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Introduction

Let k be a real abelian field with class group Cl(k) and class number h(k).
If k is of the type k = Q(e, + €;'), i.e. k is the maximal real subfield of the
cyclotomic field Q(e,), where g, is a primitive ¢-th root of unity, then already
Kummer proved that h(k) is equal to the index of the subgroup of circular
units C(k) in the full group of units U(k).

This result was generalized by a number of authors to various other types
of real abelian fields and various types of circular units (see references in
[13]). The most outstanding results in this subject are those of Sinnott. In
[12] he proved that if k is the maximal real subfield of some cyclotomic field
Qem), l.e. k= Q(em +€7'), then the equality

(0.1) [U(k) : C(k)) = 2°h(k)

holds true. Here C(k) is the group of circular units in the sense of Sinnott
(we reproduce his definition below in this section) and b is a nonnegative
integer depending only on the number ¢ of different prime divisors of m. To
be precise,

(0.2) b=0if g=1 and b=29"% —g+1if g> 1.
Sinnott also gave the formula
(0.3) [U(k) : C(k)] = cfh(k)
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which holds for any real abelian field [13]. In this case the group of circular
units C'(k) and the additional factor ¢} are defined in a more complicated
fashion. Sinnott proved his formulae (0.1), (0.3) by exploiting the analytic
class number formula. So his proofs can tell us nothing about the connection
between two abelian groups U(k)/C(k) and CI(k) even in the case when
these groups have the same order. The only thing that is well known is that
these groups may be not isomorphic in general. For example, if k is a real
quadratic field, then U(k)/C(k) is always cyclic, while Cl(k) is not cyclic in
general. Nevertheless, G.Gras [1] conjectured that for any real abelian k£ and
a prime number £ such that ¢ is relatively prime to the degree [k : Q] the ¢-
components of Cl(k) and U(k)/C(k) have isomorphic Jordan-Holder series.
This conjecture was first proved in [14]. [t should be noted that recently
Kolyvagin [11] gave a relatively simple proof of this conjecture for the case
k=Qeet+er’)

Our goal in this paper is to get a better understanding of the connection
between Cl(k) and U(k)/C(k) for any real abelian field k. In particular,
we obtained a refinement of Sinnott’s formulae (0.1), (0.3). To explain our
main results, first note that we may treat “f-parts” of (0.1) and (0.3) for an
arbitrary but fixed prime ¢. For example, (0.1) is equivalent to the assertion
that for any prime ¢ the f-components (U(k)/C(k))s and Cl(k), have the
same order (with additional factor 2° for £ = 2). Our methods are of purely
£-adic nature. So in what follows we shall assume that all fields are subfields
of a fixed algebraic closure Q, of the rational f-adic numbers Q, and all
characters take their values in Q,. Let G = G(k/Q) and G = G¢ x Go, where
G is the £-Sylow subgroup of G and the order of Gy is relatively prime to
£. Let ¢ be any Qirreducible character of Gy. Then for any Z,[G]-module
A we have the decomposition A = EB Ay, where ¢ runs through the set ®

ved
of all Q-irreducible characters of Gy and A, equals to e, A, where e, is

the idempotent corresponding to . By @, we denote the trivial character
of Gy. For any finitely generated abelian group B we denote by B[f] the
pro-€-completion of 5. Then we prove the following.

Theorem 1 Let k be the marimal real subfield of some cyclotomic field
Ql(e,). Then for any prime € and any ¢ € ¢ we have

(0.4) [UK)[Ey : C(R)Ey] = MCI(E)e, o],



where
1 fe#2
A=< 1 ifl=2and ¢ # po
20 if 6 =2 and ¢ = o

and b is given by (2).

Theorem 2 Let k be any real abelian field. Then for any prime € and any
@ € & we have

(0-5) [UR)E, : C(R)E] = cf ,|Cl(k)e, ol

for some rational c]:w, where the definition of cf , does not depend explicitly
on the arithmetic of k.

It will be shown later that the constant ¢ , is, in a natural sense, the p-part
of Sinnott’s constant ¢f. So we can consider (0.4) and (0.5) as a refinement of
(0.1) and (0.3). Note that the Gras conjecture is equivalent to the assertion
that for G = Gy we have an equality

U (R){Ee - C(R)[E,] = 1CI(K)e, -

So we can consider Theorem 1 and Theorem 2 as a generalization of the Gras
conjecture.
It turns out that Iwasawa theory gives a succesful approach to these
theorems and some related results. This theory deals with the cyclotomic
oo
Z,-extension ko, = U kn, [ky: k] =", of a given field k = ko, where £ is a

n=0
fixed prime number. For any such extension we have the Tate module (the

Iwasawa module) Ty(ko) that can be defined as @Cl(kn)g.g. Here Cl(k,)

is the class group of k,, Cl(k,)s is the quotien of Cl(k,) by the subgroup
generated by all the prime divisors v € S, where S is the set of all the
places over £, a subscript ¢ means passing to -component and the limit is
taken with respect to the norm maps. Global class field theory enables us
to interpret Ty(keo) as a Galois group of the maximal abelian unramified ¢-
extension M, of ko such that all the places over € decompose completely
in Mo /ko- The Galois group Te(ke) = G(My/ks) is an abelian pro-£-
group and a [-module for I' = G(ko/k) = Z,. Let us consider the group
Te(keo) o) = Te(koo)/(y—1), where 7 is a fixed topological generator of I'. The
group Te(ke )0y can be interpreted as the Galois group G(M2 /ko,), where
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M? is the maximal subfield of M., abelian over k. It is well known that the
Leopoldt conjecture holds true for any real abelian field. So Ty(kw)(o) is a
finite abelian é-group.

QOur first principal result is an index formula that gives the order of

Te(keo )0y and Te(keo )0y, for any ¢ € .

Theorem 3 For any real abelian k and any ¢ € ® we have

(0.6) | Te(koo) o] = [Us(k) = Cs(k)],
(0.7) Te(koo )0y, ol = [Ts (K)o : Cs(k)y),

Here (75(.&:) is some modified group of units and Cs(k) some modified group
of circular units defined below.

Note that there are no additional factors at all in Theorem 3. We shall prove
Theorem 3 via Iwasawa theory and then deduce Theorem 1 and Theorem 2
from Theorem 3.

Now we give the definitions of Us(k) and Cs(k) and then we describe our
method and the content of the paper in some more detail pointing out the
most important results.

For any field k£ let £ be the multiplicative group of k, p(k) the group
of all roots of unity in k& and s (k) the f-component of p(k). If k is an
algebraic number field and %, means a v-completion of k with respect to a
place v | ¢, then we put B(k,) := (k*/u(k))[€] and B(k) := [] B(k.). If keo,y is

v|e
the cyclotomic Zs-extension of k,, then we define H(k,) to be the subgroup
of all universal norms in B(k,) with respect to the extension ke, y/ky, i.e.

H(k,) = [ Nipospo B(kny). Put H(k) := [ H(k,)- It follows from the local
n=1 vl

class field theory that H(k,) (vesp. H(k)) is a free Z,-module of rank [k, :

Q] (resp. [k : QJ).

For an abelian number field & let Ug(k) be the group of S-units of k,
where S is as above. Put Ug(k) = Us(k)/p(k), Ulk) = U(k)/u(k). As the
Leopoldt conjecture is valid in k, the natural mapping Us(k)[f] — B(k) is
injective, so we may consider Ug(k)[€] as a subgroup of B(k). Put

Us(k) := Us(k)[e) N H(k).



We may say that (k) is the subgroup of Us(k)[f] consisting of the local
universal norms from k..

To define the group Cs(k) of circular S-units for abelian number field &,
we note that k is a subfield of some cyclotomic field K = Q(&n). We may
assume that K contains a primitive £-th root of unity (K contains /=1 if
¢ = 2). Then any intermediate subfield K, of the cyclotomic Z,-extension
Ko/ K 1s cyclotomic itself.

Let P(K,) be Sinnott’s group of cyclotomic numbers [12], i.e. P(K,,) is
the subgroup of K, generated by all the numbers of the form 1 — ¢, € €
w(K,), € # 1. Then Sinnott defines the circular units of K, as C'(K,) :=
P(K,)NU(K,), where U(K,) are the units of K. Put

C(Keo) = fim((C(Ku)/1(Ku)[f]), Us(Keo) := Jim(Us(K.)[6])

and . .

Us(koo) 1= M(Ug(kn)[e])
where all limits are taken with respect to the norm maps. We will consider
C(K&) as subgroups of the group H(Ky) := MB(I{,,) = JimH(K,). We
define the groups Ug(kq) and H(ky,) in the same way. The natural inclusion
koo C Keo implies the inclusions H (ko) C H(Kx), Us(keo) C Us(Koo). Put

Clhoo) i= C(Koo)¥, H{keo) := H(K)".
We put
Cs(koo) := {& € H(kas) | (7a — 1)z € C(ko) for some natural n },
where v, = 4", and
Cs(koo) = Colkos) N Us(keo).
We have a natural projection
(0.8) m: Us(heo) — Us(k)(e],
and it is evident that Imr C Ug(k). We define the S-circular units of k by
Cs(k) := m(Cs(keo)) C Us(k).
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Note that all these groups are Galois modules, moreover, the groups H(K),
Us(Ko), C(Ko) etc. carry the natural structure of Re,-modules, where
R, = Li_xEZdG(I\’n/Q)] is a complete group ring of the Galois group G, :=
G(Ks/Q). There exists the natural decomposition into the direct product
G(Ke/Q) = T x V, where I' = G(Qw/Q) and V = G(E/Q), E is the
maximal subfield of K with conductor not divisible by 2 (by £ for £ = 2).
We have R, = A[V], where A = Z,[[I')] = E_IB[F/F,,] and T, is the unique
subgroup of [’ of index £*. Fixing a topological generator v € I, we get an
isomorphism A = Z,[[T]], v = | -+ T, where Z,[[T]] is the ring of formal
power series of one indeterminate T' over Zg.

In Section 1 we characterize C(Ko) as a A-module. Using results of
Kubert [4, 5] on the universal ordinary distribution, we prove that C(K o) is
a free A-module (Theorem 1.1).

In Section 2 we consider the characteristic series of a finitely generated
A-torsion R.-module A. If A is free over Z;, we produce the formula ex-
pressing the order |Af{,)’w| = |Ag'(u)| in terms of characteristic series of A
(Prop. 2.3), where H is a subgroup of V. Then we describe the character-
istic series of Ko, module A(Kw)/C(Ks) where A(Ky) := @A([\’") and
A(K,) =[] U(Kuw), U(Knu) = U(Kny)/1t(Koy). This description is based

vl
on the theolrem of Iwasawa on the circular units [8], [9]. We show that the
characteristic series in question are near to the so called lwasawa series.

In Section 3 we continue our calculations on characteristic series. Let

Te( Koo )t be the maximal subgroup of Tp( Ko ) fixed by the automorphism of
complex conjugation. Put U(Ke) = MU([\’,J[E]. We prove (Theorem 3.1)
that Tp( Ko )t and U(K.)/C(K ) have the same characteristic series for any
even character of V. The proof is based on the so called “main conjecture”
of Iwasawa theory [10], [14]). and on some form of Spiegelungsatz produced
by the author in [7]. Then we generalize this result for any abelian number
field k and its cyclotimic Z,-extension k.

In Section 4 we prove Theorem 3 of the introduction. Briefly speaking, if
k is a real abelian field, then we have an exact sequence

(0.9) 0— P— Te(k) — R—0,

where P is the maximal finite submodule of Tj(ke) and R is Z,-free. We
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deduce from (0.9) that
(0.10) | Te(keo) o), 0] = [P0yl - | R0y,

for any . On the other hand, denoting by Ug(k) the image 7 (Us(koo)) in
(0.8), we get an inclusions Cs C Uz(k) € Us(k). Thus we have

(0.11)  [Us(k)o/Cs(k)o| = [Us(k)y = Us(k)o] - WUs(k)w = Cs(k)y]
for any ¢ € ®. Using the characteristic series, we prove that
(0.12) Us(k)o = Cs(k)l = 1Ryl

for any .
It was proved in [6], Prop. 7.5 that there exists a natural isomorphism

(0.13) Us(k)/Us(k) = Tolheo)"

We give in Section 4 a short and selfcontained proof of (0.13) (see Prop.
4.3).Then Theorem 3 follows immediately from (0.10), (0.11), (0.12} and
(0.13).

To deduce Theorem 1 and Theorem 2 from Theorem 3 we need a new
form of Theorem 3. Let 1, be a f-adic exponent in Q, normalized by the
condition 1¢(f) = 1. In Section 5 we prove

Theorem 4 For « real abeliun k and any o € ¢ we have

1 i - 1
(0'14) vy (HE(‘!‘"'OO)(U),WD = Ve [H(k)w : US(A"')W] tote H 5
x#1
xle

Ll(lu X) )

where x runs over all nontrivial one-dimensional characters of G = G(k/Q)
such that x|q, enters @, t, is a constant given explicitly in Theorem 5.1 and
Le(s, x) is an £-adic L-function of Kubota-Leopoldt [9].

Note that we have

[ﬁS(k)w  Cs(k)] = [H(R)y : E’rﬁ'(k)v]_l[H(k)v : Cs(k)e),



so the only difference from Theorem 3 is the explicit formula for the index
[H(k), : Cs(k),]. We derive such a formula from consideration of the char-
acteristic series of H(ko)/Cs(keo). This series are closely connected with
Iwasawa series. So the interrelation between Iwasawa series and f-adic L-
functions discovered by Iwasawa [3] explains why (0.14) contains the values
Ll(la X)'

In Section 6 we give a result that is, in some sense, a refinement of the
conductor-discriminant. formnla of Hasse. For an abelian number field £ we
consider a Galois algebra A = k®q6e- Let R be the maximal order of Ag.
The natural inclusion k — Ay implies an inclusion « : O — Ry, where Oy
is the ring of intergers of k. Put O = 0 - a(Oy) C Ry, where O is the ring
of intergers of Q,. Then we prove (Theorem 6.1)

Theorem 5 For any p € ® we have

e ((Rk,tp : Ok'qp)) =t H 9|

X1
xle

where (A : B) means generalized index in the sense of Sinnott [12], and gx

is the Gauss sum corresponding to the character Y = y™ .

In Section 7 we calculate some unit indices. Let & be a real abelian field and
G = G(k/Q). As in [12], for a Z,[G]-module A free over Z, we put

A=z € A] Spalz) =0},

where Sp; is the trace map with respect to G. We prove (Theorem 7.1) that
forany p € @

0.15) oo [Tl _ AB) TR

[ClReel ~ Hk) : Os(h)o]
where s, = 01f ¢ # ¢y and s, is some simple constant given explicitly in
Prop. 7.4.

Let Log : U(k){f] — A, be the compositum of the mapping log :
U(k)[Y] — k@ch mduced by the f-adic logarithm and the natural inclusion
k®QQ( — Ay = k®Q_Q£. Put U(k) = O - Log(T(k)[€)). The following the-
orem (Theorem 7.3) may be cousidered as an f-adic analytic class number
formula for a p-component of the ¢-class group.
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Theorem 6 For a real abelian k and any ¢ € ¢ we have

1

ve (|CHk) e, of) = ve (Rk.ﬁ.w : ﬁ(k)w)-l H 5“(}() )
xea
x| v, x#1
where
a(x) = Z Y(a}log(l - Ei),
amod fy
(“vf,\')=l

fx s the conductor of x, €, 1s @ primitive f,.-th root of unity and log means
the ¢-adic logarithm, ‘

Note that the index (Ry.o ., : U(k),) may be treated as a wp-component of
the £-adic regulator of k.

We deduce Theorem 6 from Theorem 4, Theorem 5 and (0.15). Then,
using the method of Sinnott, we prove (Theorem 7.4) “an abstract index
formula”. This formula expresses |Cl(k)e | in terms of the index [ (k)[€), :
Ck, ), where the circular units Cy are defined axiomatically.

In Section 8, using arguments of Sinnott, we deduce Theorem 1 from
Theorem 7.4 (see Theorem 8.3).

In Section 9 we prove Theorem 2 (see Theorem 9.2). Then we prove a class
number formula of another type (Theorem 9.3). This formula includes some
modified circular units and some modified constants ¢f . In some particular
cases we are able to calculate these modified constants explicitly, and these
calculations yield nontrivial divisibility conditions for the class numbers of
some real abelian fields (see Theorem 9.4 and Theorem 9.5).

In Section 10 we give some commentary to our results and formulate some
open problems.

Acknowledgements. The author is in debt to Prof. Dr. H.Koch and
his colleagues from Max-Planck-Arbeitsgruppe “Algebraische Geometrie und
Zahlentheorie” whose hospitality allowed him to fulfil a considerable part of
this work.

The author thanks M.Zh.Shmatikov who kindly tought him to use INTEX
and N.V.Igumnova for help in preparing the manuscript.
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1 On the circular units in Z,-extensions

Let £ be a fixed prime number and d Z 2 (mod 4) be a natural number
prime to £. We suppose d to be fixed throughout this section. Let p4 be
the group of all d-th roots of unity in a fixed algebraic closure Q of Q. We
put Koy := Q(pq) and K, := Q(jea, () for any n > 0, where (,, € Qisa
£t1-th primitive root of unity (a £**2-th primitive root of unity if £ = 2).
We choose the roots ¢, in such a way that the equality ¢, = ¢, holds true
for any n. Then any cyclotomic field is of the form K, for some d and n, and
for a fixed d the fields K,,, n > 0, form a tower of all intermediate subfields

oo
of the cyclotomic Zs-extension Ko, /Ky, where we put K, := U K,. We
n=1

denote by y(K,,) (vesp. pe(K,) ) the group of all roots of unity in K, (resp.
the ¢-component of p(K,,)). ‘

Let P(K,) and C(K,) be the groups of cyclotomic numbers and cyclo-
tomic units respectively defined in the introduction. Note that the elements
(1 —a), o € pra,i = 0,..., 671+ 1 generate the full group P(K,). If
there is no danger of confusion, we denote this groups simply by P, and C,
omitting the symbol K. We put Py = Mﬁ"[f], Co = m@n[f] where
P, = P /u(K,), C, := Co/(1(K,) N C,) and the symbol [¢] means ¢-
completion. So P, and C,, are R-modules and A-modules as it was pointed
out in the introduction.

If @ € pu4, then we put ,(a) := 11—t

(n, where § = 0 if £ 5 2 and
d =1if £ = 2. The elements €, (e} for n > 0 form a coherent sequence with
respect to the norm maps, and thus we have an element

Eol@) i= Meﬂ(a) € P.

Proposition 1.1 The elements E (o), where a runs over pg, generate P,
as a R -module,

Proof. Let D, be the Galois submodule of P, generated Ey all sn(a)_for
@ € jug. As Ny i, (en(@)) = e.(a) for n > 1 >0, we have P, = D, - Py
Hence Py, = @P,‘[K] = MD,,[E] as desired.

a

To investigate the Galois module structure of Py, and C, we need some
results on the universal distribution [4], [5]. The universal distribution on
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% Z/Z for a natural number N is by definition an abelian group U(N) gen-
erated by the symbols («) for all « € §Z/Z, satisfying the relations

(1.1) mbz_—:u(b) = (a) for any « € %Z/Z, m|N.

By [4] U(N)is a free abelian group. The natural action of G(N) = (Z/NZ)*
on +2Z/Z induces an action of G(N) on U(N), and we have a G(N)-module
isomorphism [4], Theorem 4.11,

(1.2) U(N)®,Q 2 QIG(N)).

If N[Ny, then the natural inclusion §Z/Z — N%Z/Z and the mapping
Tv]_,z/z — ~Z/Z sending = € -hf,—lZ/Z into Rta € %Z/Z induce the map-
pings (N, Ny) : U(N) = U(N;) and N(N,N) : U(Ny) —» U(N). Ttis
well known that (N, N;) is always an injective map. From (1.1) it follows
immediately

Proposition 1.2 For any prime £ let N =0 (mod (), and put Ny = £N.
Let H(Ny, N) be the kernel of the natural projection G(N,) = G(N). Then
the map (N, Ny) o N(Ni, N) : U(N,) = U(N,) coincides with the norm
map with respect to H(N,, N).

For a natural number N let Z*(N) be the set of all primitive elements in

~Z/Z, ie. the elements of an order exactly N. Let N = J] " be the
PN

prime factorization of N. Then we have the natural decompositions

1 |
- _ - 7w _ = n(p)
NZ/Z =] (P"(”)Z/Z), Z(N) = [ z=(p"™).

pIN rIN
Theorem A. (4], Theovem 1.8, Prop.1.9). Pul

T(NY =TI [Z'(p"“”) - {p,}(p,}U{O}] .

rIN

Then the elements (t) for t € T(N) form « basis of the free abeliun group
U(N).
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Let ¢ be a prime number, d prime with £, d Z2 (mod 4). Put
U(eed) == li'l((j(gn(l)@ZZ‘)’

where the inverse limit is taken with respect to the maps N(£*t!d, £°d). We
have a natural action of G, := lEG'((,’"d) on U(#°d). Let [ be the kernel
of the natural projection Go, — G(qd), where ¢ = £ if £ # 2 and ¢ = 4 if
£ = 2. Then the group I' = Z, acts on U(€*°d), thus U(£*d) has a natural
structure of a A-module.

Proposition 1.3 The group U(d) is a free A-module of rank p(qd), where
p(z) is the Buler function.

Proof. For N ={d, d = H;)"(”), we present the set T(£"d) as a disjoint
rld

union T(d) = T(*d), U T({*d)2, where

r(ed), =27 - {5}] * I,Id[d () - {Pf(,,,}U{O}]

T d)y = {0} x [ [z*(p"(f')) — {Pf{p)}U{o}].

pld

and

Accordiug to the decomposition 7-Z/Z = t,,Z/Z @ 2Z/Z, any o € 23Z/2
can be presented uniquely in a formn « = (¢, "), where o’ € e,,Z/Z a" €
YZ/Z. W H, = (Z/Z)" is the kcme] of the natural projection G(£*d) —
G(d), then any two elements a, b € 752/Z of the form a = (d’, a"), b =
(b, V") are conjugated with respect to the action of H,, if and only if " = b"
and «', V' have the same order as elements of %Z/Z. It means that the
Z,[G (€ d)}-submodule Uy (£*d) of U(£*d)®,2Z, which is generated by all (2),
t € T(¢d);, can be generated as a H,-module by the set of ¢(d) elements
(), where ¢ runs over the set

e {8}« o (o]

Passing to the inverse limit with respect to the maps N(£'*'d, £7d), we get
that the module U, (£<d) : MU. (£*d) can be generated by ¢(d) elements as
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a H.,-module, where H., := !EHH = Z; . Hence, U,(£*°d) can be generated
by ¢(q)p(d) = ¢(qd) elements as a A-module. Let Uz(£"d) be the Z,[G(£.d)]-
submodule of U(f"d)®,7Z, generated by all (¢), where ¢ runs over T'(£"d),.
Then reasoning as in the proof of Prop. 1.1, we get

U(E=d) = [ (Uy(€*d) - Uy(€"d)) = fim U (€°d) = Uy(€d).

Thus there exists a surjective map of A-inodules « : A¥0%) — U(£*d). To
prove that U(€%d) is A-free of rank ¢(gd), note the natural projection p, :
U (£2d) — Uy(£*d) is surjective for any n. The surjection p, o a : A4 o
Uy (€*d) induces a surjection g3, : A‘(’iff?_l) = U1 (0*d), where § = 0if £ # 2,
§d =1il € =2, and for any Go-module A the notion Agy means factoring A
by the action of the subgroup ['; € T' of index & (thus [,,_s_; is the kernel
of the natural map Go, — G(£*d)). Denoting by rk(A) the Z,rank of A,
we get tk(ALY_) = o(f*d) and tk(Uy(€*d)) > tk(U(€"d)) — |T(£d)s| =
e(ld) — Lp((d). Thus rk(Kerf,) < ¢(d), therefore Kera = jil_nKer Bn=0.

0]

Theorem B ([5], Theorem 2.16, Prop. 8.8). Let {£id} C G(N)
be the subgroup generated by the elements 41. Then for any k we have
HY¥(£id, U(N)) = (Z/2Z)", where H*( |, ) is the Tate cohomology groups,
ro= 2N und y(N) is the number of distinct prime divisors of N. Let
MIN, (M) = v(N) and M £ 2 (mod 4), then the inclusion i(M,N) :
U(M) = U(N) induces an isomorphism

(M, N): H¥(£id, U(M)) = H*(+id, U(N)).
Corollary. If £ = 2 then we have for any &
HE(id, U(62d)) = 0.

Indeed, if £ = 2, then by virtue of Theorein B the norm map with respect
to the group H(f*d, £*~'d} coincides with multiplying by | H (€*d, £*~1d)| = 2
for n > 3, and thus annihilates the group H*(&id, U(€*d)) for any k. Then
it follows from Prop. 1.2 and an isomorphic character of i*(€*~'d, £"d) that
the map N(f*d, £4='d) annihilates H*(£id, U(£"d)) for any k and n > 3.
Therefore
H¥(id, U(¢°d)) = 0.
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Theorem 1.1 The A-modules Py, and Cyo are A-free modules of rank
UKy - Q.
Proof. Let « be a fixed generator of 4. For any
¢ 1
fretité | € fnt1td

Z/Z, ccZ,

put

$"(0) = 1, d)"( = )= (I —a®™¢%)  (mod Pun (Q" x u(K™)).

Then we get the mapping

o (’"+1+6 iZ/Z = P[P0 (Q7 x p(Ky)).

The mappings ™ is an even distribution in the sense of [4], i.e. the relations
1
n +l+5
zb " (b) = " (a) for any a € Y lZ/Z m| &

and
P (—a) = ¢"(a)

hold true. Thus ¥™ defines a natural surjection
o U @gle — (PP, n Q" x pu(K))[E].

. —-.n . . .
The mappings ¥ are compatible with the action of the group G(£*+'+0d) =
G(K,/Q) and with the norm maps. Hence, passing to the inverse limit with
respect to the norm maps, we get the surjective map of R .-modules

B V) U(Ed)™ — Jim((Pa/P. 0 Q" x u(I,))[0] = Pe

where U(€*d)™ means the maximal subgroup of U(£<°d) on which —id acts
as multiplication by —1.

As we can consider P, as a A-submodule of the R.-module H(K,,),
defined in the introduction, we get that P, has no A-torsion. It follows from
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Prop. 1.3 and the definition of U(£*d)~ that U(£°d)/U(¢>°d)” has no A-
torsion as well. Let U(£°°d)* be the maximal subgroup of U(#*) fixed under
the action of —id. Then it can be checked easily that both modules U (£ d)*
and U(€2°d)™ have A-rank 1[Ny : Q).

By Prop. 1.1 we have for any » a natural surjection P, — D,[f]. By
[12], Theor 4.1 €, has finite index in the unit group U(K,), hence we have
that Ze-rank of D, [f] satisfies for any n the condition

vk D,[0) > tkU(K,)[€] — tk P-.[4),

ie. tk D, [f] > 3[K. : Q] — ¢, where ¢ does not depend on n. Then by [6],
Prop. 1.2 we get that the A-rank of P, equals %[I\’U . QJ, hence ¥, is an
isomorphism.
If £# 2, then we have = U(£°d) = U(f=d)*t @ U(£=d)™, so b, induces
an isomorphism U({*d)* = P,,. Heuce Py, is a free A-module in this case.
If £ =2, then we have an isomorphism

P = U(02d) /U= d)~ 2 N(U(£2d)),

where N{ ) means the image of the norm map with respect to {£id}. By the
corollary from Theorem B we have H°({Z£id}, U(€>d)) = 0, thus N(U(£>°d)) =
U(€>d)*. To prove that U(£=d)*t is A-free we note that U(£%°d))* is a sub-
module of a A-free module U(£d); and U({d)/U{£°d)" has no torsion. So
our assertion follows from [6]., Prop. 1.1.

Thus we have proved that P, s A-free in any case. To prove that Co, is
A-free we note that any @ € P,[f] may belong to the image of the natural
projection Po, — P,[€] only if z belongs to the ¢-completion of S-units,
where S consists of all prime divisors of £. Let ¢,, be a primitive m-th root
of unity. It is well known that the number 1 — €., is a unit if and only if m
is a composed number. If m = p" for some prime p, then 1 — g, is a prime
element of the local field Q,(£,-). Thus it follows easily that we have the
exact sequence of A-modules

0 — Coo — Poo — Z¢ —> 0,

where Z, is generated by e.(1). As Py is A-free, we get from [6], Prop. 1.1.
that Co is A-free as well.

a
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2 On some characteristic series

Let Roy := Z¢][Go)] = MZg[G'(K,,/Q)] be the ring defined in the introduc-

tion. We have the natural direct product decomposition Go, 1= G(Ko /Q) =
['x V, where ' ® G(Qw/Q) = G(Ko/Ky), V = G(Ku/Q) = G(Kw/Qw).
If we fix a topological generator v € I', then we get the isomorphism A :=
Z[[0)) = Z{[T]], v = L + T, where Z,[[T]] is a ring of formal power series.
We have R, = A[V]. All R-modules considered below are assumed to be
finitely generated over Ko, If x is any one-dimensional character of V tak-
ing its values in the algebraic closure Q, of Qg, then the ring O, generated
over Z, by all the values of y has a natural structure of V-module, if we put
o(e) = x(e)a for any o € V, a € O,. For any Re,-module A we define the
v-component of A by

Ay = ABg,1Ox.

Thus we have Ro, = O [[I']] = O,[[T]]. We may treat A, as a Re, -module,
if we put 7(a @0)=T(a¢)®b, T(a @b) =« ® 7(b) for « € A, b, € O,. Put
V =V, x Vg, where V; is the £-Sylow subgroup of V and ({Vgl, £} = 1. Let ¢
be the set of all Qe-irreducible characters of V5. Then for any R.-module A
we have the decomposition into the direct product

A= P A,

wed

where A, = e, A and e, is the idempotent corresponding to ¢. For a one-
dimensional character y € 17, where V is the group of all the characters of
V, the notion y|¢ means that the restriction x|y, of x on V; enters ¢ as its
irreducible component over Q,. We have

21) (Aw),\.={ AR

50
otherwise

If Ais A-torsion, then there is defined the characteristic series f4 = f4(T) €
A of A (see [3], [9]). We recall some properties of these series. At first, note
that f4 is defined uniquely up to multiplication by any unit w € A*. If A, B
are quasi-isomorphic A-torsion modules (i.e. there exists a homomorphism
f: A = B with finite kernel and cokernel, we shall write A ~ B in such

a case), then f4 = fg. If A =@A/f,-1\ for some f; € A, fi # 0, then

=1
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fa =TI, fi. It is known that any A-torsion A is quasi-isomorphic to a

module of the form EH A/ fiA.

Let a A-module ;1 1be finitely generated over Z, (this is the only case we
shall deal with in this paper). Then f4 is of the form f3(7)u, where u € A”
and fi(7) is a distinguished polynomial of the form T 4 ) TV 4+ 4
dg, OUriy---,0n € {Ze. Note that we may treat f,(7") as a characteristic
polynomial of 7' = v — 1 acting on the A-dimensional Q,-space A®Z,Q" If
R..-module A is A-torsion, then for any y € V we have the characteristic
series fao(T, x) of O[[T]]-module A,, defined in the same manner. The next
statement is well known.

Proposition 2.1 Let A be a R, -module such that A is finitely generated
over Zip and thus A-torsion. Then we have

(2.2) JaTy = T] Ja(T, x), fa (T)=T] fa(T,x)

xE’T’ xle

for any ¢ € ®, where we put fo(T,x) =1 if A, is finite.
Let
0 —A—0>B—C—00

be an exacl scquence of Ro,-modules finitely generated over Zy. Then we have
(23)  Je=Jafo, fB(T,x) = fa(T,x) fc{T,x) for any x € V.
By v( } we denote the f-adic exponent in Q, such that 1,(¢) = 1.

Proposition 2.2 Let A be a A-lorsion module. Then the group Ay =
Al(y = 1A is finite if and only if [4(0) # 0. If A is Ze-free, then we have

(2.4) V((|A(u)|) = V!(fA(O))

Proof.  The condition f4(0) # 0 means that AT is finite. The group
AL is finite if and only if so is Apy. If A, B are Z,-lree and A is quasi-
isomorphic to B, then | Aq)|=| B|. So it is enough to check (2.4) for A of

the form A = @ A/ fiA, where f; are distinguished polynomials. In this last
=1
case formula (2.4) is evident.
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The next proposition is a far-reaching extension of Prop. 2.2. Let 7 : G, —
G be a surjective mapping of G, onto a finite group G. Then Kerr = H x T,
where H = V N Kerr and the group T = Z, is defined noncanonically. We
meet such a situation in the case, when G = G(k/Q) for some algebraic num-
ber field k C K. In such a case we have H = G(Ko/koo), T = G(koo/k).

Note that we can choose the topological generator 7 of I' in the form
(2.5) 7=

for some o € V, and the integer » > 0 is an invariant of the field k. If the
Reo-module A is A-torsion and Z,-free, then so is ((V/H) x T')-module A¥.

Proposition 2.3 If the group Ay is finite, then so is the group (AH) ) =
AHJ(F = 1), and its order € is given by the formula

(26) L= H H fA(CC:l_l’ X) )

eV ¢ =1
where (, s defined by the condition
e
Cx = X(U)i

¢ runs over all the roots of unity of degree (", and o,r are given by (2.5).
Let ¢ be any Qe-irreducible character of Vo /Vo N H, and let €' be the order
of (A" Yy = ((A")) (). Then we have

(2.7) to=wve| TI II faCs' =1, )|

veva (=1
x|

where (, and { are as above,

A

Proof. Note first that the value 1( f4(0)) in (2.4) equals to ve([] a:), where
i=1

Q.. .,y are all the roots of the distinguished polynomial f;(7) or, equiva-

lently, all the eigenvalues of y—1 on .4®Z’Q(. Now let a{x)1, ..., a(x)a be
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the roots of the distinguished polynomial corresponding to the characteristic
series f4(T, x) for some y € G/H. An element o defined in (2.5) acts on
(AM), as multiplication by x(o), thus the operator 7, acting on the Q,-space

(AH)X®Z(Q¢, has the eigenvalues (1+a(x)1)" x(7), ..., (L+ (X)) x(0).
Then by (2.2) and Prop. 2.2 we have

AMx)
t=wve| TI TI((14+a(x))" x(e)—1)

,\'EJ/_T{ i=1

As we have

(1+a(x))" x(e)=1= [T (1 +a)i) == II G(+elx)i =70

=1 (=1
and
Alx)
fl(Tr X) = H (T - CY(X),-),
i=1
we gel,
Alx}
t=w|n ]I HH (' C=1=a(x)) | =we|n II TI faC¢¢t =1, %),
VeV ¢t =1 1=l ,\eV/HC‘ =1

where ) = 1. This proves (2.6). The proof of (2.7) is quite analogous.
O

Corollary. In the situation of Prop. 2.3 put [ A, |= £, |Aqy . l= e
where Ay == A/(va — 1), v = ’y’". Then

\\EV Cl"—l

(
(2.9) tn)o=rve | [T T fal¢—=1,x)

Nt )
x|

(2.8) t(n) = v H [T fa€ x}

To prove it, it is enough to apply Prop. 2.3 to the surjective mapping 7 :
Goo =V X[ = VI'/I,, where [, := {7,).
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Now let K, be the cyclotomic Z,-extension of a cyclotomic field Ko =
Q(ea, (o). Recall that we have defined in the introduction the Re-modules
A(K.) and H(K4) such that we have the natural inclusions C(Ko) C
A(Ko) C H(K,). In what follows we work with some fixed K, so instead
of C(Ku), A(Kx), etc. we shall write Co,, Ac, etc. Let 7 € G be the
automorphism of complex conjugation of ,. For any fo-module A we put

At ={ae A | jla)=a}, A-={a€ A | jla)=—a}.

Proposition 2.4 The groups Ao, Hoo are free A-modules of rank Ko : Q).
The groups AY,, HY are free A-modules of rank 3[Ky @ Q).

Proof. By [6], Lemma 7.2 and Prop. 7.1 H,, is A-free of rank [Ko : Q].

There exists the natural exact sequence
00— A — Ho, — Do — 0,

where D, is a finitely generated free Zg,-module generated by all the places
v | £ of K. Then, reasoning as in the proof of Theorem 1.1, we get that
A, is A-free as well. As Ho/HY,, Ao/ A7, are A-torsionfree, it follows from
[6], Prop. 1.1 that HY and AY are free A-modules. Using arguments of [6],
Section 7 one can prove easily that H2 and A are of A-rank {[K, : Q].

O

Now we are going to compute the characteristic series of the A -torsion -
module A, /Ce,. To do this, we need some further notations and definitions.
We may cousider any character y € ‘7, V = G(K,/Q) as a primitive Dirich-
let character of conductor f, |dq, where g =£1f £ # 2; g =41 £ = 2. Any
such y is a character of the first kind in the sense of Iwasawa {3]. For any
such y define the idempotent

ey =|VI™1 Y ¥(o)o, where X(o) = x(a)7".
Xev

Put




As in [12], formula (3.3), we define the “minus component” of the Stick-
elberger element s(«, "M +d), o 20 (mod "H*5d) corresponding to the
field K, of conductor £+1+8d by

e”s(a, "y = S (— <f_§ﬁﬁ> + %) o7 € QG(K./Q)],

i {wed ("+l+d)
(i, td)=1

where {z) denote the unique rational z', 0 < 2’ < 1, such that z = &’

(mod Z), and o; is the element of G(K,/Q) sending £ into &' for any € €
1([,). The elements 6_.5((£,€"+l+6(f) are compatible for different n with
respect to the natural projections Q{G(K,,/Q)] — Q.[G(K,,/Q)] for any
ng > ny. Thus, passing to the inverse limit, we get the element

s(a, 0d) = ]Ln es(a, 1) € }EQE[G(K”/Q)].

It is well known (see [12], Sect. 3) that (o; = 1) - s(a,(®d) € Ry for any 3
prime with d€. So we can consider s(«, £°d) as an element of L[V], where L
is the quotien field of A. It follows just from the definition of the Iwasawa
series given in [3] that in the quotien field of the ring Reo = Oy[[T]] the
equality

l . r
(2.10) sexs(L, 7)) = A(T, x)
holds true. Here x is an odd character (i.e. x(—1) = —1) of the first kind

with conductor f, and f(T, x) is the Iwasawa series corresponding to x. In
[3] f(T,x) is referred to as the series corresponding to the even character
f = Yw, where w is the Teichmuller character, w : V — Zj, w(o;) = ¢
(mod ¢) for any o; € V. It was proved in [3] that f(T,x) € O\[[T]]) if x # w.

If vy =w, then
K

J(w) = (1= =2) " a(r @),

where (1", w) is an invertible element of Z,[[T]] and & € 1 + Z; is defined by
the formula v((,.) = (7 for any n > 0. Put

)/(]\"") = H,‘tt(]\,n,v)a

v

where K, , is a completion of K, with respect to v, and put Y, := MY(K“),
where the inverse limit is taken with respect to the norm maps. Note that
as a Z,-module Y, is isomorphic to D, from the proof of Prop. 2.4,
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Theorem 2.1 Let (T, 0) (resp. y(T, #)) be the characieristic series of the
A-torsion Reo-module A%, [Co (resp. Yoo ) corresponding to an even character
of the first kind 8. Then putting 0(a) = 0(0)™!, we have

(2.11) T, 0) = f (l—;— -1, ﬁw) W(T, 07 i 0 £ 1,
A
(2.12) T, 0) = (T?T - l,w) (T, 1) =
(-T)f (1 J':T - l,w) y(T,1)"" if o =1.

Proof.  We shall deduce (2.11) and (2.12) from {8], Theorem 4.1. To
formulate this last statement we need some definitions. Let S be the Ro.-
module generated in L[V] by the elements s(«, #°°d) for all « € Z\ {0} . It can
be checked easily that S., is generated as a Ry -module by the set s(«, £7d)
foralla € Z\ {0}, a=1,...,dq. So S, is a finitely generated R-module.
We define the Stickelberger ideal in Re, as Seo := S, N Reo. In [8] we have
defined for the field Ko, a free o -module on one generator V(K,,) such
that A(K.) € V() and (noncanonically)

(2.13) V(K)A(Ko) = Yoo,

(see [8], (1.10)). Let x : Geo — Z} be the cyclotomic character defined by
C7 = ) for n = 1,2,... We define the automorphisny w : Re = Reo by
w(o) = k(o)o™! for any 0 € G.

[
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Theorem C ([8], Theorem {.1). For given Ko we have
Coo = w(Seo)V (K oo)
P = w(S )V (Ks)-

The A-torsion modules V(K )T /Co and RY, [w(Se) are isomorphic as Roo-
modules.

As is well known (and may be easily deduced from Lemma 2.1 of [12]),
the characteristic series of the A-torsion Re-module R /S are the Iwa-
sawa series for odd x, v # w, and §(7,w) for ¥y = w. By the theorem of
Ferrero-Washington RZ /S., is finitely generated over Z;. Therefore R /Seo
has trivial Iwasawa series for even characters y. Thus, V(Kw)"/Cew has
trivial characteristic series for odd characters x. As w(y) = xy~!, we have
w(T) = &= —1. The automorphism w maps (R, /S )y onto (RE /w(Sew))xw-

i+T
Hence by Theorem C the characteristic series of V(K )" /Cq, corresponding
to the even character ¢ coincides with f(1$5 — 1, 0w) if 0 # 1 (resp. with

7157 — L,w) if 0 = 1). Taking into account (2.13) and (2.3), we get (2.11).
To get (2.12) it is enough to note that the f-component Y, 4 is finite for
0=1.

3 The calculation of some characteristic se-
ries

Let K., be as in Section 2. Let My be the maximal unramified abelian
f-extension of I, and M., be the maximal subextension of ﬂ—l—m/h’w such
that ¢ is completely decomposed in Mo,/ Keo. Put Te(Koo) := G(M oo/ Koo),
Te(Koo) = G(My/Ky). Let Re(,) be the kernel of the natural surjection
Te(Ko) = Te(Ko). So the group Re(Ko) = G(M /M) coincides with the
subgroup of Ty(K ) generated by the decomposition subgroups of all the
places over . Note that Tg(f\"oo), Te(Ke) and Ry(K ) are Re-modules in a
natural way.

The next theorem, known as the “Main Conjecture of Iwasawa theory,” gives
the characteristic series of T¢( Ko ) corresponding to the odd character x of
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the first kind or, equivalently, the characteristic series of T¢( Koo )™ for all y
of the first kind.

Theorem D For any odd character of the first kind x # w the corre-
sponding characteristic series of T(Ks) coincides with the Iwasawa series
f(T,x). The characteristic series of Te(Koo) for x = w coincides with n(T, w)
(and thus is invertible).

This theorem was proved in [10] (for odd ¢) and in [14] (for £ = 2).
Another proof for K, = U Q((n), based on Euler systems of Kolyvagin
=1

was given by Rubin [9] (see also [11]). Put Z.(1) = Jim(K,). For any
Reo-module A finitely generated over Z, we turn Homg, (A, Z,(1)) into a
Reo-module putting (ox)(a) = k(a)x(c7Ya)) for any o € G,

X € Homg, (A, Z(1)), « € A.

Proposition 3.1 The R -modules A} /Co and Homg, (Te(Ke)™, Ze(1))

have the same characteristic series for any character.

Proof. [For any odd character of the first kind x put § = Yw. Then R~
modules Homg, ((Tt(l\"m)’)_\,, Zg(l)) and (Homz( (ng(I\"oo)", Z,(l)))g are
quast-isomorphic and therefore have the same characteristic series. By Theo-
rem D the module (T¢(Ke) )y = Te( Koo )y has the only nontrivial character-
istic series f(T, x) corresponding to x (n(T,w) if y =w). [foy,...,a, are
all the zeroes of this series then 1+ ay,...,1 4+ «, are all the eigenvalues of ¥
acting on T((I\"m)x@o\_[,_\.), where L, is the quotien field of O,. Then v, con-

sidering as an operator on the L,-space (Homz,(Tq([\’m)‘, Z((l))ﬁ ®n Ly
X

has the eigenvalues 8y = k(14 o))"t .., B = k(1 + )" The direct check-

ing shows that g, —1,..., 8, — 1 are all the zeroes of the series

(3.1) g(T,0) = f (“‘“‘1:7*_1’ Ew), 01,
KN —

2 ) = R Y / if 0 =w.

(3.2) g(T,0) ?](1+T 1, )w) if 0 = w

satisfying the condition (3, —1) > 0for ¢« = 1,...,r. Therefore 8, -1, ..., 8,—
1 are all the roots of the distinguished polynomial associated with ¢(T',0).
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Hence g(7T, #) is the characteristic series of Homg, (T¢(Ko)™, Z¢(1)) for any
even character of the first kind §. Now consider the natural sequence

(3.3) 00— Re(Noo)™ — Te(Koo)™ — Te(Ko)™ — 0.

The sequence (3.3} is exact up to finite groups. Let D, be the R -module
from the proof of Prop. 2.4. Then Dy = Z¢[Goo/Geon] as a Re-module,
where G,y is the decomposition subgroup of any v |€ in G. We have the
natural surjective map [ : Dy, = Re(Ko) that sends any place v | £ into
the Frobenius automorphism of its decomposition subgroup in T¢(K). The
mapping f induces the mapping [~ : D — R(K)~ which is known to
be a quasi-isomorphism (even an isomorphism if £ # 2). It follows from the
explicit form of Dq, and Y, that

Homgz, (D, Ze(l)) = Yo (noncanonically).
Thus, we have a quasi-isomorphisin
(3.4) Homg, (DL, Z.(1)) =Y.

Combiuing Theorem 2.1 with (3.1), (3.2), (3.3), (3.4} and noting that (Y )s
is finite for ¢ = 1, we get our proposition.

o

For any K, and its group of units U(K,) we put U(K,) := U(K,)/u(K,)
and Uy = M(U(K")[f]), where the inverse limit is taken with respect to
the norm maps. We have the natural inclusion Co, C U, C AY, and thus,
the exact sequence

(3.5) 0 — Uno/Coo —> AL /Coo —> A U, — 0.

Let Us(K,) be the group of S-units of K7, where S is the set of all the places
over £ in K,. Put Ug(K,) 1= Us(K,)/p(K,) and Use, := Mﬁg([\’n)[f],
where the inverse limit is taken with respect to the norm maps. Note that
we have the natural inclusion Ugo, € H(K)™.

If & is any real abelian field and k., is the cyclotomic Z,-extension of &k then
we can define the abelian pro-f-groups H(ke), A(ks), Ulks) and Ug(kes)
in the same manner. If k,, C K, for some cyclotomic field X' = Kj, then
we can consider all these groups as Ro-modules.
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Proposition 3.2 The Ro,-modules AL Uy and HY, [Us o, are quasi-isomorphic.
If k is any real abelian field, ke, is the cyclotomic Zs-extension of k and
koo C Koo for some cyclotomic K then the Ry,-modules A(ky)/U(ko) and
H(ko)/Us(kao) are quasi-isomorphic.

Proof. As we have U, = Ug, N AL, the natural mapping
i AL JUs — HE [Us oo

is an injection. Thus it is enough to check that ¢ has a finite cokernel. To
do this, we shall give class field theoretic interpretation of the groups in
question. Let N, be the maximal &ramified abelian f-extension of K,

and put Xo := G(No/Ke). Then we have the natural exact sequences of
R..-modules

(3.6) 0 — W — Xoo — Te(Ko) — 0,

(3.7) 0 — We — Xeo — Te(Ko) — 0,

where W, (resp. W, ) is the subgroup of X, generated by the decomposi-
tion subgroups (resp. by the inertia subgroups) of all the places v | € of K.
Let f: Yo, = X be the natural map defined by the class field theory. Then
Im f C W, C W,,, and it follows from class field theory that

Weo/Im f = Heo/Us oo, Weo/Imf = Ay /Uss.
Thus
Weo/Weo = Re(Koo) = Hoo/(Aco - Us,oo) D Cokeri = HYJAY - Us oo,

Therefore Coker: C Ry(K)T. Note that the group Re{(K.)" is finitely gen-
erated. On the other hand, by Leopoldt conjecture there is no noncyclotomic
Ze-extension over K for any n. Thus Re( Ko )T is torsion, hence finite. Thus
Coker is finite, hence 7 i1s a quasi-isomorphism.



A quasi-isomorphisim hetween A(ky)/U(ke) and H(ky)/Us(kw) can be

established in the same way.

W]

Theorem 3.1 The Ry, -modules To( Koo)' and Uy, /Co have the same char-
acteristic scrics (for any even character of the first kind 0 ).

Proof. We shall deduce our Theorem from some duality results of [7]. Put
Noo = Xeo/f(Yeo) and A K) = Noo/HZ, where X, Yo, are as in the
proof of Prop. 3.2. Then we have

Theorem E. The R, -modules 2A4,(K) and Homg, (24, K), Z,(1)) are
quasi-isomorphic,
Indeed, if £ # 2 then by the Ferrero-Washington theorem A,(K') is finitely
generated over Z,. Then by [7], Corollary of Theorem 4.1, we have A, (K) =
Homg, (A '), Ze(1)). Although the case { = 2 was not considered explicitly
in [7], it was noted that all the results of that paper are correct for £ = 2 up
to subgroups and quotiens of exponent 2. If £ = 2 then 24,(K) is finitely
generated over Zy, and repeating the proof of Theorem 4.1 of [7], we get the
statement of Theorem E.

It follows from Theorem B that we have a quasi-isomorplism

(3.8) 2A(KY" ~ Homgz,(24(K)™, Z.(1)).

The definition of A,(K') and (3.6) show that

(3.9) 2A(K) ~ T Ko)™

Therefore 24,(K)* enters the exact sequence

(3.10) 0 — 2H o /(2H o N (HZ - Us o)) — 2A,(K)7F N 2T (K o)t

with finite coker 3.



It follows from Prop. 3.1 and formulae (3.8), (3.9) that 24,(K)* and
AL /C, have the same characteristic series. Then it follows from Prop. 3.2
that

QHoo/(2Ho N(HZ, - Useo)) ~ Ho [Us o ~ AL [Ueo.
Then we get from (3.5), (3.10) and Prop. 2.1 that U, /Ce and To( Ko )t
have the same characteristic series.

a

Now let & be any real abelian field, ko be the cyclotomic Z,-extension of k
and ko, C K for a suitable choice of the cyclotomic field K = K.

Theorem 3.2 Let ko, and Ko, be as before. Put H = G(K o /ko). Then the
Reo-modules Tr(keo) and UH JCH have the same characteristic series.

Proof. We have quasi-isomorphisms Tp(keo) ~ Te( Koo )7, U /CH ~ (U, [Coo ),
so our theorem follows immediately from Theorem 3.1.

4 The proof of Theorem 3

Let k, koo, Kooy, Boo and H = G(K o /keo) be as in Section 3. Note that we
have Ro,-modules H(ky), Us(ks), and these modules are fixed under the
action of H. Put H(keo) := (Hoo), Us(koo) 1= (Useo), Clkeo) := (Coo)¥.
then by [6], Prop. 1.1 the Re-modules ﬁ(kﬁw), Us(keo), Clkoo) are A-free.
Let H(k) (resp. H(k)) be the image of the natural projection H(ke,) = B(k)
(resp. H{ks) — B(A:)@Z’Q, ). Let Ui(k) (resp. Ug(k)) be the image
of the natural projection Us(ke) — H(k) (resp. Us(keo) — H(k)). put
Us(k) := Us(k)[) N H(L). Thus, Us(k) is the subgroup of all the elements of
Us(k)[€] that are local universal norms from k. Put

Cs(bhe) = {:1: € T‘i(km) | (v — D € C‘(km) for some n},

Cslheo) := Cslkoo) N Us(keo)-
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It follows from the definition and from Prop. 3.2 that the modules
H(koo)/Cs(keo) and (AL /Coo ) are quasi-isomorphic.

_ Let 6‘5(1&:) (resp. Cs(k) ) be the image of the natural projection és(km) -
H(k) (resp. Cs(ko) — H(E)). We shall call the group Cg(k) the group
of circular S-units. The following proposition makes clear the connection
between all these groups.

Proposition 4.1 There cxist natural inclusions
(4.1)  H(k) 2 Us(k) 2 Cs(k), H(k) D Us(k) 2 Us(k) 2 Cs(k)

such that all the indices that appear in (4.1) are finite.
If0#2, then H(k) = H(kso), Us(keo) = Us(kco), Csl(keo) = Cs(keo),
H(k) = H(k), Uxk) = Us(k) and Cs(k) = Cs(k).
If ¢ =2 and /=1 ¢ koo for some v | € (hence for any v | £ ), then
H(keo) = H(keo), H(k) = H(k).
Ift =2 and /-1 ¢ keou forv|l, then

( /” Hn“'f o-ow "5 Z/'ZZ),.:

u'f

where v is the number of places v| in k.
If £ =2, then in any case we have

(4.2)  [Uslhes) : Uslhoo)) = [Cislkeo) : Cslhio)) = [T3(k) : Us(k)) =
[Cs(k) : Cs(h)] = 2,
(4.3) Us(k)/Cs(k) = Us(k)/Cs (k).

Proof. f T = G(ke/k), then for any sufficiently large n the natural projec-
tion Goo = Glkeo/Q) maps I',, onto Ty, where s > 0 does not depend on n.
The natural inclusion H (keo)/Us(keo) € HE /Us e induces for all sufficiently
large n the inclusion

(keo) [ Tss (ko))"= © (HE [ Us0)"™

By [6], Lemma 7.2 and Theorem 7.2 the A-modules Hy, and Ugo are
free. Hence HZ is A-free and HE [Ug does not contain any nontrivial
finite submodule. On the other hand, the module (]'I;/U,g_oo)l " does not

()()
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contain any A-submodule that is A-isomorphic to Z, because of the Leopoldt

r‘n
conjecture. Thus (H;"O/Ug‘oo)r" 0 and ( (koo )/ Us(k )) = 0 for all
sufficiently large n. It follows from the definition of gg(km) and the last
equality that Cs{ke) C Us(koo). Therefore Cs(keo) C Us(koo), and Cs(k) C
Us(k), Cs(k) € Us(k). The other inclusions of (4.1) are obvious.
By Theorem 1.1 HZ /Cy is A-torsion, hence H(ke)/Cs(keo) is T-torsion,

T'l
and it follows from the definition of Cs(ke) that ( (koo )/ Cs(k )) =0 for

any n. As H(ke) and Cs(ke) are T-free, we get the natural exact sequence
(see [6], (1.2))

r

(4.4) 0 = (H(kew)/Cs(kw)) ~— Cslkoo)o) —

H (koo ) o) — (H(km)/(—fg(kw))w) — 0,
where Ay = A/(¥ — 1)A for any T-module A.
[t follows from the local class field theory that f—f(kw)(n) =~ H (k). Hence
(4.4) shows that Cs(k o) (v) = Cs(k) and

(45) (H(kes)/Cs (ko))

H(k)/Cs(k).

fR

(V)

As H(ks) and ?5(1-‘.00) are [-free modules of the same rank, the groups
Cs(koo )(v) and H (ke )u are free Z,-modules of the same rank. Then (4.4)
shows that the groups in (4.5) are ﬁmte From this and from the equalities
Cs(k) = Cs(k) if € # 2, [Cs(k) : Cs(k)] = 2 il £ = 2, that will be proved
below, we ge‘r the finitness of all the indices in (4.1).

If £ # 2, then by [6], Lemma 7.2 we have that H,, is I-free and H (k)
is T-free. Cons1de1 the inclusions H(ke) 2 H(ks) 2 Ny(Ho), where
H = G(Kw)/koo). It follows from the local class field theory that the Tate
cohomology group HY(H, H.,) is finite and therefore Lﬁ(km) : H(koo)] < oo.
As both modules in question are I-free, we get that H (ko) = H(keo)-

The equality Us(keo) = Us(ke) can be proved by the same reasoning.
It follows from [6], Theorem 7.2 that Uge, is [-free and Ug(ko) is T-free.
The orders of the Tate groups H(H, Ug(K,)) can be majorated in terms of
the number of generators of the f-class groups CI(K,,). So the finiteness of
HY(H, Usy,) follows from the triviality of the Iwasawa j-invariant of K.
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Then we get Cs(keo) = Cs(keo), H(k) = H(k), Uz(k) = Ug(k). This proves
the proposition if £ # 2.

If £ =2 and V=1 € ke, for any v|#, then applying [6], Lemma 7.2, we
get again that H(ke) is T-free and H(koo) = H (koo ).

If £ =2 and /=1 ¢ ky,, for any v|f, then Lemma 7.2 of [6] needs some
correction. The correct statement (which can be proved easily using local
class field theory) asserts that in this case H(ky) is a T-module without
torsion and there exists an inclusion H(ke) — F, where F is DT-free and
FlH (ko) = H/q(km‘”) as a Galois module (note that jue(ke ) = {£1} for

u|f
any v|€). !

If £ =2 and V=1 € kg, (this is the case if k is real abelian) then Theorem
7.2 of [6] also needs a correction. In this case the correct statement asserts
that Us(keo) is isomorphic to a submodule of index 2 of some [-free module.
Indeed, Theorem 7.2 and its proof given in [6] are valid for the field k_ =
koo(v/—1). Thus Us(k..) is T-free. It follows from the Kuwinmer theory that
[Us(k.,) : Us(koo)] < 2. On the other hand, Ug(koo) is not [-free. This last
assertion follows from [6], Prop. 1.2, and the observation that -1 is in the
image of the natural projection Ug(keo) = Us(k,)[€] (it is sufficient to check
it for & = Q. Hehce we have [Us(k) : Us(keo)] = 2 as desired. Moreover,
we hiave (js(larm) = Ugs(k. ).

Now consider the circular number £,(1) = M(] —(.) € Us(k.;o). As was
shown by Sinnott (see [12], Section 1), for any n we have

(4.6) 1= G @ Ush) - (k. (VET)).

It means that e,(1) € Us(ka). As it follows from the definition of C (ko)
that €o(1) € Cylkeo), we get the fiust two indices of (4.2) equal to 2. Let
ng be the maximal index such that ¢, € k(v/=1). Then the natural pro-
jection Colkoo) — Cs(k) sends Eeoll) nto (I — (). Then (4.6) implies
Us(k) # Us(k), Cs(k) # Cs(k). As [Uslhoo) @ Us(kha)] 2 [Us(k) : Uz(k)]
and [Cs(kos) : Cs(kao)] 2 [Cs(k) : Cs(k)], we get that the last two indices of
(4.2) equal to 2 as well. This proves (4.2) completely.

To prove (4.3) it is sufficient to note that Us(k) = Ug(k) x < (1= (ny) >
and Cg(h) = Ce(k) x < (1 = (i) > -
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Proposition 4.2 There exist natural isomorphisms of the finite abelian groups
(T (heo) G (k) = TT(R)/Cis k),
(Us(keo)/ Cs (koo = Us (k) Cs (k).

Proof. The first formula is already proved (see (4.5)). The last one can
be proved in the same way using the fact that Us(ke) is A-free and hence

T-free.

Proposition 4.3 (6], Prop. 7.5). There esists a natural isomorphism
To(keo)' = Us(k)/Us(K).
For the convinience of the reader we give here a short and selfcontained proof
of this statement.
Proof. Let X be the Galois is group of the maximal abelian £-extension of

koo and W be the subgroup of X generated by the inertia subgroups for v f¢
and the decomposition subgroups for v|f. Then we have the exact sequence

(4.7) 0— W — X — Ty(koo) — 0.
It is well known that XT = 0, hence (4.7) induces the exact sequence

0— ’I‘t(lir‘:,ﬁ,)F e W(u) -—'-(z-) X’(U) =5 Tg(li:oo)(o) —3 0,

oo

Put H(k,) = () Newosio (k5 [0]) and

= (1;[ U(k:,,)[(.’]) X ([ll ﬁ(kv)) .

Note that for real v we have U(k,)[f] = {£1}.
Put Us(k) = Us(k)[€]) N E(k). Then we have the exact sequence

! — [l-.q(k) — S(l.) —_— Us‘(k’) — 1.

32



We define [£(A,) and Z,?,_;(kn) in the same way. Using the class field theory
we get that ‘ ~
(4.8) Iinf = Kera = E(k)/Us(k).

By the same reason we have

(4.9) M[_}ﬁ( (k) [Us (k) = (Jin E(k MU(, ) (€))-

As E(k,) is a cohomologically trivial G(k, /k)-module, we get from (4.9)
that
(4.10) Wia = E(k)/ULK),

where U3(k) is the image of the natural projection MUS(k’*)[ﬁ] — Z}g(k).
Note that 4 is induced by the identical map id : E(k) — E(k). By (4.8)
and (4.9) we have

Te(keo)T 2 Kerfd = Us(k)/UL(E) = Us(k)/U3(k).
O

For real abelian & with the Galois group G = G(k/Q) put G = G¢ x G,
where (¢ is the {-Sylow subgroup of G and (|G|, £) = 1. Let ® be the set of
all Q,-ivreducible characters of G,

Theorem 4.1 (Theorcin 8 of the introduction.) For any real abelian k we
have

| Te(keo )y = [Us(h) = Cs (k).
For any ¢ € ® we have
ITe(koo Yool = [Us(R)y : Cs(k)g]-

Proof. Let P be the maximal finite submodule of T¢(ky) and R =
Te(koo)/ P. Then for any ¢ € ® there exists the exact sequence

(4.11) 0— P, — Telkes)p — R, — 0

with Z,-free R. As the Leopoldt conjecture holds true in k, we have RF = 0.
Hence (4.11) induces the exact sequence of finite abelian groups

(4.12) 0 — Py — Te(kos )y — Ry — 0.
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It follows from Theorem 3.2 that Ze-lree Re-modules R and U (keo)/C(koo)

have the same characteristic series. Then by Prop. 2.3 we have for any ¢ € ®

(U (keo) /C (ko)) 21 = | R0y,
From Prop. 4.1 and 4.2 we get
(U (ko) /C (koo V010 = (U3 (k) : Cs(k))-
Thus
(4.13) o)l = [Us(k)s 2 Cs(h)y].
As To(keo)T = PT, we get from Prop. 4.3 that

(4.14) |Pioy.ol = [Us(k)y : Uz(k)).

Combining (4.12), (4.13), (4.14), we get the last assertion of the theorem.
The first one may be proved just in the same way.

5 The proof of Theorem 4

Let & be any real abelian field and G = G(k/Q). As in Section 4, put
G = G¢ x Gy, where Gy is the £-Sylow subgroup of G and (|Gol, £) = 1. If x
is any Q,-valued one-dimensional character of G and @ is the set of the all
Qc-irreducible characters of Gy, then the notion x| for ¢ € ® means that
Xla, 18 an irreducible component of . By ¢y, we denote the trivial character
of Gy, i.e. wo(o) =1 for any o € Gy Put Y (k) = [] jee(ky).

u|é

Theorem 5.1 (Theoremn 4 of the introduction.) For any real abelian k and
any ¢ € ® we have

(5.1) ve (|Te(koo)o) =

o | 10 - ORI Y ) T 5 Lel1, 20 |

NEG
X#1
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(5.2) 14 (|Te(li-'oo)(u),¢,|) =

~ 1 _
7 [H(k)w : U‘S‘(k)v]_lIY(I")H—I‘?!” H ELt(la X
xI':oc:,\cc;#l

where the crponents { and t, are defined by

t_{r iff 2

r+1 ift=2
L=t e =
0 ifp # o

and v is given by (2.5).

Proof. By Prop. 3.2 we have A(ke)/Clkeo) ~ H(koo)/Cs(kes). This last

module is Z,-free. So we may calculate the order
(5.3) 0 = |(H (keo)/Cs(keo) ool

via (2.7), where Ay = A/(F— 1)A for any T-module A. As A(keo)/C (koo) ~
(AL /Ceo)!, we have

(5.4) se=we | I I n(CG =1, 0)],

HEV/H (=1
AR

where I{T, #) are the characteristic series of A}, /Cy, given by Theorem 2.1,
H = C(Kw/ks), V = G(Ky/Q), (o is defined by ¢f = 0(s), and r, o are
as in (2.5).

Combining (2.11), (2.12) and (5.4), we get

o = ] eladbDh) e # e
(55) MY { ‘Vl'(cwub;ul) lf(,() = g

wliere

(5.6) ao:= [ TI fleG¢™' =1, Ow),

sevin =1
by
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(5.7) b= [T II v(CG' =1, 0),
nemfrr=l
?e

(58) Cop = H H f(HvCaC-l -1, aw) X H n(¢ — 1, w),
eevV/H ¢U'=1 =1
0| o, 841

and by, is defined by (5.7) for ¢ = @y.

Let y be any character of GG, which is even as a Dirichlet character. Then
v may be presented in a form y = 0w, where ¢ and 7 are the characters of
the first and of the second kind in the sense of Iwasawa respectively. By
the famous Iwasawa relation between f-adic L-functions and Iwasawa series
given in [3], we have

(5.9) S Lels, x) = J(€w* — 1, ),

where L¢(s, x) is the l-adic L-function of Kubota-Leopoldt corresponding to
xand &= x(y)™" = ()"

Note that y is a character of ¢ = G(k/Q) if and ouly if 0|y =1, i.e. 8
is a character of V/H, and x(7) = I, i.e. x(7" ¢) = 7(7)* 0(¢) = 1. Thus all
the characters y of GG with given ¢ are of the form 0, where m(y)~! = (¢!
and ¢ runs over all £7-th roots of unity.

So we get from (5.6) and (5.9)

. L,
(5.10) a, =[] §L,(i, X)-
veG

xle

To compute ¢,, we note that, reasoning as before, we get

(5.11) IT IT 76" =1, Bw) = ]I %Lc(l, X)

vEV/H c{'lzl );ea,xnlhr
8| o, 01 8o, 651

where y runs over all the characters of G of the form y = #m with § ]y, and

0#1.
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To compute the last product of (5.8), we note that by (2.12) we have

(5.12) T n(n¢ — 1, w) = (s = 1, w) x TT (1= Q) f(s¢ - 1, w)] =
¢ = =1

(#1

Uy(k — 1, w) x H J;Lg(l, X)-
x:ggf?:l
So in the last product y runs over all the characters of G that are characters
of the second kind.
Combining (5.11) and (5.12) and taking into account that #(7T, w) is
mvertible, we get;

. |
(513) Copo = 4 H ELC(I) /\')

ved
X iwo.x#]

for some invertible ¢.
To compute 1¢(b,), we note that by (2.7) we have

ve(by) = ve(J(Y ) 0),0l)-

Put Y(k,) := ] pelksn) and Y(keo) = }EY(&:,,), where the inverse limit
vl

is taken with respect to the norm maps. Then Y = Y (ky), so (YH)) =

Y(koo)y) If £ # 2 and { & ky, then { &€ k., for any n, and we have

Y(keo)vy = Y (&) = 0. If £ # 2 and (o € &, then Y(k,) is a cohomologically

trivial G(k,/k)-module, hence Y (ke )0y = Y (F).

If€=2and V=1 ¢ ke, o, then Y(ke,) =0. Il £ =2 and /-1 € k,, then,
again, the groups Y (k) are cohomologically trivial, and we have Y (ko)) =
Y(k).

Finally, if ¢ = 2, V=1 ¢ k, and /=1 € kg ., then we have again
Y (ko)) = Y(k). Indeed, if any place v|€ of k do not decompose in ke /k,
then F acts on Y (k) as multiplication by some A € Zj. It can be checked
easily that A Z 1 (mod 4), thus Y (ko)) = Y(ko)/2Y (ko) = Y (k). The
general case can be reduced fo the considered one. Therefore we get that up
to the multiplication by a unit

b = { 1 if £ =2 and V=1 ¢ ke, for vl
o =

(5.14) Y (k),| otherwise
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Note that if £ # 2,
it follows from (5.3), (

[H(k), : C(k

Yol = |(H (koo

where for £ # 2 s, is given by

4

NEG
xle

If £ =2 then s, is given by

ve | TT5Le(1, X)

>::T:’if
17¢ o H L{

xEG
. 0", 1
Sp = Xlwo,x#
ve | | TL5Le(t, x) | 1Y (R)o]™!
.\'Ea
xle
ve €| TI gLe(ls x) | 1Y (K)pol™
\ \|¢:r\#1
(5.16)
By Theorem 4.1 we have
|Te(koo )yl = [H(E) : Cs(R))[H (k) :
|Te(keo )y, 0l = [H (K}, 2 Cs(k)

for any .

w| [ T14

L((]-a /\’)

ve (0 [T 3LeC1, X)

\ X€EG
X w0, x#1

Y (K)ol ™

AUH (K, Ds(

then b,, = 1 because Y(k),, = 1 in this case. Therefore
(5.5), (5.10), (5.13) and (5.14) that

/C( oo))(U).wl = ﬂ-ﬁ'w’

ifp # @o

if = o

if © # vy, V=1 & koo, for v|é

if ©=vo, V-1 €& ke for v|f

if 0 # @4, V=1 € ke, for v}l

if o = o, V=1 € ke, for v|f

a-: k ]_'
k)] ™!



1£ € # 2, then H(keo) = H(koo) and Ckoo) = Ckoo)- 50 (H (ko) /C (ko)) (o) =
(H(ke)/C(keo))uy = H(k)/C(K). Thus for £ # 2 the assertion of the theorem
follows from (5.3) and (5.15).

If£ = 2and V=1 & keo, for v, then H(k)/H(k) = ,Y (k) = Y(k), where
Y(RY={yeY(k)| 2y=0} and Cs(k)/Cs(k) = Z/2Z. If /=1 € koo, for
v|l, then H(k) = H(k) and Cys(k)/Cs(k) = Z/2Z. Therefore

s e [ 2AYR)THK) : Cs(R)] i V=1 ¢ koo for vl
[H (k) : Cs(k)] = { AH(K) : Cs(k))] if V=1 € keoy for vl€
If ¢ # o, then

[H(k), : Cs(k),] = { }y(l,:)d—l[]. (k) : Cs(k)y) if V=1¢ky, for v|f

A

i
H(k)y: Cs(k)o] if V=1 € ko for vt

If ¢ = ¢y, then

[H(k)yy : Cs(k)yo) = { 2“"(‘[‘7)\00?_'[}'7(1:)% : éS(l‘"‘)wo] if V-1¢ Koo for v|f

2(H (k) o = Cs(k) o) if V1 € ke, for vle.
Now the assertion of the theorem for £ = 2 follows from (5.3) and (5.16).

]

6 A refinement of the conductor-discriminant
formula of Hasse

Let & be an algebraic number field of degree £, Galois over Q and having the
Galois group G = G(k/Q). We counsider k as a subfield of a fixed algebraic
closure Q, of Q.. Put

Ay = {{wa),- s a,) | @, € Q, G = {o) = 1, Taye. s T} }

So Ay is the set of all t-vectors with coordinates in Q, having G as the set
of indices. We define addition and multiplication in A, componentwise. For
AEQoand g € G we pul Ay, ... %0) = (Aay,y ..oy A, ),

(6.1) a(ayy - sar) = (Yayr- -2 Yar), Where ys, = 5.0 fori = 1,... ¢
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So the action of G' commutes with multiplication by A € Q,, and we may
consider Ay as a Q,|G]-algebra.

Put f; = {0,...,0,1,0...,0} € A, where the only nonzero coordinate
has the index o;. Then the set { fi,. .., fi} forms a basis of A; over Q, and any
of fi generates Ay as a Q,[G)-module. So A; & Q,[G] as a Q,[G]-module.

Namely, we have o(f;) = [;, where o; = o,0.
We define the injection o : & — Ay by a2} = (24,,...,%,,), where
To, = o7 ), i = 1,...,t. Thus we have a(o(z)) = o(afa )) f01 any o € k

and ¢ € (.
Ife,...,e; € k form a basis of k over Q, then a(e;),..., a(e) form a
basis of Ay over Q,. Hence o induces an isomorplism
¢ P

65®Qk > AL, AQ®@x — Aa(z) foranyd € Q,, z €k
If O is the ring of integers of Q,, then the set
Ri = {(Xa,,. - »2a) € Ak | 24, € O for all o; € G}

is the maximal order of Ak. Note that Ry is a free O[G]-module of rank 1
generated by any of fi,..., fu.

If O s the ring of mtegels of k and {ey,..., e} form a Z-basis of Ok,
then {a(ey),...,a(e,)} form a O-basis of Oy := (9® Ox.

Let V he a Qe subspace of Ay and L, M C V be full O-lattices in
V. It means that both L, M are finitely generated over O and each of them

spans V as a Q,-space. Then there exists a nonsingular linear transformation
AV = V such that A(L) = M. Then, as in {12}, we define

(L : M) = det(A),

det(A) denoting the determinant of A. So (L : M) € Q, and (L : M) is
defined uniquely up to multiplication by a unit of O. Therefore

we((L : M)) does not depend on the choice of A. If L C M, we have
ve((L: M))=0ifandonly if L = M.

We define a Q,-bilinear form 4 : Ap x A = Q, by ¥(z,y) Z To; Yo,
a; €G

for v = (%a)yeo s ®at), ¥ = Wayye oy Ya,) € Ap.
Then we have for any «, 0 € k

P(a(a), a(b)) = Spyqlab),
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where Spy,q 1s the trace map from k to Q.
Let A be the matrix of the Q,-linear transformation, such that Af; =
afe), 1 = 1,...,t, where {fi,..., fi} and {a(e1),...,a(e;)} are as above.
The form 3 has the matrices £ = 1 with respect to {f1,..., fi} and
C = (Spyyqleie;)) with respect to {e1,...,e}. So (det(A))? = det(C), and
therefore (R : (5;,.)2 = d, where d}. is the absolute discriminant of k.
From now on we assume A& to be an abelian field. By the conductor-
discriminant formula of Hasse we have

dy = Hf.\': Hf.\'a
,\'E& vEG
X#1
where G is the dual group of G and f, is the conductor of y, when we
consider y as a primitive Dirichlet cheracter. We consider all the characters
of (i having their values in Q,. For given ¥ € G let { be any primitive f,-th
root of unity in Q,. Then we can form the Gauss sum
o = > x@)¢* € Q.
u (mod fy)
(u, f.\‘)=l
It is well known that (g, ) does not depend on the particular choice of (. It
is well known also that g.g, = f, and g, = x(—1)gg, where ¥ = x~! and

a.= 3 X(a) ™

a  (mod fy)

(avf.\')':l

Then the f-part of the conductor-discriminant formula of Hasse can be re-
stated in the lorm

(6.2) ve((Ry : O)) = we | I o«

NEG

X#1
Let @ be as before. The next result is a refinement of (6.2).

Theorem 6.1 For any ¢ € ¢ the index (R, : (5k.w) is defined and

(6.3) ve((Reo : Onp)) = ve| II ox
,\'Iz’v?;';#l
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Proof. Let &k have conductor N = £"d, (d,{) = 1. We shall prove our
theorem by induction on m.

L. If N = d (thus m = 0), then dy is prime with £ and Ry, = Oy. Then
Ry, = O, and ve((Riy © Ory)) = 0 for any ¢ € ®. On the other hand,
the relation g gz = x(—=1)fy, fyl|d for algebraic integers g, g shows that
ve(gy) = 0 for any yx. This proves (6.3) for m = 0.

2. Let £ be odd. We claim that to prove (6.3) for k it is sufficient to
prove (6.3) for ky = k((), where (p is a primitive &-th root of unity. Put
G, = G(k/Q), Hy = G(ky/k). Then H, is a cyclic group of prime with £
order. For ¢ € ® and x € G we denote by ¢, (resp.x1) the image of inflation
of ¢ (resp.y) from G to Gy. Then ¢, is a Q, medumble character of G|
tnvml on Hy and on the £-Sylow subgroup of Gy. So any X € Gl, such that
is the inflation of some y € G, xle. As x and x; have the same
con(lucto:, we have g, = ¢y, . Therefore

]:[ I = H g?t'

NER .\'|651
x|e, x#1 X e i #l

~

On the other hand, the trace map Spy, /. induces isomorphisms Ry, 4, =
Ry, @kl.wl = (5;,.'“,. Thus our assertion holds true.

3. Now let £ be odd aud m = 1, i.e. k has only tame ramification. By step
2 we may suppose that k = E((y), where £ is unramified over £, Then k =
E-Q(¢) and G = G(k/Q) = FxA, where F' = G(F/Q), & = G(Q()/Q).
Thus any Qe-irreducible character ¢ of G is of the form ¢ = ¢, ® w*, where
¢y is a Qp-irreducible character of F' and w' is some power of the Teichmiiller
characterw : A - Z7,:=0,...,6 -2 [ y € G and x| @, then x = x; @ W,
where y, € F and y, | 1. Certainly, we may assume that ¢ # 0 (if ¢ = 0,
then we are in the position of Step 1). As y; and ' have relatively prime
conductors, we have gy = g5 ¢z, thus

(6.4) [Tow= 11 o 9z



Proof. If w' =@, t.e. 1 = ¢ — 2, then, putting mp = 1 — (,, where (p is a
primitive ¢-th root of unity, we get

-2 -2
gz= 3 w(a)(l —m)* =3 —@(a)amy = w9 (mod 7f).
a=1 a=1

Hence ve(gz) = 1 /(£ —1).

If 8, € A sends ¢, into ¢, then & (i) =@ (D)gui, &lys) =
w(b)gz. So (g.,)! € Qq, and by the Kummer theory g, = (¢z)°¢ for some
c=1,...,0=2and a € Q. As &(g.i) = T(b)gi = w(b)(g5)¢, we get
that ¢ = (£ — 1) — 7. The relation g, = € implies that v,(g,) < 1, hence

ve(a) = 0. Therefore ve(g.i) = S5

0

Il Op (resp. O) is the ring of integers of F' (rvesp. of k), then Oy =

Or + OpCo + -+ + O Let e, = [A]7 Y @'(6)8 be the idempotent
sea

corresponding to w'. Then e (¢ = |A|7'w'(b)gz. Hence Oy, = 97 OF, ¢, -

Taking into account that Oy, = O - Oy ,, we get that v((Rg , : Ok)) =

sve( gz ), where s is the Ze-rank of Op ,,, 1.e. the dimension of ¢,. Compairing

this with (6.4) and Lemma 6.1 and noting that ve(gg,) = 0 for any x1 | ¢,

we get (6.3) for the case of tame ramification.

4. Let an abelian number field & with conductor N be wildly ramified
over £. By step 2 we may assume that (o € k for ¢ # 2. We have N = £™d,
where m > 1 if £ # 2 and m > 2if £ = 2. Put K, = Q(uq, (.), where
n=m-=11l#2;, n=m~-2if£=2 Then k£ C K, and k € K, _,, thus,
putting kg := k0 K, 1, we get the following diagram of fields

ko C K,

(6.5) | |

k(l g I\’n-l
Put H = G(N,./K.-1) 2 G(k/ky) and F = G(K,/k) = G(K,.-1/ko). Note
that H =2 Z/(Z.
Lemma 6.2 Let k have conductor N =0 (mod £*) (N =0 (mod 8) if
£=2) and kg be as in (6.5). Let By be the kernel of the trace map Spyy, :
O — @ko- Then By is a cyclic O[G]-module isomorphic to R;i/Rf and
SPi/ko (Or) = EO(ko). If K, and k are as in (6.5), then Spy i+ Ok, — O
induces a surjection By, — By.
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Proof. First suppose that &k = K, (hence by = K,,y). If o 1 K,, & Ak,
is the mapping defined above, then the elements of the form a(e(}), s € Z,
generate O;\" as a O-module. We have

] 0 fsz£0 (mod?)
SPic, i (€)= { lo(e¢?) ifs=0 (mod¥).

So the elements a(e(?) with s £ 0 (mod £) generate By, and therefore
(6.6) (5[\'0 = B]\'n 6) (:jl\'n—l'

The field K_; = Q(jtq) 1s unramified over £, hence (51\'-1 is a free O[G(K~.,/QJ-
module on one generator, say . Then x-a((,) generates By, as a G(K,/Q)-
module, i.e. By, is cyclic, therefore there exists a surjection p : Ry, — Brg,.
Surely, we have RY € Kerp. As Ry, /R is O-torsionfree and has the same
O-rank as By, we get that p induces an isomorphism By, = R,/ Rﬁn
This proves the lemmaif & = K.
If & is any abelian field, then we have the commutative diagram with

exact rows

00— BN" — (51.;“ Sﬂ (5]\'“_1
(6.7) LSpe ISpr LSps

00— Bk — ék -S-Pilr (5,1:0

where K, N,_; and ko are as in (6.5).

Let suppose at [fivst that K,/k is unramified over €. Then K, _ ,/ku 18
unramified over £, and the mappings Spp : Ok, = Oy, Spr - On._, = Ok,
are surjections. Hence

SPH(@U = SPH ) SPF(@K") = SPF : SPH(@K") = SPF({-’@M-J = gékr

So any = € O can be pusenfcd in a form 2 = (& — {7 SpHr) + - Spﬂ:r,
where (z — 07'Spyx) € By, 07'Spyx € Ok, therefore O = B, & Oy,.
The decomposition (6.6) shows that the mapping Spp @ By, — By is a
surjection. Hence By is a cyclic O[G)-module and, reasoning as before, we
get that By = Ry /RE. This proves the lemma if K, /k is unramified over £.

Note that this is the case if £ # 2 or £ = 2 and n = 0. Indeed, as we lave
Co € ko for £ # 2 (by Step 2), the inertia subgroup W of £ in G(K, /ke) is a
cyclic €-group, and G(K,/Knoy) CW. As G(KL/E) N G(R,/Kaor) = 1, we
have G(K, /k)NW =1, thus K, /k is unramified over ¢.
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Now to finish the proof of the lemma, we have to consider the case when
¢=2,n2>1, and K, /k is ramified over 2. Let W be the inertia subgroup of
2in G(K,/Q). Then W = (Z/fmZ)",s0o W =V x A, where A = {£1} and
V(014+4Z)/(1 +2"Z)=Z/2"Z. As k€ K1, we have FNV =1. Let o
be the only element of order 2 in ¥V and 7 be the nonunit element of A, thus
0{n) = ~(a, 7(¢) = (71 Then H = {1, o} and the condition FNW =1
means that either FNW = {1, 7} or FNW = {1, o7}. Let k; be the fixed
field of FNW. Then K, D ky Dk, [K, : k1] = 2, G(K./ki) = {1, 7} or
{1, o7} and k,/k is unramified over ¢.

Now we are going to determine the ¢-parts of the differents of all exten-
sions in {6.5). In what follows the symbol D will stand for the ¢-part of the
different. It is well known that D /k,._, = (2). If G(K,./k) = {1, 7}, then
Sph’n/k](c:-a) = 4‘-1 + .C::i' Put m=1—(uoy. As Sph",./kl((:n) =Gt Cn-l =
(HI—Cumr)  (mod 2), weget Spg_ ., (Ok,) = 7Ok, 50 Spg, i (171 OK,,) =
Oy, As Spg, /i, (1 =(a)m™2) € Oy, we get that Dy, jx, = (7). The extension
ky/k is unramified over ¢, hence Dg, v = Dg,x, = (7) and ve(Dg, [k) =
27" If G(K./k) = {1, o7}, then reasoning as before and putting 7 =
(o — (7', we get again that vy(Dg, k) = 27"

By the multiplicative property of differents we have

Drcost - Disro = Drusin-, * Prcuy [ko.

We have computed Dy, /i. It is well known that Dy k.., = (2). Note
that the places over 2 ramify in k/ky (because K, = k- K,_; ) hence they
ramify in K,_,/ko. Thus if n > 2, then, reasoning as before, we get that
ve(Dr,_,/ko) = 2! If n = 1, then ko/Q is unramified over 2, hence
Drorke = (2) and vy(w) = 3. Thus in any case we have v(Dyyi,) = ve(27).
Therefore Spk/ko(@k) = 20;.

Ifx € @k \ a('.rr)@k, then we can present z in the form z = z, + x,
where z; € 6;»0 and z, € af('.rr)@k. Let my € ko be a local parameter at
any place v | £ of ko. Then o(m)O; = a7~ 7}y, hence we have Spy(x;) C
Spul{a(r=m)Ok) C a(2m0)Oy, because ve(Disk,) = ve(2r). On the other
hand, we have Spy(z:) = 22, ¢ a'(QWOC?_L.O). Therefore Spj(z) # 0, 1.e. ¢ &
By, so we get By C o(m)Ok = Spg, /1(Ok,). f @« € By and a = Spp(b),b €
@h—-n, then by (6.6) we have b = by + by, where by € By, by € (5;{"_,. Then

0 = Spy(a) = SpySpp(by + b2) = SppSpy(b1) + SppSpy () = Spr(202).
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Hence Spp(bz) = 0 and a = Spp(d;), i.e. the mapping Spr : Bk, — By
in (6.7) is a surjection. Therefore By is a cyclic O[G]-module and thus
B, = R, /RY. This proves the lemma.

O

Lemma 6.3 Let k, ky and H be as in (6.5). Put Ny = (1 — ~'Spy)Ri C
(" 'Ry. Then

(R Op ) = (Nio : Bro) Ry p: Ory) forany ¢ € ®.

Proof. Let M; be the kernel of the trace map Spy : Ry — Ry,. Then for
a given ¢ € ® we have the commutative diagram with exact rows

0— By, — (5;;'@?}3 E@ko,,‘p — 0
(6.8) ! I !

0— M, — ﬁk"pm ﬁkg,go — 0

where the vertical arrows are the natural inclusions.
It follows from (6.8) that

(6.9) (Rio 1 Okp) = My Bro)(Rig, o 1 004,0).

As Ry & O[@] as an O[G]-module, the mapping Spy : Ri = Ry, induces
the isomorphism N¢/M; = Ry, /fRy,. Therefore (Ng o, : Mg o) = (Ryy o ¢
fRy,. ), and it follows from (6.9) that

(R, 6#.40) = (Mp,o : Br o) (Rig, e eRko,w)(eRko.w : eéko.w)
= (Nko : B o) (Rigo : Ok )
O

Lemma 6.4 Let [, M C Ay be two lattices that span the same Q,-spuce
V C Ay Let L, M be O[G)-modules. For x € G put Ly, = e, L, M, = e, M,
where e, = |G|™' Y X(o)o is the idempotent corresponding to x. If L = M

_ o€l
as an O(G)-module, then

(L: M)=J[(Ly : M)

ve@
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and for any p € ¢
(Ly : M) = H(Lx p M),

.\'E8
x|e

where we pul (L, : My) =11 L, =M, =0.

Proof. Put L'=@PL, M=PM.I{f: L= Misan OG}]
xeG xeG
isomorphism, then f induces isomorphisms L' = M’ and L'/L = M'/M.
Then
(L: MYy=(L: LYL : MYM : M)
As (L : L)'= (M': M)and (L' : M')= J[(Ly : M), we get the first
x€G
assertion of the lemma. The second one may be proved in the same way.

a

Now we can finish the proof of the theorem. If & is unramified over ¢, then
(6.3) was proved in Step 3. By Step 2 we may assume that (o € kif £ # 2. So
let {y € k and k of conductor N = £™d, where m > 2. Let ky be as in (6.5).
As ky has conductor £*0d, where my = m—1(my=m—21if £ =m = 2), we
may assume that (6.3) holds true for ky. Therefore by Lemma 6.3 we have
for a given p € ¢

(6.10) (R, : 6k.w) = (Nik,p + Br,o)(Rio, Ejko.w))

where by the assumption of induction we Lave

(6.11) Ve ((Rko,‘,o : 61:0,:,9)) = Ut H Gy

XEG (ko /Q)
x|w

For x € G(mQ) let x' be x considered as a character of G. Then x| if
and only if ¥'[¢ and gy = g7 So we have

(6.12) I = I o«

NEG{kg 1Y) XEG, x|¥
N, x#1 x|lg=1, x#1
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It follows from Lemma 6.2 and the definition of Ny that Ny = By as O[G]-
modules. Therefore by Lemma 6.4 we have

(6.13) (Nko ¢ Bio) = [T(Ngx : Bry)-

x€G

xle
Note that Spy; annihilates Ny and By. Hence if x|y = 1, then Ny, = By =
0. So we may restate (6.13) in the form

(6.14) (Nk,gp : Bk‘.’o) = H (NL-,_\- . Bk,,\-)o
XEG
xle xla#l

To compute the index (Ng , : Byg,y), we shall compute at first the index
(Nk..x Bk, y), where we treat x as a character of G(K,,/Q). If x|y # 1,
then e,Ny, = e,Ry, = Oe,fi, where fi = (1,0,...,0) € Ry, is the
generator of an O[G(K,/Q)]-module Ry, defined at the heginning of the
section.

We know that By, is generated over O by all the clements of the form
a(eCt), where € € g and i # 0 (mod £). Note that e(’ is a primitive £™dp-
th root of unity for some dy | . If x|y # 1, then x has conductor f, = "d,
for some d; |d. Let € be a primitive dof™-th root of unity for some dy|d.

Then
exr(€) = 3 X(o)o(E)exh,
o€,
where G, = G(K,,/Q).

Let H{x) be the kernel of the natural projection G(K,/Q) = (Z/¢™dZ)* —
(Z/f,Z)" and H(£) be the kernel of the natural projection G(K,/Q) =
(Z/0MdZY — (Z/€"doZ)”, so H(y) = Ker((Z/dZ)* — (Z/d\Z)*) and
H(¢) = Ker((Z/dZ)y — (Z/dw2)7).

If If dy fdy, then, putting G./H(x) N H(&) = S, H(&)/H(x) N H(¢) =
T # 1, we get

> X(0)a(&) = |H(x) N H(E)| 3 x(o)a () =

acli, ogeS

|[H(x)n HE| > Y x(or)or(€),

eeS/T7ET
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where S/T C S is a system of representatives for G/ H. We have o7(£) = o(¢)

for any 7 € T and Y _¥(o7)=3X(0) > ¥(r). Note that x| # 1 hence
€T TeT

xlr # 1 and Y X(7) = 0. Thus if dy fdo, then Y ¥(o)o(€) = 0.
TET UEGn

If dy|dy, then H(€) C H(x) and, putting A = H(x)/H(§), B =G./H(),
C =G,/H(x), we get

(6.15) D" X(o)a(€) = [H(E)] Y X(o)a(€) = Y X(a)a(Spa(€)).

oced,, oceB oceC

Let dy/dy = q;', ..., ¢’ be the prime factorization of dy/d;. 1t is well known
that, il j¢ is a primitive p™*-th root of unity for some prime p, then

. -1 fn=1
SpQeuyqln) = { 0 ifn>1

Moreover, if n 2> 1, then Spq,y,q(.w)(#t) = 0. Thus we have
0 ifs; >1forsome:=1,...,

Spa(é)=1¢ 0 ifdy =0 (mod ¢) for somez=1,...,r
+6 ifsy=... =3, =1and (d, do/dy) = 1,

4

where & 1s an £™d,-th primitive root of unity.
So in any case we have that

(6.16) 2. X(o)a(€) = |H(E)ng,
T €,
where 7 is a root of unity or 57 = 0. Therefore e,Bx, C Ogse, f1.

Let py,...,p, be all the prime divisors of d/d; such that (p;, d;) =1 for
t=1,...,r. Weput dy = dypy - p, and { = (ey,€,, - - - €5,, where we denote
by €, a primitive n-th root of unity. Then £ is a primitive ™dy-th root of
unity, and for our choice of dy we have that Sp4(€) in (6.15) is given by

Spa6) = (=1)6,

where £; is a primitive £™d;-th root of unity. Note that any prime divisor
p of d divides dy, hence p divides the order of H(£) only if p|d. Therefore
|H(€)| is prime with £. So the factor |H(€)|n is a unit in O. This proves that

exBr, = Oggey fiand (Ng, « : Br, ) = 95
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Now, if v € G, then we can consider y as a character of G, = G(K,/Q) such
that x|z = 1. As we have the surjecions

(6.17) Spp t Ni,x = Niv, Spr @ Bi, x = B

(by Lemma 6.2) and all these modules are of rank 1 over O, the mappings
(6.17) are isomorphisins. Therefore

(6‘18) (Nkn.\' : Bk:,\') = (Nf\-’vnx : B[\-.n',\') = gf!

where for v = 1 we put ¢¢ = 1 by definition. Combining (6.10), (6.11),
(6.12}), (6.14) and (6.18) we get (6.3). This proves our theorem completely.

]

7 On some indices

Let k& be a real abelian field and A, Ry, O, be as in Section 6. As in

the introduction, we put A(k) = [J(U(k.)/p(kv)). For any v|€ we have an
|

injective mapping log, : U(k,)/j(k,) — k, defined by the {-adic logarithm.

Taking the direct product of log, over all v|¢, we get the injective mapping

(7.1) log : A(k) = [] k-

v|e

The mapping (7.1) is a homomorphism of the Z,[G}-modules, where G =
G(k/Q) and the action of G on A(k) and ] k, is defined via the identification
v|e
Hku = Q;@Qk. The natural inclusion Q; — Q, induces the inclusion
vlt

) . H A‘,” = Q(@qk — 6(®Q,\". = Ak.

vi€
Putting Log = 1 - log, we get an injection of Z,[G]-modules
(7.2) Log : A(k) — Ay

By A(k) we denote the O[G]-submodule T-Log(A(k)) of Ay.
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Let L, M be two Z,-lattices in Hku that span the same Qg-space V C
w|t
[Toe kv, Then, as in [12], we define the index (L : M) as det(A), where A is
a Qe-linear transformation of V such that A(L) = M. The index (L : M) is
defined uniquely up to multiplication by an element of Z3;. If L O M and the
index (L : M) exists, then the index [L : M] is finite and

ve((L: M)) = w([L : M]).
If we put L = O-i(L), M = O -i(M), then the index (L : M) defined

in Section 6 exists if and only if the index (L : M) exists, and, if this is the
case, then

(7.3) ve((L : M)) = v ((L : M)),
Let O be as in Section 6.

A(k): (i) erists, and

(
(Oi t A(K)) = |P(K)] - [Y (K)I,
where P(k) = HE,,, k., is the residuc field of k, and Y (k) is as in Theorem

u|?

Proposition 7.1 The index (

5.1.
For any o € ® we have

(Okyo : A(k)p) = |[P(k)ol-|Y (k)]
Proof. Let O, = O(k,) be the ring of integers of k, and put O, = H O,.

v|¢
Then by (7.3) we have

(O : A(K)) = (O : log A(k)) and (Or, : A(k)y) = (Oc : (log A(k))s).
Let m, be a local parameter of &, and puf
Uk, ={r e U(k,) ] x=1 (mod=)}.

It is well known that for all sufficiently large ¢ the f-adic logarithm log,
defines an isomorphism log, : U®(k,) = r0,. Hence the mapping (7.1)
induces for such 2 the exact sequence

(74) 0 — Y(k) — JJOOENUOE)) S T(k/x0.).

vt vt
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As we have H(U“’(k,,)/(}(i+l)(k,,)) >~ P(k) for any 1 > | and
vl

[T(ri0. /7t O,) = P(k) for any i > 0, we get from (7.4) that

4

(Oc s log A(K)) = Y (k)| P(K)]

This proves the first assertion of the proposition. The second one may be
proved in the same way.

As in [12], we put for any G-module A
Ag={e€e A| s(Gla=0},

where s(G) = 3 0. We have (4,)o = (Ao), for any ¢ € @, and, if ¢ # ¢y,
aeld
then (Ay)o = Ai. Thus we may write simply A, .

Let k£ have conductor N = £d, (d, £) = 1, and put K, = Qa, ().
To formulate our further results we recall that it was shown in the proof of
Lemma 6.2 that for £ = 2 we have three possibilities:

(A) The extension I, /A is unramified over 7

(B) G(N./JE)NG(K,/K.1)={1, 7}

(C) GIK./R)NG(K,/K-) ={1,07};
where o, 7 were defined in the proof of Lemma 6.2. Note that in the cases
(B), (C) any place v|{ has the ramification index 2 in K, /k.

Proposition 7.2 We have
(Oro = A(k)o) = £[P(R)]-Y (k)],
(Oken * AR)oson) = £ P(R)o ¥ (),
where a = —1 for ( £ 2. For € =2 we have « = =2 if m = 0. If m > 0, then

) =1 ifk s of the types (A), (C)
“TY =2 ifk is of the type (B)
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Proof. Let L, M be any O-lattices in Ay (resp. Z,-lattices in H k,) such
ulf

that L, M are G-modules, and the index (L : M) exists. Then both indices

(Lo : Mg) and (Spe (L) : Spe;(M)) are defined, and

(7.5) (L:M)=(Ly: Mo)(Spg(L) : Sps(M)).

Indeed, the analogous statement was proved in [12], Lemma 6.1, for Z-lattices
in Q[G]. The same arguments show that (7.5) holds true for O-lattices or
Z-lattices as well. Hence we have to calculate the index

07" = (Spa(On) : Spa(A(K)) = (Spa(Okm) : Spa(Alk)w,))-
Note that by (7.3) we have

(76)  (56(08) : SvalAK)) = (Spe(O0) : Spg(log A(K))).
If G, 1s the decomposition subgroup of some v|é, theu
(Spe(Oe) = Spa(log A(k)) = (Spg, (O(k.)) : Spg, (log U(ky))).
Let T, # | be the ramification subgroup of G,. Then

m—1 ifl#2
=< m—1 {=2andkis of the type (A)
m—2 if £ =2 and k is of the types (B), (C)

UC(|T::

If F, = ]a::f", then F,/Q, is unramified, and SpFU/Q!(OFH) = Z¢. Let Dy sq,
be the diflerent of k,/Qe. Then, using the calculation in the proof of Lemma
6.2, one can check easily that in any case Dy, ;q, C |T,|O(k,), hence
Spe, (O(ky)) € T,Z,. On the other hand, Spg; (O(F,)) = |T,|Z¢. Thus in any
case, including the case T, = | we have Spg, (O(k,)) = |1,|Z..

To compute Sp; (log U(k,)), we note that Sp, (log U(k,)) =
log Ni,;q,(U(ky)). By the local class field theory we have Z7 /Ny, 1q,(U(ky)) =
T,. Taking into account that log(Z;) = €Z, if £ # 2 (vesp. £*Z, if £ = 2), we
get that Spe (logU(k,)) = €"Z, for { # 2. This proves the proposition for
€#2.1f £ =2 and m = 0, then Sp,, (logU(k,)) = *Z,.
If £ =2, and m > 0, then

| + 07, if k£ is of the type (A)
NejQo(Ulky)) = {1} x (14 €"Z,) if k is of the type (B)
< —=(1+40*Y)> ik is of the type (C).
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Therefore

U\T,|Z, if k is of the type (A)
Spe, (log U(k,)) = |T.\Z,) if k is of the type (B)
LT,|Z, if k is of the type (C).

O

Proposition 7.3 Let k have conductor N = {"d, (d,¢) = 1 and G =
G(k/Q). Then

(7.7) ve((Rip : Oro)) = —c+ e Il oe|,
x€G
xF1

(7.8) ve((R, o0 ék,wo,o)) =—ct+ H 1 )
\ X€G
xleo.x#1

where

0 if m=10

m—1 ifm>0and { # 2
m=—1 #fm>0, £=2 and k is of the type (A)
m—=2 ifm>0, £ =2 andk is of the type (B) or (C).

Proof. The mapping Spg : Ax = Aq maps Ry onto O. In the proof of
Prop. 7.2 we have shown that Sp,(O¢) = (°Z,, where ¢ is as above. Hence
Spe(Or) = €¢0. Combining this with Theorem 6.1 and using (7.5), we get
the proposition.

]

[eu)
Let & be as in Prop. 7.3, and put K = U Qita, ). Let 7@ G =
n=1

(Ko /Q) — G be the natural surjection induced by the inclusion k € K.

Proposition 7.4 Let k have conductor €*d, as above, and r be the constant
corresponding to T defined by (2.5). Let k, be the mazimal subfield of ko, such
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that k,/k is unramified (recall that |k, : k] =€), I[fm =0, then s =r = 0.
If m >0, then

m—1—r fl#2
s={ m=2—v fl=2andk is of the types (A), (B)
m—=3—v ifl=2and k is of the type (C)

Proof. Let Q. be the cyclotomic Z,-extension of Q, Q. = U Q;, where

[Q; : Q) = . Then (2.5) shows that Q, C k, Q,41 € k, in other words,
k;=k-Q,4; forany ¢ > 1.

If i = 0, then & C Q(ytg). Thus all the places v|¢ are fully ramified in
koo /k, hence we have r = s = 0 in this case as desired.

If > 0 and € # 2, then K, /k has no wild ramification. Hence the field
kn—r = Ku N ke has no wild ramification over k, so k,_,/k is unramified.
As K, 4y = ko Ko, we get that k,_, 4, is ramified over k. Therefore s =
n—r=m—1—rinthis case. If £ =2, m > 0, and k is of the types (A),
(B), then, reasoning as before, we get s=n —r =m -2 —r.

If £ =2, m > 0, and k is of the type (C), then we have G(K,/k) N
G(K./K_-1) = {1, o7}. In this case the inertia subgroups of v|¢ in G(kw/Q)
and G( K, /Q) are isomorphic, hence we have k,_, = K, Nk, and K, /k,._,
is unramified. As K, /k is ramified and has the ramification index 2 at any
v|l, we get that k,_, /k,-,—, is ramified and k,_,_;/k has no ramification.
Sos=n—r—1=m—23~—rIn this case.

O
The diagonal injection U(k) — J[U(k,) for real abelian k induces an
ult
injective mapping U(k){] < A(k). So we may consider U(k)[¢] as a subgroup
of A(k). As Nyq(U(k)[€)) = 1, we have U( :)[€] € A(k)o. As U(k)[€] and
A(k)y have the same Zg-rank, we get that U(k)[€] has a finite index in A(k)o.

Theorem 7.1 Lel k be a real abelian field. Let Ty(ky)w), H(k) and Us(k)
be as in Theorem 5.1. By Cl(k), we denote the {-component of the class
group of k. Let s be the constant defined in Prop. 7.4.

Then
ENTe(koo )yl _ [AKo : Uk )[6’]]
|CI(k).| [H(k) : Us(k))
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For any ¢ € ®, v # o we have

Tilhoel _ (AR, : UE)Ae]
ClE)eel — [H(R), - Os(h)]

If o = @y, then
£ Te(koo )0)enl _ [A(K)o00 + U(K)[E o]

|CI(K) .00 [H (K)o : Us(k)g]

Proof. Put Clg(k) := Cl(k)/Ps(k), where Ps(k) is the subgroup of Cl(k)
generated by all the primes over €. Let Clg(k)e be the €~component of Clg(k).
According class field theory, we have the natural isomorphism Clg(k), =
Glkse/E), the Galois group of the maximal abelian unramified £-extension
of & in which all the places v|f completely decompose. Then we have the

natural mappings
(7.9) Ty(koo) o) = Cls(k)e ¢— Cl(k)e,

where « is mduced by inclusion kg C Mo, My be defined in Section 3,
and B means factoring by Pg(k). Thus f# is always a surjection, whence
Cokera = G(ky/k), su = 0 being the maximal index such that all the
places v|€ decompose completely in &, /k.

To interpret the groups Ker v and Ker 8, we put B(k,) = (k7 /n(k,))[£] for

any v|€, and B(k) = J[ B(k,). Let denote by ', the decomposition subgroup
ulé’

G(koow/ky). Then by local class field theory we have the natural surjection

Ay o B(k,) = T',. On the other hand, we have the surjection n, : B(k,) = D,,

where D, = Z;, and for @ € &k, @ = #nlu, v € U(k,), m, being a local
parameter of k,, we put 7,(x) = n. Thus, putting R = [T, we get the
uje

natural G-homomorphisms

A_HA ) = R, 'f;:H?}U:B(k.)——)Dg:=HDU,

ul¢ ulé ul¢

where GG acts on R and D, via its acting on the set S of all the places of k over
€. Thus R = D, = Z,|G/G,] as Galois modules. As I, is the decomposition
subgroup of v in T = G(ke/k), we have the natural mapping R — T, the
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kernel of which coincides with Ry. Then by the global class field theory we
get .
(7.10) Kera = Ro /MU s(k){£)).

On the other hand, we have
(7.11) Kerf = Ps(k) = Do/n(Us(K)[€]).
It follows from the local class field theory that for & € B(k, ) we have

Au(2) = 0if and only if & € (1) Ny, /kB(kuy). Then we get Ker X = H(k). It
n=1

follows from the definition of 7 that Kern = A(k). Therefore we have
Us(k)[e) N Ker X = Ts(k), Ts(k)[0] N Kery = T(k)[4).

Put
V= Ker AN Kery = H(k) N A(k);

B = Tg(k)[0] 0 Ker AN Kery = Us(k) N Kerny = T(k)[€] N Ker A,
Then we have a pair of exact sequences (in additive notation)

0 — V/E — A(k)o/T(E)][] — A(k)o/VT (k)] — 0,

0— V/E — H(k)/Us(k) — H(k)/VUs(k) — 0.
Thus we get

- (Ao TR)(A] _ AR VT (R[]
- HR) OsB)] — [HE): VDs(h)]
1) (Ao : TR _ [ARoss : (VT(R)[E),]

(k) Us(k)] — [HR)e s (VOs ()]

for any ¢ € ¢.
For v|f let T:) be the inertia subgroup of v in [. Then I'), C I',, and for

any v|¢ [l“,, : [7] = €%, where v = s — sp. By the local class field theory we

have A(A(k)) = J[ [, = (“R. Let X' : B(k) = R/{*R be the composition of
njé

A and the natural mapping R = R/R. Then Ker A = A(k)- H(k). Note

that A maps A(k)y onto £*Ry,. Therefore (7.10) induces the exact sequence

(7.14) 0 — A(k)o/VU(K)[€] — Kero
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— (Ro/E*Ro)/ N (Us(k)[¢]) — 0.

Now let ' : B(k) — D;/f*D, be the composition of 1 and the natural
mapping D¢ = D¢/0" D,. As all the places v|¢ of k,, stay inert in k,/k,, and
totally ramify in ke /k,, we get that © € H(k) implies n’(x) = 0. On the
other hand, if @ € B(k) and #'(x) = 0, then we can find y € A(k) such that
zy € H(k). Therefore we have

(7.15) Kern' = A(k)-H(k) = Ker X,
and (7.11) induces the exact sequence
(7.16)0 — H(k)/VUs(k) — Ker § — (D¢ Do) /0 (Us(k)[¢]) — 0.

As R = Dy, we have R/{*R = D, /0" D,. One can check easily tha._t
(RICR)(Ro/l*Ry) = Z/8*Z (with trivial action of G). By (7.15) we have

Us(k)f]) = Us(R)[O)/(Us(k)le] 0 A(k)- H(k)) = o' (Ts(k)(2)).
So we get from (7.14) and (7.16)
[A(k)o : VT (£)[)] - {(Ker o)

(7-17) [H(k): VU(k)] — [Kergl’
- [A( ) [P] w] e |(I\e‘ Q’)tpl
(7.18) [H k), (VUq( ))o) = [(Ker 8),|"

where u, = 0, if © # @y, u, = u, if ¢ = .
Combining (7.12), (7.17), (7.9), we get the first formula of the theorem.
To prove the last two founulae of the theorem, we have to combine (7.13),

(7.18) and (7.9).
O
The next result is an analog of Theorem 5.1.

Theorem 7.2 For any real abelian k and any o € ¢ we have

AlICHRD) = ve | Y )P AR TR TT 520, )

~
XEG

N#1

ot
#s]



— 1
ve([C1(R)el) = we | £+ Y (K)o |7 {A(R)o - UR) A, T1 g Le(l, X) |5
xlzf‘gﬁl

where 1, t, are defined in Theorem 5.1, s is as in Prop. 7.4 and s, = 0 for

@ F o, S, = S

Proof. The theorem follows immediately from Theorem 5.1 and Theorem
7.1.

]

Put J(k) = O-Log(U(k)[€]), where Log is the mapping defined by (7.2).
Then the index (A(k)o : U(K)) exists and

(A(R)o - Uk)) = (AK)a: T(R)[E), (AK)os = U(k),) = (A(k)o : T(K)[Ey).

Theorem 7.3 For any real abelian k and any p € & we have

ve(|CLk)e]) = 1 | (R : [7(1:))_] H %a(,\’) ,

vEG
x#1
-~ 1
ve(|CI(K)eo]) = ve | (Rioe s UK)e)™ T selX) |,
,\‘Igi?;él

where for y # |
(7.19) a(xy= > ¥(a)log(l — £%)s
v (mod fy)

(”| f)()zl

[y is the conductor of x and €, is a primitive f,.-th root of unity (note that
ve(a(x)) does not depend on the choice of €,).

Proof. We have
(Rk,u : (7(1-)) = (Rk,o : @k,ll)(ék.o : jk,())(jk,o : L{~(I.~))
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and
(Rk,O.uo : ﬁ(k)w) = (Reo,: (51‘.0.:9)(6*.0.90 : jk.U.w)('Z{k,U,w 1 U(k)y)

for any ¢ € @.
It follows from (7.3) that

[AK)o - T(R)A) = (Aro : T(K)),

[A(K)o,e : U(K)E],] = (jk.ﬂyw : G(A‘-)z;),
for any ¢ € .

Then we get from Theorem 7.2

(7.20) ve(|Cl(k)e]) =

) - - - - L
Ve £”+t|}’(la:)|_l(Rk’“ : U(];:))_l(Rk‘U : Ok,(,)((’)k_u : A;,-_n) H §Lg(1, X) ,

X€G

x#1

(7.21) ve(|CUK)e|) = v (6”“’“" Y(k')wl“‘) +

~ = P ~ 1
Ve (Rk,ll,tp . (J(k)(p)—l(Rk.(J,w : Ok,(J_w)(Ok‘(],(p . Ak'()'v) H EL((I, X)
xI;;:Ef#l

[t follows from Theorem 5.1 and Prop. 7.4 that

) =9a s L tvpe \
sti= { m —2 if £ =2 and k is of the type (C)

m — 1 1n all the other cases

and

Se+ 1, =0 i @ # @u; Sp + Ly, =5+ 1.

From Prop. 7.1, 7.2, 7.3 and Theorem 6.1 we get that

ve((Ryo (51.-,“)((5;,.,0 : -;{k,u)) = v | |P(K)] - |Y (k)] - €°=° H p

X€EG

N#]

GO



Vﬁ((Rk.U.w : @k,ll.w)(ék.ﬁyw : jk.“.w)) =t |P(‘l‘"’)w| ) |Y(k)aa| A H g5 |

x€G
xlenw#l

where « (resp. ¢) is defined in Prop. 7.2 (resp. Prop. 7.3); a, = ¢, = 0 if

@ # o and @y, = @, €y = .

If 7 =0, then
—1 ife#2
o= { ~2 ife=2.

If m > 0, then

—m in all the other cases.

‘= { —m+1 if =2 and k is of the type (C)

Hence s +1 4+« ~ ¢ = —1 in any case. Then it follows from (7.20) and (7.21)
that
(7.22 ve(|CI(E)e|) =

- 1
ve | (Rio : U(A:))" -€‘1|P(k,)| H ag‘\—.L.-_(l, x|

NET

X#1
(7.23) ve(|C1(K)e0]) =

-~ 1 _
ve | (Rege: UR)e)™ - C1P(RYL TT sorle(l, X) ],
,\'lé,e,f#l

where b= —1 il =9y b=0if ¢ # py.
It is well known (see [9], for example) that for y # |

Le(l, x) = — (l . ‘—([,Q) %av),

As Wi = I ,\’(—l), we have

(7.24) oeLle(l, x) =+ (1 - 1\-%2) a(y).
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Note that
Ve (I—M):{U if x(6) =0
' 4 -1 if x(&) £ 0.
Let &' be the maximal subfield of & such that £ is unramified in £'/Q. Then
for y € & we have x(#) = 0 if and only if x|aw/y = 1, in other words, x is
a character of G(A'/Q). Taking into account that P(k) = Z/(Z[G(K' /Q)] as

a Galois module, we get

(7.25) Ve II (’l - @) = (L P(K)]),
\#

(7.26) | T (u@) = (€1 P (), ),

xlex#1 )

where b = =1 if ¢ = @o; b = 0 if ¢ # @o. Combining (7.22), (7.24) and
(7.25), we get the first formula of the theorem. To prove the second formula,
we have to combine (7.23), (7.24) and (7.26).

O

Remark 1. [t is well known that for any y € G’, x # 1 we have a(x) # 0.
Remark 2. Theorem 7.3 may be considered as an f-adic analytic class
number formula for the order of Cl(k)e,. The index (Rgy, : U(k),) may be
considered as a p-component of the é-adic regulator of k.

For a real abelian field £ with the Galois group G = G(k/Q) put Ry =
Z[G]. Let Ry be as in Theorem 7.3. Let be given a Ry-submodule U C
Q¢[G] such that the index (R : Uso) is defined. Put Up = O - U, C Ay,
Suppose given a Ry-submodule Ti of U(L:)[ﬂ]@zng such that the group
U(k)[€)N T has finite index both in U(k)[€] and in Ti. (Note that 7, = Tr0).
Let C, C U (k)] N Tx be a subgroup such that Cy has finite index both in
U(K)[€) and Ty. Put Ty = O - Log(T:) and Cy, = O LogC, where Log is the
mapping (7.2).

Theorem 7.4 Let Ry, Ry, Uy, Uy, T, T and Ci, Ci be as above. Let
Upio and Ty be isomorphic as Ry-modules and ¢, Ty = %(L(X)GXUL- for any
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X € G, x # 1. Then
[CI(R)el = (Rico : Uso) ™! [Ti - Cl TR0 : Cu

and

ICL(R)eo] = (Riwe : Uro0) ™ {Thes : Ck,w]_l[ﬁ(k){ﬂ]w t Crp)
for any o € ®.

Proof. By Lemma 6.4 we have

ve((Uro : Te)) = ve | [I é“(,\’)

.\'Ga
NFEL
and
l
ve((Ukow : Trp)) =ve | I 3“(,\’)
xesd
xlw.x#1

for any ¢ € ®. Then by Theorem 7.3 we have

IR = v | (Re: O(0) TT 0 | =
1
(Rk,O : Ukvo)-l(ﬁ(k) : Rk'(j)(Rk_g : UL-,U)(UL-,U : T;;)(Tk : C;_-)(T;_. : Ck)-l
= (Rio : Uro) ™" (Tk : o)~ (U(k) : Cy).

By (6.4) we have
(Rk.() : UL-,U) = (Rk.o :z"{k,U)a

(Ty: Ci) =(Te : Ck) = [T : Cl,
(T (k) : Ce) = (Tk)[) : Cr) = [T(k)]0) : ).

This proves the first formula of the theorem. The last formula may be proved
by the same arguments.



- -
-

8 The proof of Theorem 1

In this section we define the modules &, and 7} satisfying the conditions of
Theorem 7.4 for k = At = Q(e,, + €'), the maximal real subfield of the
cyclotomic field &' = Q(e,,). Our results are based on that of [12], so we
adopt here some notations of [12].

Let G = (Z/mZ)" be the Galois group of £/Q. If m =[] p* is the prime

)
decomposition of m, then G is the internal direct product of the inertia

subgroups T}, = (Z/p{'Z)" :

G=T1]7

plm

For p|m put ¢, = |T,|7" Y 0. Asin [12], put 7, = A~'e,, where A, € G and
(TETP

A, mod T, is the Frobenius automorphism of K77 /Q corresponding to p. For
flm let H; be the kernel of the natural surjection (Z/mZ)" — (Z/fZ)". Put
R := Z([g]

We define the R-module i C Q,[G] to be the ¢-completion of Z[G]-module
U defined in [12], Section 2, that is, 2/ is a Z,[G]-module generated in Q[G]
by the elements

ay = s(Hy) [J(1 = 7,), 1< f<m, f|m,
rlf

the product taken over the primes p dividing f. The next statement is an
immediate consequence of {12}, Prop. 5.1.

Proposition 8.1 For prime p|m let U, be the R-module generated in Q¢[G]
by s(Ty) = > cand 1 -7, :
agTy,

U, = Rs(T,) + R(1 — 7).

Then
(81) U= H L{p:

plm

where the product is taken over the primes pim, and [] means multiplication
in the group algebra Q,[G).
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As in (12), put @ = H p, and for any r |7 put
plm

U, = HU,,, 1, = HT,,.
plr plr
We have U, = R, T} = {1} by definition, and U = U, T = G. Note that
any U, is a full Z,-lattice in Q,[G).
If » |7, p|™ and (p, 7) = 1, then we have a pair of exact sequences of
R-modules

(8.2) 00— U U — Y — 0,
(8.3) 0 —Ur — U, —Y —0

(see [12], (5.3) and (5.4)). Here Y = (1 — ,)U, = (1 — e,)U,, and the
surjections in (8.2) and (8.3) are the maps induced by multiplication by
1 —e,.

The next two lemmas are the exact analogs for Q[G]-modules of Lemmas
5.1 and 5.2 of [12], and may be proved by the same arguments:

Lemma 8.1 Let H be a subgroup of G such that HNT, = {1}. Let A be
any HT,-submodule of Qe[G) such that A is free over Z[HT,|. Then ATr and
(1 — e,)A are both free over L[ H).

Lemma 8.2 Let A be an R-submodule of Q¢(G). Then
(AU)T = s(T)A + (1 — A 1A,
Hence if A is free over T, then
(AU = AT = §(T,) A.
From now we fix a cyclic subgroup H C G such that H N7, = {1} for any
r |, r # 7. For the aims of this section it is enough to put H = J = {1, j},

where j is the automorphism of complex conjugation. In the next section we
shall deal with some other types of H.

Proposition 8.2 Let r and +' be relatively prime divisors of m. Then U, is
a free HT-module, If, in addition, rr' £, then U, is a free HT,.-module.
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To prove this proposition, we have to repeat the proof of Prop. 5.2 of
[12], replacing U, by U, and J by H. Note that the only property of J that
is used in that proof is: J NT, = {1} for any r # m.

O
As a consequence, we have that for (p, v) =1
(8.4) Ul =u’r.

Indeed, U, is T,-free, hence UTr = s(T,)U,, and (8.4) follows from Lemma
8.2.

Now we are going to calculate some cohomology groups arising from U
and U,. Let A be an R-module and F be a subgroup of G. Then the Tate
cohomology groups H(F, A) are G/F-modules and hence G-modules in the
natural way. If £/ D F are subgroups of G, then Res : H([E, A) - H(F, A)
and Inf: H(E/F, A") = HY(E, A) are G-maps for any ¢ > 0.

The next proposition is an exact analog of Prop. 5.3 of [12] and may be
proved by the same arguments (with U, replaced by U, and J by H).

Proposition 8.3 Let rr and ' be relatively prime, and suppose that neither
r nor v’ is equal to .
Then for all ¢ > 0 we have

HYT, UMy = HYHT,, U,) = HY(H, U™).

These are G-module isomorphism. Moreover, these groups are trivial unless

! =
As in [12], Section 5, for any ¢ > 0 and any » | m we put +* =7 /r and
A% = HY(H, UT).
Lemma 8.3 For any ¢ > 0 and r|m G acts trivially on AL
This lemma may be proved by the same arguments as Lemma 5.3 of [12].

D

Lemma 8.4 Suppose that pfr. For any integer ¢ > 0, there is an exact
sequence
0— AT — AL — AT — 0.
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This lemma may be proved by the same arguments as Lemina 5.4 of [12].
a

Remark. It follows from the proof given in [12] that the injection A% — Al
of Lemma 8.4 is induced by the natural inclusion of H-modules:

Ut =ul S,

rp

Proposition 8.4 Let n be the number of primes dividing v. If n = 0, we
have, for any q,

A7 = 0 if q is odd
YUl Ze/|H|Ze  if g is even

If n >0, we have
Al = (Z,/|H|Ze)*

for any g > 0.
Proof. As H is cyclic, it is enough to consider the case ¢ > 0. If n = 0,
then v =1, Uy = R and

Al = H'(H, RS = HY(H, Z),

from which the first statement of the proposition follows. As |H|- A? = 0 for
any ¢, r and A? are £-groups, all A? are (Z,/|H|Z;)-modules. Using Lemma
8.4, we can prove by induction that all A7 arve (Z¢/|H|Z.)-free. Then the
second statement of the proposition follows from Lemma 8.4.

O

Put G =G/H, G = G, x Gy, where G is the £-Sylow subgroup of G and
(|Gol, €) = 1. Let @ be the set of all Q-irreducible characters of Gy.

Theorem 8.1 Let H be « cyclic subgroup of G such that HNT, = {1} for
any r|m, r # m. Let g be the number of distinct prime divisors of m. If
g =1, then

(U RM)Yy =0,

=10
ve( (R Spylh)) = m(|H)).
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If g 2 2, then
ve((U? - RYYY = (R 2 Spyld)) = 29720, (| H ).

Let @ be as above. Then, for any ¢ € ®, we have:
If g=1, then

: 0 fo#p
-'/t((urf : Rf)) =0, ”t((Rg :Spyldy)) = { ve(|H)) if o i 992.

If g 2 2, then

H.pHY =, . _J0 if ¢ # o
w((uw R, )) = ((('Rf :Spyld,)) = { 29-2y,(|H|) if ¢ = po.

Proof. Let py,...,p, be the primes dividing m. Let +; = py---pi, 1 =
1,...,9 and ro = 1. We have U,, = R, U,, = Uz = U. Hence

4

U RYY = H(u:f LUl

1=l

and

i

(U,f :Rg) = H(u:f.w :urlj-l,w)

1=1
for any ¢ € ®.
Fori=1,...,9 put 7y = v, p; = p, 7y = rp. To compute the index
(@ - Uy, we note that the exact sequences (8.2), (8.3) and equality (8.4)

yield a pair of exact sequences of G-modules

0 — Ul — Yl yH Y HYH UTY  — HY(H, U,)
(8.5) | | |

O—)UHTF_) u” i)YH—S) H‘(H,U,T,z‘) _C}Hl(HauTP)'

rp rp

Siuce r # m, it follows from Prop. 8.3 that H'(H, U,) = 0, hence v is a
surjection. On the other hand, € is an injection ( see Remark after Lemma
8.4). Therefore § = () and 3 is a surjection. Thus we have

(8.6) @ uy = Wiy (Im B Ima) =

rp ¥ rp
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(Im3 : Ima) = |Cokera| - |Coker@|™" = |Cokerer| = |H'(H, U™)|.

Ifg=1,thenr =1, U’ = Zyand H'(H, UT) = 0. Hence (U : RF) =1in
this case. By Prop. 8.4 UH [Spyd = (Z¢/|H|Z¢), hence vp((RY : Spyid)) =
ve(lH|).

If g > 1 and rp # 7 in (8.5), then by Prop. 8.3 H'(H, U*) = 0, hence
by (8.6) we have (U7 : UH) = 1. If rp = 77, then by (8.6) and Prop. 8.4 we
have

(U - U) = we(|H(H, UT)]) = 27| H)).

rp
By Prop. 8.4 v (4" : Spid)) = 277 we(|H]), hence v ((RY : SpuUd)) =
29=2y,(|H]). This proves the first two statements of the theorem.
If ¢ € @, then, taking the p-components of all the groups entering (8.5)
and reasoning as before, we get
Ul Ul = |H'(H, UT?),|.

e, w

By Lemma 8.3 G acts trivially on H'(H, U™*), hence we have

y 1 if @ # o
HY(H, Ur),| = T
’ ( s U, )w' { |H1(.H, uri"p)l if @ = @o.

This proves the remnaining part of the theorem.
O

Note that for any R-module A C Q.[G] we have (Ap)? = (A"), and
(Spy Ao = Spy(Ag), hence we may write simply A and Spy Ao.

Proposition 8.5 Under the assumptions of Theorem 8.1 we have
re(Us' = RY)) = (U = Rblpe)) = (G HI - - RF)),
(R Splha)) = ve((Ra) g + SPalloses)) = ve(IG17" - (R : Spylt)).
Proof. Put G =§G/H. Then by (7.5) we have
(RE = Spythe) = (R™ - SpuU)(Spa(Spytd) : SPG(RH))-
Note that R is G-free, hence Rf = Sp,R, and
(Spe(Spuld) : SP(;(R”)) = (Spgl : SpgR).
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It is obvious that SpgR = s(G)Z,. On the other hand,
(57) U = Uy + 5(G)Z
(see [12], (4.11)). Therefove Spgld = |G|s(G)Z,. This proves the last formula

of the proposition. To prove the first one, we note that by (8.6)
U = Uy + s(GYZ)" = U + 5(G)Ze.

Hence Sp.(U") = |C

s${G)Z, and
U RE) = @ R - (5(G)Ze - |G15(G)2e) = |G - U+ RH).
O

If K% is the maximal real subfield of K" = Q(¢,,), then we have H = J =
G(K/K*) and G = G(K/Q).

Definition. For Kt as above, we put Uy+ = Sp,(U).
The following is an immediate consequence of Theorem 8.1 and Prop.

8.5.

Proposition 8.6 Lef U+ be as defined above. Then
”!((RBI Ui+ o)) = Ve(lQI"'Qb‘),
where

b — 1 fg=1
"E 2t g >0

For any ¢ € ® we have

J o _J 0 if ¢ # o
1/:((7?,(,’,‘0 Ukt o)) = { ve(|G]712%)  if o = .

Now we will recall some results of [12] concerning circular units and circu-
lar numbers. Let P C K™ be the group of circular numbers as it was defined
in [12], Section 4, i.e. P is the subgroup of the multiplicative group K* of the
field K = Q(e,,) generated by the elements 1 —( for ( € K, (™ =1, ( # 1.
The group of circular units C of K is defined by C = PN E, where E is
the units of K. Note that we have ;oK) C C (see [12], Section 1), so we put
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P = P/u(K), C = C/p(K). In [12], Section 4 it was defined a logarithmic
mapping [ of P such that Ker! = p(K). Hence the module T' = {( P} defined
in [12] is naturally isomorphic to P. We will reproduce here some results on
T proved in [12].

Lemma 8.5 ([12], Lemana {.2). We have I(C) = To. In other words, C =
.ﬁl).

Lemma 8.6 ([12], Lewma 4.3). Let ¢y = |G|7's(G). Then Ty =T N (1 —
e))T, To has finite index in (1 — e,)T, and

[(1 —e)T: To) = 277|G|.
In other words, C = PN (1 —¢,)P and
(1 —e)P:C)=27gG|.
We give a brief proof here since we need some details of it in the next section.

Proof. Since Py = PNl —e)P, (1 —e¢) )P+ P = ¢,P + P and

e PN 7= 7547, we have

(S.8)(1 = 1)P)/Po = (1 — )P+ P)/P = (e,P + P)/P = (e,P)/P".

Let Dy be the subgroup of Q generated by the primes p dividing m. Then
the norm mapping Ny q : P — Dy induces an injection

NI\'/Q : 61—}3 — D
If € € p(K'), and the order of ¢ is not a prime power, then
N}\'/Q(l — E) =1.

If the order of ¢ is p* for some prime p and some integer a > 0, then

NiQ(l —¢) = prm ),

where ¢(n) is the Euler function. Hence the group Nx/q(eiP) = Ni,q(P) is
generated by the elements p?")/#0%) |77, where p® is the maximal power
of p dividing m; of course, e depends on p.
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It was proved by Sinnott ([12], page 121) that bad (or T in his notation)
(p—1)/2
is generated by the elements o, p|m, where a, = [[ (1 —€3) for p odd,
a=1
ay = 1 — ¢4, €, is a primitive m-th root of unity. The elements «, satisfy
the condition Ny(e,) = p, hence Ny q(o,) = p?™/? for any p. Therefore

P = prz

erP/PY = [] 2/p*0 2,

plmr

a

Taking into account that G acts trivially on (1 — ¢;)P/C, we may restate
Lemma 8.6 as follows:

Lemma 8.7 Let C[€] and P[€} be the C-completions of C and P, respectively.
Then C[f] has finite index in (1 — ¢,)P[f], and for any ¢ € ® we have

ve(2701Gl) if ¢ = po.

Definition. Let k't = Q(e,, + ¢;!) be the maximal real subfield of a
cyclotomic field K = Q(e,.). Then we put T+ 1= (1 — ¢;) P[£].

ve([(1 — &) P[4, : TLll,]) = { 0 i @ # w0

Combining the diagonal injection
Clf] = A(K™)
with the mapping (7.2), we get the injection
(8.9) Log : C[€] = Ap+ .
Extending the mapping (8.9) by linearity on Tx+, we we get the mapping
(8.10) Log : T+ — Ap+.

Using the isomorphism A+ = Q,[G] of Section 6 and the natural injection
Q. G] = Q,[G], we get an injection @ : U+ — Aps .

Definition. We put T+ = O - Log(Ti+) and Ug+ = O - i(Uge+ ).
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Fora€Z, « 2 0 (modm), put

1 —
na) =11 =en) = Y —3log(l—ex)or! € Qld] = Ax

tenodm
t,m)=1

As in [12], Section 2, let V be an O-submodule of Ay generated by n(a), a €
Z, « 20 (mod m). Then V is an O[G]-module, and the elements n(d), d|m
generate V as an Ryg-module.

Forr=afm, a € Z,a 20 (mod m), we put

| —
u(r) = —5log(l — &%) € Q.
HyeGisa primitive Dirichlet character with conductor f > 1, we put, as

in [12], Section 2,

5.1) W= e (4).

a (mod f)

(a, f}=1
Put
w=>Y u(¥)e, € Ax.
N
N#]
Proposition 8.7 Let V be as above, and put U= 0O -U C Ag. Then
(1 - 61)1/ =w- U,

This proposition may be proved by the same arguments as Prop. 2.1 of [12].

]

Theorem 8.2 The O[G]-modules T+ and Uy  are isomorphic, and for
any x € G, x # 1, we have

1
exTr+ = §(L(X)€XU;\'+ )

where a(x) is given by (7.19).
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Proof. Note that (8.11) indnces an isomorphism
[:Tg+ = (1 —e)V,

and Sp; -/ = id. On the other hand, «(Y) = 0 for x odd, hence wU = wet U,
where et = 1%1 By (8.7) we have wU = wetU,. The mapping Sp; maps
isomorphically {((1 — ¢1)V) onto T+ and wU onto wUg+. Therefore we
have in A+ the equality

(812) Th’+ = UJU]{-* .

If ¥ # | is an even character of G, then we may consider y as a character
of G, and ii follows from (7.19) and (8.11) that Ja(y) = pu(xX), where s is
a root of unity depending on the choice of ¢, in (7.19). The Corollary of
Theorem 7.3 shows that «(¥) # 0 for any even y € G, x # 1, hence (8.12)
defines an isomorphism of O[G)-modules

TK‘" = Ul\"'*‘,(] 3

and for any such y

- 1
o Tre = (ew)exUss = u(@)exUss = sa(x)e U
O

Theorem 8.3 (Theorcm [ of the introduction). Let Kt be the mazimnal real
subficld of a cyclotomic field K = Q(e,.) with conductor m. Let U(K™) be
the units of Kt and Ct = CNU(K™), where C is the group of circular units
of K defined above. Then

. (UK CHE ] ife#2
| CUE™)e] = { 2L (UK : CHA ] =2,
and for any o € ®
UK, - CH), if 0 #£ 2
UKL, - CH[e), =2, ¢ # o
2 (UKD, CH, | =2 ¢ =,

where b is defined as follows. Let g be the number of distinet primes dividing
m. Thenb=0ifg=1, andb=29" 41— ¢, if g > 1.

| CUL T )e, | =
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Proof. Theorem 8.2 shows that a pair of modules U+ , T+ defined above
satisfies all the conditions of Theorem 7.4. Then, applying this theorem, we
get

|CUK Yol = (Riceo: U o)™ [Tier : i) ™ [T : O]

]CI(I‘F+)5_W| = (RI\"+.U,¢ : ul\""ﬂ.w)_l [TI\"'.w : CI\'*,W]hl [U(K.‘.)[g]w ' Cl\"hw] :

By definition we have Cx+ = U(KH)[] N\ T+ = CT[€)/ {£1}, hence
DU Crr = U]/ CHE

The index @ = [C[] : (C*[f]/{£1})] is the so called “unit index”. It is
well known (see, for example, [12], Section 1) that @ = 1 if g =1, and Q = 2
if ¢ > 2. Combining this with Lemma 8.7, we get

| [ uEigl ifg=1
(3.13) W“W”'Q”D“{WQFHM)HQ>1
) S 1 if ¢ # o
(8.14) [Tict o Crir o] = { [Tic+ : Cr+ ] if o = .
We have Ry+ o = R, so the indices (Rr+,0 : Ug+,o) and (Rg+ 0,4

Ui+ 0,,) are given by Prop. 8.6. Combining Prop. 8.6 with (8.13) and
(8.14), we get. the assertion of the theorem.

a
The next result is an nmmediate consequence of Theorem 8.3.

Theorem 8.4 Let K, K% be as in Theorem 8.8. Let € be a fized prime, and
let k be a subfield of Kt such that [K¥ : k] is relatively prime with . Let
U(k) be the units of k, and put CH(k) = CtNU(k). Let p € ® be a character
of G = G(K+/Q) such that ¢ restricted on G(K* [k) is trivial (thus ¢ may
be considered as a character of G(k/Q)). Then

. (VR[] CHR)IO)  ife#2
HCl{R)e | = { 2 (UK : CHR)E)] if =2
[U(E)[l]g : CH(K)[(], ] if 0 #2
|Clk)eo | =4 (U, - CHK)A,] =2 ¢#po
2 UR)g : CHR) o] 1 £=2, ¢ = oo,

where b is as in Theorem 8.3.

75



Proof. 1f ¢ is as above, then Cl(k),,, = CI(K )¢, ,, U(K)[f], = U(KT)[€),
and Ct(k)[f] ., = C*[{],.

0

9 The proof of Theorem 2 and some related
results

Let & be any veal abelian field. If & has conductor m, then k is a subfield of
the cyclotomic field K" = K, = Q(e,.). Moreover, k is a subfield of the max-
imal real subfield Kt = K} of K,,. Put H = G(K*t/k), G = G(k/Q) and

Ry = Z¢[G]. In this section we define the modules Uy and T; for arbitrary k.
We have at least, three ways to do it.

Definition 1. Put M;El) = mw(Uk+), 7;(]) = NyTk+, and C,(:l) =
Ny Cre+, where my is the natural projection Q. [G(K*/Q)] = Q¢[G] and Ny
1s the mapping U(li'+)®ng — U(k)@ZQf_’ mduced by the norm mapping
Ny U(KT) = U(k).

For any natural n|m we put, as in [13], &, = K, Nk, where K, =
Q(en), the cyclotomic field with conductor . Note that any £, is a subfield
of the maximal real subfield K} of K. Let m, be the natural projection
QG(KT/Q)] = QG(k./Q)], and 1, : Q. G(k./Q)] = QG] be the
mapping defined by i,(c) = Y 77, where 0 € G(k,/Q) and 7 is any

TEG(k/kn)
representative of o in G. On the other hand, we have for any n |m the norm
mapping N+, U([\"TT)@ZQ( — Tf(k,.)@ng and the natural inclusion
Ju U(A?,‘)C’_:OZQ( — U(k){\’)ng. The next definition follows to that given in
[13).

Definition 2. Put L(,E.Z} be the Ry-submodule of Q.[G] generated
by the groups ¢, o rr"(llh-’ar) for all n|m. Put 71.(2) be the Ri-submodule of
U(A‘.)@ZQ{ generated by ille groups ju © Nyt (Tpe+ ) for all n|m. Let C {.2)
be the Ry-submodule of U(k)[€] generated by the groups j, o Ny, i, C(I0),
where C(K,) is the group of circular units defined in the introduction.
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Remark. Note that L{f_,z) iy om(Ut ) = s(G)Z,. Hence

(9.1) UP = Ul + s(G)Ze

Definition 3.  Put 247 = i, (Ully) € QG), T = 1 (TH) C

"l

( )®ZQH and C( ) = CI\+ = (L)ﬂcm.

In what follows we shall denote the module U C Q[G(K,./Q)] defined
in Section 8 by L{,,., il we wish to make L\])llClt its dependen(:f' on I,,. For
1 =1, 2, 3 put Uy O =T ul” c Ay and TL =0. Lob( 9y, where Log :
TL_( Vs Ay s deﬁuerl as in (8.10).

Proposition 9.1 Letw € Ay, be as in Prop. 8.7. Then fori=1,2, 3 we
have

T = Ul

Proof. By (8.12) we have Ty+ = wUp+, where Kt = ](,*,: It follows from
Definition 1 and the identity log-Ny = Spy - log that Tk = Spy Tx+ and
U = $py Ugs. Thus T(kl) = Spy(wUp+) = w-Spy(Ugk+) = wUg(1). This
proves the proposition for ¢ = |.

As the multiplication by w in (8.12) induces an isomorphism Tp+ =
U+ 0, we have

TB) T o+ = \'.:.)Ul\+ - WU(L:S)

This proves the proposition for 7 = 3.

For i = 2 and n | m put

wh = Y. u(X)ey € Ax,.
XEG(Kn/Q)
x#l1

Applying Prop. 8.7 to the field K, we get
TK,T = w“Ul\';f .

Ifa € A,\“\”‘ ) = Ay, then for any character v € & such that y restricted
on G(K/K,) is not trivial, we have e, - & = 0. Hence we have w,, 'z =w -«
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for any « € Ay, and therefore T+ = wUp+ for any n|m. It follows from
Definition 2 that Tf) is generated in Ax by Spr, /i, (Ty+) for all n{m and

Uﬁz) is generated in Ay by Spyyp, (Ugs) for all njm. As w - Spy g (v) =
SPg, i, (W - ) for any @ € Ay, we get

Tf) = inz).

As an immediate consequence of Theorem 7.4 and Prop. 9.1 we have

Theorem 9.1 Let k be a real abelian field. Then for 1 = 1, 2,3 and any
w € P we have

ICI(R)el = (R0 : U HTE O TR - C
and

ICI(A) e o] = (Rio,p : UL

VO, 0

)T CIT TR e = CEL).
Proposition 9.2 The inder (R : Uy is defined by
(Rio: UL) = (R U,
where
[k :Q) ifi=1
“TLwllk:QD) ifi=23

Proof. For: =1, 3 the assertion lollows immediately from (7.5) aud (8.7).
If 1 = 2, then the assertion follows from (7.5) and (9.1).

O

Proposition 9.3 For a real abelian k let U C Q[G] be the module defined
by Sinnott in [18]. Then we have

ult = ue.



Proof. As in Section 8, put m = [] p. Let T, (vesp. T,(k)) be the inertia

plm
subgroup of p in G = G(K,,/Q) (resp. in G = G(k/Q) ). As was shown in
the proof of Prop. 5.1 of {12], the module U,, is generated as a Z,[G}-module
by the clements

prr =151 TL (1 =7,), 1 <r <, rlm.

plr plinfr

a1 N* — V! ool =
For plin put (p, k)" = AJ'e,, where ¢, =

T,(R)™Y 3. oand Ay isany
e €Ty(k)

element of G such that A, mod T,(k) is the Frobenius automorphism for p in

G/Ty(k). For »|m put T,(k) be the compositum in G of the inertia groups

T, (k) for each p dividing r. As was shown in Prop. 2.3 of [13], the module U

is generated as a Z[G]-module by the elements

4 = s(T(k)) TI (1= (p, k)7),

pl/r

where r runs over all positive divisors of 7.

Let »[7|71. We will prove that i, o 7, (., r) € U. Let T.(k,) (resp.
T.(IK,)) be the compositum in G = G(k,/Q) (resp. in G(K,/Q)) of the
inertia groups T,(k,) (resp. T,(K,)) for each p dividing ». As the mapping
T, is a homomorphism of rings and #,(7,) = (p, k.)", we have

AN L0 | L a
Tu(Pu,r) = mb(Tr(A'n)) H (1 - (1”» k) )

pln/r

Put vy =y /7, Le. m/ry = 7/r. Let 7™ be the natural mapping Q[G) —
Q[G(k./Q)]. Then, reasoning as before and taking into account that,
Tr(")(Tr;(k)) = T‘r.(fi‘."), we get

(0.2 ralin) = B0 T1 = () =
rifn plafr
T,,(5)

o o kP, )
T )

Consider the exact sequence

0 — G(k/ky) N To (k) — T (k) — To(ky) — 0.
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We have T )]
Gk/k)OT, (k)] = .
(G T = 47,6
Let S C G(k/k,) be a set of representatives for G(k/k, ) /(G(k/k.) 0T, (k).
Then
T,, (k)|

Tk 27

7" om ”)(q’]) - Spk/k (qu

Thus it follows from (9.2) that

fl ([\n)| ‘T I\n |
Sk () (e, )-
7o) Pk ) = sy 2ot

cES

":u 0 N(N)(Pn.l ) -

Hence i,, 0 7, (pn,,) € U lor any n|m, r|%. Therefore LI{.Z) CUlf).

Now we will prove that ¢; € Z/{,Ez) for any r|m. Put m = ab, where
(b, r) = | and a prime p divides « if and ounly if p divides r (so we have
@ = r). Note that we have T,.(k) = G(k/k;). Consider

Pe = H (1 —7,).
plw/r

We lLiave

m(pen) = [1 (1 =(p, k)*)

plfr
As ¢ € Q[G)T®)| we have ¢, = |T.(k)|7" - 4, 0 7®)(g,). Note that
g = 1T TT (1= (0, k)7,

plwE/r

Thus m(p.1) = |TH(k)|7'7®(q,). Therefore
g, = 15 0 Ty(po,1)-
This proves that UU) 2> Ule.
]

Proposition 9.4 The group (7;(2))2, where 71,(2) is the group from Definition
2, coincides with (1 — eq)(D/{E1}), where eq = |G| Z o and D is the

ol
group of circular numbers of k defined by Sinnott in [13], Sect. 4.

The group CL(,‘” of Definition 2 coincides with C/{#1}, where C is the
group of circular unils of k defined in [18], Sect. 4.
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Proof. The group D is defined as follows. Let n be any integer > 1 and let
a be any integer not divisible by n; then the number Ny, j¢, (1 —€%) lies in k.
Sinnott defines the circular numbers D of & to be the group generated in &~
by —1 and all such elements Ng, /. (1 = €%). The circular units C are then
defined by C = U(k)N D. Note that any & € D is an algebraic integer, so such
a is a unit if and only if Nyq(x) = £1. Therefore C/{£1} = (D/{£1})o.

Lemma 9.1 Let Dy be the subgroup of D generated by —1 and oll the ele-
ments Ny .. (1 —€2) for n|m, and let D, be « subgroup of Q° generated
by all primes g fm. Then there is a decomposition into the direct product

D=D, xD,.

Proof. It was shown in {13] that D D Q*, therefore D, C D. It is obvious
that Dy € D and Dy, 0 D, = {1}. Fix some n = nyn,, where (m, ny) = 1
and a prime number p divides ny if and only if p|m. Then K, = K, - K,,
and K, Nk =Q.

If 2, =1, ie. (n,m) =1, then k, = Q and, taking into account that
N,y () 15 totally positive for any x € K., we get that Ny, i, (1—€2) € Ds.

If ny =1, then, putting £ = K, QA K,,, we have Ng, /1, = Ngj, o Nk, /E-
The direct calculation shows that Ny, (1 —€3) € P(F), thus N i (1—€8) €
Dl.

If ny # 1, ngy # 1, then, reasoning as before and putting £ = K, N K,,,
we have Ny, /i, (1 —€5) = Ngyp, 0 Ni,ye(l —€t). As (1 —¢3) is a unit in this
case, we see that Ny, /p(1 —€2) € P(E), thus Ni, (1 — €0} € Dy.

o

It follows from Lemma 9.1 that (1 —eg)(D/{£1}) = (1 — ec)(D1/{£1}).
It may be checked easily that (1 —egq) Dy is generated by the groups (1—e,) P,
for all » |1, where P, is the group of cireular numbers of K, P, = P /(KL
and e, = |G(K,/Q|™" Z 7. By definition T+ = (1 = e,)P,. Noting

FEG(N,L/Q)

that we use the mapping N+, - in the definition of 71.(2) and the mapping
Nk« in the definition of D, we get that (T8 = (1 - e )(D/{£1}).

In order to prove the last assertion of the proposition, we note that the
inclusion C,{.ﬂ C C/{xl} = (D/{£1})v is obvious. Suppose that z € D
and =z (mod {£1}) € (D/{£1})y. Then = can be presented in the form
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=u- [] A,, where u € C}f) and A, is as follows. Let p® be the greatest
plm

power of p dividing m. For 1 < j < e put K(j) = K, and k(j) = k.
Then A, is of the form A, = H Bj, where B; = Nggyr)(b;) for some

=1
b; € P(K(7)). As the elements A, are relatively prime in k, we get that z is
a unit if and only if 4, is a unit for any p|m. The group G(k,-/Q) is cyclic
(the group GF./Q) is cyclic for p = 2'), hence, taking into account that p® is
the exact power of p dividing the conductor of k, we get that [K}; : k,i] does
not. depend on y for 1 < 5 < e. Therefore for any « € K, we have

Nitey 1) © Niceyrutey(@) = Nigyniy © Niy k(@)
The norm Ny (eyxy maps P(K,<) onto P(K,;). Hence A, is of the form
Ap = Ni(oysrey(cp) for some ¢, € P(Kpe). Obviously, A, is a unit if and only
if ¢, is a unit, i.e. if ¢, € C(K,e). Therefore 4, € C®. This proves the
inclusion €% 2 C/{x1}.
a

For o € @ put d = |G| = [k : Q], d, = dimq, = dimq,Q,[G],, where
G = G(k/Q). Put dyy = do.

Proposition 9.5 The group C,E,z) has finite inder in 71.(2), and for any o € ¢

we have
[7‘(2) C(J)] r)d 1 H[‘l" . Q]
|ﬂl
(2) (z) 24° if o ?E 20
[n,cp : <k, ‘p] 2110_' H [kpe . Q] ?fC,D = Py,

plm

the product taken over all primes p dividing the conductor m of k. For each
such p, p¢ denotes the grealest power of p dividing m.

Proof. It was proved in [13], Prop. 4.1 that for some group T = D/{+1}
defined in [13] we have

(1 = ec)T = To) = [] (ke

rlm
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[t follows from Prop. 9.4 that
(T)5: Cyl = [(1 = ea) T+ Tol,
where 7" = D/{x1}. Now the assertion of the proposition follows from the

fact that

d -
@), ()2 2% ilp £ o
% = { e §oEe

O

Combining Theorem 9.1, Prop. 9.2 and Prop. 9.5, we get the following
result that is a refinement of Theorem 4.1 of [13].

Theorem 9.2 (Theorem 2 of the introduction.) For any real abelian k we

have
H[I‘V” 1 Q

ve([T(R)[] = CP1) = we | |CI(K)e |°“‘1”—'1fr75r[m:uk]

For any ¢ € ® we have
W([U(k)[e]w : C!:,w]) =

ve(ICI(k)e, o|2% [Ru, o : U o)) f o # o
H[Ap“ : Q]
ve [1C1(R)e oo l20 " 2 g [Rin  Un] | 10 = 00
For + = 1, 3 the author was unable to compute the index [7;('30 : (')]

pricisely. Nevertheless, we have the following trivial result for : = 3 (the case
1 = 1 may be treated in the same way, but this last case does not yield any
interesting consequences).

Proposition 9.6 Let k be a real abelian ficld with conductor m. [f¢ = 3
and { £ 2, then for any o € ® we have

o e =,

(T m]_(l ¢ # o
i i o =eu,
where (0 is the power of £ dividing the order of G = G(K,,/Q).
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Proof. Put K,, = K. We have TH, /CJl, C Tx+/Cr+. Note that for

£ # 2 we have Crv = C(K)[f] and Cll, = C’,{ ) Thus the proposition follows
immediately from Lemma 8.7.

Theorem 9.3 For any real abelian k and for £ £ 2 we have
|Cl(k)e| = (Ric: Ul e=[T(k)E] = CI),

where ¢ = ve([k : Q) and " divides the degrec [K : Q).
For any ¢ € ® we have

: ‘ A if o # o
(-'3 A = ¢ .
(«) ) |Cl( )C.‘Pl { Hr—cAlp 1f(,0 = o,

where A, = (Ri,p : U T(R)[A, : CO)).

Proof. Iollows immediately from Theorem 9.1, Prop. 9.2 and Prop. 9.6.
0O

Theorem 9.3 implies the following interesting consequence:

Theorem 9.4 Let K = K, and k = ([\;"")H, where H is a cyclic subgroup
of GIKt/Q) such that HNT, = {1} for any r|m, v # ™ and T, being as
in Theorem 8.1, Let g > 2 be the number of distinet prime divisors of m.

For € # 2 put t = w([H]). Then

ICI(E)e| = |Cl(k)e,ppl =0 (mod £ =1y,

Proof. We have U, = U @ U . By Lemma 8.3 U, is a cohomologically
trivial H module. Then it follows from Theorem 8.1 that w((u,ﬁa) r Ri)) =
ve((US) oo Riwe)) = ve((UE)T - Ry) = 2972 We have that €77¢ divides |H].
Thus the theorem follows from (9.3) and the fact that the index [U(k)[4)], :

CEL] is an integer.



Corollary. Let & be the maximal £-extension of Q containing in k, where
k is as in Theorem 9.4. Then

[Cl(ko)e| =0 (mod £*7*-1),
Indeed, we have [Cl(ko)e| = CL(K)¢,p,-

Proposition 9.7 Lel { be a positive integer. Suppose thatl for any prime
plm owe have o(p®) = 0 (mod &), where € is an odd prime and p(p°) is
the Euler function, ic. p=1 (mod &) if p# L ande>2t+1 if p =L
Then there exists a subgroup H C G(K,./Q) such that HNT, = {1} for

any v |7, r # m.

Proof. Clioose for any p|m an element o, € T}, of the exact order €' and
put H =< o >, where o0 = H Op.

plm

D

Theorem 9.5 Lel K = K, be « cyclotomic field such that for « given t we
have p(p®) = 0 (mod ') for any p|m, where p° is the greatest power of p
dividing m. Then we have

ICUK el = 1CUK o =0 (mod £7772)),

m ™m

Proof. By Prop. 9.7 we can find a subfield & € K such that the group

T

H = G(K}/k) has an order £ and satticfies the conditions of Theorem 9.4.
If the order of Cl(k)y, is divisible by {* for some «, then there exists an
abelian unramified Z-extension M/k of degree divisible by ¢¢ such that M
is Galois over Q and G(M/k) = G(M/k),,. Then the degree of MK} /Kt
divides £7". Hence '

|CHKE) = |[CUKY) ol =0 (mod €71,

™m

O

Corollary. Let € be odd. If the number g of distinct prime divisors of m is
> 4, then the field Kt has nontrivial f-class group. Let Ky be the maximal
f-extension of Q containing in KF. Then K| has nontrivial ¢-class group.

m*
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10 Concluding remarks

The groups Tp(!.:oo)(u) may be considered as analogs of ¢-class groups of func-
tion field. Thus we have

Problem 1. For given real abelian £, is the group HT((A:OO)(O) finite, in

¢
other words, are the groups Ty(ks) trivial for all but finitely many €7

Note that the proof of Theorem 3.2 given is Sect.3 is rather complicated.
It seems that one can simplify this proof, using methods of [Kolyvagin (see{9]).
On the other hand, R.Greenberg conjectured in [2] that Ty(ke) is finite for
any totally real field &. If this conjecture is true, then we can deduce Theo-
rem 3 hmimediately from Prop. 4.3. Moreover, we have

Theorem 10.1 Suppose that Greenbery’s conjecture holds true for ke, /k.
Then for any intermediate subfield k,, koo D kn D k we have for all suffi-
ciently large n

Te(keo)uy = Ug (kn)/Cs(kn).

Problem 2. Does Theorem 10.1 hold for any real abelian k7

Problem 3. Generalize Theorem 6.1 to the case ol relatively abelian
extensions.

Note that such a generalization, if it exists, needs some generalization of
Gauss sums gy.

[t should be mentioned that Theorem 7.1 and its proof stay valid for any
totally real A.

Problem 4. Generalize Tlieorem 7.1 to any algebraic number field.

Note that we deduced Theorem 9.4 and Theorem 4.5 from some calcula-
tions on cohomology groups of U. We may ask whether there are any other
interesting examples of subgroups H C G(K,,/Q) that yield other nontrivial
divisibility conditions for the class group of cyclotomic fields.
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abe

Finally, we note that the most interesting problemn is to generalize the
ts of this paper to other fields having a system of special units, such as
lian extensions of imaginary quadratic fields.
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