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SUPERCONFORMAL INDICES OF
N = 4 SYM FIELD THEORIES

V. P. SPIRIDONOV AND G. S. VARTANOV

Abstract. Superconformal indices of N = 4 sypersymmetric Yang-Mills field
theories with simple gauge groups SU(N), SO(N), SP (2N), G2, F4, E6, E7, E8

are described in terms of elliptic hypergeometric integrals. For the latter four

exceptional groups this yields first examples of integrals of such type. S-duality
transformation for G2 and F4 theories does not change their superconformal

indices being equivalent to a change of variables in the corresponding integrals.

Some mathematical arguments are given in favor of the equality of indices for
dual SP (2N) and SO(2N + 1) theories conjectured by Gadde et al [19].
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1. Introduction

The question of strong-weak duality ofN = 4 supersymmetric Yang-Mills (SYM)
theory in four dimensional space-time is a quite old area of research [1, 2, 3]. This
duality (called also S-duality) states the equivalence of the theory with an “electric”
gauge group Gc to a similar theory with a “magnetic” gauge group G∨c and the
inverse coupling constant. If one introduces the coupling constant as

τ =
θ

2π
+ i

4π

g2
, (1)

1
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then the S-duality transformation of the theory maps τ for a simply-laced gauge
group1 to the coupling constant −1/τ ,

S : τ → −1
τ

. (2)

Together with the symmetry transformation

T : τ → τ + 1,

the strong-weak duality becomes equivalent to the SL(2, Z) group of transforma-
tions

τ → aτ + b

cτ + d
, ad− bc = 1, a, b, c, d ∈ Z. (3)

For N = 4 SYM theories with the non-simply laced gauge groups one has the
following realization of S-duality

S̃ : τ → − 1
mτ

, (4)

where m is the ratio of the lengths-squared of long and short roots of the corre-
sponding root system (m = 2 for SO(2N + 1), SP (2N), F4 and m = 3 for G2). In
[4], N = 4 theories with G2 and F4 gauge groups were analyzed from the algebraic
point of view and the S-duality transformation of the moduli space was described.
Here we would like to discuss another approach for testing validity of these and
other conjectural dualities for N = 4 SYM field theories.

For this purpose we use the technique based on the calculation of the supercon-
formal indices for N = 4 theories suggested by Kinney et al in [5] (for the definition
of indices in N = 1 theories, see [6, 7]). N = 4 SYM theory has the PSU(2, 2|4)
space-time symmetry group generated by Ja, Ja, a = 1, 2, 3, representing SU(2)
subgroups (Lorentz rotations), Pµ, Qi,α, Qi,α̇ (supertranslations) with i = 1, 2, 3, 4

and α, α̇ = 1, 2; Kµ, Si,α, S
i,α̇

(special superconformal transformations), and H
(dilations) whose state eigenvalues are given by conformal dimensions [8]. As to
the SU(4)R R-symmetry subgroup, we mention only its commuting maximal torus
generators R1, R2, R3. For a distinguished pair of supercharges, say, Q ≡ Q1,1 and
Q† ≡ S1,1, in appropriate normalization one has

{Q,Q†} = H − 2J3 − 2
3∑

k=1

(
1− k

4

)
Rk ≡ ∆, (5)

and the superconformal index is defined by the matrix integral [5]

I(t, y, v, w) =
∫

Gc

[dU ] exp

{ ∞∑
m=1

1
m

f(tm, ym, vm, wm)Tr(U†)mTrUm

}
, (6)

where [dU ] is the Gc = U(N) invariant measure and f(t, y, v, w)TrU†TrU is the
so-called single-particle states index with

f(t, y, v, w) =
t2(v + 1

w + w
v )− t3(y + 1

y )− t4(w + 1
v + v

w ) + 2t6

(1− t3y)(1− t3

y )
. (7)

1A simply laced group is a Lie group whose Dynkin diagram contains only simple links, and
therefore all roots of the corresponding Lie algebra have the same length. These groups are

SU(N), SO(2N), E6, E7, and E8.
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As shown in [9] (see there the discussion following formula (5.33)) this expression
can be obtained from the superconformal group character or partition function
for N = 4 theories by imposing the shortening condition for the multiplets. The
integrand in (6) is given by the following expression

Tr
(
(−1)Ft2(H+J3)y2J3vR2wR3e

∑
a gaGa

e−β∆
)

, (8)

where F is the fermion number operator, Ga are gauge group generators, and
t, y, v, w, ga, β are the group parameters (chemical potentials). The trace is taken
over the states corresponding to zero modes of the operator ∆ because relation (5)
is preserved by operators in (8) (the contributions from other states cancel together
with the dependence on β). All the fields in N = 4 supermultiplet lie in the same
representation of the gauge group Gc. It means that, in comparison with the super-
conformal indices in N = 1, 2 SYM theories, the contribution from the fields will
be given by the adjoint representation only. The problem of counting various BPS
states in N = 4 theories and computation of the related characters was discussed
in [9, 10].

The superconformal indices technique has already found many applications in
supersymmetric field theories. In [7] the Seiberg duality for N = 1 SYM theo-
ries was conjectured to lead to the equality of indices of dual theories. Later on
Dolan and Osborn explicitly confirmed this conjecture for a number of examples
[11]. It appears that superconformal indices are expressed in terms of elliptic hy-
pergeometric integrals whose theory was developed earlier in [12, 13] (see also [14]
for a general survey). Moreover, equality of indices in dual theories happened to
be equivalent either to exact computability of elliptic beta integrals discovered in
[12] or to nontrivial Weyl group symmetry transformations for higher order elliptic
hypergeometric functions [13, 15]. In a series of papers [16, 17, 18] we applied this
technique for analyzing all previously found Seiberg dualities. We suggested also
many new such dualities on the basis of known identities for elliptic hypergeometric
integrals and showed that known nontrivial duality checks are satisfied for them.
As a payback to mathematics, it happened that many old dualities lead to new,
still unproven highly nontrivial relations for integrals.

This line of thoughts was further developed in beautiful papers by Gadde et al
[19, 20]. In [19], a fresh identity from [21] describing W (F4) Weyl group transfor-
mation for a particular one dimensional elliptic hypergeometric integral was used
for confirming S-duality for N = 2 SYM theory with SU(2) gauge group and four
hypermultiplets [22, 23] and for ensuring associativity of the operator algebra of 2D
theories behind that duality. Using the inversion of the simplest elliptic hypergeo-
metric integral transform of [24], the superconformal index for a E6 SCFT theory
was constructed in [20] from the index of N = 2 SYM theory with Gc = SU(3)
and six hypermultiplets and a new test of the Argyres-Seiberg duality [25] was
suggested.

One of the purposes of our paper consists in the consideration of S-duality for
N = 4 SYM theories with G2 and F4 gauge groups [1, 4] from the superconformal
indices point of view. Similar consideration was performed already by Gadde et al
in [19] in the case of Gc = SP (2N) and G∨c = SO(2N + 1) groups. We give here
new sufficiently strong mathematical arguments in favor of the equality of indices
for the latter dual theories. For completeness, we describe also the indices for Gc =
SU(N), SO(2N), E6, E7, and E8 theories. As a complementary result, we give two
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more examples: the identity coming fromN = 1 SYM theories based on exceptional
gauge group E6 with 6 flavors [26, 27] and a relation between superconformal indices
for a particular pair of N = 2 quiver theories. In the end we discuss briefly indices
in relation to the exactly marginal deformations of N = 4 SYM theory.

2. Duality of SO(2N + 1) and SP (2N) N = 4 SYM theories

Superconformal indices for N = 4 SYM theories with SP (2N) and SO(2N +
1) gauge groups were described by Gadde et al in [19] and discussed briefly in
the simplest case in [17]. Here we give some essential mathematical arguments
supporting the conjecture that these two superconformal indices coincide.

The full single-particle index is∑3
k=1 sk − t6

∑3
k=1 s−1

k − t3(y + 1
y ) + 2t6

(1− t3y)(1− t3

y )
χadj(z), (9)

where χadj(z) is the character of the adjoint representation of the corresponding
gauge group (see the Appendix). For convenience, we have replaced the parameters
v and w by s1, s2, s3 using the notation

s1 = t2v, s2 = t2
1
w

, s3 = t2
w

v
. (10)

We stress that the single-particle state indices of all our theories discussed below
differ only by the characters χadj(z). It is convenient to denote also

p = t3y, q =
t3

y
.

Using the explicit form of the group invariant measures in terms of the maximal
torus variables, the superconformal indices can be written as particular elliptic
hypergeometric integrals [14]. The SP (2N)-electric theory index gets the following
shape

IE = χN

∫
TN

∏
1≤i<j≤N

∏3
k=1 Γ(skz±1

i z±1
j ; p, q)

Γ(z±1
i z±1

j ; p, q)

N∏
j=1

∏3
k=1 Γ(skz±2

j ; p, q)

Γ(z±2
j ; p, q)

N∏
j=1

dzj

2πizj
,

(11)
and for SO(2N + 1)-magnetic theory one has

IM = χN

∫
TN

∏
1≤i<j≤N

∏3
k=1 Γ(sky±1

i y±1
j ; p, q)

Γ(y±1
i y±1

j ; p, q)

N∏
j=1

∏3
k=1 Γ(sky±1

j ; p, q)

Γ(y±1
j ; p, q)

N∏
j=1

dyj

2πiyj
,

(12)
where |sk| < 1, k = 1, 2, 3. For |sk| ≥ 1 the indices are defined as analytical contin-
uations of the expressions (11) and (12).

Here T denotes the unit circle with positive orientation and we use conventions
Γ(a, b; p, q) := Γ(a; p, q)Γ(b; p, q), Γ(az±1; p, q) := Γ(az; p, q)Γ(az−1; p, q), where

Γ(z; p, q) =
∞∏

i,j=0

1− z−1pi+1qj+1

1− zpiqj
, |p|, |q| < 1,

is the elliptic gamma function. The coefficient in front of the integrals is

χN =
(p; p)N

∞(q; q)N
∞

2NN !

3∏
k=1

ΓN (sk; p, q),
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with (a; q)∞ =
∏∞

k=0(1− aqk). The constraint
3∏

k=1

sk = pq (13)

plays the role of the balancing condition for the integrals.
S-duality for these theories leads thus to a nice conjecture on the equality of

elliptic hypergeometric integrals for SO(2N + 1) and SP (2N) groups:

IE = IM (14)

in the indicated domain of values of parameters.
We rewrite this equality as∫

TN

∆E(z, s)
N∏

j=1

dzj

2πizj
=
∫

TN

∆M (y, s)
N∏

j=1

dyj

2πiyj
, (15)

where the kernels ∆E(z, s) and ∆M (y, s) are read from the integrals (11) and (12).
Then we compose the function

ρ(z, y, s) =
∆E(z, s)
∆M (y, s)

. (16)

We have verified that this function represents the so-called totally elliptic hyperge-
ometric term [28, 17]. This is a rather rich mathematical statement giving a strong
evidence on the validity of the stated equality of integrals. It means that all the
functions

h
(z)
i =

ρ(. . . qzi . . . , y, s)
ρ(z, y, s)

, h
(y)
i =

ρ(z, . . . qyi . . . , s)
ρ(z, y, s)

, i = 1, . . . , N,

h
(s)
kl =

ρ(z, y, . . . qsk, . . . , q−1sl . . .)
ρ(z, y, s)

, k, l = 1, 2, 3; k 6= l,

are elliptic functions of all their arguments zi, yi, sk, and q. For instance,

h
(z)
i (. . . pzj . . . , y, s; q; p) = h

(z)
i (z, . . . pyj . . . , s; q; p)

= h
(z)
i (z, y, . . . psk . . . p−1sl; q; p) = h

(z)
i (z, y, . . . psl . . . ; pq; p)

= h
(z)
i (z, y, s; q; p), k, l = 1, 2, 3.

This test is passed by all known integral identities; however, it is not sufficient for
their validity. For further consequences of the total ellipticity and various technical
details of such computations, we refer to papers [14, 17, 28].

3. Some direct checks

Proofs for N = 1, 2. For low ranks of the gauge group the equality of the
indices follows from the change of variables associated with the rotation of the
corresponding root system [19].

For N = 1 the electric superconformal index is

IE =
(p; p)∞(q; q)∞

2

∫
T

∏3
k=1 Γ(skz±2; p, q)

Γ(z±2; p, q)
dz

2πiz
.

To obtain the magnetic index from this expression one has to substitute z =
√

y,
take into account the factor 1/2 coming from the Jacobian and the factor 2 coming
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after shrinking the integration contour from double T to T (which is easy to follow
in terms of the θ → θ/2 angle variables change with z = eiθ). Note that these elec-
tric and magnetic indices can be derived as particular reductions of the univariate
elliptic beta integral of higher order with 24 and 10 parameters, respectively.

For N = 2 the electric superconformal index has the form

IE = χ2

∫
T2

∏3
k=1 Γ(skz±1

1 z±1
2 ; p, q)

Γ(z±1
1 z±1

2 ; p, q)

2∏
j=1

∏3
k=1 Γ(skz±2

j ; p, q)

Γ(z±2
j ; p, q)

2∏
j=1

dzj

2πizj
. (17)

Corresponding magnetic index (12) is obtained from (17) after the substitutions

z1 =
√

y1y2, z2 =
√

y1y
−1
2 .

Indeed, for |sk| < 1 the integral kernel can be represented as a convergent N -fold
Laurent series in zj-variables and the integration picks up its constant term. The
change of the variables reshapes this Laurent series, but the constant term remains
the same and it can be found by computing the integrals over the contours yj ∈ T.

The limit sk → 1. Suppose one of the parameters approaches 1, say, s1 →
1. Then a number of poles of the integral kernels in (11) and (12) approach the
unit circle, but, because of the zeros already lying at the appropriate points, their
residues vanish and no singularities appear on the integration contour. However, the
factor χN is divergent in this limit. Because the product of two other parameters
s2 and s3 becomes equal to pq, and Γ(a, b; p, q) = 1 for ab = pq, the integrands do
not depend on all parameters sj and are actually equal to 1. As a result, we have
lims1→1 IE/IM = 1. For N = 1, from the physical point of view this limit can be
associated with N = 2 SYM theory with SU(2) gauge group discussed in [22].

Reduction to p = q = 0. One can consider the integrals (11) and (12) in the
limit p, q → 0. Because of the balancing condition (13), some of the parameters
should be rescaled by appropriate powers of p and q which can be done in many
different ways. One simple possibility consists in fixing s1,2 and setting

s3 =
pq

s1s2
.

For fixed z, the limit p = 0 and further limit q = 0 simplifies the elliptic gamma
function to

Γ(z; p, q) =
p→0

1
(z; q)∞

=
q→0

1
1− z

,

so that integral (11) reduces first to q–integral

Ip=0
E (s1, s2 fixed) =

(q; q)∞
2NN !

∫
TN

∏
1≤i<j≤N

(z±1
i z±1

j ; q)∞(s1s2z
±1
i z±1

j ; q)∞
(s1z

±1
i z±1

j ; q)∞(s2z
±1
i z±1

j ; q)∞

×
N∏

j=1

(z±2
j ; q)∞(s1s2z

±2
j ; q)∞

(s1z
±2
j ; q)∞(s2z

±2
j ; q)∞

N∏
j=1

dzj

2πizj
, (18)
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and then to the rational integral

Ip=q=0
E (s1, s2 fixed) =

1
2NN !

∫
TN

∏
1≤i<j≤N

(1− z±1
i z±1

j )(1− s1s2z
±1
i z±1

j )

(1− s1z
±1
i z±1

j )(1− s2z
±1
i z±1

j )

×
N∏

j=1

(1− z±2
j )(1− s1s2z

±2
j )

(1− s1z
±2
j )(1− s2z

±2
j )

N∏
j=1

dzj

2πizj
. (19)

Integral (12) first reduces to

Ip=0
M (s1, s2 fixed) =

1
2NN !

∫
TN

∏
1≤i<j≤N

(y±1
i y±1

j ; q)∞(s1s2y
±1
i y±1

j ; q)∞
(s1y

±1
i y±1

j ; q)∞(s2y
±1
i y±1

j ; q)∞

×
N∏

j=1

(y±1
j ; q)∞(s1s2y

±1
j ; q)∞

(s1y
±1
j ; q)∞(s2y

±1
j ; q)∞

N∏
j=1

dyj

2πiyj
, (20)

and then becomes

Ip=q=0
M (s1, s2 fixed) =

1
2NN !

∫
TN

∏
1≤i<j≤N

(1− y±1
i y±1

j )(1− s1s2y
±1
i y±1

j )

(1− s1y
±1
i y±1

j )(1− s2y
±1
i y±1

j )

×
N∏

j=1

(1− y±1
j )(1− s1s2y

±1
j )

(1− s1y
±1
j )(1− s2y

±1
j )

N∏
j=1

dyj

2πiyj
. (21)

One can evaluate integrals (19) and (21) by computing the residues, since the
integrands have now a finite number of poles. However, we did not find a simple
way of performing these computations for arbitrary N .

We did such a residue calculus only for N = 3. We shall not give details of the
computation since the procedure is straightforward and cumbersome. We indicate
only the poles relevant for this calculation. For |sk| < 1 the reduced integral for
electric theory has the following poles

zi = (skz±1
j )±1, zi = ±s

± 1
2

k , (22)

where k = 1, 2 and i, j = 1, 2, 3, i 6= j. Only the poles lying inside the three dimen-
sional domain T3 give contributions and their residues can be computed successively
in the integration variables. The poles for z1 lying inside T are skz±1

j and ±s
1
2
k ,

where k = 1, 2, j = 2, 3. Computing their residues we proceed further and calculate
the residues of the poles in z2 and, finally, we find the residues for z3-poles. For
the magnetic integral we have the following set of poles

yi = (sky±1
j )±1, yi = s±1

k , (23)

where k = 1, 2 and i, j = 1, 2, 3, i 6= j. In comparison with the electric case here
we have much less residues to be taken into account. After lengthy Mathematica
calculations we confirmed that the sums of residues for both integrals coincide.

Another way of taking the limit p = q = 0 corresponds to a very natural choice
of the chemical potentials v, w associated with R2 and R3 charges in the defini-
tion (8) equal to 1. This yields the simplest possibility of exact evaluation of the
superconformal indices. Indeed, after fixing all sk = (pq)

1
3 , k = 1, 2, 3, the limit

p, q → 0 strongly simplifies integral kernels leading to particular cases of the Sel-
berg integral. The numerators of integrands in (11) and (12) become equal to 1,
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since Γ((pq)
1
3 a; p, q) → 1 for p → 0. As a result, we obtain the electric index

Ip=q=0
E (sk = (pq)

1
3 ) =

1
2NN !

∫
TN

∏
1≤i<j≤N

(1− z±1
i z±1

j )
N∏

j=1

(1− z±2
j )

dzj

2πizj
, (24)

and the magnetic one

Ip=q=0
M (sk = (pq)

1
3 ) =

1
2NN !

∫
TN

∏
1≤i<j≤N

(1− y±1
i y±1

j )
N∏

j=1

(1− y±1
j )

dyj

2πiyj
. (25)

Then we denote zj = eiθj and yj = eiφj , j = 1, . . . , N , and pass to the integration
over θj and φj variables. In terms of new variables

xj =
1 + cos θj

2
, x′j =

1 + cos φj

2
, j = 1, . . . , N, (26)

the integrals reduce to special cases of the Selberg integral

IS(α, β, γ) =
∫ 1

0

. . .

∫ 1

0

N∏
j=1

xα−1
j (1− xj)β−1

∏
1≤i<j≤N

(xi − xj)2γdx1 . . . dxN

=
N∏

j=1

Γ(α + (j − 1)γ)Γ(β + (j − 1)γ)Γ(1 + jγ)
Γ(α + β + (N + j − 2)γ)Γ(1 + γ)

, (27)

where Γ(x) is the usual gamma function and

<α,<β > 0, <γ > −min
(

1
N

;
<α

N − 1
;
<β

N − 1

)
.

Explicit computations show that integral (24) is equal to

22N2+N

N !πN
IS(3/2, 3/2, 1) = 1.

Integral (25) yields
22N2−N

N !πN
IS(1/2, 3/2, 1) = 1.

Indeed, the electric integral differs from the magnetic one only in the integrand
numerator term

∏N
j=1(1 + z±1

j ) which becomes 4N
∏N

j=1 xj after the change of
variables (26). This results in the shift of the α parameter value and appearance of
the relative coefficient 4N in front of the corresponding Selberg integral. Inserting
the indicated values of parameters into the right-hand side of (27) and taking into
account the factor 4N we see that the equality IE = IM reduces to the identity∏N

j=1(4j − 2)/(j + N) = 1, which is easily proved using the formula for doubling
the gamma function argument

Γ(x)Γ(x + 1/2) = 21−2x
√

πΓ(2x).

A p = 0, q → 1− limit. Let us take the limit p → 0 with fixed parameters s1

and s2, as in the first case. In the resulting indices we set s1 = qα, s2 = qβ and
consider the limit q → 1− for fixed α and β. To compute this limit for the factor
χN we use the well known formula

lim
q→1−

(q; q)∞
(qx; q)∞

(1− q)1−x = Γ(x)
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and find the diverging expression

χN =
1

2NN !

(
Γ(α)Γ(β)

(1− q)Γ(α + β)

)N

(1 + o(1)).

As to the integrals, we apply another known asymptotic formula

lim
q→1−

(qαA; q)∞
(qβA; q)∞

= (1−A)β−α

and find that both integrands are equal to 1 giving the same value for the integrals.
So, the leading diverging asymptotics of the indices coincide

Ip=0,q→1−

E,M (s1 = qα, s2 = qβ) =
1

2NN !

(
Γ(α)Γ(β)

(1− q)Γ(α + β)

)N

(1 + o(1)).(28)

A p = 0, s2 = 0 limit. Let us look now for another reduction of the integrals
appearing after the p → 0 limit. We are taking now the following sequential limit

p → 0 (fixed s1, s2), s2 → 0. (29)

It reduces integral (11) to the form

Ip=s2=0
SP (2N) =

1
2NN !

(q; q)N
∞

(s1; q)N
∞

∫
TN

∏
1≤i<j≤N

(z±1
i z±1

j ; q)∞
(s1z

±1
i z±1

j ; q)∞

N∏
j=1

(z±2
j ; q)∞

(s1z
±2
j ; q)∞

dzj

2πizj
,

(30)
which can be evaluated exactly using the multivariable extension of the Askey-
Wilson integral (or particular q-Selberg integral) found in [30]. Indeed, it is suffi-
cient to set in the corresponding integral evaluation formula

b = s1, a1,2 = ±
√

s1, a3,4 = ±√qs1

and find

Ip=s2=0
SP (2N) =

N−1∏
j=0

(qs2j+1
1 ; q)∞

(s2j+2
1 ; q)∞

. (31)

The limit (29) applied to (12) leads to the integral

Ip=s2=0
SO(2N+1) =

1
2NN !

(q; q)N
∞

(s1; q)N
∞

∫
TN

∏
1≤i<j≤N

(z±1
i z±1

j ; q)∞
(s1z

±1
i z±1

j ; q)∞

N∏
j=1

(z±1
j ; q)∞

(s1z
±1
j ; q)∞

dzj

2πizj
.

(32)
The BCN root system q-beta integral of [30] can be reduced to this integral on the
BN root system (see, e.g., [29]). In order to obtain (32), it is necessary to choose
the parameters as

b = s1, a1 = s1, a2 = −1, a3,4 = ±√q,

which leads to the same result (31) after some explicit computations. Therefore,
we find that

Ip=s2=0
SP (2N) = Ip=s2=0

SO(2N+1) =
N−1∏
j=0

(qs2j+1
1 ; q)∞

(s2j+2
1 ; q)∞

. (33)

This is the most powerful check of the equality of superconformal indices (11)
and (12) which we have found. Equality of indices in the limit sk = (pq)

1
3 → 0,

k = 1, 2, 3, established above is a special case of relation (33) obtained after the
choice s1 = q = 0.
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The integrals in (33) were computed under the assumption that |s1| < 1, but
for finite N we can analytically continue superconformal indices to arbitrary values
of s1 as meromorphic functions using the right-hand side expression. For |s1| < 1
one can consider the limit N →∞ which yields a ratio of double infinite products
resembling “halves” of the elliptic gamma function with the base p = s2

1.

4. G2 gauge group

We consider now the S-duality conjecture for N = 4 SYM theory with G2 gauge
group following from the Goddard-Nyuts-Olive construction [1], which was made
more explicit in [2, 3] and discussed in detail in [4].

The G2-group has two dimensional maximal torus parametrized by z1 and z2,
but it is convenient to introduce the third group variable z3 = z−1

1 z−1
2 as described

in the Appendix. Then the electric superconformal index takes the form

IE = κ2

∫
T2

∏
1≤i<j≤3

∏3
k=1 Γ(skz±1

i z±1
j ; p, q)

Γ(z±1
i z±1

j ; p, q)

2∏
j=1

dzj

2πizj
, (34)

where |sk| < 1, k = 1, 2, 3, and

κ2 =
(p; p)2∞(q; q)2∞

223

3∏
k=1

Γ2(sk; p, q).

In the magnetic theory one has2

IM = κ2

∫
T2

∏
1≤i<j≤3

∏3
k=1 Γ(sk(yiyj)±3, sk(yiy

−1
j )±1; p, q)

Γ((yiyj)±3, (yiy
−1
j )±1; p, q)

2∏
j=1

dyj

2πiyj
, (35)

where y1y2y3 = 1.
Validity of S-duality would suggest the equality of these elliptic hypergeometric

integrals, IE = IM , in the indicated domain of values of parameters. Remarkably,
this identity can be easily established by the following change of the integration
variables

y1 = (z2z
2
3)

1
3 , y2 = (z3z

2
1)

1
3 , y3 = (z1z

2
2)

1
3 . (36)

This reparametrization is associated with the rotation of the G2 root system [4].
The superconformal indices test confirms thus the S-duality in this case.

Application of the limit (29) from the previous section reduces integral (34) to
the form

Ip=s2=0
G2

=
1

223
(q; q)2∞
(s1; q)2∞

∫
T2

∏
1≤i<j≤3

(z±1
i z±1

j ; q)∞
(s1z

±1
i z±1

j ; q)∞

2∏
j=1

dzj

2πizj
, (37)

where z1z2z3 = 1. This integral admits the exact evaluation [29]

Ip=s2=0
G2

=
(qs1, qs

5
1; q)∞

(s2
1, s

6
1; q)∞

, (38)

where we use the convention (a, b; q)∞ = (a; q)∞(b; q)∞.

2We are deeply indebted to S. Razamat for pointing to a misprint in our initial expression for
this integral.
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5. F4 gauge group

Now we consider S-duality forN = 4 SYM theory with F4 gauge group [1, 2, 3, 4].
The electric superconformal index has the following form

IE = κ4

∫
T4

∏
1≤i<j≤4

∏3
k=1 Γ(skz±2

i z±2
j ; p, q)

Γ(z±2
i z±2

j ; p, q)

4∏
j=1

∏3
k=1 Γ(skz±2

j ; p, q)

Γ(z±2
i ; p, q)

×
∏3

k=1 Γ(skz±1
1 z±1

2 z±1
3 z±1

4 ; p, q)
Γ(z±1

1 z±1
2 z±1

3 z±1
4 ; p, q)

4∏
j=1

dzj

2πizj
, (39)

where |sk| < 1, k = 1, 2, 3, and

κ4 =
(p; p)4∞(q; q)4∞

2732

3∏
k=1

Γ4(sk; p, q).

In the derivation of this expression we have used the adjoint representation character
given in the Appendix and made there the change of variables zi → z2

i corresponding
to stretching all root system vectors.

Using similar prescription for the magnetic theory, we find

IM = κ4

∫
T4

∏
1≤i<j≤4

∏3
k=1 Γ(sky±1

i y±1
j ; p, q)

Γ(y±1
i y±1

j ; p, q)

4∏
j=1

∏3
k=1 Γ(sky±2

j ; p, q)

Γ(y±2
i ; p, q)

×
∏3

k=1 Γ(sky±1
1 y±1

2 y±1
3 y±1

4 ; p, q)
Γ(y±1

1 y±1
2 y±1

3 y±1
4 ; p, q)

4∏
j=1

dyj

2πiyj
. (40)

Note that these integrals are the first examples of multiple elliptic hypergeomet-
ric integrals defined for the F4 root system (in [21] the integrals were defined on
the SU(2) group and the Weyl group W (F4) was emerging as a transformation
symmetry in the parameter space).

The S-duality conjecture suggests the transformation formula IE = IM in the
indicated domain of values of parameters. We have checked that the ratio of the
kernels of integrals IE and IM defines a totally elliptic hypergeometric term, as
required. And again, in a remarkable way, this identity is easily established by the
change of variables3

z1 =
√

y1y2, z2 =
√

y1

y2
, z3 =

√
y3y4, z4 =

√
y3

y4
. (41)

This reparametrization is associated with the rotation of the F4 root system [4].
We see thus validity of the superconformal indices test for this S–duality.

The limit (29) reduces integral (39) to the expression

Ip=s2=0
F4

=
1

2732

(q; q)4∞
(s1; q)4∞

∫
T4

∏
1≤i<j≤4

(z±2
i z±2

j ; q)∞
(s1z

±2
i z±2

j ; q)∞

4∏
j=1

(z±2
j ; q)∞

(s1z
±2
j ; q)∞

× (z±1
1 z±1

2 z±1
3 z±1

4 ; q)∞
(s1z

±1
1 z±1

2 z±1
3 z±1

4 ; q)∞

4∏
j=1

dzj

2πizj
, (42)

3This change was suggested to us by S. Razamat.
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which admits exact evaluation [29]

Ip=s2=0
F4

=
(qs1, qs

5
1, qs

7
1, qs

11
1 ; q)∞

(s2
1, s

6
1, s

8
1, s

12
1 ; q)∞

. (43)

6. SU(N) and SO(2N) gauge groups

Consider for completeness superconformal indices for N = 4 SYM theories with
SU(N) and SO(2N) gauge groups, which are S–self-dual [1].

The superconformal index for the SU(N) theory is

ISU(N) = χN

∫
TN−1

∏
1≤i<j≤N

∏3
k=1 Γ(skz−1

i zj , skziz
−1
j ; p, q)

Γ(z−1
i zj , ziz

−1
j ; p, q)

N−1∏
j=1

dzj

2πizj
, (44)

where
∏N

j=1 zj = 1, parameters sk satisfy the constraints |sk| < 1, k = 1, 2, 3, and

χN =
(p; p)N−1

∞ (q; q)N−1
∞

N !

3∏
k=1

ΓN−1(sk; p, q).

Taking the ratio of the kernel of this integral to itself with different integration vari-
ables, one can get the totally elliptic hypergeometric term. However, consequences
of this statement are much less informative than in the cases with nontrivial sym-
metry transformations for integrals.

The limit (29) reduces integral (44) to the expression

Ip=s2=0
SU(N) =

1
N !

(q; q)N−1
∞

(s1; q)N−1
∞

∫
TN−1

∏
1≤i<j≤N

(z−1
i zj , ziz

−1
j ; q)∞

(s1z
−1
i zj , s1ziz

−1
j ; q)∞

N−1∏
j=1

dzj

2πizj
, (45)

which admits exact evaluation [29]

Ip=s2=0
SU(N) =

N−1∏
j=1

(qsj
1; q)∞

(sj+1
1 ; q)∞

. (46)

For N → ∞ this index equals to (s1; q)∞/(s1; s1)∞, which coincides with the
reduced form of the N → ∞ asymptotics (after passing from U(N) to SU(N)
gauge group) found in [5] from the AdS/CFT correspondence.

The superconformal index for the SO(2N) theory is

ISO(2N) = χN

∫
TN

∏
1≤i<j≤N

∏3
k=1 Γ(skz±1

i z±1
j ; p, q)

Γ(z±1
i z±1

j ; p, q)

N∏
j=1

dzj

2πizj
, (47)

where |sk| < 1, k = 1, 2, 3, and

χN =
(p; p)N

∞(q; q)N
∞

2N−1N !

3∏
k=1

ΓN (sk; p, q).

The situation with the total ellipticity condition is similar to the one for (44).
The limit (29) reduces (47) to the integral

Ip=s2=0
SO(2N) =

1
2N−1N !

(q; q)N
∞

(s1; q)N
∞

∫
TN

∏
1≤i<j≤N

(z±1
i z±1

j ; q)∞
(s1z

±1
i z±1

j ; q)∞

N∏
j=1

dzj

2πizj
, (48)
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with the exact evaluation formula [29]

Ip=s2=0
SO(2N) =

(qsN−1
1 ; q)∞

(sN
1 ; q)∞

N−2∏
j=0

(qs2j+1
1 ; q)∞

(s2j+2
1 ; q)∞

. (49)

In the same way as for SP (2N) and SO(2N + 1) groups, this integral can be
obtained from the q-Selberg integral of [30] using special parameter values:

b = s1, a1,2 = ±1, a3,4 = ±√q.

7. Exceptional gauge groups E6, E7, and E8

Also for generality, we describe superconformal indices for N = 4 SYM theories
with the exceptional E6, E7, and E8 gauge groups.

E6 gauge group. For the first representative of these theories we have the
superconformal index of the form

IE6 = κ6

∫
T6

6∏
j=1

dzj

2πizj

∏
1≤i<j≤5

∏3
k=1 Γ(skz±2

i z±2
j ; p, q)

Γ(z±2
i z±2

j ; p, q)

∏3
k=1 Γ(sk(z3

6Z)±1; p, q)
Γ((z3

6Z)±1; p, q)

×
∏

1≤i<j≤5

∏3
k=1 Γ(sk(z3

6z2
i z2

j Z)±1; p, q)
Γ((z3

6z2
i z2

j Z)±1; p, q)

5∏
i=1

∏3
k=1 Γ(sk(z−3

6 z2
i Z)±1; p, q)

Γ((z−3
6 z2

i Z)±1; p, q)
, (50)

where for convenience we denoted Z = (z1z2z3z4z5)−1 and

κ6 =
(p; p)6∞(q; q)6∞

27345

3∏
k=1

Γ6(sk; p, q).

The combinatorial factors appearing here are the same as, for example, those given
in [29]. Similar to the F4-group case, we took the adjoint representation character
given in the Appendix and replaced in it zj → z2

j (the same was done for the E7

and E8 group cases considered below).
The limit (29) reduces (50) to the integral

Ip=s2=0
E6

=
1

27345
(q; q)6∞
(s1; q)6∞

∫
T6

6∏
j=1

dzj

2πizj

∏
1≤i<j≤5

(z±2
i z±2

j ; q)∞
(s1z

±2
i z±2

j ; q)∞

× ((z3
6Z)±1; q)∞

(s1(z3
6Z)±1; q)∞

∏
1≤i<j≤5

((z3
6z2

i z2
j Z)±1; q)∞

(s1(z3
6z2

i z2
j Z)±1; q)∞

5∏
i=1

((z−3
6 z2

i Z)±1; q)∞
(s1(z−3

6 z2
i Z)±1; q)∞

, (51)

which can be computed explicitly using a q-hypergeometric constant term evalua-
tion formula valid for arbitrary reduced root system (see, e.g., [29])

Ip=s2=0
E6

=
(qs1, qs

4
1, qs

5
1, qs

7
1, qs

8
1, qs

11
1 ; q)∞

(s2
1, s

5
1, s

6
1, s

8
1, s

9
1, s

12
1 ; q)∞

. (52)

E7 gauge group. For N = 4 SYM theory with the E7 gauge group the super-
conformal index is

IE7 = κ7

∫
T7

6∏
j=1

∏3
k=1 Γ(skz±2

7 (z2
j Z)±1; p, q)

Γ(z±2
7 (z2

j Z)±1; p, q)

∏
1≤i<j≤6

∏3
k=1 Γ(skz±2

i z±2
j ; p, q)

Γ(z±2
i z±2

j ; p, q)

×
∏3

k=1 Γ(skz±4
7 ; p, q)

Γ(z±4
7 ; p, q)

∏
1≤i<j<l≤6

∏3
k=1 Γ(skz±2

7 z2
i z2

j z2
l Z; p, q)

Γ(z±2
7 z2

i z2
j z2

l Z; p, q)

7∏
j=1

dzj

2πizj
, (53)
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where we denoted Z = (z1z2z3z4z5z6)−1 and

κ7 =
(p; p)7∞(q; q)7∞

210345 7

3∏
k=1

Γ7(sk; p, q).

The limit (29) reduces (53) to the integral

Ip=s2=0
E7

=
1

210345 · 7
(q; q)7∞
(s1; q)7∞

∫
T7

6∏
j=1

(z±2
7 (z2

j Z)±1; q)∞
(s1z

±2
7 (z2

j Z)±1; q)∞

∏
1≤i<j≤6

(z±2
i z±2

j ; q)∞
(s1z

±2
i z±2

j ; q)∞

× (z±4
7 ; q)∞

(s1z
±4
7 ; q)∞

∏
1≤i<j<l≤6

(z±2
7 z2

i z2
j z2

l Z; q)∞
(s1z

±2
7 z2

i z2
j z2

l Z; q)∞

7∏
j=1

dzj

2πizj
, (54)

which can be evaluated explicitly [29]

Ip=s2=0
E7

=
(qs1, qs

5
1, qs

7
1, qs

9
1, qs

11
1 , qs13

1 , qs17
1 ; q)∞

(s2
1, s

6
1, s

8
1, s

10
1 , s12

1 , s14
1 , s18

1 ; q)∞
. (55)

E8 gauge group. Finally, for the largest exceptional gauge group E8 theory
the superconformal index is

IE8 = κ8

∫
T8

8∏
j=1

dzj

2πizj

∏
1≤i<j≤8

∏3
k=1 Γ(sk(z2

i z2
j Z)±1; p, q)

Γ((z2
i z2

j Z)±1; p, q)

∏3
k=1 Γ(skZ±1; p, q)

Γ(Z±1; p, q)
(56)

×
∏

1≤i<j≤8

∏3
k=1 Γ(skz±2

i z±2
j ; p, q)

Γ(z±2
i z±2

j ; p, q)

∏
1≤i<j<l<m≤8

∏3
k=1 Γ(sk(z2

i z2
j z2

l z2
mZ)±1; p, q)

Γ((z2
i z2

j z2
l z2

mZ)±1; p, q)
,

where Z = (z1z2z3z4z5z6z7z8)−1 and

κ8 =
(p; p)8∞(q; q)8∞

21435527

3∏
k=1

Γ8(sk; p, q).

Again, the limit (29) reduces (56) to the integral

Ip=s2=0
E8

=
1

21435527
(q; q)8∞
(s1; q)8∞

∫
T8

8∏
j=1

dzj

2πizj

∏
1≤i<j≤8

((z2
i z2

j Z)±1; q)∞
(s1(z2

i z2
j Z)±1; q)∞

(57)

× (Z±1; q)∞
(s1Z±1; q)∞

∏
1≤i<j≤8

(z±2
i z±2

j ; q)∞
(s1z

±2
i z±2

j ; q)∞

∏
1≤i<j<l<m≤8

((z2
i z2

j z2
l z2

mZ)±1; q)∞
(s1(z2

i z2
j z2

l z2
mZ)±1; q)∞

,

which can be evaluated exactly [29]

Ip=s2=0
E8

=
(qs1, qs

7
1, qs

11
1 , qs13

1 , qs17
1 , qs19

1 , qs23
1 , qs29

1 ; q)∞
(s2

1, s
8
1, s

12
1 , s14

1 , s18
1 , s20

1 , s24
1 , s30

1 ; q)∞
. (58)

In all three integrals (50), (53), and (56) we assumed the restrictions |sk| < 1, k =
1, 2, 3. As expected, ratios of their kernels to themselves with different integration
variables yield totally elliptic hypergeometric terms. These integrals represent first
known examples of elliptic hypergeometric integrals based on the exceptional root
systems of E–type.
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8. Some special N = 1 and N = 2 dualities

Much attention is paid in this paper to supersymmetric theories with the excep-
tional gauge groups. Therefore we would like to describe one more duality example
for such theories known to us. We take N = 1 SYM theory with E6 gauge group
and matter fields given by 6 flavors in the fundamental representation of SU(6)
flavor group and in 27-dimensional representation of the gauge group E6.

This electric theory and its particular magnetic dual were suggested in [26, 27]
and validity of this duality was discussed further in [31]. The superconformal index
for the electric theory has the form

IE = κ6

∫
T6

∏
1≤i<j≤5

∏6
k=1 Γ(skz−1

6 Zz2
i z2

j ; p, q)

Γ(z±2
i z±2

j ; p, q)

∏6
k=1 Γ(skz−4

6 , skz−1
6 Z; p, q)

Γ((z3
6Z)±1; p, q)

(59)

×
∏

1≤i<j≤5

1
Γ((z3

6z2
i z2

j Z)±1; p, q)

5∏
i=1

∏6
k=1 Γ(skz2

6z±2
i , skz−1

6 Z−1z−2
i ; p, q)

Γ((z−3
6 z2

i Z)±1; p, q)

6∏
j=1

dzj

2πizj
,

where |sk| < 1, k = 1, . . . , 6, we denoted Z = (z1z2z3z4z5)−1 and

κ6 =
(p; p)6∞(q; q)6∞

27345
.

The magnetic theory is described by 6 antifundamentals of the flavor group lying
in 27-dimensional representation of the gauge group. There are also the singlet
mesons given by the absolute symmetric representation of the third rank of the
flavor group. The magnetic superconformal index is

IM = κ6

6∏
j=1

Γ(s3
j ; p, q)

6∏
i,j=1; i 6=j

Γ(sis
2
j ; p, q)

∫
T6

∏
1≤i<j≤5

1
Γ((z3

6z2
i z2

j Z)±1; p, q)

×
∏

1≤i<j≤5

∏6
k=1 Γ(S

1
3 s−1

k z−1
6 Zz2

i z2
j ; p, q)

Γ(z±2
i z±2

j ; p, q)

∏6
k=1 Γ(S

1
3 s−1

k z−4
6 , S

1
3 s−1

k z−1
6 Z; p, q)

Γ((z3
6Z)±1; p, q)

×
5∏

i=1

∏6
k=1 Γ(S

1
3 s−1

k z2
6z±2

i , S
1
3 s−1

k z−1
6 Z−1z−2

i ; p, q)
Γ((z−3

6 z2
i Z)±1; p, q)

6∏
j=1

dzj

2πizj
, (60)

where |sk| < 1, k = 1, . . . , 6,. The balancing condition for both elliptic hypergeo-
metric integrals has the form S =

∏6
i=1 si = pq.

We have checked that the ratio of these integral kernels yields a totally elliptic
hypergeometric term, which is an important test suggesting that these dualities
and the equality IE = IM might be valid. It is interesting to note that the limit
s6 → 1 reduces the integrals in such a way, that one obtains superconformal indices
of peculiar E6 and F4 SYM theories dual to each other [27].

As the last but not least remark and an additional advertisement of the appli-
cations of the elliptic hypergeometric integrals techniques, we would like to present
the superconformal index of a particular N = 2 quiver SYM theory described in



16 V. P. SPIRIDONOV AND G. S. VARTANOV

[32]. Define

IE =
(p; p)6∞(q; q)6∞

8

∫
T

dx

2πix

∫
T

dy

2πiy

∫
T2

2∏
j=1

dzj

2πizj

∫
T

dr

2πir

∫
T

dw

2πiw

× Γ(t2vx±1, t2vy±2, t2vz±1
1 z±1

2 , t2vr±2, t2vw±1; p, q)
Γ(x±1, y±2, z±1

1 z±1
2 , r±2, w±1; p, q)

× Γ
( t2√

v
y±1,

t2√
v
r±1; p, q

)2

Γ
( t2√

v
x±1y±1,

t2√
v
r±1w±1; p, q

)
×

2∏
j=1

Γ
( t2√

v
y±1z±1

j ,
t2√
v
r±1z±1

j ; p, q
)
, (61)

where t is the same parameter as in N = 4 theories before and v is the chemical
potential associated with some combination of the U(2)R-group commuting R-
charges. Introducing the variables α2 = z1z2, β2 = z1/z2, γ2 = x and δ2 = w, one
can rewrite this integral as

IM =
(p; p)6∞(q; q)6∞

64

∫
T

dγ

2πiγ

∫
T

dy

2πiy

∫
T

dα

2πiα

∫
T

dβ

2πiβ

∫
T

dr

2πir

∫
T

dδ

2πiδ

× Γ(t2vγ±2, t2vy±2, t2vα±2, t2vβ±2, t2vr±2, t2vδ±2; p, q)
Γ(γ±2, y±2, α±2, β±2, r±2, δ±2; p, q)

(62)

× Γ
( t2√

v
γ±1γ±1y±1,

t2√
v
δ±1δ±1r±1,

t2√
v
y±1α±1β±1,

t2√
v
r±1α±1β±1; p, q

)
.

The identity IE = IM can be interpreted as the equality of superconformal
indices following from a relation between particular SO(4) × SP (2) and SU(2)
N = 2 SYM generalized quiver theories. Although this is not the intrinsic electric-
magnetic duality, we keep this terminology for indices. The “electric” part is an
SO(3)× SP (2)× SO(4)× SP (2)× SO(3) N = 2 SYM quiver and the “magnetic”
part is the same theory rewritten as SU(2)6-quiver, as illustrated in Fig. 9 of [32].

9. Conclusion

In this paper we have described superconformal indices for N = 4 SYM theo-
ries with simple non-Abelian gauge groups as elliptic hypergeometric integrals and
analyzed some of their mathematical properties. In the case of G2 and F4 groups
the equality of indices of S-dual theories follows from a simple change of variables
in integrals which gives an additional test of these dualities.

For all classical simple gauge groups we have found particular limiting values
of chemical potentials (p → 0 followed by the s2 → 0 limit) for which N = 4
indices are computable exactly. According to the general ideology [7, 11, 17], exact
computability of indices is associated with the confinement in the dual phase of
the theory, since it provides a group-theoretical representation of indices without
local gauge group symmetry. Therefore we conclude that there should exist some
interesting supersymmetric (expectedly, three dimensional) field theories similar to
the Wess-Zumino model whose superconformal indices are described by the right-
hand sides of equalities (30), (32), (37), (42), (45), (48), (51), (54), and (57).

One of the initial motivations for consideration of superconformal indices in
[5] was an analysis of the AdS/CFT correspondence for N = 4 SYM theory for
SU(N) gauge group which required consideration of the N → ∞ limit. In this
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limit, the original index coming from the BPS states not forming long multiplets
can be computed from the dual spectrum of gravitons appearing in the Type IIB
supergravity compactified on AdS5 × S5. It would be interesting to understand
the meaning of the reduction p → 0 from the AdS/CFT point of view on the level
of graviton spectra in “parent” four dimensional theories. All our p = s2 = 0
indices for gauge groups of arbitrary rank N are well defined in the limit N → ∞
for |s1| < 1 being given by curious explicit infinite products. So, we expect that
there will be an essential simplification in the consideration of the corresponding
gravitational duals for both finite and infitite N .

In [33, 34] the marginal deformations of superconformal field theories were stud-
ied and the importance of global symmetries for conformal manifold (a manifold
of coupling constants of the theory where it stays conformal) is shown. A β-
deformation of theN = 4 SYM theory [35] is obtained by introduction of a marginal
deformation of the superpotential, which breaks N = 4 supersymmetry down to
N = 1,

hTr
(
eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2

)
,

where β is an arbitrary parameter and h is a Yukawa coupling. The parameter β
may be complex and this does not break superconformal invariance of the theory
[36]. The initial R-symmetry SU(4)R breaks to U(1)R with the additional global
symmetry U(1)1×U(1)2 [35]. From the indices point of view the chemical potentials
v and w introduced at the beginning play now the role of chemical potentials for
the latter global group. As pointed to us by J. Maldacena, superconformal index
for the β-deformed theory is the same as in the initial theory [5]. This means that
these theories share essentially the same set of BPS states. In conclusion of [17] we
discussed appearance of the SO(3) N = 4 SYM theory from a N = 1 model after a
superpotential deformation, such that both theories share the same superconformal
index. Actually, superconformal indices of all exactly marginally deformed theories
coincide, only the interpretation of chemical potentials is different, being tied to
global groups of different meaning. Therefore these indices serve as invariants of
the conformal manifold with their structure reflecting only a part of the global
symmetries preserved by the superpotential.

As an example of different deformation of N = 4 theories we can mention the
deformation to N = 1 SYM theory with two chiral superfields in the adjoint rep-
resentation and an additional U(1) global group (see [37] and references therein).
This theory has an SL(2, Z) electric-magnetic duality inherited from N = 4 SYM
theory in its infrared fixed point. From the superconformal indices techniques view-
point such a deformation is traced in a very simple way — it is just necessary to
give a special value to one of the sk-parameters, say, s3 =

√
pq, in our integrals,

which removes it completely.
The q-beta integrals with exact evaluations appearing from superconformal in-

dices of all N = 4 SYM theories in the limit p → 0, s2 → 0 are known to deter-
mine orthogonality measures for special cases of Macdonald and Koornwinder q-
orthogonal polynomials (for E6, E7, and E8 root systems these measures are generic
[29]). We come thus to a natural question on whether one can give a similar mean-
ing to general elliptic hypergeometric integrals describing N = 4 superconformal
indices and construct corresponding biorthogonal functions (the first example of
such biorthogonal functions in the univariate case has been found in [13] and for a
particular SP (2N)-integral their multivariable generalization has been constructed
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in [15]). Note that for the exceptional root systems G2, F4, E6, E7, E8 the indices
define currently first examples of integrals at the elliptic hypergeometric level pre-
tending to such a role.
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Appendix A. Characters of adjoint representations

Here we would like to list characters of the adjoint representations for all simple
Lie groups G depending on complex variables zj , j = 1, . . . , rank G.

For SU(N) group we have N − 1 independent variables zj and

χSU(N),adj(z1, . . . , zN ) =
∑

1≤i<j≤N

(ziz
−1
j + z−1

i zj) + N − 1, (63)

where
∏N

j=1 zj = 1.
For SO(2N + 1) group of rank N the character is (no constraints on zj)

χSO(2N+1),adj(z) =
∑

1≤i<j≤N

(zizj + ziz
−1
j + z−1

i zj + z−1
i z−1

j )

+
N∑

i=1

(zi + z−1
i ) + N. (64)

For SP (2N) group of rank N the character is

χSP (2N),adj(z) =
∑

1≤i<j≤N

(zizj + ziz
−1
j + z−1

i zj + z−1
i z−1

j )

+
N∑

i=1

(z2
i + z−2

i ) + N. (65)

For SO(2N) group of rank N the character is

χSO(2N),adj(z) =
∑

1≤i<j≤N

(zizj + ziz
−1
j + z−1

i zj + z−1
i z−1

j ) + N. (66)

The character for the adjoint representation of G2 group is the symmetric poly-
nomial of two parameters z1 and z2, but it is convenient to introduce the third
variable using relation z1z2z3 = 1. Then,

χG2,adj(z1, z2, z3) = 2 +
∑

1≤i<j≤3

(
zizj + z−1

i zj + ziz
−1
j + z−1

i z−1
j

)
.

The exceptional F4 group has rank four and the corresponding character is

χF4,adj(z1, . . . , z4) =
4∑

i=1

(zi + z−1
i ) +

∑
1≤i<j≤4

(zizj + ziz
−1
j + z−1

i zj + z−1
i z−1

j )

+ (z1/2
1 + z

−1/2
1 )(z1/2

2 + z
−1/2
2 )(z1/2

3 + z
−1/2
3 )(z1/2

4 + z
−1/2
4 ) + 4. (67)



N = 4 SUPERCONFORMAL INDICES 19

Description of the root systems for the E6,7,8 exceptional Lie groups can be
found in [38]. The rank of E6 group is equal to six and the character for the adjoint
representation is

χE6,adj(z1, . . . , z6) = 6 +
∑

1≤i<j≤5

(zizj + z−1
i zj + ziz

−1
j + z−1

i z−1
j )

+ z
3/2
6

(
5∏

i=1

zi

)−1/2
1 +

∑
1≤i<j≤5

zizj +
∑

1≤i<j<k<l≤5

zizjzkzl

 (68)

+ z
−3/2
6

(
5∏

i=1

zi

)1/2
1 +

∑
1≤i<j≤5

(zizj)−1 +
∑

1≤i<j<k<l≤5

(zizjzkzl)−1

 .

The rank of E7 group is equal to seven and the needed character is

χE7,adj(z1, . . . , z7) = 7 +
∑

1≤i<j≤6

(zizj + z−1
i zj + ziz

−1
j + z−1

i z−1
j ) + z2

7 + z−2
7 (69)

+ (z7 + z−1
7 )

( 6∏
i=1

zi

)1/2 6∑
i=1

z−1
i +

(
6∏

i=1

zi

)−1/2
 6∑

i=1

zi +
∑

1≤i<j<k≤6

zizjzk

 .

The E8 group is the biggest exceptional Lie group, it has rank eight and the
character for the adjoint representation is

χE8,adj(z1, . . . , z8) = 8 +
∑

1≤i<j≤8

(zizj + z−1
i zj + ziz

−1
j + z−1

i z−1
j )

+
8∏

i=1

z
1/2
i

1 +
∑

1≤i<j≤8

(zizj)−1 +
∑

1≤i<j<k<l≤8

(zizjzkzl)−1


+

8∏
i=1

z
−1/2
i

1 +
∑

1≤i<j≤8

zizj

 . (70)
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et arithmétiques des équations différentielles” (September 2009, CIRM, Luminy), to appear,

arXiv:1003.4491 [math.CA].
[29] M. Ito, Askey-Wilson type integrals associated with root systems, Ramanujan J. 12 (2006),

131–151.
[30] R. A. Gustafson, A generalization of Selberg’s beta integral, Bull. Amer. Math. Soc. (N.S.)

22 (1990), 97–105.

[31] P. Pouliot, Spectroscopy of gauge theories based on exceptional Lie groups, J. Phys. A34
(2001), 8631–8658, hep-th/0107151.

[32] Y. Tachikawa, Six-dimensional DN theory and four-dimensional SO–USp quivers, JHEP
0907 (2009) 067, arXiv:0905.4074 [hep-th].

[33] B. Kol, On conformal deformations, JHEP 0209 (2002) 046, arXiv:hep-th/0205141; On

Conformal Deformations II, arXiv:1005.4408 [hep-th].

[34] D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly Marginal De-
formations and Global Symmetries, JHEP 1006 (2010) 106, arXiv:1005.3546 [hep-th].

[35] O. Lunin and J. M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry
and their gravity duals, JHEP 0505 (2005) 033, arXiv:hep-th/0502086.

[36] D. I. Kazakov and L. V. Bork, Conformal invariance = finiteness and beta deformed N = 4

SYM theory, JHEP 0708, 071 (2007), arXiv:0706.4245 [hep-th].
[37] P. C. Argyres, K. A. Intriligator, R. G. Leigh and M. J. Strassler, On inherited duality in

N = 1 d = 4 supersymmetric gauge theories, JHEP 0004 (2000) 029, arXiv:hep-th/9910250.



N = 4 SUPERCONFORMAL INDICES 21

[38] J. F. Adams, Lectures on Exceptional Lie Groups, Chicago Lectures in Mathematical Series,

The University of Chicago Press, Chicago and London, 1996.

Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Moscow Region 141980,

Russia and Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111, Bonn, Germany;
e-mail address: spiridon@theor.jinr.ru

Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut 14476 Golm,
Germany; e-mail address: vartanov@aei.mpg.de


