in Spec® with objects in X. Then C = Spec* with
a=my{X} CA=mnC isa complete X-mapping algebra.

Dually, let Y be a class of objects in Spec® such that ) is closed under products and loop
functor 2, that is, for B,B’ €Y, we have Bx B’ (2B €)). Then we have

{Y} C Spec”
where {Y} is the full subcategory in Spec® with objects in Y. Then C = Spec® with
a=m{Y} C A=mC isacomplete Q-mapping algebra.

7.4. Example. Let p be a prime and let H = H(Z/p) be the Eilenberg-Mac Lane spectrum. Let
Y be given by all products

QmHxQ"Hx...xQ"H
with k>0, n; >0 for i =1,...,k. Then C = Spec® with a = m{Y} is a complete
Q-mapping algebra, which we call the Eilenberg-Mac Lane mapping algebra. This is used in the
Adams spectral sequence.

7.5. Remark. In the examples of mapping algebras above the category C = Spec® is very large.
For computations, however, we consider only the mapping algebras C’ which are generated by
{X} (respectively, {¥}) and two further objects X and Y in Spec™.

8. EXISTENCE OF HIGHER ORDER RESOLUTIONS

We can use the definitions of Section [ to state our main results on resolutions, which will be
proved subsequently.
Let C be a Y¥-mapping algebra with a C A = npC. If a n-th order chain complex
K : Z(c0, —1)% — Nul,, C
is based on an a-resolution in A,
d2

51 do

Ae=1(... Ay Ao A_q),
of X =A_;, wesay that K is an n-th order resolution of X in Nul, C.
8.1. Resolution Theorem. If there exists an a-resolution A, of X in A, then there exists an

n-th order resolution K of X in Nul, C (n>1). In fact, given an a-resolution A, of X in
A, an n-th order resolution K of X exists which is based on A,

8.2. Remark. The Theorem shows that, if ‘'minimal’ a-resolutions exist (as in the case of the Adams
spectral sequence), then also an n-th order minimal resolution exists which is based on a minimal
resolution in A. This is of high importance for computations.

Dually, let C be a Q-mapping algebra with a C A = nyC. If an n-th order chain complex

L:7Z(+1,—00) — Nul,, C
is based on an a-coresolution in A

61 50 571

A® = (A A4 )
with A; =Y, we say that L is an n-th order coresolution of X in Nul, C.

Ap
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8.3. Dual Resolution Theorem. If there exists an a-coresolution A®* of Y in A, then there
exists an n-th order coresolution L of Y in Nul, C (n>1). In fact, given an a-coresolution A®
of Y in A, an n-th order coresolution L of Y exists which is based on A°.

8.4. Remark. In view of Lemma 3.6 (a) in [B.J2], a 1-order resolution in Nul; C is a secondary
resolution in the sense of [B.I2].

9. LEFT CUBICAL BALLS

For the proof of the Resolution Theorems and we require the notion of a left cubical ball,
which serves as a book-keeping device to describe the combinatorics of higher tracks, and allows us
to define the associated obstructions.

A ball of dimension n is a finite regular CW-complex B with a subcomplex 9B and a homeomor-
phism of pairs

(B",5"1) ~ (B,0B)
where E™ is the Euclidean ball. Two balls B, B’ are equivalent if there is a cellular isomorphism
B~ B’. A ball B is a union
B=DByU...UBy
of closed n-cells B; in B. We say that A is a sub-ball of Bif A=B;, U...UB;, for 1<i <
...<iy <k isaball and if for t < k, the closure of the complement B — A in B is also a ball,
denoted by Ap, sothat B= AU Ag.

If A is also a sub-ball of a ball C with S = AN A = AN Ac, then we obtain the union of

complements
ApUAc = Ap Uz Ao,

which is also a ball.

9.1. Example. Let T3 be the union of all cells I~ x {0} x ["*=1 in ["*1 andlet 77" be
the union of all cells 71 x {1} x ["**=! (i =1,...,n+1). Then T and T are balls of
dimension n, with n+ 1 closed n-cells.

9.2. Definition. A left cubical ball is a ball B with a O-vertex 0 € B — 9B with the following
properties. Each closed n-cell B; is equivalent to I™, and each closed (n — 1)—cell € is equivalent
to I"~!, such that for e C B, B; the diagram

;i > e < B
h]Tz Tz zThl
I n—1 Im
de,j I de (2

commutes. Here d.; and d.; are morphisms in the left cubical category 0. The vertex 0 is also
a vertex of each B; and the equivalence h;: I™ ~ B* carries 0 to 0. Moreover, the union

(TP Y U...Uh(TP ') = 0B
is the boundary of B.

Examples of left cubical balls of dimension 2 appear in in Figures [l and

N ®

FIGURE 1. Some left cubical balls of dimension 2
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FIGURE 2. A 2-dimensional left cubical ball

9.3. Example. The push out of " «—— T5’71 — I™, called the double of I™, is a left cubical
ball. Moreover, T is a left cubical ball.

9.4. Lemma. Let A be a sub-ball of B and C, where B and C are left cubical; then the union of
complements Ap U Ac s left cubical.

9.5. Remark. Let B be a left cubical ball of dimension n with k& closed n-cells. Then B is equivalent
to the double of I" for k£ = 2 and B is equivalent to 73 for k=n+1. For 2 <k <n+1,
such a ball does not exist. For k& > n + 1 there is a 1-1-correspondence between left cubical balls
(up to equivalence) and simplicial complexes homeomorphic to the (n — 1)-sphere S"~!. The
correspondence carries B to the boundary of a small neighbourhood of 0 in B.

10. OBSTRUCTIONS

Let X be a pointed space with 0 € X the base point. Let Bbe aballandlet a: B— X bea
map with a(dB) = 0. We obtain the map
(10.1) a:S"~FE"/S"'~ B/0B—*=X ,
which represents an element O(a) € m,(X) in the n-th homotopy group of X. Now let B =
Bi1U...UB; be aleft cubical ball. Then

ml.B ¢ B—A.Xx

is a left n-cube representing an n-track a; € Nul,, (X),.
Then for @ C BN B; we have the gluing condition in B (see Definition 7).

(102) d;iai == d;jaj.

10.3. Lemma. FEach k-tuple (ai,...,ax) of n-tracks a; in Nul,(X), satisfying (I02A) yields
(up to homotopy relative to the boundary) a well defined map a: B — X with a(0B) =o0. This
defines the obstruction Op(ay,...,ar) = O(a) in 7, (X) as above.

Nowlet B=T} = B1U...UByy1 andlet ay,...,an41 € Nul,(X), be n-tracks satisfy-
ing ([MLZ). Then we get the boundary property:

10.4. Lemma. Orp(as,...,an11) =0 if and only if there exist @ € Nul,1(X)ny1  with do'a
representing a;.

Proof. We choose representatives a; of a; which define a map

a:0I"tl——=X
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with @(T") =0 and algp =@ U...Ual,,. Here @ extends to I™*! if and only if
Oy U...Uay, ) =0. O

The next result is the Complement Rule.

10.5. Lemma. Let B=A;U...UA, UB1U...UB; and C=AU...UA. UCLU...UCs be
left cubical balls with the sub-ball A= A, U...UA,.. Then

Oc(a,...,ar,c1,...¢5) =0
implies that for D = Agp U Ac
Op(ai,...,ar,b1,...;0:) = Op(by,...,bt,c1,...,C5).
Of course, there is the following Double Rule:
10.6. Lemma. If B = By U By s the double of I™ then for a3 =as we have:
Op(ai,a2) =0.

10.7. Definition. Let B = By U...UB) be a left cubical ball. Then for each 1 <¢ <k we have
a map
giiln%BiCB%En,

where I™ and E™ are oriented by the inclusions of ™ and E™ in R™. Weset ¢; = +1
if the map g; is orientation preserving, otherwise e; = —1. We call ¢; the orientation sign of
B;.

Let B = B1 U By be the double of I™. Then e¢; = —e5, and we can choose B; so that
g1 =1, In this case we define the action + of a € m,(X) on an n-track a € Nul,(X), by the
n-track a + « which satisfies O(a + o,a) = a  (n > 1).

10.8. Lemma. The action + yields a well defined effective and transitive action of the group m,(X)
on the set of all n-tracks a € Nul,(X), which coincide on the boundary (that is, 0'a =b;, where
(b1,...,bn) s fized).

10.9. Lemma. Let B = B1U...UBy, be a left cubical ball and let Op(a1,...,ar), Op(ad,...,a})
be defined, where

{a; = a; fori#j
L=ajta fori=j, acm(X).
Then we have the Action Formula:

O(ay,...,a;,) = O(ay,...,a) + € .
11. n-TRACK CATEGORIES

We now define the concept of an n-track category, which encompasses the properties needed for
the construction of higher order resolutions.
Let C be a category enriched in pointed spaces with zero morphisms. Let n > 1 and let

T = Nul,C,

A = 71oC,

D:A® x A — Ab, D(X,Y) = m, Morc(X,Y) |

Op(ai,...,ar) is defined in  Nul, Morc(X,Y) (see ([II).

Then (T,A,D,Op) has the following properties of an n-track category. Here we assume for n =1
that m; Morc(X,Y) is abelian for all objects X, Y in C.

11.1. Definition. An n-track category (n > 1)
T = (T,A,D,O)

is given by an n-graded category T, a quotient functor T® — A; a bifunctor D : A°® x A — Ab
and an obstruction operator @. The following properties hold:
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T is enriched in left n-cubical sets and has zero morphisms, that is, for all objects X, Y in
T, we have the n-cubical set Morr(X,Y) with operators (di)* = 9’ and zero elements
o' € Morr(X,Y); such that
9'(fg) = (0'f)g for i< dim(f)
0'(fg) = f(o""4Wg) for i> dim(f)
Otg _ Oterim(g)
fol = odim(N+h
Here fg isthe composite in the n-graded category T, which is defined if dim(f)+dim(g) <
n.
The 0-skeleton T is the subcategory of T consisting of morphisms f with dim(f) = 0, this
is a category together with a functor ¢ : T — A which is the identity on objects and full
(quotient functor). Moreover, D is a bifunctor

D:A°° x A——= ADb

into the category of abelian groups. Here D defines via ¢ a bifunctor on T° which satisfies
(0)* =0 and (0°). = 0. For a zero morphism o : X — Y in TY we obtain the zero
morphism ox y = ¢(o°) in A.
For f:X — Y in TY wehave ¢(f) = oxy if and only if thereis F:X — Y
in T with dim(F) =1 and 9'F = f. This is the boundary property in dimension 1.
The obstruction operator O yields for each left cubical ball B an element
OB(al, R ,ak) S D(X,Y)

where ai,...,ar € Morm(X,Y), is a k-tuple satisfying the gluing condition in B,

see (@2

This obstruction operator satisfies the complement rule, the double rule, and the action
formula as in Section Here the action + of D(X,Y) on the set Morp(X,Y), is
defined by:

if Op(a1,a) =c«, then a1 =a+a.
Here B is the double of I with &7 = +1.
The action + is transitive and effective on the set of all elements a in Morr(X,Y),
which coincide on the boundary (that is, d’a = b;, where (by,...,b,) is fixed).
The obstruction operator satisfies for

f €Morp(X',X)y and g € Morr(Y,Y")g

the naturality rule

Op(gai,...,gar) = g:Op(a1,...,ax)

Op(arf,...,arf) = f*Op(a1,...,ar) .
Here f* AND g, denote the induced maps on D. This implies g(a 4+ a) = ga + g.«x
and (a+a)f =af + f*a.
The obstruction operator satisfies the following triviality rule: For morphisms

7zl y % x
in T with dim(f),dim(g) < n and
dim(f) + dim(g) =n+1
we have the (n+ 1)-tuple (a1,...,an+1) in Morp(X,Z), given by
B {(atf)g for 1<t< dim(f),
T @ g) for dim(f) <t <n+ 1.
This (n + 1)-tuple satisfies the gluing condition in B = T{. The associated obstruction
Op(a,...an41) =0

is trivial.
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We now are able to define n-th order chain complexes in an n-track category, for this we replace
Nul, C by T as follows, see Section @l
11.2. Definition. Let (T, A,D,O) be an n-track category. A functor of n-graded categories
K :Z(N,M),—=T

satisfying the inclusion property [ I) is an n-th order pre-chain complexr in T. This is an n-th
order chain complex in T if for 4,9 —n — 2 € Z(N, M), the obstructions

OK(i,0I41) = Op(b1,...,bpy1) =0
vanish. Here B is the left cubical ball B = T{, and
b1 = K(’L,@@In)
K(i,0In11) = b1 = K(i, [, @ I,,—,) for1<r<n-1
anrl = K(Za I, ® Q)

(see (EX)). Since K is a functor we have

KG6,09L,) = K@i-n—10K>GI,) = 06in1K(i,I,)
K(i7]r®ls) = K(i*S*l,IT)K(Z‘,IS)
K, I,®0) = K(@i—1,1,)K(i,0) = K(i—1,1,)5

where the right hand side denotes composition in T. We define higher order Toda brackets in T in
the same way as in Definition EEfl

(615, 0n12) C D(Kn+2, Ko) -
12. TRACK CATEGORIES AND 1-TRACK CATEGORIES

We show that each abelian track category with zero morphisms has the structure of a 1-track
category. This shows that n-track categories are n-dimensional analogues of track categories for
every n > 1.

A track category is a category C enriched in groupoids. For objects X, Y in C we have the
groupoid Morc(X,Y') with objects f, g and morphisms F: f — g.

The morphisms F': f — f form the automorphism group Autc(f), and we write f~g if
thereis F: f—g. Let dim(f) =0, dim(F)=1, (d})*F=f, and (d})*F =g. Morphisms
of dimension 0 form the category Cp, and the homotopy relation ~ defines the homotopy category

A=7170C=Cqy/~.

Let C be abelian, i.e., all automorphism groups Autc(f) are abelian groups. We assume that
C has zero morphisms ox,y € Morc(X,Y)o. Then we get a bifunctor

D:A® x A——= Ab,

D(X, Y) = Autc(OX,y).
We define the 1-category T associated to C by

Mort(X,Y)o = Morc(X,Y)o
Morr(X,Y)1 ={(F, f),F: f — ox,y} C Morc(X,Y);.

Let 0' be defined by O'(F, f) = f, and let the zero elements be given by o° = oxy, o' =
identity of oxy.

12.1. Proposition. Let C be an abelian track category with zero morphisms. Then C vyields the
1-category Nul; C = (T, A, D,O) with T, A and D as above and with the following obstruction
operator O.

Up to equivalence there is only one left cubical ball B of dimension 1: this is the double of
I, which is equivalent to Tj. Given a; = (F,f) and a2 = (G,g) with gluing condition
0'a; = f =g = 0'ay, let

Oplai,az) == FG™' ¢ Autc(ox,y)
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be the obstruction. The action for o € Autc(ox,y) and a = (F,f) isgivenby a+a = (aF, f),
with Op(a + a,a) = aFF~! = a. The triviality rule of O is satisfied, since for a diagram

o o
KGN FTEN

Z<—Y~<~—X,

in C we have the formula Gf = gF', so that
Og(a1,a3) =0 forhsma, = (0'F)G and ay = F(9'G) .

12.2. Example. Let C be a category enriched in groupoids with zero morphisms and let C be
abelian. Then the 1-track category Nul; (C) is defined and a triple Toda bracket

<51, 52, 53> in Nuh (C)

coincides with the classical triple Toda bracket in C. Moreover, a 1-st order chain complex in
Nul; (C) as defined in coincides with a secondary chain complex in C as studied in [B.I2].

12.3. Remark. Abelian track categories are classified by cohomology, see [BW], [BDI, [P], [B1], [B.I1].
It would be interesting to classify accordingly 1-track categories and n-track categories for n > 1.

13. THE INDUCTIVE STEP OF THE RESOLUTION THEOREM
An n-track category T = (T, A, D, Q) is a X-track algebra in dimension n if A = (A,a,X) is a

>-algebra and

D(X,Y) = Homa (5" X,Y)
for X in a and Y in A. See Definition We say that T is a Q-track algebra in dimension n if
A = (A a,Q) is an Q-algebra and

D(X,Y) = Homa (X, Q"Y)
for Y in a and X in A.

13.1. Theorem. Let T be a X-track algebra in dimension n and consider a functor of n-graded
categories

K : 7Z(o0, -1) ——T

which is a pre-chain complex and which is based on an a-resolution As of X in A. Then there
exists a functor

K':Z(c0,-1)——T

which coincides with K in dimension < n — 1 and which is an n-th order chain complex in T (and
is based on A. ).

The dual also holds.

13.2. Theorem. Let T be an Q-track algebra in dimension n and consider a functor of n-graded
categories

L:7Z(+1,—00),—=T

which is a pre-chain complex and which is based on an a-coresolution A® of Y in A. Then there
exists a functor

L' :Z(+1, —00) ——=T

which coincides with L in dimension < n — 1 and which is an n-th order chain complex in T (and
is based on A®).

Proof. The functor K’ is determined by K in dimension < n — 1 and by
(13.3) K'(i,I,) = K(i,I,) + i, i>n—1

in dimension n. See Lemma B3 Here the elements «; are obtained inductively as follows. We have
to choose «;, ¢ > n, in such a way that the obstruction

(13.4) E(aicr, 05) = Op(0i—n-1K'(i, 1), ba, . .. by, K' (i — 1, 1,)0;)
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vanishes with b,41 = K(4, I, ® I,—,) for 1 <r <n —1, see We start with ¢ = n + 1. In this
case (0p). is surjective since A, 1is a resolution with &g : Ag — A_1, A_; = X. The action rule
shows

(13.5) §(ai—1, i) = €(0,0) + e1(di—n—1)xi + Ent+1(0:) 1.

Here ¢1,...,e,41 are the orientation signs for the left cubical ball B = T'. For i =n + 1 we get
for o, = 0 the equation

5(05 an+1) = 5(05 0) + 51(50)*04n+1-

Since (dg)« is surjective there is ap41  with €(0,an41) = 0. We now consider ([[3H) for
i =mn+2. Then we show that

(136) (60)*§(an+1aan+2) =0.

Since A, is a resolution this shows that

(13.7) &(an+1, Any2) € image(d1)x.
Since by ([ZH) we have
(13.8) E(an+t1, ang2) = £(0,0) + £1(61)snt2 + Ent10, 450041,

we can choose 42 with £(ap41,ant2) = 0. This way we get inductively o, i > n, such that
&(aj—1,0;) = 0. Hence K’ defined by ([[33) satisfies the obstruction property and hence is an
n-th order chain complex as in the Theorem. In the next lemma we show that ([Z&) holds. O

We introduce the following notation on the ’boundary’ of I, 11, n > 0. Let
0L =020
and for n > 1 let
(13.9) Olnt1=0@ I, [ L1, @1y o,..., 1,1 ® 11,1, ?0).
(see (EX)). We also write
ny=LL1-1, 1 9,....[,111),

so that
a[n_;,_l = ((Z) ® Ina <7’L>, In ® @)

Given a functor K’ :Z(oo,—1)% — T which is a pre-chain complex, we obtain for ¢ >n > 1
the obstruction element

OpK'(i,01,41)
where B = T§'. This corresponds to (33 in the proof above.
13.10. Hauptlemma. Letn > 1, i > n+ 2, and assume
OpK'(i —1,0I,11) = 0.

Then we also have
OBK/(i, 0 ® 8In+1) =0.

For the proof of Hauptlemma 30 we use the following equation given by the triviality rule
withr+s=n+1,r>1,s>1,71>n.

(13.11) OpK'(i,0,5) =0,
where

Ors = ((01,) ® I, I, @ (0Iy)).
The assumption implies

(13.12) OpK'(i,(0I,41) ®0) =0
by the naturality rule.
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Proof of Hauptlemma [LZI for n = 1. In this case we have the triviality rule (ZII) which we
write as

(13.13) D0, D)) ~0.
The assumption implies ([[312):
(13.14) Y=0&IL,H0)0~0.

We have to show
(13.15) X=0WxhL,1®0)~0.
In fact, by the complement rule and ([3I3)), we get
X~ 200,001 ®0)
so that X ~ 0 by (Z3I4). O

Proof of Hauptlemma [LZI1 for n = 2. We omit ® in the notation and write VW for V@ W. By
3T1I), we find:

(13.16) (0L, L0) 11, I200) ~ 0
and

(13.17) (001, I, (D11, I,0)) ~ 0.
By the assumption ([ZIZ) we have

(13.18) Y = (0L, [, 11, 10)0 ~ 0.

We have to show
(13.19) X =001, 111, I50) ~ 0.
By the complement rule and (ZI7) (replacing 00I;) we get:
X ~ (L(OL, 10), 01, 11, 01,0) = X .
By the complement rule and (3I6) (replacing I00) we get
Y ~ (010, L0, (0, LO)) =Y .
Here we have X' =Y’ sothat X ~X'=Y'~Y ~ 0. O
Proof of Hauptlemma[[ZI0 By ([BZII) we have the relations
(13.20) Ors ~ 0 forr+s=n+1,r>1.
By ([I3I2), the assumption implies that
(13.21) Y =(0L+1)®0 ~ 0.
We have to show that
(13.22) X =0& (0I41) ~0.

We now apply the complement rule inductively to Y by use of 9, s for s=1,...,[n/2]. This
yields the equivalence Y ~ Y. Similarly, we apply the complement rule inductively to X by use
of 0,s for r=1,...,[n/2]. This yields X ~ X’. If nis even, we have Y’ = X’/ so that
0~Y~Y =X'"~X, by (ZZ). If n=2n"+1 isodd, we can use Op/y1 41 to show that
X' ~Y'. By (ZZI), this implies that 0 ~Y ~ Y’ ~ X' ~ X. O

The proof of Hauptlemma [[3T0 involves left cubical balls with the number of cells < [n/2](n —
1)+n+1.
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14. TRACK ALGEBRAS AND PROOF OF THE RESOLUTION THEOREM

In order to prove Resolution Theorem we need to relate track categories of different dimen-
sions, as follows:
A total n-track category T(<mn) is a sequence of m-track categories

T(m) = (T(m), A, D,,, O™) for m=1,2,...,n
together with quotient functors
qg: T(m+1)™ —— T(m)
which is the identity on objects and is full and is the identity functor on (m — 1)-skeleta
¢:T(m+ 1™t =T(m)™ .
Moreover, the boundary property of Lemma ([[Id) holds - that is, for B =T}", we have
OF% (a1, .y am+1) =0
if and only if there exists @ € T(m + 1),,4+1 with ¢(8%@) representing a; for i =1,...,m + 1.
14.1. Example. Let C be a category enriched in pointed spaces with zero morphisms. Then
Nul<,, C := (Nul, C,Nul,_; C,...,Nul; C)
is a total n-track category.

We say that T(< n) is a X-track algebra if A = (A,a,X) is a X-algebra as in Definition
and
Dy (X,Y) = Hompa (5™ X, Y)

for m=1,...,n and X inaand Y in A.
Dually we say T(< n) isan Q-track algebra if A = (A,a,Q) isan Q-algebraasin (EI) and

D, (X,Y) = Homa (X, Q™Y)
for m=1,...,n and X in A and Y in a.

14.2. Example. Let C be a ¥-mapping algebra then Nul<,, C is a ¥-track algebra. If C is an
Q-mapping algebra then Nul<,, C is an Q-track algebra.

We now obtain the following Resolution Theorems, which generalize those of Section

14.3. Theorem. Let T(< n) be a X-track algebra and let A,  be an a-resolution of X in A.
Then there exists an n-th order chain complex

K : Z(o0, —1) ——=T(n)
which is based on Ao . We call K an n-th order resolution of X in T(n).

14.4. Theorem. Let T(< n) be an Q-track algebra and let A® be an a-coresolution of Y in A.
Then there exists an n-th order chain complex

L :Z(+1,—o0)g ——=T(n)
which is based on A®. We call L an n-th order coresolution of Y in T(n).

Proof. The boundary property shows that there exists a functor
K'(1) : Z(oco, —1)f—=T(1)

which satisfies the inclusion property and which is based on A, . Hence by Theorem [[31l we find a
1-order chain complex K (1) which is based on A, . Now the boundary property shows that there
is a functor

K'(2) : Z(co, 1) —=T(2)
which satisfies the inclusion property and which based on A, . Again the boundary property
shows there exists K’(3), so that by Theorem [[31] one obtains K (3). Inductively, we thus have
K = K(n). O
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14.5. Example. Let C be the Eilenberg-Mac Lane Q2-mapping algebra. Then minimal coresolutions
A*® of Y are defined in A and hence we can find an n-th order coresolution of Y in Nul<, C based
on A®. We call Nulc, C the algebra of cohomology operations of order < n + 1. This is an
Q-track algebra. It is convenient to consider the dual of Nul<, C, which is a ¥-track algebra and
for which a is the category of finitely generated free modules over the Stenrod algebra.

14.6. Remark. The main result of [B2] computes the algebra of cohomology operations of order < 2
in terms of a bigraded differential algebra B over the ring Z/p?. This leads to the conjecture
that also the algebra of cohomology operations of order <mn  (n > 1), can be described up to
equivalence by a bigraded differential algebra over Z/p.

15. HIGHER ORDER Ext-GROUPS

In this section we deduce from higher order resolutions the associated higher order derived func-
tors, which are higher order Ext -groups. We shall see that the F,-term in the Adams spectral
sequence is such a higher order Ext-group for n > 2.

Tt is classical that the F5 of the Adams spectral sequence is given by the 'primary’ Ext-groups
of homological algebra, see (EJ]). In [B.J2] we studied the secondary Ext-groups which determine
Es.

Let T(<n) (n>1) bea X-track algebra so that for m =1,...,n we have the m-track
category

(15.1) T(m) = (T(m), A, Dyn, O™)

with aC A and D,,(A, X) =Homa (XA, X) for objects Ain aand X in A. Let A, be an
a-resolution of X in A and let

(15.2) K : Z(00, —1) ——=T(n)

be a n-th order resolution of X based on A, (see Theorem [[L3). Furthermore, let Y be another
object of A, and consider the diagram in A:

(15.3) ce——= A Arim e A, o Ao X
lﬁ
Y
The row of the diagram is the a-resolution A, of X. We assume that § is a cocycle, that is,
(15.4) B8r41 = 0.
Then S represents an element {4} in the Ext-group
(15.1) Ey? = Ext (X,Y)

= H" Homa (4,,Y)
= kernel 67, / imaged;,
where
0% : Homa (A;—1,Y)——=Homa (4,,Y) .
Using the a-resolution »*A, of X°X, we get accordingly for s > 0 the bigraded Ext-group

(see (ETD),
E}*® = Extl (S°X,Y).

We shall define a differential
(15.5) dy = dy* : EY® E;+2,s+1.

Moreover, inductively for m > 2 we consider subquotients E&* of Ey°, together with
differentials

(15-6) dy = drﬁs . E;5_>E;I+m,s+m—1
satisfying d,,d,, =0, and

E;° | = kernel(d};®)/ image(d], "™*~ "),
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We call E"0 for m=2,...,n+1 the higher order Ext-groups associated to the n-th order
resolution K of X above. replacing X by X, we obtain the groups E’:®, accordingly.

m

15.7. Definition. Let G € E:ﬁ?u be represented by {8} € E;O (1<m<mn), andlet L be a
(m—)-order chain complex

L:Z(co,r — 1) '——=T(m — 1)
based on the diagram

%Ar+m+1 N AT+1 AT b Y

)

in A. We assume also that L restricted to Z(oo,r) coincides with the (m — 1)-skeleton of K in
T(m —1). The boundary property in T(m) shows that there is a functor

L: Z(oo,r — 1)2—=T(m)

which is a pre-chain complex such that L restricted to Z(co,r) coincides with the m-skeleton of
K, and such that the (m — 1)-skeleton L(m — 1) of L satisfies ¢L(m —1)=L in T(m —1).
We then obtain the obstruction

OL(r+m+1,0I41) = Op(b1,...,byni1) € Homa (™ Ay i1, Y)

where B =1T§" and

by=Lir+m+1,001,),
Lir+m+1,00h1) = bpp1 = Lr+m+ 1,1, @ In_q), 1<k<m-—1,

b1 =Lr+m+ 1,1, ®0)
(see (EX)). Now the element OL(r 4+ m+1,81,.1) represents the differential
dyyr (B) € Bt

15.8. Theorem. Let T(< n) = Nulc, C be the X-track algebra given by the complete X-mapping
algebra C of Example L3 Then Definition [[57 yields a well defined sequence of Ext-groups E:*
for m=2,... n+2. These groups depend on the weak equivalence class of the X-track algebra
T(< n), and not on the choice of the n-th order resolution of X.

15.9. Theorem. Let T(< n) = Nul<, C  be the X-track algebra given by the dual C of the
Filenberg-Mac Lane Q-mapping algebra. Then the Ext-groups E5* (2<m <n+2), yield the
m-term FE,, of the Adams spectral sequence which converges to the stable homotopy set {Y, X}
for finite spectra X and Y.

For n =1 this result is proved in [B.J2, Section 7].

16. STRICTIFICATION OF HIGHER ORDER RESOLUTIONS

In this section we use the strictification of higher order resolutions to prove Theorems and
115.9

Let C be a ¥-mapping algebra as in Example Hence C is given by an underlying model
category and cubes

I" — Morc(X,Y)
having an adjoint
(16.1) (I"x X)/(I"x*) — Y.

Here (I x X)/(I x =) isthe pointed cylinder of X. We then have the additive category A = mC,
and the full additive subcategory a = mop{X'} given by the class of spectra X" in We define the
full subcategory a, with

(16.2) aCacaA.

Here a consists of all abjects A in A which are isomorphic in A to an object in a.
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16.3. Definition. Let T be an n-graded category (such as Nul, C or nul, C) with a quotient
functor ¢ : T — A. Let K, L : Z(oo, —1)% — T be functors of n-graded categories. A weak
equivalence T : K — L over X is a natural transformation 7 which for objects i in Zg consists of
a map

7 K; — L; in T°
which induces an isomorphism ¢7; in A. For i = —1, themap 7_7: Ky =X =L_; is the
identity of X. For a morphism V :i— j in Zg, we have the commutative diagram in T:

KZ'L-LZ'

K(V)l lL(V)

K, —1s L,

or equivalently, 7, K (V) = L(V)7;. Let ~ be the equivalence relation generated by weak equivalences
over X.

16.4. Lemma. K, L : Z(oco,—1)¢ — Nul, C be n-th order resolutions of X. If K ~ L are weakly
equivalent over X, then the higher Ext-groups defined by K and L are isomorphic.

We shall show that the higher Ext-groups actually do not depend on the choice of resolution of
X. For this, we use the strictification of resolutions.

16.5. Definition. Let T be an n-graded category (like Nul,, C or nul, C) and let K : Z(oco, —1) —
T be a functor of n-graded categories. Then we say that K is N-strict with N > 0 if for all s < NV
and k = 1,...,n we have K(i,I) = o. This shows that §; = K(i,0) : K; — K;_; yields a sequence
of maps in T?

[

6 é é
KN — KN,1 — ...

— KO — K71

with K_1 =X and 65 =0 Thisis a strict chain complez in T°.
We say that K is N-fibrant if there are fiber sequences

Zi & K, Bz, poji=o,
in the model category with §; = j,_1p for i < N, and 6y admits a factorization
Kn & Zyoy 25 Ky
Moreover, K is N-ezxact if for i < N and A in a the induced sequence
Homa (A, Z;) — Homa (A, K;) — Homa (A4, Z;—1)
is a short exact sequence of abelian groups.

16.6. Theorem. Letn > 1 and N > 0, and let K : Z(oco, —1) — Nul,, C be an n-th order resolution
of X based on the a-resolution A, of X in A. Then there exists an N-(strict, fibrant, exact) n-th
order resolution L of X based on an a-resolution Ae of X in A such that L ~ K are weakly equivalent
over X.

Here we use the large category a4 in ([[E2). The resolutions A, and A, yield by the weak
equivalence L ~ K over X the commutative diagram in A:

8

Ay Ao X
Ay — Ay ——>X

Here the vertical arrows are isomorphisms in A and we have A; = K; and A; =L, fori> —1.

16.7. Remark. The dual of Theorem [[6.6 holds for coresolutions.
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Proof of Theorem[IAA for n = 1. We use induction over N. Assume the result is true for n = 1
and N > 0. Then the map p with dy_1 = jp admits a factorization

(16.8) P Ky =" L, —5 Zy_,

which defines L,,. Hence we get the diagram
(16.9) Kni1
s

Ly <——Kn

i“

Lyn_1 Kn_1

Here H = K(N + 1, 1) satisfies pH : 0 = o, so that pH is amap «:XKny1 — Zny_2 which is
nullhomotopic, since jy_sa ~ o as follows from the obstruction property of K and N-exactness.
The lift of jy_oa~ o through py_1 shows that the track H can be represented by a homotopy
H :pS ~ o; that is, the 1-track {jy_1H} coincides with H. We then get the following diagram
with the cylinder IKxy; and inclusions ig, 41 of the cylinder. We set Lyi1:= Kny1.

(16.10) Inir— s K sy ~—<Kni1
. 11
g
v "
o LN = KN —_—>0
ZN—-1 ZN-1

Here H is a lift of H through ppy, so that the diagram commutes with pnHio = o. Hence for
d = Hig, the left hand side is (N 4 1)-strict and (N + 1)-fibrant. Moreover, the left hand side is
(N + 1)-exact, that is:

(16.11) (pn)« = Homa(A,py) : Homa(A,Ly) — Homa (A, Zn-1)

is surjective for all A in a. In fact, we have for « € Homa (A4, Zy-1) the equation djy_1a =0,
so that by exactness of A, we have jy_i1a =090 = jy_1pn03, sothat o = py( by injectivity of
(jn—1)«. Moreover, (jn)« is injective since we have the fiber sequence where Homa (4, Qpy) =
Homa (XA, pn) is surjective, since YA € a.

We now construct weak equivalences

(16.12) L% RE K

where 49 and ¢; are the identity in degrees < N. In degree N the resolution L is given by the
diagram above. In dimension 0, diagram ([I6I2) is given by the commutative diagram:

(1613) "'%KN.*.Q KN+1 KN_lﬁ...

15 l 15 l H H

"—>IKN+2—>IKN+1—>LN—>KN,1—>---

] |

o —— Kpn4o Kni Ly Ly_y——---
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It is easy to find appropriate R(N +1,I;), R(N +2,I1), and R(M,L) = IK(M,I,) for
M > N+ 3, so that ([[EIZ) is well defined. Here we use the adjoint maps in ([EJ). This
completes the proof of Theorem [[G.6 for n = 1. O

16.14. Transport Lemma. Let K be an n-th order resolution of X in Nul, C with (n—1)-skeleton
KM= Let

LY L, g 2, pn-D) in Nul, C
be weak equivalences over X. Then there exist unique n-th order resolutions L and R in Nul, C
together with weak equivalences

LL Kk %R
which, restricted to (n — 1)-skeleta, coincide with f and g respectively.
Proof. We use Proposition I1.2.11 in [BI] for sets of n-tracks. O

16.15. Lemma. Let g : nul, C — Nul, C be the quotient map of Section[d and let ¢K, qL be n-th
order resolutions of X in Nul, C . If ¢K ~ qL are weakly equivalent, then also K ~ L are weakly
equivalent over X in nul, C.

16.16. Lemma. Let n > 2 and N > 1, and let K be an n-th order resolution of X in Nul, C
Assume that the (n — 1)-skeleton K™Y in nul, C is (N — 1)-(strict, fibrant, ezact). Then there is
an n-th order resolution L of X which is is N-(strict, fibrant, exact), such that L ~ K are weakly
equivalent.

Proof. Let ¢ < N. Since the (n— 1)-skeleton is strict, the n-track K (i, I,) is given by an element
o; € HOmA(EnKi,Ki,nfl) i—n—1 Z —-1.
By the obstruction property of K we have do; +a;_10 = 0.
We now use the induction over ¢ and assume o; =0 for j < 4. Then da; = 0, and the

exactness yields 8 with a; = 8§. We construct weak equivalences L — R «— K in Nul, C which
in dimension 0 are given by the commutative diagram

Kt K; Kiy——s--- ) K
I |
15
IKi-l—l IKl Ki—l _— . ) R
[ |
Kip K; Ki g ——s-- J L

The (n — 2))-skeleton of R is strict. We define R(¢,I,—1) by . Then we can choose R(i, I,) such
that i is a well-defined map and L is ¢-strict in Nul, C . (I

Proof of Theorem[IAA for n > 2. By induction on n, we assume that the Theorem holds for n—1.
Let K be a resolution of X in Nul, C, and let K"~ be the (n — 1)-skeleton of K in nul, C.
For ¢K(=1 we get by assumption a weak equivalence ¢K ("1 ~ qL("=1)  where L is N-strict.
Hence by Lemma we have K=V ~ L("=D  and by the Transport Lemma 614 we get
K ~L in Nul,C, where L1 is strict. Now Lemma [[6.16 yields L ~ L’ in Nul, C, where
L’ is N-strict. O

Proof of Theorem I8 Let K and L be two resolutions of X in Nul, C. By Theorem we
have L ~ L’ and K ~ K’', where L’ and K’ are N-(strict, fibrant, exact) for large N. This yields
a map of spectral sequences FEx — E; which induces an isomorphism on the Fs-term. Hence
Ex — Ep,  is also an isomorphism. O

Proof of Theorem [0 An N-(strict, fibrant, exact) coresolution of X for large N, as in Remark
[[67 corresponds to the X-coaugmented sequence in [B.2, §6.7] given by the Adams fiber tower
B2, 7.1]. O

16.17. Remark. Strictification results for oo-homotopy commutative diagrams appear in [BV] Theo-
rem IV.4.37] and [DKS, Theorem 2.4], inter alia. However, these do not yield the precise case needed
for Theorem The explicit construction given in this context may be of independent interest.
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17. THE DIFFERENTIAL ds

The first interesting higher order Exts-group involves the ds-differential of the spectral sequence,
which we now describe:
Let T(<1) be a X-track algebra and let K be a resolution in T(1) of X, based on A, in
A, see ([[Z). Then we define
da : Extly (X,Y)—— Ext," (X, Y)

as follows. For {f} € Exth (X,Y) with 8: A, —Y in A we have (36,11 =0, so that there
is a 1-track H with 0'H = 36,41. On the other hand K yields a 1-track G with 0'G = &, 16,40.
Then the obstruction of Definition 27 is
(17.1) w=OL(r+2,0I,) = O(Hé, 2, G) € [SA,12,Y]
and this element represents do{8} = {w}.
17.2. Lemma. The differential do is well defined.
Proof. We first check that w is a cocycle. In fact,

w(Xbr43) = O(Hbr42, BG)(X6r+3)
(1) = O(H6r+257‘+3a BG6T+3)
(2) O(H6r+257‘+3a 567‘+1G1)
(3) 0.
Here (1) holds by na,turality of O. Moreover, G’ in (2) is the 1-track with 9'G’ = §, 426,43 given
by the resolution K so that O(Gd,+3,0,+1G’) = 0. Hence by naturality also O(8G,+3,80,+1G") =
0, so that (2) holds by the complement rule in the Appendix below. Finally (3) holds by the triviality
rule.

Next we show that {w} does not depend on the choice of H. If we choose H' instead, there is
an « with H' = H + a, and we get

W' =O0(H + a)bry2, 0G) = w + ad, 42

by the action rule. Hence w —w’ 1is a coboundary, so that {w'} = {w}.

Finally, we check that d2{8} is trivial if § is a coboundary - that is, = §'d,. In fact, we
can then choose H to be the 1-track 3'G”, where G” with §'G” = §,6,41 is given by K, so
that O(G"0,42,0,G) = 0. Hence also O(5'G"d,42,0'0,G) =0, sothat O(H42,0G)=0. O

The Lemma is proved in [BJ2] in the context of track categories, above we use only 1-track
categories. The proof that dedy =0 requires the product rule below.

Next we prove that the assumption on L in Definition [[2.7 is satisfied for m = 2. This leads to
the definition of the differential ds.

17.3. Lemma. Let do{} =0. Then for m =2 here is a chain complex L as in Definition [

Proof. The assumption do{8} = 0 shows that w = O(Hd,42,8G) = ad,42 is a coboundary.
Hence we get by the action rule H' = H + «, so that O(H'd,42,8G) = 0. Hence we define the
chain complex L by H’ and by K. O

In the context of a X-track algebra T(<n) (n>1), the following result can be proved which
is the higher dimensional analogue of Lemma 72

17.4. Proposition. Given L, L and
w=0OL(r+m+1,0l,.1)
as in Definition [, then w is a cocycle, that is:
WX pma2) =0 .

Moreover, if B is a coboundary, then L and L can be chosen such that w = 0. Let L be given and
let L, L be two choices as in Definition il Then @ = OL(r +m+1,0L,+1) andw differ by a
coboundary; that is: w — 0 = (™0 4m+1)-
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APPENDIX: COMPLETE TRACK ALGEBRAS

Definition [ of the differential d,,+1; makes sense in any Y-track algebra T(< n), but in
general one cannot show that it has the properties needed to define the higher Ext-groups, such
as dpt1dm+1 = 0. The strictification process described in Section shows that the higher Ext-
groups are well-defined in the Example [[Z33 and that the differential in the Adams spectral sequence
is indeed given by Definition 2.4

We now introduce the notion of a complete X-track algebra, to collect together the assumptions
needed to show that the differential described above yields well-defined higher Ext-groups. These
assumptions are satisfied in particular for the ¥-track category Nul<, C, where C is a complete
mapping algebra as in Definition

Let C be a complete YX-mapping algebra. Then the endofunctor ¥ : C — C induces an
endofunctor

(18.1) ¥ : Nulc, C — Nul¢,, C

of Y-track algebras satisfying

(18.2) SO05 (b, ..., be) = Op(Shy, ..., Sby)

for each left cubical ball of dimension < n, see (1) (3).

18.3. Definition. Let T(<n) be a X-track algebra and let
Y2:T(<n)——=T(<n)

be an endofunctor of T(< n), similarly to (&), satisfying ([BZ), such that ¥ induces the
endofunctor ¥ : A — A of the X-algebra A. Then T (< n) isa complete X-track algebra if the
sum rule and the product rule below are satisfied.

18.4. Definition (sum rule). Let m < n. Given a pre-chain complex L in T(m) based on

01

(1) Y <2 A A . At
and given a pre-chain complex L’ in T(m — 1) based on

2) y<" 54,2

YA, - S At

such that L’ restricted to Z(m+1,1) coincides with XL, there exists a pre-chain complex L”
in T(m) based on (1) such that L” restricted to Z(m + 1,0) coincides with L and

(3) OL"(m +1,0I11) = OL(m + 1,0@41) + OL' (m + 1,01,,)".
This is the sum rule in dimension m.
18.5. Proposition. The sum rule is satisfied in Nul<, C in ([IZI).

Proof. Let I~ [0,2] =1UI be the homeomorphism of intervals carrying ¢t € I to 2¢t. Then we
have:

(1) M= x I~ (Tul)x I =11yt

for each k > 0.

For each j =1,...,m+1, L' yields the left (j —1)-cube a; = L'(j +1,I;_1) in
Morc(XA;j41,Y), which by 7s  in Definition yields the j-cube @; in Morc(4;41,Y)
adjoined to 7sa;. Using (1), we define the j cube

L"(G+1,1;)=L(j+ 1,I;) Ua; .

This defines L” completely, since L” restricted to Z(m +1,0) coincides with L. One can now
check that the sum formula ([I84) (3) holds. O
Let T be an (n+ k)-category enriched in left cubical (n+k)-sets and let T™ be the n-skeleton of

T. Then T" is an n-graded category enriched in n-cubical sets. We consider a pre-chain complex

R : Z(0,0), —>T" .



26 britishH.-J. BAUES AND D. BLANC

18.6. Definition. A chain module with operators in R is a functor L which carries a morphism
Vii— -1 (i>0) in Z(oco,—1)§ to an element

L(V) € Morr(R,Y )dim(v)+k

such that the inclusion property
L(V) = (dv.w ® I*)*L(W)
holds if V' is in the boundary of W and such that for a composite V ® V' of morphisms in
Z(0o, —1)  the equation
L(VeV')=LV)RV'")

holds, where the right hand side denotes the composite in the (n + k)-category T.
18.7. Lemma. A chain module L with operators in R is determined by the elements

L(m, L) € Morr (R, Y )m+tk

where Ip=0 and m=0,...,n.

Now let B= BiU...UBs be aleft cubical ball of dimension k£ with cells B; and gluing maps
de; as in Definition @2). An s-tuple (Li,...,Ls) of chain modules L; with operators in R
satisfies the gluing condition in B if for V :m — —1 we have

(18.8) (14 s d, ) Li(V) = (19 s d, ) Liy(V)

The left cubical ball C =1T§ hascells Cq,...,Cphy1. The product B x C is a left cubical
ball with cells B; x C;. Let (ci,...,cnt2) = 0lnt1, see D).

18.9. Lemma. Given (Li,...Ls) as in [(IZX) we obtain the tuple of (m + k)-cubes (r=n+1)
Li(r,cj) satisfying the gluing condition in B x C, so that the obstruction

Opxc(Li(r,cj), i=1,....,8 and j=1,...,n+1) in Homa(X""*R, Y)

is defined in the X-track algebra T = T(n + k). Also the tuple L;(0,0) satisfies the gluing
condition, so that the obstruction

Op(L1(0,0),...,Ls(0,0)) € Homa (¥R, Y)
is defined in T(k).
18.10. Definition (product rule). Let R and Li,...,Ls; be given as above where R is based on

Roin R, 2R,

Let o € Homa(X*Ry,Y) be given by Op(L;(0,0)). Then there exists a pre-chain complex L’
based on

xks,

YR, 1 —=YFR, Y Ry——=Y

such that the equation

Oc(L'(n+1,0In41)) = Opxc(Li(0,¢;))
holds in Homa (X¥T"R,+1,Y) and L' restricted to Z(n + 1,0) coincides with Y*R. This is
the product rule in T(n + k).

18.11. Proposition. Let C be a complete X-mapping algebra. Then Nul<(,11)(C) satisfies the
product rule.

Proof. We have the homeomorphism S* = B/dB, so that we can replace ¥*R; by (B/0B)AR;.
Then gluing the various L; yields L. (|

18.12. Remark. If T(< 2n) is a complete X-track algebra (Definition [[83) the higher Ext-groups
El»¢  are well-defined by Definitionl[i A for m = 2,...,n+2. A proof can be given along the lones
of the argument given below to show that dsdy = 0.

Since a complete Y-mapping algebra C yields a complete X-track algebra Nul<s,(C), the higher
Ext-groups are well defined in this case.
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18.13. Example. We prove that dsods = 0, as an application of the product rule. By ([[&3) we
get the diagram

/T_G\
53 s 5 B

Argy Args Apjo —> A1 ——= A, ——>Y
~__F 7
Ry Ry Ry

For B = T§ = By U By, we choose L;i(0,0) = Féa and L3(0,0) = 3G, where F and G are
1-cubes with G = K(r+2,1;) given by the resolution K. Then

(1) a=dyf = Op(L1(0,0), L2(0,0)).
Nowlet C =T =C1UCy and (c1,c2) = (1 ®0,0® ). Then L;(2,¢;) is defined as follows:
Li(2,c1) = Li(2,Lh®0) = FK(r+3,11)04
L1(2,Cg) = L1(2,@®11) = F62K(T+4,Il)
L2(2,Cl) = L2(2,Il ®(Z)) = ﬁK(T+3,IQ)(S4
L2(2,¢2) = L2(2,0® 1) = PBK(r+2,L)K(r+4,1)
Now the product rule shows that
(2) dgdgﬁ = dQOé = OBXC(Li(Oa Cj)) =0
and the rules in a 2-track category show that this obstruction is trivial. In fact, we have
(3) 0(1111@3(2)12(2)511(2)11)@[1[1)
(4) =01 1,0, 00 1o, 1,0 11)
(5) =0

Here (3) is the obstruction (2) and (4) is a consequence of the complement rule and
O0L, I, 11, L) = 0
as follows from the fact that K is a resolution, the naturality yields
00012, 0111, 0150) = 0.

Moreover (5) follows from the triviality rule.
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