LOWER CURVATURE BOUNDS , TOPONOGOV'S THEOREM ,

AND BOUNDED TOPOLOGY I/ @

Uwe Abresch

Max-FPlanck-institut
far
Meathematik
Bibliothek
Inv. Nr.:

Stand-Nr.: ﬂo?b

SFB 40 / Max- Planck Institut fir Mathematik

Gottfried - Clarenstr. 26
D~ 5300 Bonn 3

MPI /SFB 84 - L1/kS




LOWER CURVATURE BOUNDS, TOPONOGOV'S THEOREM,
AND BOUNDED TOPOLOGY I




Introduction :

Classically the theory of non~compact Riemannian manifolds with
negative sectional curvature is based on the visibility axiom (c.f. [BN]);
heuristically speaking this axiom requires that the curvatures do not
decay to zero to quickly. In contrast the theory of manifolds M® with
positive curvature does not require an additional hypothesis in the non-
compact case. There are even nice results , if one supposes the curvature
only to be non-negative : By the Toponogov splitting theorem such a mani-

fold is isometric to a Riemannian product Nk xn“’k

» where the factor
Nk does not contain a line. The soul theorem due to Cheeger and Gromoll
claims that any non-negatively curved manifold M" is diffeomorphic to
the normal bundle of a compact, embedded submanifold. Moreover Gromov
has shown that there is a universal upper bound C(n) on the sum of the
Betti numbers Bi_(H“) .

In this paper we are going to study & larger class of manifolds

and include for instance "asymptotically flat manifolds”.

Definition :
A complete Riemannian manifold (M",g) with base point o is called
asymptotically non-negatively curved , iff there exists a monotone
function 1:[0,=)——>[0,=) such that

4 by(r) = rr-X(r) ir < =
o

and ii) the sectiomal curvatures at any point p&M® are bounded
§rom below by =-Ar(d(o,p)) .

The couvergence of the integral b, (1) implies a decay condition
on the lower curvature bound A . This condition is analyzed in more detail
in chapter II. For instance it asserts that there is a unique non-negative
solution of the Riccati equation u'(r)-u(r)z-k(r) which decays to zero

for r+® , Thus one has another numerical invariant
«»

by() &= o[u(r) dr

Both bo and b; depend on A in a monotone way, and they can be re-



garded as invariants of the manifold M® by taking the minimal monotone
function A which meets the conditions (i) and (ii) ; notice that the
numbers do not change when the metric g on M is scaled with a global
factor.

Main Results :

A) a peneralized triangle comparison theorem of Toponogov_type :

The model spaces will be arbitrary simply-connected surfaces of revo-
lution with non-positive curvature, and the comparison triangle will
have one vertex at the pole of the model space (c.f. I.3.1 and I1.3.2).
Ve apply this theorem to triangles in asymptotically non-nega-
tively curved manifolds which have one vertex at the base point o .
Employing in addition the analysis done in chapter I , we obtain lower
bounds on their angles which are uniform with respect to the size of
the triangles (c.f. TI.1). Such uniform bounds can be derived from the
standard Toponogov theorem only in the case of non-negative curvature,
and in this setting they provide an important tool. Similarly our uniform
estimates are the key to the following theorem.
B) Theorem:
Fon asymptotically non-negatively cunved manifolds W' there exist
universal upper bounds on the number of ends and on the Betti numbens :

1.) Helends of M} € 277 . exp((n-1) + b (M)
2,) Z Bi(Mn) ¢  C(n) - exp(—‘irli—la- ob1(Mn)) .
1

The function C(n) can be effectively estimated by an expression
vhich grows exponentially in n3.

The proof of B1 is carried out in chapter II , vhile B2 is
deferred to a subsequent paper. Finally theorem B is optimal in the sense
that the topology of & surface M2 is not necessarily bounded, when its
integral bo diverges. We can prove even more :

C) Theorem :
Suppose that the integral b (1) of a function A: [0,e)—=[0,=)
diverges. Then every non-compact, conmected surface M2 with base
point o camries a 2 - metric whose curvature x obeys :

x(p) = -a(a(o,p)) ,peM |



I. Models and Toponogov's Theorem :

The standard Toponogov theorem compares triangles in a Riemannian
manifold (Hn,g) to the corresponding Alexandrov triangles in suitable
spaces of constant curvature (c.f. [CE] or [K]). It is worthwhile noticing
that the models are essentially two—~dimensional. We are going to extend
the theorem and allow for any simply-connected surface of revolution with
non~positive curvature as model space.

1. More precisely we consider all continuous functions k:[0,=)—[0,=).
Each of them determines a unique surface of revolution M2(-k) with pole P,
such that the curvature equals the function -k(d(;,po)) s here d denotes
the Riemannian distance in M2(-k) -

Tt is convenient to simultaneously consider the approximating func-
tions k_:[0,#)—[0,#) which are defined by

1.1 ke(r) t= sup {k(r') | r'»0 and |r-r'|ec} s E™O

By notation ko-k . In polar coordinates (r,¢) the metric of Mz(-ks)
looks like :

1.2 dr?

+ 3, (0)%a9?

where the function Ye is given by the Jacobi field equation:

” - . - ] -
1.3 Ye kc Ve . ye(O) 0 , and yc(O) 1
2. We proceed to summarizethe elementary properties of our model space

2.1 Lemma :
The coordinate functions r(s) and ¢(s) along a unit-speed geodesic
s—y(s) 4in the model surface M2(-k) obey the equations :

£) r'z + (yor)2°¢'2 - 1
L) (yor)z-o'/ = const ( Clairaut )
L) (y’r)z-(l-r'z) = const? |

We skip the obvious proof and recall that by notation Py always
denotes the pole of the model space. When looking at a geodesic triangle
A=(py:P)sPy) with edges of length 2; =d(pj,),Pj+2) -~ indices taken

modulo 3 - , formula 2.1iii becomes :

y(¢,) » sin( ¥at p,) = y(2,) *sin( ¥at p,)



This generalizes the well-known Law of Sines in euclidean geometry (kz0 ,
yEid ) and in hyperbolic geometry (k=-! , y=sinh).
2,2 Lemma :
Given triangles A=(p,,P; P,) and A' =(pysP)»Py) 4n a surface M2 (-k)
such that L =2, and Ly =2y ,0ne has monotonicity :
fat p, < ¥at 1 2 - 1
Proof :
We may rotate A' about P, and without loss of generality may assume
that p.'z--p2 . Then the claim becomes obvious, since M2(-k) is simply-
connected and has non-positive curvature,
2,3 Lemma :
Let p,,P,,P, , and p, be the vertices of a quadrilateral in M2(-k) .
Moreover suppose that Xat p, < v and that

d(p‘QPZ) + d(pz»P3) < d(p3,Po) + d(Poypl)

P} Then there i8 a triangle A=(p,sP;sP3)s
/f b unique up o rotation about p_, such
//’ P, that :

d(p_,p;) = d(p,p,)

d(po.pg) - d(po.p3)

d(p;npé) - d(Plspz)'*d(szP3)
<\ P P, ¥at p; < Jatp,
N e ¥at p} < ¥atp,

A

A

Proof :

The idea is to bend in the corner at Py i we move p, towards the pole P, *
We keep the length of all edges fixed by moving the vertices P, and Py
in an appropriate way. Obviously

zctit (= max { d(po’p| )-d(pl ’pz) ’ d(PO’P3)’d(P2 lpa) } > o .

If d(po.pz) gets as small as lcrit , one of the triangles (po,pl,pz)
and (po.pz.pa) becomes degenerate , and the quadrilateral has Jat P, > .
Now the claim is obvious, since the angle depends continuously on d(po,pz).



For later use we state another continuity property, which is due
to the fact that the functions ke converge to k uniformly on compact
subsets.

2.4 Lemma :
Given triangles A=(p_,p,,p,) in M2(-k) and A€ =(p%,p},p5) 4n
MZ(-k_) which have edges of equal Length 25 =0, , i=1,2,3 , then
thein angles depend continuously on ¢ , e.g.:

lim datp; = Jatp, .
€90
3. In this section we are going to establish the generalized compari-

son theorem. Notation will be changed slightly: if there is a bar ahove a
letter this symbol will refer to data in the model space, whereas unbarred
letters will refer to data in the Riemannian manifold (Mn,g) .
3.1 Assumptions :

4) Py sPysand p, are the vertices of a (gemeralized) geodesic triangle

in o Riemannian manifotd M" ; the edges v, and v, are supposed to

be minimizing, whereas Y, is only nequined to be a geodesic.
We continue denoting the fLength
o4 \f by L, i=1,2,3 .,

il) at any point peM" the sectional curvatuwres shall be bounded grom
below by -k(d(p,p,)) -
4id) the pote $, of M2(-k) shall be a vertex of the comparison tri-
angle B=(p_,p,,P,) -

3.2 Theorem :
Under the assumptions 3.1 the following conclusions hold :

al 4§ &, =T, for all the edges ,
then ¥atp, » +atp, and Jatp, * fat P, .
b) if 2 =%, zt-l‘ yand  ¥atp, € twtiiz R
then 22112 .



3.3 Remarks :

i) Actually it is sufficient to require condition 3.1ii only for those
points p(Mn vhich are € -close to any minimizing geodesic from P,
to a point on Y - These points p obey the conditions :

a(p,p,) +da(p,p;) £ 2 +e;+e 3 i=1,2,
. 1, 1.

ii) The Alexandrov triangle A= (50,51,52) which is required in part
(a) of the theorem exists , if and only if 20521 +!.2 .
iii) Even if one assumes in addition that the edge Yo is minmizing ,
there is in contrast to the constant curvature case in general no easy
way to restore the information on the angles at P, and f)o . The

reason is that P, plays the rather special role of the pole in M2(-k).

Proof : c.f. |CE K
We give a straight.forward extension of the classical argument.
a) ==dbp) : |
Ir Lolz +2,. ,the claim is an obvious consequence of the triangle

1 2
inequality ioé'i1 +1, which holds in M2(-x) . Else there exists an
Alexandrov triangle and the claim can be deduced from part (a) by means
of the monotony principle 2.2 .

a) We pick r,>0 and K>O such that the edge Yo is contained in the

ball B(po,rZ) and that the sectional curvatures in B(p o’rA'H) are
bounded from above by K . Next we put the comparison triangles into _
the model spaces .M2(-x ) instead of M2(-k) . By a limiting argument
based on lemma 2.4 it is sufficient to prove the result (a) for all

surfaces Mz(-ke) with O<e <min{1,%//K} . We fix the value of
€ , subdivide Yo into pieces shorter than ¢/2 , and pick minimizing
geodesics from P, to all the partition points on Yo Provided that
the claimed comparison result holds for all the small triangles, the

deformation lemma 2.3 extends the inequalities to A and 3 . In view
of the monotony principle 2.2 we have reduced the proof to showing:

L,= 11 <r

A !.°=I°<e/2 ,and  Yat P, = dat Pp

s—> L, 612

()

In order to see this ,we extend -yé(lo) and —?‘;(zo) to parallel



vector fields along the edges Y, end ?1 repectively. They give
raise to ruled surfaces ¢ and c . For example c¢: IRx [0,!.1]——->Mn .
(syt )= c(s,t) is characterized by the formulae :
c(0,t) = v, (¢) c'(Q.O) = -v5(2,)
L
(O,t) = 0 Vc'c = 0 .

Here as usual a prime denotes a derivative with respect to s and a

V.c!
¢

dot denotes a derivative with respect to t .

Observations :

i) 72 is contained in the image of [0,=) x [O,l’] under © . By
notation ?2(12)=i31 and "72(0) =P, . Because of the Gaul-Bonnet
theorem i(?é,'é') is non-decreasing along ?2 . Hence '7'2 is con~
tained in V:=3c(U) , where U stands for the cube [0,e/2) x [0,!.1_] .

ii) ¢(U) is contained in B(po,r +1) , and therefore our choices above

: A
imply that in U there are no focal points on the geodesics s+—c(s,t)

By construction the inequality

-k(a(p,cls,t))) * -k ,(a(p ,c(0,t)))

-kd?(d(po,c(O,t))) 2 -ke(d(po,c(s,t)))

holds for all (s,t)€U . Hence Rauch's comparison theorem yields :
led] e 3l on U

Here ..L denotes the component orthogonal to the unit vectors c'

resp. ©' . We conclude that the map coc_1: ¥—M" is distance

non-increasing.

It follows that tr—-rc-5—1-7?(t) defines a curve in M® which

joins p, and p, and is not longer than ¥, . This proves () .



II. Analyzing the Decay Condition

» Throughout this chapter we assume X: [0,-')—-—»[0,9) to be a
monotone non—increasing function. Roughly speaking the integral by (2)
converges , iff A(r) decays a little quicker than r2 for roe,

We start making this observation more precise.

1.1 Lemma :
Whenever b (1) converges , there exist monotome nonm-increasing func-
tions :
A2 v [ A(p) @
Ayt rh— r] A, (p) dp
[ J
Ap: T [ p+A(p) do = Ay(r) + 1A, (F)
T

Moreover the following estimates hold: [r>0)
r2ea(r) & 2:bo(N)

red(r) € BN
bo(1) := of inf (A, (r) ,/A(x}} dr € 2,(0) = b,(N) .

Proof :
The expressions Al(r) and Ab(r) obviously converge. The existence
of Az(t) follows from the theorems by Fubini and Tonelli :

A(r) = [ [ A(p) dedt = [ (p-r)er(p) dp

r t T
= Xb(r) -re Al(r)

The remaining estimates are due to the computations :
) = 200 fodo € 2 foorm @ ¢ 2m,m

and r-A!(r) - xl(r)-fdp € fk|(p) dp € bo(x) .
o 0

1.2 Remarks :

i) Almost the same computations give raise to the formulae :
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lim rz'l(r) = 0
T

and lim r-kl(r) = 0

o

ii) Observe that for Tck(r) = c2°A(c-r) , T®0 , ¢>0 , one has :

(T, (r) = eod (eer)
and - (TCX)Z(r) = 12(c°r)

Therefore the invariant bo(Hn) does not change , when the metric of
the asymptotically non-negatively curved manifold is scaled with some
global factor.

iii) We point out that it does not depend on the choice of the base
point o in a Riemannian manifold (M",g) whether the integral b,
converges. However its numerical value is very semnsitive with respect
to the position of o . This is-related to the fact that b, does not
detect certain curvature singularities at o. Such a task would require

much refined numerical invariants.

Later on we shall need information about the models M2(-A) . This

means basically that we have to study the Jacobi field equation:
(») y" (r) = A(r) *y(x)

2.1 Lemma :
The following conditions are equivalfent :
L) b,(A) < =
4L) fon any sofution y of equation (&) there exists y'(=):=lim y'(r) .

Proof :

We assume that r>ry>0 and compute :
r .
ly*(r)-y'(r))| ¢ r/ Ap)ely(o)] a0
1

‘ ® ® 1
e lv(e )]+ ayte e ly (=)
+12(r1) * max { |y'(p)~y'(r1)| |r1‘p‘r}
Provided that r, is sufficiently large , wve know that 12(r1) ‘-;- ,

and hence we obtain for r»> r,>> 0 that :

I}"(r)-y'(r1)l € 22, (r)ely(r ) #2050 ) Iy (r)] =2 Clr,)

This already shows that y' remains bounded. We iterate the inequality



11

and conclude that for r >r? > r1 > 0 we have :
ly'(r) -y'(r,)]| ¢ 2:2,(xy) « ly(r))]
T CIOWERESWER) R (FAICHIETIC )

The right-~hand side converges to zero for r,+e .

2.2 lemma :
(14v (1)) ez (=) £ 1 .

This estimate is an obvious consequence of the following formulae :

z!(r) = r] Ae) cz (o) ap

(0) = (=) ¢ [er)aale)ez (p) B B 2 (=)e(142,(x)

The Jacobi field z_ is closely related to the invariant b1 H
observe that the function —z“(r)-hz;(r) converges to zero for r-+o,

and that it obeys the Riccati equation :

(wn) | u'(r) = u(r)? - A(r)

2.3 Lemma : A
—————— Neon-neqayfsve
Let b,()) < » ; then there is a unique’ solution u of (=#) such that

u(r)=—=+0 {or r—>= , Even more one has the estimates :

i) 4] € u(r) € min{ X'(r) , 'A() )

) b, () zm o[ u(r) dr € b () € b ()

Proof :

Consider the continuous functions u, which vanish identically on
[l..-) and solve for («») on [0,!.] . Since 0'=02-) and xl' =<l
<€ Alz - A , standard monotony arguements yield the estimate

0 ' uz(r) € A (r)
Therefore the limits

u(r) := m uz(r)

exist and the function u meets the desired conditions.
i) It is also easy to verify that the functions u, are monotone and

that hence ul(r) = AA(r) .
ii) This inequality is clear from the definitions.



iz

2.4 Remarks : 4
1) W® = em(-fue @) 2 g ) > 0

ii) By lemma 2.2 and lemma 2.3ii it is clear that all our invariants

associated to a function A are equivafent in some non-linear sense:
b)) € B (A € b () € exp(by(N) -1

Moreover all the invariants depend on the function ) in a mono-

tone way.

In chapter II there will be a situation where some uniform control
on a family of model spaces M2(-=A) 1is required. This estimate can be
done comparing the solutions z, of (¥) to the function z, . For the
sake of brevity we shall use the notation:

B = z (=) = exp(-b, (1))

2.5 Lemma :

i) B € z (r) € 1 » O6r<m
id) (1= ez (1) € z(r) , Okrée

i) § & map(t) € -2)(0) € -zl(0)+ ez (1) € ++1(0)

Proof :
i) c¢.f. remark 2.4i .

ii) The difference Az t=mz_-z, also solves the differential equation

3
(%) . As it is non-negative on [0,0) ,1it is a. convex function:

bz(r) & eaz(r) + (1-7)°82(0) = ez (1)
- 2,(r) ¥ z(r) = Tez (1) » (1= 1)z ()

iii) Using part (ii) and monotony, the first, the second , and the last
inequality are obvious. In order to obtain the third inequality, we use

the convexity of Az and compute :

210) - 2(0) = Az'(0) & Tedz(2) = ez (2)
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m. Geodesic Triangles and the Number of Ends
in asymptotically non-negatively curved Manifolds

The generalized triangles which have one of their vertices at the
base point 0 of M form a rather distinguished class of objects. They
might serve as tools to study the properties of M ; in view of packing
arguements their angle at o deserves special interest., At a first look
this very angle seems to cause difficulties : there might be conjugate
points which prevent one from contoling the Jacobi fields along a family
of geodesics emanating from o ; moreover there is no hypothesis on the
cﬁt-locus, and hence one does not know the lower curvature bound along
these geodesics explicitely. Nevertheless the generalized Toponogov
theorem allows for some rough eétimates.

1. Proposition :

Fa

let a,e€(0,1) and Let A=(p_,p,.P,)

be a generalized geodesic triangle in

an asymptotically nonm-negatively curved

o2p.. 7 P manifold M® . Suppose moreover that

| o t % (1-e)-2, and that p, 48 the base
point o of M . Then the following estimates hold :

4}  cos(Xat o) ® /T -aZepZee?
- 1, ¢ -2 /%

i) cos(xat p,) *~V1-a
L] - L ] L]
. —> !.1 & !.2+9.0 4! az Bz Ez
ALl) ¥at o acute,
= |sin(¥at o)| > gZec?+|sin( $at p))| .
Proof :
We put £ := z, -d(po,o) and k(r) :=A(|t-r|) , r>0 . Making use of the
triangle inequality and the monotonicity of A , we see that for all »p
in M"
1.1 curvatures at p » ~A(d(p,0)) * “k(d(p,p,))

1) We can apply the generalized comparison theorem (c.f. I.3.2.b) and
reduce things to a problem in the model space M2(-k) , where the radial
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Jacobi field y is a multiple of the function zl(l-.) defined in
section .2 . We consider the function r along the edge ;o . This
unit-speed geodesic joins '13] -?O(O) and 32-70(10) . By monotonicity

we may restrict to the case where

r'(s,)) = cos(¥atp,) = {1-a2.82.¢2"
The conservation law 1.2.1iii becomes :

1.2 zl(!,-r)zo(l-r'z) - const

Observing that r(% ) -'i, =%, , we obtain:
a2¢p2.¢2 = zl(O)Z-(l -cosz( ¥at 5,))

R OIE IO

> ez ()2 (1-c'(0)?) , Ofsss
here the inequality is due to lemma II.2.5ii and ta the fact that r(s)
3!.1-!,03:-2 . We conclude that

a2 a l-r'(s)2 ,O‘s‘!lo

Thereforethe continuous function r' does not vanish in the interval
[O,lo] » and there we get:

rt > 1-a

Hence Iz = 1(0) € r(2)- !.ooyil-:;i\ -1, -zooﬁ-_;‘ .

ii) Here an indirect proof works : assume that "l > !.2 +l°-/——m .
Again we make use of the generalized Toponogov theorem. Exchanging the
roles of p, and p, , we obtain a triangle B-('p'o,il.ﬁz) in the
model M2(~k) such that

zo-zo s !.l i!., . !.2-!.2 , cos( Xat p,l) - -fl-ai.

The function r along .?o obeys r(0) -!,2 and r'(0) = /'.-az . Since
!.--iz‘lo‘(l-e)ol. , we can deduce from formula 1.2 that
:, (=02 (1-r'?) & zl(z-Iz),Z-(l-r'(o)z)

a aZez ((1-€)+0)2 > a2.g2e¢?
As long as r(s) €L ,we have z"(!.-r) $1 , and hence:

r(s) ¢ ”2 + s+ 1 -aLB!'c!

The standard continuity arguement now yields the contradiction

1 - < . .,/- Z.82.g2"
!I r(zo) !.2+z° 1 - a¢eBseg < "l
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iii) Put al/:-sin( Xat Pl) ; then we conclude with the aid of part (ii)

< ./ ~a 24g2.¢2°
L £2+2.° lal Béec

1

that

Reversing the implication in (i) , we obtain:

cos( ¥at o) € /l-alz-B‘;-e“'

The proof is then finished , as the angle at o is acute by hypothesis.

2. We recall that two curves ¢, ,c, :[0,#) —= M are said
to be cofinal , if and'only if for every compact set KcM there is some

t >0 such that cl(tl) and cz(tz) lie in the same connected component
of MNK for all t,,t,®t .An equivalence class of cofinal curves is
called an end of M .

Elementary Properties :

2.1. Any family of relatively compact open sets (Ui) which exhaust M,

ieN
i.e. which obey Uiccuiﬂ and \/ui =M , defines a bijection:
i

{ends E of M} +— {(E.). . |E

{ieN e Ei and Ei 18 a connected

i+l
component of M\v]-'_ }

Notice that for each of these inverse systems E -(Ei)ieﬂ the sets Ei
are non~empty and their closures 1':: in M are non-compact., Moreover, if
M has only finitely many ends, then there is some i, >0 such that all

. ey cmi . =E. .
the inverse systems (Ei)i‘ stabilize for i®i  ,i.e. Ei E:.

N o
2.2, Given a point paM , then any end E of M contains a aay y emanating
from p ; recall that by definition Yy is a geodesic [O,m) ~—+M such that

each of its segments is shortest and that y(0)=p .

2.3. Given any two distinct ends E! and E2 of M , there is a Line
Y: R—*M such that the rays yt:[o,w) —+M , th—>y(tt) are contained

in E! and E2 respectively.

2.4, As is the case for the {deal boundary in the theory of non-compact
surfaces, the set of ends carries a natural topology; a basis for the

open sets is parametrized by the non-compact closed subsets CeM :
Uy := {ends (Ei):’.cNIEi‘C for i sufficiently large}

In this way {ends E of M} becomes a compact, separable, totally dis-
connected space. (c.f. [AS] ’ [RJ )
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3. Theorem :
Every asymptotically monm-negatively curved manifold M" has at most
finitely many ends. Mone precisely :

FH{ends E of M)} € 2 . L exp((n-1) 'b‘)

Here bi is the invariant introduced in I.2,3.

Proof : For each end E of M we pick a unit-speed ray Yg which emanates
from o and is contained in B .We consider the set of unit vectors Ve
='YE'(0) in TOM . It is a consequence of proposition 1 that for any

unit vector v «T M which is sufficiently close to some v_ the geodesic

E
Y:[O,w) —M , t:l—-»expo(t-v) is contained in the end E ; in some more

detail one obtains :

<v,vE> - v‘l-az-BI-s:2 . 0<az,e2<l

——) d(YE(t),Y((l-E)°t)) € t - (1-e)ete/ 1-a2 =: ot

%a,e
where O <§a,e <] ; therefore y is contained in E provided <v, VE>
> /T-82 . Thus the balls BsE in the unit sphere. Sn—'c ToM _with centres
Vg and radii -ng arcsin(B) are pairwise disjoint. Notice that arcsin(B)
*B-exp(-bl) ; so the claimed bound on the number of ends is a direct con-

sequence of the following well-known packing lemma.

3.1 Lemma :
Llet 0<p € % ; then the numben of disjoint batls BS(p)c s" with
nadius o does not exceed
vor 8871, oy
vol Bs(p) 2¢p




17

IV, Surfaces and other Examples

In this chapter we are going to discuss the hypothesis and con-
clusions of theorem B. A first set of examples shows that for surfaces
the theorem is definitely wrong when the integral b o diverges (ec.r.
Iv.1) . Moreover we shall see that the given bounds on the number of ends
and on the Betti numbers are reasonable in a certain sense : in section
IV.2 we construct surfaces with large invariants b, and b, such that
theorem B overestimates the number of ends by not more than a fasctor of
2rx; in section IV.3 we consider the higher—dimensional case and give a
set of examples where the bounds actually grow exponentially in n'b1(Mn).

1. Theorem :
tet r:fo0,#)—[0,=) be a continuous function such that the integral

J r e A(r) dr

diverges. Then every non-compact, connected surface M® with base
point o canries a cz-memc g with cwwatunre
(%) x(p) = =-A(d(o,p)) at any point p « M2

Remarks :

1.1. Obviously ?m? becomes the surface of revolution M2(~1), which
has been described in chapter I.1.

1.2, Suppose that the curvature of a surface (Mz,g) with base point o
obeys condition (%) above. Then the complement of the cut-locus of o
is isometric to a_ tree-like open subset in M2(-A) ; the isometry is
given by exp, and the ohvious identifications.

Moreover the generic cut points , i.e. those cut points which
are joined to o by precisely two minimizing geodesics , lie on open
geodesic segments in (Hz.g) .

1.3. In order to reverse the preceeding observation and comstruct some
more examples ,we look at two non-intersecting geodesics Y, and Yy
in M2(-1) which have equal distance to the base point. Notice that
they can be mapped onto each other by an isometry ¢ of M2(-1A) .

We take that component of Mz(-x)‘~(yluyz) which contains the pole.
We take its closure and glue the boundary components Y, and Yy

by means of ¢, The differentiable structure of the quotient manifold
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M2 is conveniently described using normal exponential coordinates
around the geodesics Y, and Yy » The quotient metric g on the sur-
face M2 turns out to be of class c2 : the reason is that the curva-
ture function of M2(-1) is invariant under the clutching map ¢.
1.4. This construction can be iterated as long as one can find an appro-
priate pair of geodesics Yy Yy in
("I‘OH?) int t= {x£T°H§ |0 and x are joined by an arc which

does not contain a cut point. }

It gives rise to a surface M§+l » which differs from *M§ topologically
and the metric. 8j+l still obeys condition (#) . Depending on the
position of the geodesics and the orientation of ¢ there are four

distinct cases:
i) 1If Y and Y, lie in the same end Ej of (MJ? . gj) , then either

Ej is split into two ends E;H and E? (Fig. a & Fig. b) or

j+l
a cross cap is attached to Ej (Fig. c) .
2

ii) 1f Y, and Y, lie in different ends E; and Ej , then these ends

are glued ; a handlé (Fig. d) resp. a Kleinian bottle (Fig. e)
is attached.

AN
DRSS

Fig. a Fig. b’ Fig. ¢
N —g——{T2 " —""r— 2
. /J\
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1.5. Basically it is the function A which determines how often the

constructions 1.41 and 1.4ii can be applied. Let us assume that
fr « X(xr) dr
0

diverges. Then the integral of the curvature over an arbitrary sector
in Hz(-l) also diverges , and this surface turns out to be a visibility
manifold (c.f. [ENJ ) i the angle a(y) of the sector in which a geo-
desic y is seen from the pole o decreases to zero when dist(o,y)—+=,
Hence in any conical end of a surface M? one can go out far enough
and find geodesics Y and Yy » suitable for the constructions 1.4i

and 1.4ii . Moreover it is possible to pick these geodesics in such a
way that the manifold "?4-1 has only conical ends , provided M§ had.

Therefore - whenever the above integral of A diverges -

metrical considerations do not impose any conditions on the combina-

torial patterns for iterating the constructions 1.4 .

Proof of the Theorem @

Standard classification results imply that in remark 1.5 we have con=-
structed all non-compact, orientable and non-orientable surfaces which
have finite genus and finitely many ends. Next we consider a sequence
of surfaces H§ and perform all the surgery simultaneously. This vields
a manifold ME which carries a metric g  obeying condition (=), Our
goal is to finish the arguement using the classification of surfaces.
This classification result is due to Richardson [R] and requires the
following data:

i) a triple of totally~disconnected, separable, compact sets ACB<C(C
ii) orientability (dispensible, if A¢f .)

iii) genus (dispensible, if B#g .)

Here A describes the infinitely non-orientable ends, B the ends with
infinite genus, and C simply contains all points of the ideal boundary.
It is known that totally-disconnected, separable, compact sets like
Cantor sets are related to equivalence classes of trees. These trees
govern the combinatorial pattern according to which the constructions
1.4 have been iterated.
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2. Next we consider a function )\ such that the integral bo(X)

z which has as many

is finite. We are going to construct a surface M
ends as possible. For this purpose we look at the geodesic triangle A
in M2(-A) which is given by the pole o and an arbitrary geodesic y

and which has two vertices at infinity. The GauB-Bonnet theorem yields :

() fat o = x - [A(d(o0,.)) dvol
A

o ~  _dlo,y) The differential equation y" =\i+y and
the initial data y(0)=0 , y'(0)=1 as
usual describe a radial Jacobi field and
determine polar coordinates. Moreover it

is possible to define another invariant

by(d) = lim y'(r)
>0

We can now proceed and estimate the right-hand side of (»=) :

0,Y)
¥at o € ¥ - A(r) » y(r) dr *» $at o
o
Hence (Fat o) *y'(d(o,Y)) ¢ = » and we can pick at least 2 [y'(d)]
non-intersecting geodesics y in M2(-\) , each of them with distance d
to the base point o . Applying the construction from 1.4i as often as
we can , we obtain a surface with [y'(d)] ends. Finally we pass to the

limit doe

2.1 Proposition :
Whenever the invariant integral b (1)  of some function 1:[0,=)~[0,=:
48 finite , then thene exists a AM5ace (Hz,g) which has at Least
exp(b,(1)) -1  ends and whose curvature obeys the condition

k(p) = =A(dist(p,base point)) fon all p¢H2
This proposition ahowfs that for surfaces the previously given
upper bound on the number of ends is sharp up to a factor of at most
2x ; we pick A to be the characteristic function cf [O,d] and com-

pute :

b,(A) = 3 +d? , b(}) = 1n cosh(d) , by(2) = ln sinh(d)

2
asymptotically by and b, coincide.
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3. Our last examples shall demonstrate that for asymptotically non-
negatively curved manifolds M® the number of ends and the sum of the
Betti .numbers can grow exponentially in n'bl(Mp) each. We point out
that Riemannian products of the above surfaces are totally inadequate in
either case. Partially this is due to the fact that the function A
changes when passing to products.

" We are going to construct some tree-like looking objects. Rough-
ly speaking the desired growth in n°bl(Mn) is acchieved by using build-
ing blocks of the same type only. In order to describe these pieces it is
convenient to think of a hypersurface in ]f“q which is obtained by glue-

! perpendicular onto a hyperplane R® where

ing cylinders r "{Sn-
appropriate balls have been removed. The curvature is kept bounded by
plugging in some intermediate tubes. Again we use the "same" tube every-
vhere, and a packing arguement assures that the number of ends of a single
building block grows exponenti2lly in n .

3.1. the intermediate tubes :

We fix some t, >0 and consider the warped products Tbn(to) -
= ( [O,to] x gn=1 ’ dsz) , where the metric is defined by:

2 2 2

ds® = dt +sinh-z(to)-coshz(to-t)'dm

Here de denotes the standard metric on S“_l .

Properties : _
i) diam Tb™(t ) € max t + wesinh '(t_)ecosh(t_-t)
o 0 o
oftée

. 1
- e coth(to) + max {0 , to-w'tanh(i-to) }

ii)k the tubes ‘rbn(to) can be embhedded as rotationally symmetrical hyper-
~ surfaces in W' .,

iii) sz(to) has constant curvature equal to -1 , and
for n>2 the Tb“(to) have sectional curvatures 2 -] ,

iv) the boundary comf)onents {0} xsn-l and {to} xs“-l are spheres with
constant curvature tanhz(to) and sinhz(to) respectively. (n>2),
As submanifolds in Th"(to) they have principal curvatures tanh(to)
and O respectively.

v) the tube Tbn(to) can be doubled in an analytical way along the



22

$"1 | The same boundary component of the

boundary component {to}!
tube can be glued isometrically to the boundary of a cylinder
C(sinh-l(to)) t= sinh-l(to) o ( ]R*xS“-l ) with radius sinh-I(to) H
this time curvature is only bounded, but non-continuous.

vi) at { 0} xS™! the tube 'I’bn(to) can be glued with bounded, but

non—continuous curvature to IR" \B(x,coth(ty)) , x€R" arbitrary.

p(t) = simh(t)"

p(t) = sinh(to)-‘ ~cosh(to~t)

p, = p(0) = coth(t )

3.2 the building blocks A" :
Let t,>0, r°§_2 » Poi=coth(t,) , and let Bo be the ball B(0,p,)
in R" . We pick a maximal family of mutually disjoint open balls
By, wu, By with radius p, in the subset B(0,(ry+1)*py) NBy . We
remove all N+l balls B,, ..,By and - as described in 3.1vi -
attach tubes ‘rb“(to) to the boundaries By s ey 93N . ffhe boundary
of the resulting manifold A" consists of the spheres h:a}’(S“"l in

the attached tubes. For later use it is convenient to single out the
boundary of the central tube which has been glued to ano s we shall

call it a" .

Properties :
i) ={ends of A"} = 1

o= { boundary components of A"} = N+1
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ii) in B" the enlarged balls 20Bj s 06 €N , cover B(O,roopo) H
hence @
N+l @ ('!Z"'o)n
iii) in B" : dist( By, By) = (ro-2) <o, ; 166N
Moreover for each j there exists a curve in R" v% B, which
joins 3B, and inj and which has length » (r,-2)+p, .
iv) for any point p€A" which is non-flat and for any point pedA”
one has :
d(p,a) & Fe(r,-2)+p, + diam TH™(t,) + t,

v) the sectional curvatures of A" are 2 -1 ,

3.3 the trees A“(u) :

We use the following inductive construction:
i) We glue two copies of the manifold A" by identifying their boundary

spheres a" . On this sphere we pick a base point ¢ for the quotient
A"(1) .

I‘——(“ro)'oo e TPy ryp—

ii) We assume that An(u) has been constructed and that all its 2.N"
boundary components are totally geodesic spheres with diametre equal
to t-sinh"(to) . Then we can attach to each of these spheres the
central boundary a" of a new copy of A" | and thus we can glue
28" copies of A® to A"(p) . We define this larger manifold to be
the u+1%% generation object AP(u+1) .

3.4 the manifolds M™(y) :
We obtain non-compact, complete Riemannian manifolds M%(u) by glue-
ing to each boundary sphere of A"(u) a cylinder C(sinh'l(to)) .
Properties :

i) o {ends of M*(W))} = 2.

A
N=1

Bn_'()ln(u)) = o {ends of M'(u)} -1

» 2eW 2 (e -1y
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ii) the sectional curvatures of M"(y) at any point p are bounded
from below by -A(u)(d(p,o)) » where At is the characteristic

function of the interval [0 , dv] , and du is given by :
d, := i-sinh-'(to) 4 (%-ro-coth(to) + t,
+ max{O, to-w-tanh(-‘i-to)} )
iii) for any integer u21 the following inequalities hold:

b,"(1)) ¢ d + W1 +e7d) - 1n(2)
In 8 0f) & ¥« (neln(=8) + (1= (=) )

Specializing to the case r,=7 and t,=2.5, we obtain:

a8 0PW) @ 12enew » gy ench (M)
Notice that we still have the freedom to pick u large. Therefore ,
when working in terms of the invariant bl(Mn) and the dimension ,
any estimate on the number of ends or on the r:-lst Betti number has
to grow at least exponentially in n'bl(H“) + Such a result has been
acchieved in Theorem B .,
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LOWER CURVATURE BOUNDS, TOPONOGOV'S THEOREM,
AND BOUNDED TOPOLOGY I

An upper bound on the Betti numbers

of asymptotically non-negatively curved manifolds



Introduction

In this paper we continue studying asymptotically non-negatively
curved manifolds. Our goal is to estimate their Retti numbers from above
in terms of curvature decay and dimension. In special cases bounds of
this type are due to Gromov [G] ; he deals with non-negatively curved
manifolds and with compact manifolds. Related is also the work of Berard
and Gallot [BG] who have applied heat eﬁuation methods in order to get
bounds for all topological invariants of compact manifolds.

We recall that a complete Riemannian manifold (Mn,g) with base
point o is said to be asymptotically non-negatively cunvéd, iff there

exists a monotone function A:[0,=)~—> [o,u) such that
[ _J
i) b () := o[r-l(r) dr < =

and ii) the sectional curvatures at p » =-A(d(o,p)) for all peM".
A detailed exposition of the analytical impact of the convergence of the
integral bo(l) tl,a.smgsenageiven in chapter I of part one; for instance
there exists a uniquéYsolution of the Riccati equation u' =uy? -2 with
the property that u(r)—+0 for r -+« .This gives rise to another
numerical invariant -
b(2) = oj u(r) dr

Both bo and bl depend on X in a monotone way, and they can be
regarded as invariants of the manifold M" by taking the minimal monotone
function ) which obeys the conditions (i) and (ii).

In.ptinciplé .bo. and bl can be regarded as equivalent invariants:
b.i € bo 4 exp(b,) -1 .However, b, is bgtter adapted to our problem. A
natural family of weighted Ll—norms on the Betti numbers of a space X are
induced by the Poincare series

¥ 3 i.
P(X) : g th . B, (X)

Main Theorem : :
Fon any asymptotically mon-negatively curved manifold (M",g,0) the
Betti numbens with nespect to an arhitrany coefficient field can be
bounded universally in tenms of the dimension and the invariant b, :

Pomym1 ) € C(n) - exp( L2221 )

whenre C(n) := exp(5¢n3+8en2+5:n+2)
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and t(n) := 5“ '8“'23([)(%";%7)

Moreover these manifolds have finitely many ends and the Betti{ numbens

at infinity are bounded as follows :

-ends E l’t(u)bl(“:) < Cm) exp((n-l)-b‘(Hn))

Remarks ¢

i) By the examples given in chapter IV of part one it is reasonable that
the bounds in both the estimates grow exponentially in n-b.l(M“) .
However there is no geometric reason kmown so far , why the constants
C(n) and t(n)“ should grow exponentially in n3 .

ii) Notice that:

Hlends of ¥} ¢ | P (®) & e(m™'. | Py (my=1 ()

ends . ends
Thus we have recovered & weaker version of Theorem II.3 in part one.
iii) Using the long exact homology sequence , one obtains an estimate on
the relative Betti numbers :

P (M, \J E) €& (1+t(n))+C(n) -em(—lz‘:ﬂ- b (M)
n) ends 4 !
iv) Because of Poincaré duality the inequality

P 15n-13
L 8(") & T - exp(—E 1, 0)

holds with G(n) := 3. t:(ﬂ)(“”)/2 o C(n)
€ exp(6°n3+10en2+6+n+3)

Special Cases :

a) M has non-negative sectional curvature :

Pt(n)-l(ﬂn) é C(n)

b) the sectional curvatures of M" are hounded from below by -k? and

even more are non—-nepgative outside a ball with radius d around the
i \ 3 +
hase point o : (i.e.: M compact with diametre d)

Pt(n)-‘(Kn) ¢ C(n) - exp(-‘—‘rmz.—!}- eked )



Method of Proof :

We use a modification of Gromov's direct geometric proof. The basic

idea is to combine Morse theory arguements on the distance function and

covering arguements. In a first step we do things locally and derive an

estimate for small balls (sections 1 -3). In a second step we reduce the
theorem to these' local bounds. (sections 4 and 5).

In principal the local result is already contained in Gromov's
paper (c.f. Bﬂ ) 3 however, we shall rearrange the details in a more
subtle way. Therefore our constants grow only exponentially in n3 ;. they
do not depend doubly exponentially on n . The key to this improvement is
a non-standard packing lemma (c.f. Appendix A).

The way in which we put together the local estmates is essentially
new., We use metrical annuli as intermediate objects when extending the

estimate from small balls to all of the manifold M"™ .



1. A Topological Lemma :

In this section we are going to do the topological part of the
arguement. There are two reasons for avoiding the Betti numbers in the
intermediate steps in the proof :

a) Given a point pcM“ and any number N>0 , it is easy to put a bumpy
on M" such that dim H)(B(p,1)) N . The idea is to produce a suffi-
ciently complicated intersection of the distance sphere S(p,l)(Hn
with the cut-locus of p .

b) For arbitrary subsets x' s xzcu“ it is impossible to estimate the
dimension of n‘(xlvxz) in terms of dim H-(x‘) and dim H'(Xz) only.
Some pieces of information about Xll\ X, are required in addition,

These obstructions towards an ' obvious proof" are related, and they both

can be circumvented looking at topological pairs (Y,X) where X<Y cM"

are open subsets. We consider the numbers

L1 rki(Y,x) i= rk(Hi(x)——ﬂli(Y))

= Tk (1,X)
ido
It is worthwhile noticing that under the hypothesis above the numbers

rki(Y,x) vanish for i>n .

rk:(‘l ,X)

1.2 We consider open subsets Bg‘“; C...CB?” , 1$3&N | such that
N
x ¢ U »°
jmi. d
N +1]
and Y DO U B;‘

L=
]
-~

let t>0 and suppose that any 33‘ intersects at most t distinet sets
BN , i' #5; then thene holds the following inequality :

j
(0 €t (U ™', \U
- b j.' J j-| J

-1
€ (e-1)Nesup(rkt (8%"'n . np%*! [ 8%n.n8% ) |
¥ Jo In~o  Jo n-o

0€oén , |¢jo<,,,<j o‘n }.

n-



Essentially this lemma is already contained in Gromov's paper

(c.f. [6]). For the sake of completeness we include an elementary
Proof:

Consider open subsets X,c X,< X3 and ch Y2< Y3 in M" . The Mayer-

Vietoris sequence gives raise to a commutative diagrame with exact rows :

--->Hu(xl) .Hu(Yl) -——'Hu(xlel) ——rHu_l(xlnYl) —_—

i i'
1 '} Td |

—H (X)) ®8 (Y,) —+H (X¥¥,) —H _, (XY

Iashe P

———*Hu(x3) .Hu(yfi) -—FHu(X3vY3) —’-Hu-l (X3AY

——

2)

) ——

3
All the vertical homomorphisms are induced by inclusions. The standard

diagrame chasing technique shows that :

. . ot ‘ P ~O' + I
1.3 rk(J‘l xu) rk(Ju,X JH’Y) rk (i )

-1
or in different terminology :
rku(X3VY3 R X‘le)
rk (X » X ) + rk (Y » Y ) + rk l()(2"Y2 ,X‘AY‘)

We apply tlus formula mducnvely to the family B and obtain:

j
1.4 rk(\j B‘”*" \j 8))

i=1 ) j=1

i
+
¢ 3 ) rk, (B“""“n...na'.”"” ¥ Va g )y
L

Um0 jo<w.<ij_y, Jo i-u o i~y
here v denotes some non-negative integer which does not exceed n-i .

We specialize to the case v=n-i and compute:

-1 N N
rk: \V/ B?ﬂ , U Bg’)

i=1 j=1
n i N .

< 3 .rk (V B '\/ 7 i)
. A J
1i=0 J'] =1

£ 7 T v=n o+l o+l o o
D) ) £ "exk _ (By A.ABLT B A LLAB
v=o o=y j <..<j Jo Jn-¢ o I



T o-n_ 9 v-0
- Z . Z t d X t . rko-\)( soe 9 oee ) P
o%0  jo<we<i o v=0
hence : .
- N N
kb ( ng"' \J B%)
L j=1 jer
. n -1
v-n t g+l o+l o o
€ 7 1 . € e rk, (B OB L BALABL )
o=0 ]°< e <] n=o o] n-o o n-¢

To complete the proof , we point out that the number of non-empty intersec-

tions

does not exceed

(%) . 0€0€n :

therefore the number of non-vanishing terms on the right-hand side of 1.5

is bounded from above by
n _ n
L o Cag) 1 4 we ]
o=0 o=o0

1
(n=-g+1)!

€ N (e=1) .

In most of our applications the sets B§ will be open metrical balls.
We shall use the notation p+*B(p,r) :=B(p,p*r) . It is convenient to draw
the following
1.6 Corollary :
let p>1, t31 and suppose that:
il X M is covered by open metrical balls BS , 1€jéN
iU) i<n and B%f'lni‘p f¢ — p-B}CB}“ ,

L) p°B?cB§'ﬂ: Y, 16j%N , and

4v) each batl BY .intersects at most t other balls B‘J.'. .
Then the {ollowing estimate holds :

-1 -1 N N
wt r,n ¢t (U n;"",\/ %)
j-] j-] ]

-1 : .
€ (e—l)-N°lup{rk§ (p-B;,B;) | 0O€ién, 16j€N }
Remark :

Condition (ii) is obviously met , if all the balls B? have equal radii
and i 1l . (2+p)i-n;? , 0616 , 1€56N .



2. The Morse Theory of the Distance Function

Any point pe€M gives raise to a function dp: M——+R defined by
dp(ﬁ) :=d(p,p) . P€M is called a cnitical point of dp , iff for any
ngﬁM there is a minimizing geodesic segment y which joins P=vy(0) to
P , and which obeys <v,y'(0)>20 . Sp :={ critical points of dp} is
said to be the aingular set of dp . Notice that p is non-cnitical for
dp » L1ff the initial vectors of all minimizing geodesics joining § to p
lie in an open half-space of Tﬁ}i . Hence for any non-critical point § ,
there is an open neichborhood U and a contiuous non—vanishineg vector fiel
vy which is defined on U and has an acute angle with the initial vector
of any minimizing geodesic joining a point in U to p .As 'Sp is closed

one can reason in the standard way and obtain :

2.1 Lemma :
Fon any peM there exists a smooth vectorn field vy :M——T™M , which
obeys <py(o) » Y'(0)> >0 fon all minimizing geodesics vy which
join some point Y(O)eM*Sp o p .

We shall use the vector field vp in order to construct retraction
maps; we point out that dp is monotone decreasing along the integral curv
of vp . Under some suitable hypothesis this tool even gives raise to iso-

topies rather than homotopy equivalences. (c.f. [G] , [GS] .)

In order to establish a Morse theory on clp , 1t is moreover necessa
to determine how the topology of M changes at the critical points of dp
and to count the strata of the singular set -Sp in a reasonable manner. A
dp is not differentiable at the cut-locus of p, both these problems canno
be tackled in the usual way.

2.2 However , it is possible to bound in some sense the number of critica

points of dp ¢ let L>1 ;we consider Pps s pktM such that
. a7 . .
i) dp(pi-l) L dp(pl)

and ii) p, 1is critical for dp , 261 €k

i
Such a sequence (pi)li(-l will be called amefrical (k;Ll’L’Lk) - jname of p
provided Ll and Lk are positive real numbers which satisfy llz-dp(pl)ﬁ
and !‘kz'dp(pk).l‘k . We shall say that a subset XeM is (k;L,,L,L,)-frame
iff for each p€X there exists a metrical (k;Ll,L,Lk) - frame.



2.3 Lemma :
£) In a manifold M®,2,0) which has asymototically non-negative cwiva-
e any metrical (k;Ll,L,Lk) - fname of the base point o obeys :

k € 2 . ﬂn-‘ . (E%T) n-2 | exp ( (2n-2) - bl)

i) Let p be any point in an anbitrany "Lemannian manifold , and supnose
that the sectional curvatures in the balf B(p, (1+L7')°L)) axre bounded
from befow by -n2 , n20 . 1§ moreover

3. (1+v™ eneL ccoth(neL) 6 L
then k € 2 n  holds for any metrical (k;L,,L,L, ) - frame of p .

Remark :

The lemma relates the parameter k to the dimension n of M" , and thus
it justifies the terminology , although the word "frame" might be a little
misleading. In a similar context Gromov heuristically speaks of the ''number

. » » . n
of essential directions in M .

Proof :
We fix minimizing geodesics Y vhich join p with P § their initial
vectors in TpM will be denoted by v . We head towards a lower bound on
the angle between any two of these vectors and then make use of some pack-
ing arguements : let 1%€i<j#k and study the geodesic triangle A =
(ﬁi,p,pj) with edges Y5 ’Yj , and a minimizing geodesic Yij . We observe
that pj is critical for dp , and thus Yj can be replaced by another
minmizing geodesic Yj such that the angle at P; in the modified tri-
angle 3 does not exceed %- . The data on A and A are turned into

inequalities by means of the (generalized) Toponogov theorem. We start with

A

i) Proposition IL.lii applies with ¢ i ul] , and in the limit a-—1 it

L
yields :

L-1.2 N
a,(p) & dpy,ps) + 4 (P )Y 1=(3) % ¢ exp(-20b))

ii) Obviously a minimizing geodesic which joins p; to any point on Yj
is not longer than dp(pi) +dp(pj) , and therefore it is contained in the
ball B(p ,dp(pi)~+dp(pj)) < B(p ,(l+L“')~L‘) . Hence the hyperbolic

plane with curvature -n2 is an admissible model. We deform the Alexandrov
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i 3 . . = . - e D> 5.
tr;angle such that Ii dp(pl) , IJ dp(pJ) , X d(pl,pJ) ,and ¥ at Pj
=5 3 then the Law of Cosines yields :

- cosh n-ii
cosh net = 2
cosh n-dp(pj) cosh n'dp(Pj)

cosh ned,(pj)

Using the above estimates we can treat the triangle A in a similar way :

i) Reversing the implication in Proposition M .li , we obtain:

cosX(vi,vi) < 1= (B) " emteny)
or : I ‘(Vi"'j)l 2 lsin{(vis\'j)| > ('I:{'!')Z'exp(°2'bx)

In this case the claim immediately follows from the standard packing
estimate, which has been stated in Lemma IN.3.1 for instance.

ii) Here we apply the Law of Cosines directly to the Alexandrov triangle :
23 =dy(p) , 25=d(py) » L=d(p;,pj) ,and Jat p € Fat p = F(vi,vy]
we obtain the inequality:

cosh(n'ii) . cosh(n'Ij) - cosh(n-i)

cos 9{(\!i sV:) € n e
] sinh(n-E;) * sinh(n+L;)

nz . coth(n-Ii) _ 1
€ —  (coth(n-%.) - —
sinh(n-ﬂ.j) coth(n-lj

coth(n-fi) . tanh(n-ij)

X.
€ =l . n+%, « coth(n+Z,)
%5 i i
hence : cos {(vi,vj) £ L-l . “"Ll . coth(n’Ll)

By assumption the packing arguement given in appendix A applies.

8]
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3. Morse Theory and Coverings

We have no idea how to control in which way the topology of M'
changes at the critical strata of dp ; thus the gluing arguements have
to be eliminated from the Morse theory. We are going to use covering
arguements along the lines of section | instead. The idea of deformation
will be applied to reduce to special cbvering situations which we know

quite a lot about. For this purpose we introduce some more language :

3.1 Definition :
Given p>1 ;a ball B=B(p,r) 4in M" .is said to be p- compressible
to B=B(p,2) ,4if and only if:
i reQ-phH.er
i) p*B ¢ p°B
and  Lil) B is a deformation netract of some subset Xep+B , which
also contains B .
B is called p -.incompressible , if§ thene does not exist a balf B as
above.

The injectivity radius is a continuous positive function on M",
which has a positive lower bound r, on p*B . p ~Compressing the given
ball B repeatedly, one will therefore arrive at a p - incompressible
ball or at a topological ball within finitely many steps. Thus it is
natural to try and reduce to incompressible balls , when bounding the

. . -1
invariant rk: (p*B,B) .

3.2 Lemma :
I§ t>0 ,and if the ball B 4{s p - compressible to B , then:
-1 -1

t -~
. (PB,B) € rko (0°B,H)

Proof :
The claim is an immediate consequence of the following commutative

diagrame , wvhere the graded maps are induced by inclusion :

-~ -4
H_(B) +H_(X) « H (B)
* deformation * *
[ retract

'/;~ > .
Ey(0-F) H,(0+B)
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Moreover incompressible balls allow for some statements about the
critical points of several distance functions.
3.3 Lemma :

1§ B=B(p,r) 48 p -incompressible, then for any ﬁep—'z—l--a there
48 a enitical point P, 0f dy such that:

p
min { (1=p yer , r-p lea(p,3) 1 € d(f,p,) * r+d(p,P) € l;'?"r .

Proof :

Conversely , let us assume that there is no critical point P, of d.

P
which obeys the above inequalities. We put :

g 1= min{(l"P-l)‘l' R r-p_l~d(p,?>')}

and consider the balls B :=B(§,?) and X:=B(j, r +d(p,f)) . We point
out that r+2-d(p,p) € per , hence BvBc X ¢ B(p, r+2-d(p,p)) < p*B
and peBc p*B . Lemma 2.1 gives raise to a vector field v§ which does
~not vanish on the closed annulus X\B . As dﬁ is monotone decreasing

along the integral curves of vﬁ , Wwe obtain a retraction map, and in

contrast to the hypothesis B turns out to be p -compressible to B .

We proceed and consider the covering situation in some more detail.
3.4 Assumptions :

Let £, E s L, and Ll be some positive real numbers.; define functions
p,q,to,and No by

p = 3+ 217}

q = (2+3°L)

2L. E-L n-1 n
€, = (——esish—d)  +(1+8:(5+5) ")
gL, 2L
L E-Ll n-1 . m 1
and N := (- *sinh ) * (1+42(243L)(5+7) )
E'Ll L

We suppose that :
i) the ball pe*B associated to B=B(p,r) is (k;Ll,L,(l+2L)-r)-framed.
ii) the curvatures in p°*B are bounded from below by —22 .

iii) the curvatures in B(p , (1+L")°Ll) are bounded from below by -52 .
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Furthermore it is useful to introduce the notation :

-1 - -1
cont: (Ll sL,E&) 1= sup{ rki (p*B, B) | the ball B meets the

conditions 3.4i and 3.4ii }

3.5 Lemma :
4) Suppose that the assumptions 3.4 hold ; then for any t2 €, thenre
48 the estimate :

-1 -1 S ~
rki (p*B,B) € (e~1)- N, ¢ sup { rk: (p*B,B) | B=B(§,E) where
f€qer and P lies in B } .

AL) 1§ moreoven B 4is p - incompressible ,
then all the balls p+B on the night-hand side of the above estimate
are (k+l L, L, (1+2L)*q*r) - framed.

L) 1§ ede (L, ,L,E) , then:

-1 - -1 -
contlt( (L',L,E) € max{1 , (e-l)-NO-contlt‘H(L‘,L,E) }

iv) 1§ condition 3.4iii hotds and if L 2 Y1+E2LZ « 3+ (14D
then : -
t ) =
cont, (LI »L,8&) l

Proof :

i) We put Py &= (2-1>;>)i for 0€i%n and Pas] S=P°P, - We pick a maximal
set of pairwise disjoint metrical balls B}l , 1€j €N , whose centres
lie in B and whosc.a radii equal r_, :-'='O.S-q-p‘:'l er . Obviously for

. 0€i€n the families BJi 1= 2°°i°33l » 1$j€N , cover B . Since Il+qep
=1+L <p , we conclude that the balls Bg‘” are contained in p°*B .

Therefore the estimate is a consequence of corollary 1.6 , provided that

a) NoiN and that b) t, bounds from above the number of balls Bg" R

which intersect any fixed 83.‘ - In order to verify both the conditions ,

we point out that the BJTI are disjoint, and that:

-1

J— * L] '—l.—l ——S—.
3) B, <(l+2.pn)nc(l+4pnq )B; e (3+ Z‘Dn)B

3,' c (2+ )BT (4 +

2p, ' 03 € 25 _

n,.n D
b) Bj,nnj $@9 == B )Bj,

c (1+4eq+ 3—)B
‘pn
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These inclusions yield :
vol (1+0.52qsp ') *B vol (I +4ep_+q ')+ B '
a) N £ sy £ sup ]

: -1 -1
1 B, vol B,
] vo 5 J (o] f

-1
vol (1 + 8'pn)'Bj.

b) o (B} |BhaB] #8) £ sup

3 vol BT,‘
J

Since all the balls are contained in pe*B , the right—hand sides of these
inequalities can be evaluated by means of. the volume comparison theorem

for concentric metrical balls (c.f. [_BC] ) ; we may use model spaces with

constant curvature -E2 , and we compute :
1'“'"’n/q

-
oj sinh (Eeorr_ " @

sinh (Eoor )™ @
a) N

sinh E-o-(l-ri-pn)-r_l n-1
' 9 | o€c€1}

< (l+-;-'--pn) * sup {

sinh E-o-r_l

Py 4

n sinh E*(1+=cp )er_ n-~1

% (l"%'pn) . ( . l.q 1 ) € N
E * (l+'q—'pn).r_‘

The last step is due to the fact that :

(1+2epg)er, = 2+ L= ¢ @+L™her & L1y

and p +q | = (243L)e(5+2)D
n L
I+8pn - n-1
J  sinh( geoer_,) do
b) -Ivl-{ng‘.lng‘,nn‘j‘fﬂ} < —o '
/ sinh( E-o-r_l)n-! do

(o)

o sinh E+(148p )er_, n-l
€ (1+8p)) . ( — ) €t
E«(1+8p ) r_,

This time the last estimate is due to the fact that :

1 9 -1, -1,
(I+8p)er_ = (4% p=)sqer € 30 (203L)7 = (142) oL

L
« L

2°L
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ii) It follows from lemma 3.3 that for any point P« (1 +q+p)*B there

P
L+d(p.,B) € Le(2+qep)er = (1+2L)er

exists a critical point p, of d; ,which obeys:

and d(p,,p) 2 (!-p"°(l+q°o))-r = qe(p*L~L=1)er
= q+(1 +2L)r

therefore the set (1 +q*p)*B as well as the subballs p<B are (k+l;
Ll s L, (142L)*qer) - framed.

iii) Obviously rk{](mB »B) = 1 ,if the metrical ball B is a topological
ball as well. Therefore lemma 3.2 reduces the proof to the case where B
is a p-incompressible ball. The estimate given in (i) holds , and the

property (ii) allows to bound the ripght-hand side as desired.

iv) Suppose B were a p - incompressible ball which obeyed the conditions
3.4i ,ii , and iii) with k=2n ; then by means of (ii) there would exist
(2n+1 3L, »L,0)-framed balls. As by hypothesis

L 2 /I_H:Ti?o 3°(H'v/‘§)n-l
> EeL; - coth (E<L,) = 3-(1 +»’2)“'l

the above conclusion contradicts to lemma 2.3ii .

3.6 Proposition :
Suppose that the balf B=B(p,r) obeys the conditions 3.4ii and iii
with L > m c 3. (1+/D" ! ; moreover assume that the
boundany of B(p,Li) in M* s non-empty and that L »2re (L2417 h)
Then forn any t » ¢t (L), L, E) , one has:

1

-1 - = 2n-1
it (08,8 & (e en L, b
Proof : ,
We fix a point P on the boundary of B(p,Ll) ; it is easy to verify
that p+B = (3+2.L7')*B dis (1;L,,L, (1+2L)er) - framed. We apply

lemma 3.5iii inductively and use 3.5iv in order to stop at k=2n .
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Heuristically speaking , the pronosition bounds the topology of
small metrical balls B in a Nicmannian manifold M" . All the con-
ditions can be formulated in terms of curvature, the diametre of M" ,
and the radius of the ball B . No assumption on the injectivity radius

is required.

3.7 Corollary: (c.f. Gromov)
¥4 vt s non-negatively cunved, non-compact , and connectfed , and
L6 t ™ 2l/n° 8" 5n2 , then fon any ball B=B(p,r) 4n u®  the
§oLLlowing u}t('maze_ holds : |

kS 0f,B) « rkb (3.3-8,8) € exp(5en’ + 3.50°)

Proof :
Ye put £ :-E t=0 , L:=3+(1+ /2')“-] , and Ll :=2r+Le (1 +L_]) 2
Then the proposition applies ; to make thines nore explicit , we nake

use of the following computations :

t = (1 + 8.5“.(|+__2_.)“)n < 3“.5“2. (.ZEE.+P_.5"‘)
o SL exXPlTL T 8

£ 2‘/0,8n,5n2

and
n 2 .n 2 ..n
NO = (l + 12.L 5 (] +-§i-) (l +-§i—))
2 2
< )t e st . 20, 2a0  m__ -0
(12:L)" -5 exp(gr—+* T3 "0 )
i.e. )
((e-)eN )P € (seqr e/t 0D (2ol y o (20=1)
. - 2 2
cexp (22D (2 2,15y,

2
s (5.(l+/-2-|))(n +1.2°n)+(2n-1) .5

€ 5. exp(S'n3 + 3.5.n% - 3en)

o
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4, Metrical Annuli in Asymptotically Non-negatively Curved Manifolds

Most of the preceding results are valid for arbitrary Riemannian
manifolds ; especially proposition 3.6 holds in general. In this section
we are going to specialize to asymptotically non-negatively curved mani-~
folds (Mn »85,0) . Our goal is to get rid of the assumption on the
diametre of M" . Towards this purnose it is natural to consider metrical
annuli

A(R ,R)) := B(o,R)) “B(o,R))

around the base point o of M® . We want to bound from above

-1
t

rk’ (A( (l_e).Rl s (l+€)'R2 ) ’ A(Rl ’ Rz) )

provided t and € are sufficiently large. The idea is to cover the
annuli by balls of a very special type : a metrical ball B=B(p,r) in
M" is said to be §~-small (5>0) , Lff r=6°d°(p) .
We recall that by lemma I.1.! the curvatures at a point p(Mn are
bounded from below by
~2+b_ * £(d_(p)) * dO(P)"2 ;

here rt—f(r) denotes a monotone non—-increasing error function which

takes values in [O,I:l and convdges to 0 for r-+= .

4.1 Assumptions :

Let Lo = 3e(1 4+ /?)n—! and let n< (1 + /bo . f(-"-LJ;) )_l be some posi-

tive number ; we put :

5 >

= . . . -—-L.O—.D—-z
L= on, ol e2en £y + (2
1

3+ 2.L

and €, -;—-L3-(I+L)-4°n

p 3

4.2 Lemma :
i) L, €« L &« /3L € 2.L -1

€ < n [ 4 .
n 2+ (L+4) 22
1]

: n
pre, < mln{m. 3 }
i) 1§ 0<séc  and B=B(p,r) 4is any §-small ball in M* with

centre p 4n A(Rl R Rz) , then the estimate

t-l

wkt (peB,B) ¢ (e-1)P7! g 2!
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holds fon 9 75
N X 3 . n . n . —n—-o ——-—zn 3— -—l—o n _—___2'([1’1)
N, := (12°L)" +5 exp (L ( —+3*77°3 )+ 1+2 )
and for all 2 2
» 3 ew g, N . 2n ____ n-] +B.5T0y
t to(n) t=m 8 5 exp ( TR, N S DR

Proof :
i) The estimates are obvious conequences of the definitions.
. . -1.2 L \2 .
ii) We define Ll t= 2L (14L ) €, do(p) = (i—:l- on do(p) . It is easy
to verify that:
‘n

a) the curvatures in B(p, (l+L-|)-Ll) < B(p ,i’—:i- do(p)) are bounded

from below by -62 , Wwhere

. R _Len, -l -1
£ = f2ebcfG) - 1 -E) T - d ()
N
iee: L » 9 B EAE

¢) the curvatures in the ball p°*B € B{(p, o-en°do(p)) < B(p ,-'7l°do(p))

are bounded from below by -EZ , Wwhere
£ b3 [ . -——l—- [ ) —-n— -] - -l
E o= o2ep, £ - U-3) d (p)

Therefore proposition 3.6 applies ; it remains to compute No(Ll,L,E)
and t (L,,L,E) . Since
o'} -1.2
2:(1+L ) €, L n 1 n

= Ld ‘ ——

L+2 1-n

y—

- 12 -1
1 3 (1+L) 1 V]

we see that :

-~

&L /2
.—_l - —l——. ——n—-. L L ——l- ‘ 2
T35 " Ton ¥ 2 £ Y

L

Because of the inequality

ii_“:_Sl‘.)_ € cosh(x) £ exp(|x|)

we obtain that :

ty, ¢ explppigy ¢ (+85+H ™ 4 @)

/2% (n-1 2 <
and N, ¢ exp(—-l-‘%-l) . (1+12-L-(1+-3r-)-(5+%)“)“ € N
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4.3 Construction :

There is a sequence of numbers O CE_y € << <€ < 1, uniquely

determined by the following conditions :

€ is the number given in 4.1 ,

en+l = p°en

€ier T (2+p'(l+5i))'(“€i)_l°€i , 0€éi<n ,
and €, = 2.5-‘.(1_5-1)-1
(i.e. €. = eo.(z_,,eo)"l )

We put Pi,:'ei'so-l for -1<1€n+l |
-1

We pick a maximal family of disjoint €.y - small balls Bj , 1 €] €N,

whose centres pj lie in A(Rl > Rz) . Moreover we shall consider all

balls
B:

F = pi-(2<l»s:0)-BJTl , 1€j4N |, O€1i€n+l]

4.4 Immediate Consequences :

i i -c.)e ‘ ‘ .
i) P B, - (l-e;) do(pj) d (P (1+€,) do(pj)
.. i i -1 i
ii) Bj,n Bj 0 o Py € 2:(1-¢;) Bj
and 0’33‘, < (2+o-(l+ei))-(l-ei)-l-33 for all ¢>0.

iii) the balls Bg , 1€j€N , cover the annulus A(R] s R2) .

In order to prove (iii) , let us assume that there is some PN+l

€ A.(R.l ,RZ)\\I{B§I 1®*j€N} ; it is a consequence of (ii) that the ball
-1 . s -1 . _
BN+I : B(pN+l » €, do(pN+l)) is disjoint from the othe; Bj . This con
j=1
e point out that for sufficiently large t the corollary 1.6

clusion contradicts the maximality of the family (Bgl)

gives raise to an upper bound on
-1
t
kg (AC(l=e  )*R) L (14, )R) , AR, Ry) )
-l . .
in terms of the quantities rki (p-B;.‘ , B;) » O€ien , 1 €£j«N | which
in turn have already been controlled in lemma 4.3.
We continue listing some inequalities which will be used in the

subsequent computations.
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. i £ i . 21 ! £] € .
I.V) 5 £ pi 5 exp( SL + 4'(1."'4) ) * O#1%n
2.5 £ ¢ °e-l = p +(2+e¢ ) = 2+p + ¢
n -1 n o n n
-n
n 2n 1+5
€ 257 e+ 7oeny )
-n
-1 n_ L -1.4 2n 1+5
‘ . ® e @ L]
v) € 4«5 - (1+4L )"+ exp( 5 4.(1‘”’))
€ 4.50.L, 2n 17
be5 n exp(SL*Z»L)
. n n
B. B.
vi) 50 By ¢ 0
—p B—‘ c (2+e ,*€ I-(H-e: Ne(1-€ )_'I-Bn < t +BY
' 1 n n n j n j
2 1 -1 2en 2
vhere T, i -i-_—E;- o (1 + = ) +e_jce (1+ T )

1 1

vii) 'T:zg""(l"' T )y € 2'(l+—i-f_;7-)‘(2+-2—1;.7-)
€ 4o+ i)
(1+—rz_f5‘~‘;)2 € (|+3fzﬁ—)2 € 1+ Lf3
viii) 1 e € (-23‘—?_-‘-5— + 5° VA-(L+§;?(L+4) ) e
BRI R - R I - S
€ 8+5%. exp( g: + 5: + 4L213 + Szn .(L14+L13))
4 7 .-n<l

n 2n
¢ 85 ce(GrrtImi RS )
4,5 Lerma :
The numbex 0§ balls ng‘. which intensect a given ball ng‘ is bounded

fnom above by
2

t;(n) = s . g%, exp(—m?;-;l—)-)

Proof :

Since by construction the balls BJT.‘ are disjoint , we can deduce from
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4.4vi that :

. Ri.n .n vol 'rn'Bt.l,
+ {Bj. IBj'"Bj t0}) € 3‘.11)

(%)

-1
! vol B.
] i’
The curvatures in the ball 'rn-Blj‘, are bounded from below by —EJ%,
where
/ K _ -1 -1
B 3= Y2ob () (-t ce) d,(py0)
Since
'€ < 2 . _n
=1 _ee L+ t=n
non

and since pj,é A(R] » Rz) » it follows that :

2
.y ® . . . &£ PO,
EJI T 6n do(pj') L+3

Therefore the volume comparison for concentric metrical balls yields :

T *°€ .d (p-') -
vol 1n-Br.l, nen 073 sinh(Ej. -c)n ! do
£
- €_,*d (p.y) _
vol Bj,l f bo™ sinh(Ej,'o)n ' o
(o]

€

-1 Ejv .Tn.en‘do(pj')

T_°*€ n
4 nn . ) 2n-2
( - e:xp(—--——L+3 )

We plug this estimate into (®) and obtain by means of 4.4ix that :

o {B% |B%aB" g @} £ 3“.5“2.exp(_2_‘l2_+_3“_’2_+ﬁ‘..5'n"‘
L LR SL L+3 8
‘
£, (n)
o

)

In order to bound the number N of balls Bg in the covering , we

look at the pulled back situation under expO:TOM —+M , Ve pick a
family of vectors vj cTOM such that

J

i) expo(v-) is the centre P of BS ;
ii) || v || = do(pj) , i.e. the curve tr— expo(t-vj) , te[0,1]

minimizing.

,18

Given numbers O < Cl » 52 ’ C3 <]l and a non - zero vector w GTOM ’

we consider the sets
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AC(w;t;l,cz,t;3) i= {v<T0M| Ii(v,w)l‘cl-;:;-exp(-bl) and
(1-g)=1=g,) = Jwl & |v| € (=g (eg) o [w b,
4.6 Lemma :

Q1§ 1me_, € Qg2 -,
then exp  maps the set AC(vj;cl,cz,c3) 4into B;] gon all j .

4L} The number of disjoint sets AC(v;Z,,T,,%,) in the annulus
A := {VGTOMI (l-!;l)°(l-t;2)-Rl & |v| ¢ (I-Cl)'(l*—cz)'Rz}
48 bounded from above by
- R - -
@+ey ' tngh) o a7 e gy oe) T e () by

1

LiL) The number N of distinet balls BJT in M s bounded §nrom

above by
N, = (-5%;-:7 + ln—zj—) . 16‘(160-")“-] . Snn-L 3n-l .
) exp("a'llf-]— '(%“177)) * exp((n-1)*b,)
Proof :

i) It is sufficient to show that exp =~ maps the sets AC(vJ.;cl,o,ca) ,
into the (e_, =%,*(1-¢;)) - small balls (I -;2-(1-cl)-e_-ll-njtl . This
amounts to studying the generalized geodesic triangle A= (pj,p,o) ,

where p is the image under exp of any vector vGAC(vJ.;z;l,O,t;3) .

Thus , in the notation of proposition II.! , we have :
zl = do(Pj)

L =d (p) € (I-g))-2

and cos( ¥at o) » '/l - c?-c%-exp(-Zcbﬁ‘
Hence,the proposition applies and yields the desired inequality :
d(Pon) < ," - LO. ’-;3
€ - - . - .
(1= (=g /1-23) -4 (o)
£ -r. (]~ .
(e_; =85 (17))+d, ()

ii) We make use of the diffeomorphism O:'I‘OM\{O}——rs“-'l xR , v

(Ivl-l'v » In]v|) and the canonical volume form on S“‘-l xR , and we
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compute - Bs(r) will denote a ball of radius r in Sn+l -
== disjoint sets AC(w;Cl,CZ,C3) in A
P vol ¢(A)
S Vol S(AC(WiT ,8,.C,))
v (1+2,)°R, 1+g, -1 vol §*
€ lp ————= (ln ) . S
(]-CZ)'RI l‘Cz vol B (CI‘C3‘exP(‘bl))

147 -1 R - -

€ (14 (ln 2) cln=2) 20" 2eg eggeexp(-p '
-z, R

This inequality immediately yields the claimed bound , as it is known

that  1In(1+g,) —ln(l-;z) 32;2 for all ¢,20 .

iii) If Cl +c2+l;32- €y then the hypothesis of (i) are meet, the
sets AC(vj;cl,cz,;3) are disjoint, and2 part (ii) yields the required
control on N . We put g, = 2¢f, = 2:¢, = 0.5%¢_; and obtain the
estimate :

N € (20c_ +4ln -EZ) e o™ e O L ep ((am1) b))
!

Using the estimates given in 4.4 , one easily verifies that the right-

hand side is dominated by Nl .

4.7 Proposition : T |
Assume Like in 4.1 that O<R €R, and that né (1 +fb +f(z))
(8]

1§ moxreoven
n

. 8n.exP(_m%:TT)

t * ty(m) = 5
the following estimates hold :
-1
A ol AGR L3R, AR LR

R -(3n-
€ oy - g+ I gh) e Go71) L axptnm1)+by)

!
¢
where € (n) := (e-1)2" .« (5. (1+/D)) a()
and éa(n) ‘= Z-n3 +%’-°n2 +-122--n +%

. ! 6 8 . -1).
L) "11?' vk, (AGR,3R) AR LR € C(n) - exp((a=)ebp)
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& (n)
where  C_(n) := (5-(1+/2)) ©
and ?:'e(n) 1= 20113~i--l39--n2 -%'n-%

Remark :

We point out that

_',12,.(“,{0._“1;‘5)‘) R NI N
|

0

Since by lemma II.2.] the last term does not exceed exp(%°b3) , 1t

is admissible to pick :
1 1
7ren it exe(grhy)

Proof : -
By continuity it is sufficient to treat the case n<(l+ bo-f(-z—'l-‘lc-’-)) .
We are going to consider the covering constructed in 4.3 . One easily
verifies that t‘(n) > Eo(u) ; hence it is possible to apply corollary
1.6 and lemma 4.2ii :

t

k l(A(—§--R -8--R) A(R ))
tk, (AGR;,35°Ry) » AR, Ry

-1
€ (e=1) *N, *sup { rk: (p*B,B) | B is 6 -small with 6‘en
and has centre in the set A(R, , Rz) }

Pl (e_l)Zn .ﬁOZn-l 'Nl

-n R _
= (e-l)zr"cl °c2'(’18-15-‘-*'_3-2—* 1n 'ﬁf‘) ’ﬁl\l 3n-exp((n-l)-bl)

Here we have used the abbreviations :

2 2n~-1 -1 -1
e = (2L e 16

and ¢, = exp( 2“:"“ LR B, dnl @ )]y, Geoh)-Ge)o /7,
Since L33-(l+/§)n-l » we have c, € 36 for all n¥x2 ,
i) Observing that -B_L% ] '27166 , it is sufficient to show that
/2l c,*c, ¢ ¢ (n)
Obviously 2
/?n-l Y . (5.(l+./2-))n *(2n-1) +n°(3n-1)/2 | (_%Q‘%T_)n-(Zn-l)

376 )(3n-l)/2
T+

. ( e (16em™ ! o 16
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and the result is due to the inequalities :

9
AT cseam (B e ¢ ey

and -%%;g; -lG-c2 £ (5-(l+/7))3 .

ii) Since the error function f converges to zero for R, - , it is
possible to pick a function n(R]) which converges to 1 for Rl+° .
Thus one is reduced to checking that

(e_l)Zn

5
. . <
€ L Ce(n)

c
1

This can be done calculating in a similar way as above.
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5. The Global Estimates

The special case of non—negative curvature has been treated in
corollary 3.7 , and the Betti numbers of the ends of M have been
bounded in proposition 4.7ii . It remains to consider the general case
and piece together the estimates on metrical annuli in an arbitrary
asymptotically non-negatively curved manifold.

We look at a sequence of critical points Py s o= Py of the

distance function do such that :

d (p;) * e-d (p,,,) » 1€1<k,

i+l
and that its length k is maximal. In the terminology of 2.2 this is
a metrical (k;=,e,0)~frame of the base point o . It is useful to con~

sider the annuli

_l .
°m . . & &
A : Ale do(pi) , € do(Pi)) , 1616k |

5.1 Immediate Consequences :

- 2n
i) Kk & 2eq° ! -(;%T) * exp((2n-2)+by) [lemma 2.3] .
ii) Mp‘\\/Ai does not contain a critical point of do ;therefore
i

lemma 2,1 gives raise to a vector field v, which does not
vanish on this set.

There are numbers O <xK<yK e $Xy <Y, <X <Y <X ime such that :

K k6 -1 8
i) U &, © U aGee +d (p)) 57204 (p,))
i=1 i=l

k
6 8

iv) the annuli AG%-xj ’ %wyj) are disjoint.

It is convenient to also introduce the annuli Zj which are defined

as follows :

A, - A('Z"xj ’ xj"l) » l‘j <i >

K = By o)
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5.2 Observations :

k A
y.
i) ):(ln-g--i-ln-—l) € k-(2+1n%)
j=1 %]
i -~
i) M'\fo} = \J &,
. je=l ]
J
- ~ 3 . o~
= -——g ‘
iii) Aﬁ n Aj+l A(4 xj ,xj) , 1€j<k , and
KJ. n KJ., = ¢ oif |33 »2

iv) the Mayer - Vietoris sequence yields estimates on the values of
the Poincaré series (for positive t):
k=1

k
. 3
PO\ {o]) < 521 P (A) o+ jzl P (ACGx; %))

-

k
5 3
PAM ) & ,-.Z.l(Pt(Ai) + PCACTx; %))
v) the inclusions

6 8 ~
s A2 Sey.) &— A.
A(xj , yj) A(7 X35 yJ) AJ and

7 7 3
A(§°xj '3 xJ) Cm— A(Z- xj s xJ)

allow for deformation retracts along the vector field v, as
has been mentioned above.
k e 6 8
VL) Pt—l(Mn) < j-zs] ( rk* (A(7°xj -7‘?5) ’ A(xj 9Yj))
=13 7 7
t — — —
+ l‘k* (A(lg xj ’xj) ’ A(s xj *8 xj)) )

vii) if t:ﬁtz(n) the right hand side of the previous formula can be

estimated by means of proposition 4.7 :

k
' %y . . exp( 122 .
! Gooo * In ) *C,(n) cexp(— LIR I

j=1 3

P o (M)

We use 5.11 and 5.2i in order to compute the bound. This gives
us the following result :

5.3 Proposition :
Llet M" be an asymptotically non-negatively curved manifold, b,
be its curvature invariant (as above) , and Let t be some numben
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greater than :
n? _n 9
t‘(n) = 5 8 °exp(-l:-

n+l )
then :
Py ) 6 (5D L 12213y )
whene :
c(n) tm 2emS 4 -'ag--n2+ —z--n-r %

Remarks :

i) Up to this point all the numerical estimates done in order to get a
simple explicit bound have heen chosen in such a way that they do not
spoil the leading order terms of c¢(n) and t‘(n) . As far as c¢(n)
is concerned hoth the factors in the hasis directly stem from the geo-
metric constrﬁctions : the Fibonacci number 5 reflects the geometry
in the local covering arguement {c.f. corollary 1.6) , and the number
1+/2" is due to the packing arguement in appendix A,

ii) The lower order terms have not been treated that carefully; they
could even be improved easily by changing the geometric details in the
arguement. For instance one could make use of the fact that the criti-
cal points of the distance function dp cannot lie everywhere in an
incompressible ball B(p,r) ; they are contained in a rather small

subset , and lemma 3.5 could be modified accordingly.
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Appendix A

A Packing Problem in s""lc R7

We d:,flne sequences (an)n?sl and (an)n‘I of real numbers in (0,1] resp.
(0,5] by:

al = 1
a = a -(l-a)-(l+~/ 2 ).1 n=®2
“n n-1 n H-an ’

and a := arcsin(an) , n 2|

Proposition :

Let A be the collection of all subsets Acs™ ! which obey the condition

() P,Qq€A , pfq ===p d(p,q) > 3 -a
Then :

n

max {4f~A [A€A '} = 2

Remarks :

s . . w T _ o 2 . .
i) We point out that a, =sin (1-6) » and 7708 T which is the
centriangle of the regular 5 - gon.

ii) As explained in example | in appendix B, there is the estimate :
1 - ) -
3 U 42 DT L n@2

1ii) We may view o asa lower bound on the angle &“ defined by

—12'- -& = 2 sup { p | there exist 2n+! disjoint

balls of radius p in Sn-l

}

In principal such a bound could also have been ohtained computing the
packing densities of n balls of radius p mutually touching each

other with respect to the simplex spanned by their centres. (c.f. [86].)
Proof @

The vertices of the generalized octahedron in R" define a set A(An .
This proves "»" , The opposite inequality is shown by induction :

We take some A(An yIf A contains no more than 2 elements, we are done ;
else we pick 2 points p, P€A such that their distance d(p,§) is maximal,

To finish the proof , we construct a projection of A':=A~{p,Pl onto some
set in An-l :

i) The estimate F-a_ < d(p,@) < 3T 4 gean holds for all qeA' .
Assuming the converse, one concludes that q and P both lie in the ball
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o n N .
of radius 2°32°% around the antipodal point of p . This observation

-immediately yields a contradiction to property (#) .,

|~

ii) The projection pr:A' — " 2= {xes™! | a(p,x) =3} along the gneat
cincles through p can be controlled by means 0§ spherical trigonometry :

Suppose that 1) » 9, are two distinct points
in A' ; put:

Y = d(pr(q,) ,pr(q,))

(2 L o= d( )
,'l q; »9,
9 .
L,:= d . =1,2 ,
7L The Law of Cosines may be written as follows:
4

cos L - c.osiA!,J * coOs 9.2

(w=) cosy =
sin £ * sin £;

It is elementary analysis to verify that under the constraints

Frog ¢ 1y ¢ 2 ¢ JLagea »  gTon €8

the right-hand side of (%*#) has a unique maximum , which is acchieved at:

" 3n
L = 2 = 37 R f.l-—z—-*zan

Therefore , if 9,9, € A' , we conclude :

1 ~ cos (-37:5+-;--an)

sin (%11 *%’“n )

cos y > cot(lz'--an) .

1 +1f-%-‘-(_l_- cos (12'-_ +a;)v)‘
= tan a; ° -
;—Z-I-(l+cos(-§+an))

ay /2 + Mva,
fl-ani fl-an

a
= -—-—-L— [
(1 7 l+ap ) - #n-

1= a,

hence :

cosy > cos(-;--'un_‘)
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Appendix B

A Lemma on Recursively Defined Sequences :

Let 0:[0,1) ~—— [a,») be a monotone function such that ¢(0)=a>1 .
Then f:[o,l).——r[o,w) s XF—>x-¢(x) is invertible. For any xOE(O,l]

there is a unique sequence of real numbers (x ) defined by :
n‘neN,

*n T f(xn-l-l) ’ xm-le(o’l]
Lemma :
. -1 -n
& . £ .
L) X a x a X,

1§ moneover é(x) €a-(1+x)/(1-x) for a?? xe€ [0,1) , there are also Lowen
bounds for the x

) Fetfxg o= oeGx T 2 e ex)”

a—-1 -n a=X, . a-l

a 0, <o
L) *n/x, a (l+xl a+x°) ; n®]

Proof : (i) and (ii) are obvious. In order to prove the last claim, notice
that by induction :

n-1 . n-l  1-573.x
X T e B | -n T ]
('l) n/xo ] ¢(a oxl) EY a . ___..___T-—-—-
j-o j:o l1+a ¢ Xl
We compute :
n—l l -g j «x n-l o0 , .
-3+ (2k+1) 2k+]
R s Dt BRI S R = sl "X
j=o 1+a xl j=o k=0
v 1 ! 2k+1
‘ "'2 . L[] - o L] x
kzo 2k+1 |=-a k=1 1
I-x
a £ ¢ 1n¢ Ly
a-l I +x

1
Combining this inequality with (#) gives the required estimate.

Exar_ngles:
1) ¢(x) = (1 +y=== )/ (1-x) ; x =1

14+x (o}

Clearly a=1+/2" and X = sin (-l%) ; therefore one has:

X * -;--(um"“ , provided n¥»] .
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2.) #(x) = (2+p-(14x)) / (I-x) ,where 2+4p = 5+2.L ' , L>0

1

<
%o T2e(LH)
Clearly a=2+p ,and one easily computes that:
2 1 5/
(a+x°)a/a_‘ p (5+ Tt 2'(L+4)_) 4
2 1
aT% >+ L™ 2-(L+)

1 5/4 ]
¢ U=y ¢ ey

Therefore
X
n 0 n 2n 1
S £ —x & 5 GXP( 5L + 4'(L+l$) )
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