SOLVMANIFOLDS AND NONCOMMUTATIVE TORI WITH REAL

1.
2.

2.1.
2.2.
2.3.
24.

3.
4

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

5

5.1.
5.2.
5.3.

MULTIPLICATION

MATILDE MARCOLLI

ABSTRACT. We prove that the Shimizu L-function of a real quadratic field is ob-
tained from a (Lorentzian) spectral triple on a noncommutative torus with real
multiplication, as an adiabatic limit of the Dirac operator on a 3-dimensional
solvmanifold. The Dirac operator on this 3-dimensional geometry gives, via the
Connes—Landi isospectral deformations, a spectral triple for the noncommutative
tori obtained by deforming the fiber tori to noncommutative spaces. The 3-
dimensional solvmanifold is the homotopy quotient in the sense of Baum—Connes
of the noncommutative space obtained as the crossed product of the noncommu-
tative torus by the action of the units of the real quadratic field. This noncom-
mutative space is identified with the twisted group C*-algebra of the fundamental
group of the 3-manifold. The twisting can be interpreted as the cocycle arising
from a magnetic field, as in the theory of the quantum Hall effect. We prove a
twisted index theorem that computes the range of the trace on the K-theory of
this noncommutative space and gives an estimate on the gaps in the spectrum of
the associated Harper operator.
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1. INTRODUCTION

In the 1970s Hirzebruch formulated a conjecture, cf. [15], on the topological inter-
pretation of certain special values of L-functions of totally real fields in terms of
signature defects. The conjecture was proved in the early ’80s by Atiyah—Donnelly—
Singer [2] and by Miiller [23]. Hirzebruch’s conjecture played an important role in
the development of the Atiyah-Patodi-Singer index theorem [3], which in turn is a
key ingredient in the proof [2] of the conjecture, extending the Hirzebruch-Riemann—
Roch theorem to manifolds with boundary and relating the signature defect to the
eta invariant. Geometrically, the link of an isolated singularity of the Hilbert modu-
lar variety associated to a totally real number field is given by a (4k — 1)-dimensional
solvmanifold. The signature of the Hilbert modular variety is then computed by the
APS theorem applied to the resulting manifold with boundary and the signature
defects are computed by the eta invariant of the solvmanifold. The main step in the
proof of [2] then consists of separating out the eta function of the signature operator
on the solvmanifold into a part that recovers the Shimizu L-function of the totally
real field and a residual part, which is shown not to contribute to the eta invariant.

We concentrate here on the simplest case, that or real quadratic fields, and we
consider the question of whether the Shimizu L-function can be related in a similar
way to a spectral geometry (in the sense of Connes’ notion of spectral triples [11])
on a noncommutative torus with real multiplication by the same real quadratic field.

The noncommutative tori associated to quadratic irrationalities have been exten-
sively studied by Manin in [17] and subsequently by several authors. They have the
special property of “real multiplication”, derived from the presence of non-trivial
self Morita equivalences. It is argued in [17] that the noncommutative tori with real
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multiplication should play a role for real quadratic field parallel to the the theory
of elliptic curves with complex multiplication in the case of imaginary quadratic
fields. This makes it an interesting problem to study the geometric properties of
this particular class of noncommutative spaces, and their relation to the arithmetic
of real quadratic fields.

We show in §5 that there is a close relation between the 3-dimensional solvmanifold
and the noncommutative torus with real multiplication. Namely, we prove that the
first is the homotopy quotient, in the sense of Baum—Connes, of the noncommutative
space given by the quotient of the latter by the action of the infinite group of units,
cf. §3. We also show that the 3-manifold can be identified with the pullback of the
universal family of elliptic curves along a closed geodesic in the modular curve.

This in terpretation as the homotopy quotient of a noncommutative space provides
a geometric setting analogous to the one developed in the noncommutative geom-
etry models of the quantum Hall effect [5], where the presence of a magnetic field
makes the Brillouin zone of the lattice into a noncommutative torus. Here, the
3-dimensional solvmanifold is similarly related to a noncommutative space whose
algebra of coordinates is the crossed product of the algebra of the noncommutative
torus by the action of the units. This is obtained by twisting the group ring of the
fundamental group of the solvmanifold by a cocycle, defined in terms of a magnetic
potential. The noncommutative space is the resulting twisted group C'*-algebra, cf.
84. As in the case of the quantum Hall effect, and in the noncommutative Bloch the-
ory of electron-ion interactions, one obtains in §6 information on the spectral theory
of the corresponding magnetic Laplacian by computing the range of the trace on the
K-theory of the twisted group C'*-algebra. We prove a twisted index theorem which
we use to compute the range of the trace using a spectral flow computation and the
Baum—Connes conjecture, which is known to hold for the fundamental group of the
3-dimensional solvmanifold.

This way of passing from the 3-dimensional solvmanifold to the associated noncom-
mutative space is obtained in two steps. Viewing the 3-manifold as a fibration of
2-dimensional tori over the circle, one first replaces the fiber tori by noncommutative
tori and then the mapping torus by the dual action of the units. We show in §7 that
the first step can be seen as a case of the Connes—Landi isospectral deformations
[12]. In particular, we prove that the Dirac operator on the 3-manifold induces in
this way a Dirac operator on the noncommutative torus with real multiplication. A
unitary equivalence as the one considered in [2] then factors this Dirac operator into
a product of two operators, one of which has spectrum given by the norms N(X) of
the lattice points A and recovers the Shimuzu L-function. In §7.4 we show how an
adiabatic limit relates the Dirac operator on the 3-manifold to known differential op-
erators on the noncommutative torus, obtained by considering the derivations along
the leaves of the Kronecker foliations associated to the Galois conjugate elements 6
and ¢’ in the real quadratic field K = Q(#).

Finally we prove in §8 that the norms N(\) define the momenta of a Lorentzian
Dirac operator on the noncommutative torus with real multiplication. The theory of
spectral triples in Lorentzian signature is at present still under active development
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and this provides a natural example where the arithmetic structure dictates how
the Lorentzian geometry should be treated in the noncommutative context. We
develop a framework for Lorentzian spectral triples over real quadratic fields, where
the Galois involution of K provides a canonical choice of a Krein involution. In
particular, we prove that, in passing from the indefinite Lorentzian geometry defined
by the quadratic form given by the norm to the associated real Hilbert space, one can
resolve the infinite multiplicities in the spectrum of the Dirac operator arising from
the presence of a non-compact group of symmetries (the units of the real quadratic
field). We show that the resulting operator on the real Hilbert space has the same eta
function as the one coming from the adiabatic limit of the 3-dimensional geometry
as in §7.4. This eta function is the product of the Shimizu L-function of the real
quadratic field by a term that only depends on the fundamental unit.

Acknowledgment. I am very grateful to Sir Michael Atiyah for asking the ques-
tion this paper is attempting to answer. I thank Alain Connes, Yuri Manin, and
Don Zagier for useful conversations. I also thank the Mittag Leffler Institute for
hospitality and support, while part of this work was done. This research is partially
supported by NSF grant DMS-0651925.

2. 3-DIMENSIONAL SOLVMANIFOLDS AND REAL QUADRATIC FIELDS

Let K = Q(v/d) be a real quadratic field and let ¢; : K < R, for i = 1,2, be its two
real embeddings. We let L C K be a lattice, with U;j the group of totally positive
units preserving L,

(2.1) Ul ={u€Og|uL C L, t;(u) € R}

We denote by €7, a generator, so that UZF = e%. In the case where L = Ok, the ring
of integers of K, then the generator € = ¢, is a fundamental unit. We consider the
embedding of L in R? given by the mapping

(2.2) L3l (11(0),2(¢)) C R2

We denote the range by A = (11,12)(L). This is a lattice in R%. The action of U;"
extends to an action on A by

(2.3) A= (01(0),12(0)) — (er1(£), € 12(0)) = (ery(£), € Lea(0)).

2.1. Semidirect products and solvmanifolds. Let us denote by V either the
group UZF or a finite index subgroup thereof. As in [2], we consider the crossed
product

(2.4) S(A, V) =A%V,

where the action of V = €% on A is induced by the action by multiplication on L.
As shown in [2], these are discrete subgroups of the solvable Lie group

(2.5) S(R?,R) = R x R,
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with the action of R on R? by the one parameter subgroup 0;(z,y) = (e‘x, e~ ty) of

SL2(R). For € > 1 and ¢ = ¢! < 1, the action of V on A is then generated by

(2.6) A = <S 0> € SL(R).

E/
We also consider the 3-dimensional solvmanifold obtained as the quotient
(2.7) X. = S(A, V)\S(R% R),
with 71 (Xe) = S(A, V).
2.2. The topology of the 3-manifold X.. It is well known [2] that the 3-manifold

X, of (2.7) is a fibration over the circle S! with fibers that are 2-tori and with
monodromy given by the matrix A, of (2.6).

Lemma 2.1. The manifold X, has first homology

(2.8) H(X.,Z)=A/(1-A)A D Z.

Proof. The fundamental group is m1(X¢) = S(A, V). Consider the surjective map
(2.9) 7T S(AV) = A/ (1—-—AJABZ, 7(A\,n)= (A mod (1 —-A)A,n).

By writing
ATN) =N = (1= AN + Ac(N) + -+ A7)

one sees that A+ A”(\) = A+ X modulo (1 — A.)A, so that 7(A+ AZXN,n+n') =
m(A,n) +7(N,n'). Since commutators in S(A, V) are of the form

A m)(Non ) A ) TV ) T = (1= ATDA = (1= AN, 0),
we see that the homomorphism (2.9) has Ker(w) = [71(Xe), m1(Xe)]. O
Corollary 2.2. The compact 3-manifold X, has cohomology
(2.10) H®"(X.,Z) =7 ®7Z® Coker(1 — A.), HX.,7)=7&7.
Proof. By Poincaré duality we have
(2.11) HY*(X,Z) = H|(X,Z)=Z®A/(1— A)A,
and H'(X,,Z) = Hom(H;(X,Z),Z) = Z ® Hom(A/(1 — A.),Z), so that
(2.12) Hy(X,,Z) =2 HYX,,Z) = Z ®Hom(A/(1 — A)A,Z).
We have Ker(1 — A.) = 0, while Coker(1 — A,) is torsion, so that we obtain
H(X.7Z)=7 HYX.Z)=17

(2.13)
H3X.,Z) =7 H*X.,7) =7 Coker(1 — A,)
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2.3. Action on Z2. We recall the following description of the action of A, on A,
which will be useful in the following, where we use twisted group C*-algebras to
describe noncommutative tori.

Lemma 2.3. In the basis {1,0} of 11(L) C R, the action of the group V = €” is
generated by the matrix

(2.14) Pe = <(Z Z) € SLy(Z)

with € = a+ b0 and €0 = ¢+ df. The conjugate elements 1/0 and 1/6" are the fized
points of p. € SLa(Z) acting on PY(R) by fractional linear transformations.

Proof. As we have seen in (2.3), the action of V' on A is given by
Ac: (n+mb,n+mb)— (e(n+mb),e(n+md"))

with e¢/ = 1. In particular, for for m = 0 and n = 1 this gives € € ¢1(L) and
€ € 19(L). Thus, we can write € = a + b, for two integers a,b € Z. Similarly, the
element ef can be written in the form €f = ¢+ df. Thus, the action of A¥ on A can
be described equivalently as

(2.15) (n,m) — (n,m)p",  with ¢, = <CCL Z) € SLy(Z)

The second statement follows immediately since
07 =¢/(eh) = (a0 +b)/(cd7 +d).
O

We obtain in this way two corresponding identifications S(A, V) = 72 0. Z, by
mapping (), €*) to either (A\; = n +m#b, k) or (A\y = n +mb', —k).

2.4. Solvmanifold and Hecke’s lift of geodesics. For I' = SLy(Z) and Xt =
I"\H the modular curve, let Ur — Xt denote the universal family of elliptic curves
over the modular curve, where the fiber over 7 € Xr of Ur is the isomorphism class
of the elliptic curve E, = C/(Z + 77Z).

Suppose given a lattice L in a real quadratic field K and let {1,0} be a basis for L,
with 6’ the Galois conjugate of # under the Galois involution of K over Q.

We denote by 7g ¢ the infinite geodesic in the hyperbolic plane H with endpoints
6,0" € P(R). This defines a closed geodesic in the quotient Xt of length loge, for
€ > 1 the generator of V = Uzr = ¢Z. We denote the closed geodesic by Yo.0'-
Consider the restriction of the universal family Ur to the closed geodesic g ¢:. Via
the parameterization of the closed geodesic by a circle S' of length loge, we can
consider the pullback to the parameterizing S' of Upr. We obtain in this way a real
3-dimensional manifold, which we denote U o. This is topologically a 3-manifold
that fibers over a circle, with fibers T2. We consider it endowed with the metric that
is the product of the geodesic length and the flat metric on 72. We then obtain the
following result.

Lemma 2.4. The solvmanifold S(A, V') is isometrically equivalent to Uy g .



SOLVMANIFOLDS AND NC TORI 7

Proof. We recall the following procedure of Hecke to lift closed geodesics to the space
of lattices (¢f. Manin [17], §1.8.2). Given a lattice L in a real quadratic field K, with
¢ — {' the Galois involution, one sets

(2.16) A(L):={z€H|z=2z(4,t) =le' +il'e”" L € L}.

This defines, for all ¢ € R a lattice A; C C. The action of V = ¢Z is of the form (cf.
Lemma 1.8.3 of [17])

(2.17) 2(0,) = ele +id'lle = z(0,t + loge).

In particular (see again [17] Lemma 1.8.3), for {1,0} a basis of L, the lattice A;(L)
is generated by {1,7;} where 7, runs over the geodesic £y o C H, for t € R. Thus,
we can identify the 3-manifold Uy ¢ with the fibration over a circle of length loge,
with fiber E;, = C/A(L).

On the other hand, the 3-manifold S(A, V) is a fibrations of tori over the circle

(2.18) T2 — S(A, V) — S,

where the base S! is a circle of length log e and the fiber over ¢ € S! is given by the
2-torus

(2.19) T? = R?/As,
with Ay = ©4(A), for O4(z,y) = (e'z,e"'y). This proves the result. O

3. ACTIONS ON NONCOMMUTATIVE TORI WITH REAL MULTIPLICATION

The noncommutative torus Ay of modulus 6 € R \ Q is the noncommutative space
described, at the topological level, by the irrational rotation C'*-algebra, that is, the
universal C*-algebra generated by two unitaries U, V with the commutation relation
VU = ™[V, It has a smooth structure given by the smooth subalgebra of series
me an,mU"V™ with rapidly decaying coefficients (cf. [9]).

It is a well known result ([9], [26]) that the algebras Ag, and Ay, are Morita equiv-
alent whenever there exists an element g € SLy(Z) acting on R by fractional linear
transformations, such that #; = gfs. In the following we concentrate on the case
where the irrational number 6 is a quadratic irrationality in a real quadratic field
K = Q(#). These are the noncommutative tori with real multiplication considered
n [17]. We let L be the lattice in K with ¢1(L) = Z + Z6 and 1o(L) = Z + Z0'. As
before, we denote by A the corresponding lattice in R2.

The C*-algebra of the noncommutative torus .49 described above can be equivalently
described as the crossed product

(3.1) Ag = C(8") x4 Z,

where the action of Z on S! is by the irrational rotation by exp(2mif). Up to Morita
equivalence, one can replace C(S!) by the crossed product Co(R) x Z, and one
obtains a Morita equivalent description of the noncommutative torus as

(3.2) Co(R) xg Z* = Cy(R) x (Z + 7.6).
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In the case we are considering, of real quadratic fields, we can regard the noncom-
mutative torus with real multiplication associated to a lattice L C K as described
by the algebras

(3.3) Taq1:=Co(R) %1 (L) Tpg:= Co(R) xta(L).

These algebras can be described as follows. They are C*-algebras generated by
elements of the form fU), with f € Cy(R) and X\ € A, with the product

fUNAUy = fUi(R)Unyy,  where Uy ;(h)(z) = h(z + (X)), i=1,2.

The group V = €% of units acts as symmetries of the noncommutative tori T A @S
follows.

Lemma 3.1. For k € Z and fUy € Ty ;, set v¥(f)(z) := f(*x) and

(3.4) Ot (fUN) = vE(HUasnys and 05 (fUN) = 08 (F)U k-
This defines actions v; : V. — Aut(Ty ;).

Proof. The result follows directly from

O @) = U o)) = { |
which implies that
VE(FUNRU) = 0 (F)UF(UA(R)U ar(riy = vF (FUN)OF (hUy).

(F(x+n+mb) i=1
(e *x+n+md)) i=2

O

It is customary, in noncommutative geometry, to replace quotients by crossed prod-
uct algebras. In this case, the quotient of the noncommutative tori T 5 ; by the action
of V is described by the crossed product algebra

(3.5) Tavi :=Tau Xy, V,

which we can view equivalently as the crossed product

(3.6) Ta,v,i == Co(R) x; S(A, V),

for the actions of S(A, V) on Cy(R) of the form

B7)  Upwf(z) = f(@+n+mb) or Unpflz)=fle"(@+n+md)).

4. TWISTED GROUP ALGEBRAS AND THE MAGNETIC LAPLACIAN

Another equivalent description of the algebra Ay of the noncommutative torus is
as twisted group C*-algebra. This played an important role in the context of the
noncommutative geometry model of the integer quantum Hall effect (see [5]).

We recall briefly the definition and properties of twisted group C*-algebras, as this
will be useful in the following. For a similar overview and applications to the case
of Fuchsian groups see [20].
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4.1. Twisted group algebras. Let I' be a finitely generated discrete group, and
let 0 : T'x ' — U(1) be a multiplier, that is, a 2-cocycle satisfying the cocycle
property

(4.1) a(v1,72)o(72,73) = 0(71,7273)0(72,73)s

with o(v,1) = o(1,7v) = 1.
Consider then the Hilbert space ¢2(I') and the left /right o-regular representations
of I' given by

(4.2) LIf(Y) = F(7"Y)a(v ™), RIF(Y) = F(Yv)a(v', ).
They satisfy the relations
(4.3) LILY, = (7,7')L§7,, RIRS, = a(v,y')R%,.

Moreover the left o-regular representation commutes with the right o-regular rep-
resentation, with o the conjugate multiplier. The algebra generated by the Rf is

the twisted group ring C(I',o). Its norm closure is the (reduced) twisted group
C*-algebra C} (T, o).

4.2. The noncommutative tori as twisted group algebras. One identifies the
C*-algebra Ay of the noncommutative torus with the reduced twisted group C*-
algebra C*(Z?, o) in the following way. Let o be a cocycle of the form

(4.4) a((n,m), (n’,m')) := exp(=2mi(&ynm’ + E&amn')).
Then the operators U = R((jo,l) and V = R((jl,o) acting by
Uf(n,m) =e 2" f(n.m+1), Vf(n,m)=e ™ f(n4+1,m)
that generate the algebra C*(Z?2,0) satisfy the commutation relation
UV =¥9VU,  with 6 =& —&.

Notice that different choices of 1, & with the same 6 = £5 —&; yield the same algebra
Ay. This gives us the freedom to choose the £; according to the following result.

Lemma 4.1. A cocycle o of the form (4.4) has the property that

45 ollmm).('om') = ol(nmhe, (0 m)e), Vo= (4 1) € SLa(@)

if and only if &5 = —&;.
Proof. We see that o((n,m)p, (n’,m’)p) is of the form
exp(—2mi((&1 + &2)(abnn' + cdmm') + (&1¢b + Ead)mn’ + (&1ad 4 Eacb)nm)).
O

Thus, in the following we will assume that o = 6/2 = —&; in the choice of the
cocycle o of (4.4). We can then write o in the form

og((n,m), (k,r)) = exp(mwif(nr — mk)) = exp(wif(n,m) A (k,r)),
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where we use the notation

(4.6) (a,) A (¢, d) = det <“ Z) .

C

We then obtain the following identifications.

Corollary 4.2. The noncommutative tori Ty ; are described by twisted group C*-
algebras

Ta1= C*Z?,09) =

4.7
.7 Tro= C*Z?0p) =

Proof. The expression
ou(A,n) = exp(miu A A n)
defines a cocycle on A. For A = (n+mb,n+mb’) and n = (k+r0,k+r0’), a direct
calculation shows that
og((n,m), (k,r)) = ou(N,n), for u=20(0"—0)"".

Thus, the generators R‘(’n m) of C*(Z?,0p) with

?n,m)R((Tk,r) = UG((”? m)? (k7 r))R((jn,m)—i-(k,r)
are identified with the generators RS of C*(A, 09 _g)-1) with
RKRZ = 09(9'—9)*1()\777)R§+77-
The case of Ty o is analogous. O

4.3. Twisted group algebra of S(A,V). We now show that the algebra Ay x
V', which we introduced in the previous section to describe the quotient of the
noncommutative torus with real multiplication by the action of V', also admits a
description in terms of twisted group C*-algebras, for the group S(A,V). First
notice that the group S(A, V') is amenable, so that the maximal and reduced group
C*-algebras coincide, C},,..(S(A,V)) = C(S(A,V)), so that we can simply write
C*(S(A,V)), and C*(S(A,V),&) for the twisted case.

Lemma 4.3. Let o be a multiplier on Z? of the form (4.4), with & = 0/2 = —£1.
Then the map & : S(A, V) x S(A,V) — U(1) of the form

(4.8) ((n,m, k), (n',m',K)) := o ((n,m), (n,m")¢f)

is a multilier for S(A, V'), identified with the group Z* . Z.

Proof. The cocycle condition for o and the SLa(Z)-invariance o ((n, m)p, (n’,m')¢) =
a((n,m), (n'm’)) imply that & also satisfies the cocycle condition (4.1), since we have

o((n1,m1), (n2, ma)@F)a((n1,m1) + (n2, m2)k, (ng, ms) ek t42) =

o((n1,ma), (n2,ma) @ + (n3,ms) @ )0 ((n2, me) g’ (ns, ms) e ™).

We then have the following result.
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Proposition 4.4. The algebras T yv; = Ta; x; V are isomorphic to the algebras

Tavi= C*Z2% 09) 0, Z = C*(Z? Xy, Z,59)
(4 9) = C*(A,O'g(g/_g)—l) Mo vV = C*(S(A, V),&g(g/_g)—l),
’ TA,V,2 = C*(Z2,O‘g/) NU2Z :C*(Z2 >44p€ Z,(NTQI)

= C*(A,O'g/(el_g)—l) X V = C*(S(A, V),&g/(g/_@)—l).
Proof. We just show explicitly one of the identifications. The others follow simi-

larly. The twisted group algebra C*(Z2 Xy, Z,09) is generated by elements R(

n,m,k)

satisfying
?n,m,k)R?n’,m’,k’) = &((n7m7 k) (Tl m’ k,)) (nm k)(n',m’k")*

The crossed product C*(Z2, ¢) X, Z is generated by elements of the form R‘(’n’m)vf

The map R(n mo) R‘(’n’m)vf gives an identification of the generators, which also
satisfies
Ty Ve Ry VE = RO,y R i Ve
= o((nm), (0, m)PFVRT, Lk
This gives an isomorphism C*(Z2,0y) X, Z = C’*(Z2 X, L,69). O

4.4. The magnetic Laplacian. Consider the general setting of a finitely generated
discrete group I' acting on a contractible space X with compact quotient X =X/T.
Assume everything happens in the smooth category and we think of X as endowed
with a metric that is invariant under the action of I'. Upon choosing a base point
zo € X, we can think of the discrete set T'zg as a crystal of charged ions and consider
the electron—ion interaction problem in X. This means that electrons move in X
subject to a periodic potential. Under resonable assumptions, one can make an
independent electron approrimation and replace the N-particle Hamiltonian with
the unbounded periodic electric potential of the ion crystal with a single electron
Hamiltonian in an effective periodic potential given by a bounded function (see [20]
for a brief overview).

The Hamiltonian is then of the form A+ V, where the A is the Laplacian on X. We
think of it as an unbounded operator on L2(X). The Hamiltonian is invariant under
translations by v € I, that is, T, A = AT, and by construction V is also invariant.
Here the T, are the operators T f(z) = f(z7y) on L?(X).

One can consider on X a magnetic field. This is specified by a closed 2-form w
which satisfies 7*w = w. Since X is contractible, there is a global magnetic potential
w = dx. The corresponding hermitian connection V = d — iy satisfies V2 = iw. The
invariance of w implies d(x —v*x) = 0, so that x —v*x = d¢,, where the function
Oy (x fzo X — 7*x has the properties that

Dy (@) = by (2) = Py (@)
is independent of x € X and ¢, (o) = 0 so that
(4.10) o(7,7") = exp(—ig, (7o)
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defines a multiplier o : I' x I' — U(1). The Laplacian A is naturally replaced, in the
presence of a magnetic field, by the magnetic Laplacian AX = V*V = (d —ix)*(d —
ix). This is no longer invariant under translations 7T’,, but is invariant under the
magnetic translations

(4.11) TOAX = AXT?

where T ff f(z) = exp(ip(x)) f(y " x). Similarly, in the independent electron approx-
imation, the effective potential V' is also invariant under the magnetic translations.
The magnetic translations satisfy the relations of the twisted group algebra C¥(T', 7)

TOTS = 6(7,7)T2,,

for o as in (4.10) and & the conjugate. (We refer the reader to [18], [20] for a brief
overview of these well known facts.)

4.5. Discretized electron—ion interaction and Harper operators. It is usu-
ally convenient to discretize the electron—ion interaction problem. This means re-
placing the continuum model with Hilbert space L?(X) by a discrete model on the
Hilbert space ¢2(T). In the case without magnetic field, this is done by replacing
the Laplacian A by its discretized version A gser = 7 — R, where r is the cardinality
of a symmetric set of generators for I' and R is the random walk operator

(4.12) R=> R, with R,f(y)=f(yn)
i=1

for f € ¢2(T'). As in the continuum model the discretized Laplacian commutes
with translations by elements v € I'. The effective potential is then taken to be an
element in the group ring C[T].

In the presence of a magnetic field, one can still obtain a good discretized version of
the electron—ion interaction problem as in [29]. The random walk operator of (4.12)
is then replaced by the Harper operator

(4.13) H, =Y R,
=1

with RT € C(I",0) the elements of the right o-regular representation, with o the
cocycle of (4.10). The discretized version of the magnetic Laplacian is then given
by the operator

(4.14) AX

discr

:T_H0'7

which commutes with the magnetic translations Lg. Similarly the effective potential
is taken to be an element V' € C(I', ¢), which then also commutes with the magnetic
translations LJ.
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4.6. Harper operators for noncommutative tori and for S(A,V'). In the case
of the noncommutative torus, viewed as the twisted group C*-algebra C*(Z?, o), the
Harper operator is of the form

(4.15) He =U+U"+V + V7,

where U and V' are the generators of Ay.

The spectral theory of the Harper operator H, of (4.15) was widely studied. In
particular, it was shown in [16] that the spectrum exhibits a remarkable fractal
structure (the Hofstadter butterfly) which appears to have infinitely many gaps
(Cantor like spectrum) for irrational § and finitely many gaps (band spectrum) for
rational 6. The precise gap structure of the spectrum of Harper operators, as a
function of the magnetic flux (that is 6 in the noncommutative torus case), is a
problem still under active investigation. As we see more in detail in the following,
in the specific case of interest here, the gap labelling problem for the spectrum of
the Harper operator is closely related to the computation of the range of the trace
on the K-theory of the twisted group C*-algebra.

In the following, we will be interested in the case of the group S(A, V). In this case,
after identifying it with Z2 X, L, the Harper operator is of the form

(4.16) He =U+U"+V+V "+ W+ W7,

where U = R?O,LO)’ V= R?LO,O) and W = R?O,O,l)'
4.7. Spectral theory and K-theory. We recall here briefly the relation between
spectral theory of Harper operators and K-theory of twisted group C*-algebras (cf.
[6], [20] §3). We then proceed in the following section to analyze the specific case of
C*(S(A, V).

As we have seen, the twisted group C*-algebra C*(T", o) is the norm closure of the
twisted group ring C(T', o) in the right o-regular representation on £2(I'), that is, the
C*-algebra generated by the magnetic translations RY. If we take the weak closure
of C(T',0), we obtain the twisted group von Neumann algebra U(I',o). Suppose
given an operator Hy,yv = Hs + V, with H, the Harper operator described above
and V' an effective potential in C(I', o). We have by construction H,y € C(I',0) C
Ci(I',o) CcU(T, o), hence the spectral projections of H, v,

(4.17) P =1 o0 5(Hov)

are in the von Neumann algebra, Py € U(T',0). In particular, if the energy level
E is not in the spectrum of H, 1/, then the corresponding spectral projection Pg is
actually in the C*-algebra C}(T", o).

This implies that the question of counting gaps inthe spectrum of H, - can be refor-
mulated as a problem of counting projections in the C*-algebra C}(T", o), modulo the
Murray-von Neumann equivalence relation, P ~ @ if there exists V € C}(T',0) @ K
with P = V*V and Q = VV*. Equivalent spectral projections correspond to a
same gap in the spectrum. The group Ko(C}(T',0))) is the Grothendieck group of
the resulting abelian semi-group (with the operation of direct sum). Thus, the gap
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counting problem is restated as a problem involving K-theory of C'*-algebras. More
precisely, there is a faithful canonical finite trace

7(a) = (ady, 51>z2(r),
on C}(T, o), with &, the canonical basis of ¢%(I"). This extends to
tr=7@Tr:{PecCT,0)®K)|P*=P, P?=P} =R,
with Tr the standard trace on bounded operators and induces
(4.18) [tr] : Ko(C:(T,0))) — R.

One can obtain an estimate of the number of equivalence classes of projections by a
direct computation of the range of the trace on Ko(C;(I',0))), using

(419) tr({P e C}T,0)®K)|P* = P, P? = P}) = [tr](Ko(C*(T,0))) N[0,1].

5. HOMOTOPY QUOTIENT AND THE BAUM—CONNES CONJECTURE

As we show in this section, the computation of the range of the trace on K-theory
is closely related to the use of the 3-manifold X, as a commutative model up to
homotopy of the noncommutative space T v;.

The main idea of the Baum—Connes conjecture is precisely the fact that noncommu-
tative spaces originating from “bad quotients” have good homotopy quotients that
can be used to compute geometrically invariants such as the analytic K-theory.
The group S(A, V') we are considering here is a particular case of a class of groups
of the form Z* %, Z, for some ¢ € SLy(Z). The corresponding (twisted) group
C*-algebras and their K-theory were analyzed in [24]. We wish to stress here the
relation between the noncommutative space and its model X, and the role of the
latter in the index computations.

5.1. K-theory of C*(S(A,V),5). We now compute explicitly the K-theory of the
twisted group C*-algebra of S(A, V). This can be done using the Pimsner—Voiculescu
six terms exact sequence.
Lemma 5.1. The K-theory groups of C*(S(A,V),5)) are of the form

| Ki(CH(S(AV),5)) 2 A& A/(1 — AJA.

Proof. By Proposition 4.4, we can identify C*(S(A, V), ) with the crossed product
C*(A,0) x V. Thus, we can apply the Pimsner—Voiculescu six terms exact sequence
for the actions of V = Z. We have

1—oax

Ko(.A) Ko(.A) —— Ko(.A X Z)

& |

Ki(A % Z) —— K1 (A) <" K, (A)
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where A = C*(A,0) and a, and (. denote, the action on Ky(A) and K;(A), re-
spectively, induced by the generator A. of the Z-action on A. We can identify
Ko(A) = A = K1(A). We then have 1 — a, =0 and 1 — 3, = 1 — A, so that we
obtain Ker(1 — ,) = Ker(1 — A.) = 0 and Coker(1 — ,) = A/(1 — A)A. O
We find in this way an abstract isomorphism of abelian groups

Ko(C*(S(A,V)),6) = HM(X,.,Z) =7?

Ki(C*(S(A,V)),6) = H®(X.,Z) =7>® Coker(l— A,).
This identification can be justified more naturally in terms of the Baum—Connes
conjecture, as we discuss in the following.

(5.2)

5.2. K-theory and the twist. The following result shows that the presence of the
twisting by & has no effect on the K-theory.

Lemma 5.2. There is an isomorphism
(5.3) Ki(C*(S(A,V),0)) = Ki(C*(S(A, V)

between the K-theory of the twisted group C*-algebra C*(S(A,V),5) and the K-
theory of the untwisted C*(S(A,V)).

Proof. The argument is similar to that used in [18], [19] and Corollary 2.2 of [13].
The cocycle & is real in the sense of Definition 1.12 of [13], being of the form
(4.8), with o of the exponential form o((n,m),(n’,m’)) = exp(—mif(mn' — nm')).
Thus, as in Corollary 1.13 of [13], the identification (5.3) follows using a homotopy
exp(—tmif(mn' —nm')), with ¢t € [0,1]. O

Notice in fact that for groups of the form I' = Z?2 %, Z, with ¢ € SLa(Z) all cocycles
o:I'xT'— U(1) are real in the above sense. This was observed already in [24].

Lemma 5.3. Let o € Z*(T,U(1)) be a cocycle. Then o is cohomologous to a real
cocycle, that is, to an element of Z*(T,U(1)) that is of the form exp(2miC) for
¢ € Z*T,R).

Proof. We can see it easily as in §2.2 of [18], by considering the exact sequence of
coefficient groups

1 -2 SR y) -1
and the long exact cohomology sequence
(5.4)

. — HYT,Z) — HA(T,R) “PE g2, (1) & BT, 2) S HY(D,R) — -
Since in our case, for I' = S(A, V), we have ET' = R? x R and BI' = X, we see that
H*(I',Z) = H*(X.,Z) = H|(X,Z) = Z & A/(1 — A)A

and

H3(,Z) = H3(X,) = Z.
We then see that, in the sequence (5.4) the map ¢, is injective so that § = 0. Thus,
all elements in H%(T',U(1)) come from H?(T,R) via the exponential map. d
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In fact, we do not need this general fact, as the cocycle we are using is already
constructed in the desired exponential form, but we stated it here for completeness.

5.3. Thom isomorphism, homotopy quotients and Baum—Connes. It is known
that the group S(A, V') satisfies the Baum-Connes conjecture (with coefficients). In
fact the group SLy(Z) is known to satisfy the Baum—Connes conjecture with coeffi-
cients, hence by [8] so does the group Z? x, Z with ¢, € SLa(Z).

This means that the Kasparov assembly map is an isomorphism, hence the K-theory
of the C*-algebra C*(S(A,V)) can be computed in terms of the geometric K-theory
of the homotopy quotient BT, the classifying space for proper actions (cf. [4]). This
relates directly the analytic K-theory of the C'*-algebra to the topological K-theory
of the 3-manifold X,

Lemma 5.4. The Kasparov assembly map for C*(S(A,V)) gives an isomorphism

- i KY(X) S Ko(C*(S(A, V)
i K9(X,) 5 Ky (CH(S(A, V).

Proof. In our case the space ET is the solvable Lie group S(R%,R) = R? x R and
the homotopy quotient I'\BT is the 3-manifold X, = S(A,V)\S(R?,R). This can
be identified with the mapping torus

Xe =T x[0,1)/((x,9),0) ~ (Ac(z,9),1).
For a mapping torus, the Thom isomorphism [10] gives the identification
(5.6) Kii1(C(X,)) = K;(C(T?) x4, 7).

Moreover, the C*-algebra C(T?) x A Z is identified with C*(A) x V by Fourier
transform, which identifies C(T?) = C*(A) for T? = R?/A. The algebra C*(A) x V
is then isomorphic to C*(S(A,V)), by the same argument of Proposition 4.4 in the
untwisted case. U

6. TWISTED INDEX THEOREM, K-THEORY, AND THE RANGE OF THE TRACE

As we have seen, the 2-cocycle & on I' = S(A,V), is of the form & = exp(27i(),
with ¢ € H*(T,R). Upon identifying H?(T',R) = H?(BT,R) = H?(X,,R), we can
identify the 2-cocycle ¢ with a closed 2-form w, on the 3-manifold X.. We denote
by &, its pullback to the universal covering X. = S(R? R). This is a I-invariant
2-form, v*w, = w,, which we previously interpreted as a magnetic field.

Lemma 6.1. The real 2-cocycle ¢ € H*(T',R) with & = exp(27i) is given by
1

6.1 Mk =

(6.1) R 7)) = g [ o

where w is the closed 2-form on T? = R?/A associated to the cocycle o on A, with
magnetic flux ng w =2mif(0' — )", and R C R? is the oriented parallelogram with
vertices

(6.2) {0, Af(n), A\, A + A (n)}.
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Proof. On X, the form &, is exact, hence we have a global magnetic potential y.
with @c = dx. and d(xe — 7*xe) = 0, or xXe — Y*Xe = d¢, as before, where the ¢,
recovers the cocycle 6 by the formula

Y o
(7,7 = exp(—¢,(v'x0)) = exp(/ Y Xe = Xe)-

zo
We know from Lemma 4.3 that the cocycle ¢ has the form &,((\ k), (n,r)) =
ou(\, AE(n)), for u = 0(6' — 0)~!, so that we have

I _ p\—1
k), ) = L8 Ak
that is, C((\, k), (n,7)) = £\, A¥(n)), where
AE(n)
(63 enAtm = 5= [ Vi

Here y is the magnetic potential on R? associated to the closed 2-form w with
/ w = 2mif(0 — )L
T2

Let then R denote the oriented parallelogram in R? with vertices as in (6.2). We
have

A 1 1 [AEm) - 1 [ -
(6.4) Gy RW—% ; (Uxx —x) — 27”/0 Uk X = X)-
Using the fact that £(n, A) = —£(A,n), this gives
1
— =2 .
s [ o= 200 ()

O

6.1. Spectral flow and odd Chern character. An element of K;(C(X,)) can be
viewed as the class [g] of g € Un(C(Xe)), which we can see as a differentiable map
g: Xe — GLy(C). We proceed as in [14] and we consider the associated 1-form

(6.5) B(g) = g~ 'dg € Q' (X, gln (C)).

The corresponding family of connections V,, = d + uf(g) on the trivial bundle
X, x CN determines a closed Chern—Simons form

(6.6) Chlg) == es(d,d + Bg / (L du V) du,

which gives the odd Chern character Ch(g). As shown in [14], this has an expression
as an odd differential form

(67 Chlg) = Y- (1) Gy T (B() ™).

k=0
One then has, see [14], that the pairing

(6.8) (D,lg]) = SF(D,g~"Dg)
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of an odd Fredholm module (H,D) with [g] € K; is given by the spectral flow
along D, = (1 —u)D + ug~'Dg. In the case where D = @ is the Dirac operator
of a compact spin manifold, this is computed by the Atiyah—Patodi-Singer index
formula [3]. In our case, this gives

-1 1 ~
(6.9) SE(@,97 99) = "G Jx A(X)Ch(g)-
6.2. Twisted index theorem. We need the twisted version of (6.9) above. Let
@ = @x. be the Dirac operator on X, and let d be its lift to the universal cover
X, = S(R?,R). We then consider the twisting @ ® V of the operator @ by the
hermitian connection V = d + in. on the trivial line bundle on XE, with 7. the
1-form giving the magnetic potential dn. = w, on X.
While the operator é is T-invariant, with I' = S(A, V'), the twisted operator é@ \Y
is only invariant under the projective action (I', &) of the magnetic translations R"
Consider then the 1-parameter family of operators D, = @u ® V, Where @u =
(1—uw)d+ug'dg, for [g] € K'(X,) and the associated operator D, = 8u + D, on
X, x [0,1], which we can extend to X, x R (cf. p.95 of [3]).

Theorem 6.2. The range of the trace on Ko(C*(S(A,V),d)) is given by

ﬁ/ fle“’EC’h(g),

€

where pg + KY(X.) — Ko(C*(S(A,V),5)) is the (twisted) Kasparov isomorphism,
l9] € KY(X,), and w, is the closed 2-form on X. associated to the cocycle &.

(6.10) [tr] (1 lg]) =

Proof. We let P* be the projections on the L2-kernel of DyDy and DyDy, respec-
tively, namely

DyPT =0 D;P” =0.

The P* have smooth kernels P£(z,y) and the (I, 5)-invariance of § ® V implies
that

e D PE (ya, yy)e' W) = PE(a,y),
which implies that P*(z,x) is [-invariant, for T' = S(A, V).
We proceed as in [1] and consider the von Neumann trace

tr(P%) = /X . trPE((x,t), (x,t)) dz dt,

where tr P%(z, z) is the pointwise trace. The L%-index of D, is given by
(6.11) Ind;2(D,) = tr(P1) — tr(P7).
We define P* by the smooth kernels

(6.12) PE(a,y) = / trPE((2, 1), (y,1)) dt.
Sl
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These satisfy tr(P*) = tr(P¥) by

/ trPE((x,t), (x,t)) dz dt :/ trPE(z, z)dz.
Xex St

€

The projections P* are in the von Neumann algebra (I, 5). After adding a compact
perturbation in C}(I', &) one obtains a well defined index (cf. [22], [27]),

(6.13) Ind(r 4)(Dy) = [P"] — [P7] € Ko(CX(T',5)).
The (twisted) Kasparov map u : K1(X,.) — Ko(C*(T,5)) is given by
(6.14) pslg] = Ind(p 5)(Dy)-

We obtain in this way that
Ind;2(Dy) = tr(PT) — tr(P~) = tr(Ind(r 5(Dy)).

Consider the heat kernel e_tDQ, where

D:(O Dg) with D2=<D9Dg 0 >

D, 0 0 D,D;
We have ,
tlim trg(e”P7) = tr(PT) — tr(P7)

and 5

Etrs(e_mz) = —trS(D26_tD2) = trs([De_tDQ,D]) = 0.
Thus , ,

tr(PT) —tr(P7) = tlim trg(e”P7) = %in(l) trg(e 'P7)
-1 . -1 .

- o /XEXSIACh(Vu) = G /XEAe Ch(g),

where Ch(V,,) = tr(Bel™9)) for g = g~'dg, with [4 Ch(V,) = Ch(g). O

6.3. Range of the trace. Using the twisted index theorem we can then compute
explicitly the range of the trace on Ko(C*(S(A,V),5)). We obtain the following
result.

Proposition 6.3. The range of the trace on Ko(C*(S(A,V),d)) is
(6.15) [tr](Ko(C*(S(A,V),5))) = Z + Z0(0' —6)~ L.

Proof. Since X, is a 3-manifold, when we expand the terms in the cohomological

formula (6.10) as
A 1

1
evs = 1+w6+§w62+~'
1 1
Chlg) = =g Tr(B(9) + 5 Tr(F(9) + -+,
only the terms of the wedge product A(X,)e“Ch(g) that give differential forms of
order up to 3 can contribute nontrivially.
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Thus, we obtain the terms

(6.16) o . (T At 560
The term
1 1 1
(22 /X QTf(ﬂ(g)g) =@ Jx Ch(g)

is the term one would find in the untwisted case, and it gives the untwisted odd
Chern character.
For the remaining term
1 -1
(2m)2 6

o

€

the range as [g] varies in K7 (C(X,)) is given by ZR(w), where R(w) is the range of
the linear form

1 -1

T, : 9] — WF /Xe Tr(6(g)) A we € R.

First notice that, with the notation Ch(g) = - Tr(3(g)), we have

/ Chi(g) = 2mideg(g|c) € 2miZ,
C

for C' € H1(X,,Z). Thus, we obtain

1

h PD Z
i |, Cmo) A PDO) €,

for PD(C) € H*(X.,7Z) — H?*(X.,R). Now consider the explicit description of the
2-form w, given in Lemma 6.1 above. We can write

we = 2mif(6" — )@,
where @, € H?(X,,7Z) is given by
Be(v,w) = AL(n) A A,

for v = ((0,0), (A, k)) and w = ((0,0), (n,7)). Thus, we see that we can write

1 _ _i I -1 —
e Jx Chi(g9) Nwe = 2711'9(9 0) . Chi(g) N @e
1
=——00 —-0)"1 / Chi(g) = 0(0' — )" deg(glpp(a.)) € 0(0' —0) ' Z.
271 PD(&c)

O
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7. ISOSPECTRAL DEFORMATIONS AND SPECTRAL TRIPLES

In noncommutative geometry, the analog of Riemannian structures is provided by
the formalism of spectral triples [11]. A spectral triple on a noncommutative space
A (where A is a C*-algebra) consists of the data (A, H, D) of a dense involutive
subalgebra A, a representation 7 : A — B(H) as bounded operators on a Hilbert
space ‘H and a self-adjoint operator D on H, with compact resolvent, satisfying the
compatibility condition

(7.1) D, 7(a)] € B(H), Va € Ax.

In particular, in the commutative case, to a Riemannian spin-manifold X one can
associate a canonical spectral triple (C*°(X), L?(X, S),d). A reconstruction theorem
[25] shows that a spectral triple where the algebra is abelian, which satisfies a list
of axioms, is the canonical spectral triple of a Riemannian spin-manifold.

In our case, we have a spectral triple associated to the 3-manifold X., where the
spinor bundle is a complex 2-plane bundle and the Dirac operator can be written in
the form

(7.2) Ix. = c(dt)% + c(etda:)% + c(e_tdy)(%,
where {dt,e'dx,e"tdy} is the basis of the cotangent bundle of S(R?,R,¢) = R? xR
and ¢(w) denotes Clifford multiplication by the 1-form w.

More explicitly, (7.2) is of the form

a a 8 Q e_ti_ieti
7.3 = —ootel=—o+el—0y = ot % oz |
I il STL SR

where o;, for i =0, 1,2, are the Pauli matrices.
Our purpose here is to show that this commutative spectral triple can be deformed
isospectrally to a spectral triple for the noncommutative tori T 4 ;.

7.1. The Connes—Landi isospectral deformations. We consider the problem
from the point of view of the Connes-Landi isospectral deformations [12]. This pro-
vides a general procedure to deform commutative spectral triples to noncommutative
ones isospectrally, for manifolds with isometric torus actions.

We recall briefly the construction of isospectral deformations, in a version that is
best adapted to our setting.

Suppose given a spectral triple (C*(X), L?(X, S), Jx) associated to a compact Rie-
mannian spin-manifold X. Assume that the manifold X has an action of a torus 72
by isometries, 72 C Isom(X). Then one considers a noncommutative algebra Ay,
depending on a real parameter # € R, which is obtained by decomposing the oper-
ators 7(f) € B(H), for f € C*®(X) and H = L?(X, S) according to their weighted
components

(7'4) 7T(f) = Z ﬂ-(fn,m)v

n,meZ
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where

(7.5) ar(m(fom)) = 7T 1 (f ), VT = (1,70) € T?,
for

(7.6) a(T) =U(T)TU(7)*, VT € B(H),Vr e T?,

with U(7) the unitary transformations implementing the 7'2-action on H = L?(X, S)
by
U(r)p(a) = d(r7 ().

Let L and Lo denote the infinitesimal generators of the action

(7.7) U(r) = exp(2mitL) = exp(2mi(11L1 + 72L2)).
We consider then the subalgebra of B(H) generated by the operators of the form
(7.8) Tee(f) = Z W(fn,m)e_%i(glnL2+£2le)a

where &1 and & are two real parameters.

Lemma 7.1. For homogeneous operators w(f)n m define the deformed product
(7.9) Frm *e1.6 Py = e‘2m(§1m+52mk>fn,mhkﬂn.

The product of operators of the form (7.8) satisfies

ey o (Frm)Ter 6 (M) = ey 60 (Frm *61.65 Per)-

Proof. One checks directly that the operator product 7(fe, ¢,)m(he, ¢,) is given in
components by

W(fn,m) %61 62 7T(hk77«) _ 6_2m(£1nr+§2mk)W(fn,m)ﬂ'(hk,r)~
O

One can recognize in (7.9) the convolution product of the twisted group C*-algebra
C*(Z?, ) with the cocycle

o((n,m), (k,r)) = exp(=2mi(§1nr + Eamk)).

As shown in [12], the operators (7.8) have bounded commutators with the Dirac
operator. In fact, since T? acts by isometries, the Dirac operator satisfies

U(r)DU(7)* = D,
i.e. it is of bidegree (0,0). Thus, one sees that the commutators
(D, ey, (f)] = me[D,Tr(f)mme—?ﬂ(&an+§2mL1)]
S D () e 2T L)

which is still a bounded operator on H.

We consider in particular the case where & = u/2 = —&;. We denote by A, =
C>(X), the deformed algebra, that is, the algebra generated by the (7.8). The
deformed spectral triple is given by the data (A, L?(X,S), Jx).
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7.2. Noncommutative solvmanifolds. We apply the procedure described above
to obtain an isospectral deformation of the solvmanifold X, which corresponds to
deforming the fiber tori to noncommutative tori.

The canonical spectral triple for X, consists of the data (C*(X,), L?(X.,S),dx.),
with the Dirac operator of the form (7.2).

There is a torus action on X, by isometries, which consists of translations along the
fibers of the fibration 7% — X. — S'. This acts on spinors by unitaries

(7.10) U(m)p((@,y), 1) = v((z + ',y + e '), 0),

for 7 € T? = R?/A and (z,y) € T? = R?/A;, the fiber over t € S!, with
(€t>\1, e_t>\2) € Ay, for ()\1, )\2) € A.
The action clearly preserves the metric dt?+ e‘dx?+e~dy? hence the Dirac operator
(7.3) satisfies

U(r)ox U(r)" = 0x..
The infinitesimal generators of the action . are the operators 2wL = eta%, 2Ly =
e_ta% with U(7) = exp(2mi(m1 L1 + 72L2)).
We introduce the following notation. We denote by E, for A € A, the function
(7.11) Ex((z,y),t) := 2O-t@n)A),
where, as above, ©_(x,y) = (e"'z,ely) and ((a,b),\) = a1 +bla. We also denote
by Zu(\, L1, Ly) the operator

(7.12) Eu(A, Ly, Lo) :=exp (2'71' AN (Ll,L2)> ,

v
Gl
acting on H = L?(X,, S).

Proposition 7.2. The deformed algebra C*°(X,),, for u € R, is the C*-subalgebra
of B(H), with H = L*(X., S) generated by the operators of the form

(7.13) mu(f) = ExEu(A, L1, La).
Proof. The induced action « : T? — Aut(C°°(X,)) defined by
m(ar(f) =U(m)x(f)U(T)"

is of the form a,(f)((x,y),t) = f((x + e'm1,y + e 1), t).
Thus, a homogeneous operator of bidegree A = (A1, A2) is in this case a function
firl(z,y),t) with the property that

(7.14) ar(f)((w,y),t) = TR gy (), 1),

This condition is satisfied by functions of the form

(7.15) ((z,y),t) = exp(2mi(©_¢(2,9), \)) = exp(2mi(e A1z + e Aay)).
Under the change of variables

(7.16) 72— A, (n,m)— A= (n+mb,n+mb),

the condition (7.14) corresponds to elements f, ,, of bidegree (n,m) for the corre-
sponding action of 72 = R?/Z2. Thus, using this change of coordinates to pass in
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(7.8) from Z? to A, we can see that elements of the deformed algebra of the form
(7.8) correspond to elements of the form

> axExEu() Ly, Ly),
A

for &, = u/2 = —¢&;. O
Set 2up = u/(0" — ). The operators (7.13) act on spinors by
(mu(F)) (@, 9), 1) = Ex((@,y), )(U((=A2ug, Arug)))((2,y), 1)
= MO Ny (2 — el Agug,y + e Arug), t).
Proposition 7.3. The operators
(7.17) 7(RS) == ExZu()\, L1, Lo)

define a representation on H = L%*(X.,S) of the noncommutative torus C*(A,o),
with the cocycle
o(A\,n) = exp(2miug A A n).

Proof. Notice that we have

U(=Xoug, Mug)e?™HO—t@y)m) — 2mitg M 2w~ (.y)m)
Thus, we obtain

627”'(9—t(Jtay))\)gu()\7 Ly, L2)62m<®—t(z’y)’">5u(n,Ll, Ly) =

(20 M 2O 1 (2:9) N) 27O~ (e E (N Ly, Lo)Z (17, L1, L) =
(2T M 2RO (@) NZ (X 4 Ly, Lo).
This shows that the operators 7(RS) satisfy the product rule
m(R)w(Ry) = o (A, m)m(R31,),

for o(\,n) = exp(2miug AAn), which is the product rule of the twisted group algebra
C*(A, o). O

We obtain in this way an isospectral noncommutative geometry given by the finitely
summable spectral triple

(7.18) (C®(Xe)u, L*(Xe, 5), Ix.)-

Corollary 7.4. In the case w = 0 and uw = ', the isospectral deformation (7.18)
defines a finitely summable spectral triple for the noncommutative tori Ty ;, with
dense subalgebra C(A, o).

Proof. This is a direct consequence of Proposition 7.3 and the identifications of
Corollary 4.2 of the Ty ; with twisted group C*-algebras C*(A, o). O

The representation (7.17) of C*(A,0) extends to an action of C*(S(A,V),d), as
follows. Let U(kloge) denote the unitary operator

(7.19) (U(klog )¥)((z,y),t) = (A (z,y),t) = ¥((z,y),t — kloge).
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Proposition 7.5. The operators
(7.20) (R 1)) = ExZu(X, L1, Ly) U(kloge)
define a representation on H = L?(X.,S) of the twisted group C*-algebra C*(A x.
V,a), for the cocycle
(A k), (n,r)) = exp (Zwi%)\ A Af(n)) .

Proof. We have the identities

(U(kloge)Ey) = Ear@m),

ZuA L, L) By = TN E ),

EnEarm) = Exvarm

U(klog €)=y (n, L1, La)U(rloge) = Zu(A¥(n), L1, Lo)U((k 4 7) loge).
These combine to give the composition rule

E\Eu(N, Ly, Le)U(klog €) Ep=y(n, L1, Lo)U(rloge) =
a((n,7), (A &) Exy ab (i Zu(A + Ag(n), Ly, L2)U((k + 1) log e).
(]

7.3. Unitary equivalences. We begin by reformulating the data described above
in an equivalent form by expanding in Fourier modes along the fiber tori as in [2].
Recall that the fiber over t € [0,loge) is given by the torus T? = R%/A;, with
Ay = O4(A). Thus, if we denote by (,y), as above, the coordinates in T7?, we can
write these as (x,y) = ©(a,b), with (a,b) € T? = R?/A, the reference torus.

This means writing the spinors ¥ ((z,y),t) in the form

(721) Z w}\ e27’ri<(a,b),)\> — Z w}\ 627ri<®_t(z,y),)\) — Z w}\E)\'
A A A

The Dirac operator acts on E) as

@XEE)\ = (%O’o + 27Ti)x10’1 + 27rz')\2)E>\.

The operators m(R7) act as

(7.22) EyZu(n, L1, Lo)Ey = 2™ E, .
The commutators are bounded operators of the form
(7.23) [@x., m(R))] = (mo1 + n2o2) Ry

Thus, passing to Fourier modes in the fiber directions gives a unitarily equivalent
spectral triple for the noncommutative tori T ;, with

Px. b = (Z00 + 2midio + 2mida02) Py

(7.24)
T(Ry)UA = o (n, ) Yagy-
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We then consider a second unitary equivalence, which, as in [2] adjusts for the
possible signs of A1 and Ay. Namely, we define the following unitary operator on the
Hilbert space of the spinors v,. We set

(7.25) Uy = orty,

where o) is a product of Pauli matrices, where o;, for i = 1, 2 appears in the product
if and only if A\; < 0. Then the Dirac operator transforms to the unitarily equivalent
operator

- 0
(7.26) UIx U™ = sign(N(/\))(an + 2mi|A1|o1 + 27i|Ag|o2).
The action of the R} transform correspondingly to the operators
(7.27) UTR(R7UT 2 oxhx — OxinPasy-

We then perform the other unitary transformation used in [2]. To this purpose, let
us fix a choice of a fundamental domain Fy, for the action of V' on the lattice A. By
this choice of a fundamental domain, we can write uniquely an element A € A in the
form A\ = A¥(u), for a p € Fyy and a k € Z.

For A = A¥(u) # 0, consider then the time shift

|N1\

7.28 U o) (t) = oA (t — log ——+75 ),
so that we have
(7.29) by = U(oahy) = TAY|N(N)|1/2 (sign (A1 )k sign(Ao )e—F) -

One obtains in this way a unitarily equivalent spectral triple for Tp ;, with Dirac
operator

5 500 Q)

(7.30) I=9 "+ > 9,
ne(AN{0})/V

where
()~ o
P ar =
sign(N () |N (w)[V2 (IN ()|~ 2 oo + 2miek oy + 2mie*oy) Q’Z)AE(N)
while the action of the R7 is by

(7.31)

ﬁ(RZ) l[;A = 1/;)\—1-77-
As in [2], one can write the operator é(u) as a product

A
@ = D,B,,

with
Dyt ar(y = sign(N (1) [N (1) M2 g

(732) ~ _1/2 o .k .k 7
Buthar(y = (|N(w)] 200 + 2miePoy + 2mie o) YAk (u)-
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In the following, we relate the Dirac operator @x., its unitarily equivalent operators
discussed here above, and the decomposition (7.32) to known differential operators
on noncommutative tori.

7.4. Differential operators on noncommutative tori. Notice that the action
on R? of the 1-paramater subgroup of SLa(R)

et 0
O = <0 e_t>

has fixed point (0,0), with stable manifold the axis (0,y) and unstable manifold the
axis (r,0). On the standard torus R?/Z? with coordinates (si,ss) with (z,y) =
(81 + 520, 81 + s20') these two directions define the two Kronecker foliations s1 + s26
and s1 + s90” with conjugate slopes 6 and 6’. The points of the lattice A determine
on these two foliations the points of the pseudolattices Z + Z0 and Z + Z60’, which
define the equivalence relation on the space of leaves of the two Kronecker foliations,
defining as quotients the noncommutative tori Ty ;, ¢ = 1,2. The action of ©; is
expanding along the line Ly = {s1 + s20} and contracting along Lgr = {s1 + s20'}
and flows the other points of R? along hyperbola with asymptotes Ly and Lyg.

Thus, the operators eta% and e_ta% correspond to derivations along the leaf direction

of these two transverse Kronecker foliations. The factors e! and et are the normal-
ization factors that account for the rescaling of the transverse measure due to the ac-
tion of the flow ©y. In fact, consider for instance a small transversal of length ¢ for the
Kronecker foliation Ly, given by the interval Ty = {(z,y) :x =1, —¢/2 <y < {/2}.
The flow ©; maps it to the transversal O4(T;) = {(z = el,y) : —e U/2 < y <
e~t0/2} of length e~%¢. Thus, the differentiation a% in the leaf direction of Ly is
weighted by the factor e’ that normalizes the length of the transversal and corrects
for the scaling of the transverse measure.

Consider then the terms 27wiA101 and 2wiAo09 in the operator
5 0 . .
Dx. U\ — (EJO + 2miA101 + 2WiAg09) Py,
that we obtained after passing to Fourier modes on the fiber tori 72. These terms

correspond, respectively, to the leafwise derivations eta% and e_ta%. These can be

expressed equivalently in terms of the operators
59 : T;Z}n,m — (n + m@) wn,my and 59’ : wn,m = (n + me,) wn,ma

so that the sum Ajo1 4+ Ay09 acts as the operator

(0 Sy —id

This gives the Dirac operator of a spectral triple on the noncommutative tori Tx ;
with
R?,kd)n,m = O'((T‘, k)a (n7 m))¢(n,m)+(r,k)
and
i RO,] = 0 (r+ k0" —i(r+k0)\ oo
660 Tkl =\ (r + k0") 4+ i(r + k0) 0 ok
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In the particular case where §’ = —@, this agrees with the spectral triple for the
first order signature operator on the noncommutative torus considered, for instance,
n [21]. The construction of [21] can be interpretaed as obtained by using the two
transverse Kronecker foliations Ly and L_y and the associated leafwise derivations
0/0x and 0/0y.

We can cogsider here the same kind of unitary transformations that we described
earlier for @dx,, applied to the operator Dy ¢ of (7.33). Let us denote by Dg ¢ the
restriction of Dy ¢ to the complement of the zero modes 1y (i.e. A = 0). We have,
as in (7.30),

(734) @079/70 — Z @579/7
ne(AN{0})/V
with
Egﬂ/ Yk ) = (A1o1 + A202) Y Ak (1)

After the unitary transformation UU with U as in (7.25) and U as in (7.29), we
obtain a unitarily equivalent operator

(735) Dl g = Sen(Nw) INWI? (o1 + € ¥02) dan .
As before, we factor this as a product of the operators

(7.36) Dy = Dy By,

with

Dly b ar ) = sign(N (1)) [N ()2 ar )

(7.37) - . e -
By 711,45(“) = ("1 + ¢ 02)71),45(“)-

8. SHIMIZU L-FUNCTION AND LORENTZIAN GEOMETRY

In this section we describe another way of relating the Shimizu L-function to the
geometry of noncommutative tori with real multiplication, by regarding the norms
N(X), for A € A, as defining the momenta of a Lorentzian rather than Euclidean
Dirac operator.

Instead of working with positive inner product spaces, as in the case of Euclidean
spectral triples, the Galois involution of the real quadratic field defines a natural
choice of a “Krein involution” and the norm correspondingly defines an indefinite
quadratic form. One formulates in this way a notion of spectral triple over a real
quadratic field and with Lorentzian signature, using the relation between indefinite
inner product spaces and the associated real Hilbert spaces. The main point that
requires care is the fact that the Lorentzian Dirac operator has a noncompact group
of symmetries, in our case given by the units of the real quadratic field, hence it fails
to have compact resolvent due to the presence of infinite multiplicities in the eigen-
values. We show that the multiplicities can be resolved by transforming the triple
via a Krein isometry that is an unbounded self-adjoint operator in the associated
real Hilbert space and defines a finitely summable associated Dirac operator in the
FEuclidean signature.
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As above, we let A be the lattice in R? associated to a lattice L C K in a real
quadratic field K = Q(v/d) by the embeddings ¢; : K — R,

(8.1) A={NER?|X= (A, \2) = (11(£),2(0)), £ € L}.

We denote, as above, by V the group V = €% of units preserving A. We denote the
action as above with A — A¥(\) = (¥Ag, e F\o).

For x € K, we denote by 2’ = ¢(x) the image under the Galois involution of K. For
A = (A,N\2) € A, we have Ay = ¢(\1). The norm is given by N(A) = Aj)e, and
N(e) =€ =1.

We consider the quadratic form N(\) = A\ Ao = (n+m#)(n+mé’) to be the analog
of the wave operator O = p(% — p%.

Its Dirac factorization into linear first order operator is obtained by considering a
linear operator of the form

(0 DfY [0 X\
- (3 %)= (3 %)

whose square is Di = 0O,, with

(8.3) O, = <N (()” N‘()A))

We assemble these modes to define an operator D acting on H = £2(A) @ £2(A) by
Dey + = Dyey +. This satisfies Dy = —yD with respect to the Z/2Z-grading

)

Consider the algebra C*(A, o) of the noncommutative torus acting diagonally on H.
The operator D has bounded commutators with the elements of the dense subalgebra
C(A, o) since we have

(84) [Da Rg]e)\,:l: = U()H 77) N+ ent+r+>
where we used the notation 1y = n; and n_ = ns.
However, the other properties of D differ significantly from what one usually postu-
lates for Dirac operators of spectral triples.
First of all, notice that D is not self-adjoint. In fact, it is invariant with respect to a
different involution, defined for operators with coefficients in the real quadratic field
K, namely

D = (D),
where D' = (D)) denotes the transpose and ¢(D) denotes the effect of the Galois
involution ¢ : # — 2’ of K applied to the coefficients of D. In this arithmetic context,
it is natural to require this property instead of self-adjointness.
A more serious problem, however, comes from the fact that the operator D has
infinite multiplicities, hence it is very far from having the compact resolvent property
of spectral triple. This is a typical problem one encounters in trying to extend the
formalism of spectral triples from the Euclidean to the Lorentzian context, because
of the presence of non-compact symmetry groups for Lorentzian manifold. Here the
non-compact symmetry group is given by the units in V = €Z.
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8.1. Arithmetic Krein spaces. It is well known that, when one replaces Euclidean
geometry by Lorentzian geometry, the notion of Hilbert space is replaced by the
notion of a Krein space (cf. e.g. [7]). The version we consider here is slightly different
from the usual one, since we want to be able to work over the real quadratic field K
instead of passing directly to complex numbers.

Definition 8.1. Let ¢ : K — K denote the Galois involution ¢ : © — x' of the real
quadratic field. Let V be a K-vector space. We say that a map T : V — V is c-linear
if it satisfies T'(av + bw) = ¢(a)T (v) + ¢(b)T (w).

A Lorentzian pairing on a K-vector space V is a non-degenerate K-valued pairing

(,):VxV-—-K
which is c-linear in the first variable and linear in the second.

We can then introduce the analog of the notion of a Krein space, in this arithmetic
context.

Definition 8.2. A Krein space over a real quadratic field K (or K-Krein space)
is a K-vector space V endowed with a Lorentzian pairing (-,-) as in Definition 8.1,
and a c-linear involution K : V — V, such that the pairing (k-,-) has the following
properties:

(1) (’{‘7 ) = C(‘7 K')

(2) For allv # 0 in YV, the elements (kv,v) € K are totally positive.
When properties (1) and (2) of Definition 8.2 holds, we say that (x-,-) defines a

positive definite inner product. We have a corresponding notion of Krein adjoint as
follows.

Definition 8.3. Given a K-linear operator T on a K-Krein space V, the Krein
adjiont T is the adjoint in the Lorentzian pairing (-,-),

(8.5) (v, Tw) = (TTv,w).

The c-linear involution k of Definition 8.2 corresponds to a Wick rotation from
Lorentzian to Euclidean signature. The Krein adjoint satisfies TT = xT*k, where
T* is the adjoint in the inner product (-,-) = (k-, ).

Given a K-Krein space V, there are two naturally associated real Hilbert spaces,
obtained by considering the real vector spaces

(8.6) Vri =V ®, xR,

obtained by tensoring V with R using either one of the two embeddings ¢; : K — R
of the real quadratic field.

Lemma 8.4. The pairing
1 1
(8.7) (v,w) = Sh ((kv,w) + (v, Kw)) = 2t ((kv,w) + (v, Kw))

induced on Vg ; by the Lorentzian pairing (-,-) on V defines a real valued positive
definite inner product.
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Proof. We know that (v, kw) = ¢(kv,w). Thus, we have

(v,wy = % (t1(kv,w) + 12(kv, w)) .

We can extend this pairing by R-linearity to define a bilinear form on Vg ;. By the
assumption that for v # 0 the (kv,v) are totally positive elements of K we obtain
that (8.7) defines a positive-definite inner product. O

in the following, we still denote by Vg ; the Hilbert space completion obtained in
this way.

8.2. Lorentzian spectral triples over real quadratic fields. It is not uncom-
mon to make use of Krein spaces to extend the formalism of spectral triples to
Lorentzian geometry, see e.g. [28]. Here we follow a similar viewpoint, adapted to
the arithmetic setting of real quadratic fields.
For a K-linear operator T" acting on a K-Krein space V, we define M;(T") > —o0, for
1=1,2, as
(8.8) M;(T) := inf ;(Tv,Tv).

(v,v)=1
We introduce the following preliminary notion of a K-triple, which we then refine
by additional properties providing the analog of a spectral triple.

Definition 8.5. A Krein K-triple consists of data (A,V, D) with the following prop-
erties.
(1) A is an involutive algebra over the real quadratic field K.
(2) V is a K-Krein space with non-degenerate K-bilinear form (-,-).
(3) The algebra A acts on V wvia a representation m : A — Endg(V), with the
involution of A realized by the Krein adjoint 7(a*) = m(a)t.
(4) The operators w(a), for a € A, satisfy
(8.9) M;(a) > —oo.
(5) The operator D is a densely defined K-linear operator on V, which is Krein-
self-adjoint , DT =D.
(6) The commutators Cq := [D, a] satisfy

(8.10) M;(Cy) > —o0, Va € A.
We then define Lorentzian K-spectral triples in the following way.

Definition 8.6. A Krein K-triple (A,V,D) as in Definition 8.5 is a finitely sum-
mable Lorentzian K-spectral triple if the following holds.
(1) There exists a densely defined K-linear operator U : V — V with (Uv,Uv) =
(v,v), for all v € Dom(U) and Ut = U™, with the property that
(8.11) U'DU = D.
(2) The commutators Coy = [Dy,my(a)], with my(a) = Uln(a)U, satisfy the
condition

(8.12) M;(Cou) > —00, Vae A
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(3) The operator U is an unbounded self-adjoint operator, U = U* on the asso-
ciated real Hilbert space Vg ; with the inner product (-,-) of (8.7).
(4) The triple (A, V, D) is p-summable for p € R% if

(8.13) Z ‘(Uen, |D2|Uen>‘_s/2 <oo, Vs>p,

where e, is an orthonormal basis for the complement of the zero modes of
the operator |D?| in the real Hilbert space Vg ;.

Notice that in Krein spaces isometries are not necessarily bounded operators (see
[7] §VI), so the U is only densely defined in general. The definition given here is
different from the notions of Lorentzian spectral triples currently developed in the
literature. The differences stem mainly from our need to work over a finite extension
of Q instead of C and to resolve the infinite multiplicity of the eigenvalues. We also
require the weaker property (8.9), (8.10) and (8.12), instead of requiring continuity
in the operator norm in the associted Hilbert space. These conditions will become
more transparent in our main example below.

8.3. Arithmetic twisted group algebras. We consider the K-vector space Vj
spanned by the basis elements ey with A € A, endowed with the pairing

(8.14) (v,w) ==Y e(ar)ba,
A
for v=7>",ayex and w =}, byey, and with ¢ : x — 2’ the Galois involution of K.

Lemma 8.7. The space V5 with the pairing (8.14) is a K-Krein space.

Proof. Clearly the pairing (8.14) is a Lorentzian pairing in the sense of Definition
8.1. Let k : Vo — VA be given by the Galois involution

k(v) = ZC(CL)\)G)\-
A
Then the pairing (v, w) = (kv,w) = ¢(v, kw) is a positive definite inner product, as
in Definition 8.2. In fact, we have

t1(v,v) = ZLl(ai) >0, wv,v)= ZLQ(CL%\) > 0.

A A

We consider on V) the action of the group ring K[A], given by Rye, = exiy.
Lemma 8.8. The operators Ry acting on Va satisfy
MZ(R)\) > —00.

Moreover, the operators Ry define bounded operators in the associated real Hilbert
spaces VAR = VA ®,,x) R.

Proof. The operators Ry are Krein isometries, and (R)v, Ryv) = (v,v) implies that
M;(Ry) = 1. The operators Ry act by e, — exyy on the associated Hilbert spaces,
hence they define bounded (unitary) operators. U
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Now we want to introduce, in this setting of K-Krein spaces, an analog of the twisted
group ring C(A, o) (the noncommutative torus) we have been working with in the
complex case.

Lemma 8.9. Suppose given w € K* with N(w) = ww’ = 1. Then the expression
(8.15) w(\n) = w(mm)A(T,k)’

for X\ = (n+mb,n+mb’) and n = (r + kb,r + k'), defines a K*-valued group
2-cocycle o on A.

Proof. The argument is the same as in the complex case. It suffices to show that
the cocycle condition holds. ([l

Definition 8.10. The twisted group ring K(A, o) is the unital involutive K-algebra
generated by elements RS with the product

(8.16) RYRY = w(\, )RS, = w™m™ R RE,

for X = (n+mb,n+mb’) andn = (r+kb,r+kb’), and the involution (RY)* = RZ,.
The twisted group ring K(A, o) also acts on V, by

(8.17) RY e, = w(n, \)exty-

Lemma 8.11. The operators RY, acting as in (8.17), satisfy M;(RY) > —oo.

Proof. The action (8.17) preserves the Lorentzian pairing (-,-) on V, since

(R)\wem R)\weC) = C(w(na )\))W(g, )‘)517,C = N(w(na )\))577,C = (6777 eC)7
since N(w(n,A)) = 1. The condition (R¥v, R¥v) = (v,v) implies M;(RY) =1. O
However, notice that, while the action of K[A] extends to an action by bounded

operators on the associated real Hilbert spaces Vk ®,, ) R, the induced action on
Vg of the twisted group ring K(A, w) is by the unbounded operators

(8.18) RY En,+ = Ag7k)A(n’m) Ex+n,+»
with

_(uw) O
(8.19) A, = < 0 L2(w)> € SLy(R).

As in the complex case, we can also consider the group ring K[S(A, V)] for S(A, V) =
A x V. The cocycle (8.15) extends to a cocycle on the cross product by setting

(820) 7%(()\, k’)’ (77’ 7")) = w()\’ A]:(n)) — w(n,m)/\(u,v)go?’
for A = (n+mb,n+mb’) and n = (u+ vh,u+ v0"), with n,m,u,v € Z.

Definition 8.12. The twisted group ring K(S(A,V), @) is the unitary involutive
K-algebra with generators RS satisfying

R)\ﬁ,kRZr =w((\ k), (n, T))R?+A§(n),k+r’

with the involution (RY,)* = R?A;’“(A),—k:'
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8.4. Lorentzian Dirac operator. On the K-Krein space VA @ VA we consider the
densely defined K-linear operator

0 D 0 ¢
(8.21) Dgey+ = Dgpex+ = <DA_ OA> et = <C(£) O> ex+

where we write A € A as A = (¢1(¢),12(¢)) with £ € L C K, as in (8.1).
The operator Dk of (8.21) induces on the real Hilbert space Vg ; ® Vg ; the R-linear
operators

(0 N (0 X
(8.22) DA—<)\2 0> and c(DA)—<)\1 O)’

respectively. This recovers the Lorentzian Dirac operator described in (8.2) above.

Lemma 8.13. The data (K(A, @), VA @& V2, D) define a Krein K-triple in the sense
of Definition 8.5.

Proof. Properties (1)—(4) of Definition 8.5 follow from Lemma 8.7, Lemma 8.11,
and the fact that the Krein adjoint (R¥)! = R®, = (RY)~!. Property (5) follows
directly from (8.21), since

o= (o) )= (0 %) o

We then need to prove (6), namely that the commutators [Dg, RY] satisfy
M;([Dxk, RY]) > —oc.
We have

w _ 0 M+m)—m
[Dx, RY]en+ = w(n, \) <(>\2 + ) — o 0 Exfry, £+
Thus, we have
([P, RY v, [Dk, RY|v) = N(A)(v,v),

from which the result follows. O

Suppose given a choice of a fundamental domain Fy for the action of V = €% on A.

Let p(A\) € Z denote the unique integer such that A = AP (n), with p € Fy.
Consider the K-linear operator on Vj @ Vy defined by

5 T o eP(N) 0
(8 3) 66)\,:|: T O 6—p(>\) 6)‘7:|:'

Consider also the involution J : V — V defined by setting
Jex+ = e+

where J(A\) = A7F(u) for A = A¥(u) with p € Fy and k € Z. This satisfies J? = 1
and JT = J.
We set U, = T.J, with

€~ 0
(8.24) Ueer+ = ( 0 Ep()\)> €I+
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We now show that the data of Lemma 8.13 satisfy the properties a Lorentzian K-
spectral triple.

Proposition 8.14. The data (K(A,w), VA ® Vi, Dx) define a Lorentzian K-spectral
triple, as in Definition 8.6.

Proof. The T, are Krein isometries, since
(Teenx, Teers) = N(e”V)(enx,ers) = (exs, ers).

They satisfy TET =T.-1 = Te_l. Thus we have UET = JTTET = JTG_1 = UE_I. This is
also a Krein isometry since both T, and J are, with Dom(U,) = Dom(7%), since J is
bounded.

The operator U, is a symmetry of the Dirac operator, namely we have

(8.25) Dx, == UI'DgU, = Dx.
In fact, we have
0 e 2PN\
(8.26) TiDxTeer+ = <€2 o)y, 0 e

Since we have \ = A?

(A)(

) with p € Fy, we can write the above equivalently as

—p(A)
i _ 0 e PV
T!DkTeeyn+ = <ep(A)u2 0 > Ex+-

Thus, we have

e—P(N) Lo 0

0 A
= <>\2 01> ex+ = Dkey +.

This proves property (1) of Definition 8.6.
(2) follows from Lemma 8.13 and the fact that U, is a Krein isometry, since

(UeT [DK’ R)\W]UE’U? UeT [DK’ R)\W]UEU) = ([DKv R)\W]UEU, [DKv R)\W]UEU)

p(N)
JITIDKT. Jey v = ( _ 0 ‘ M1> ex+

= NN (U, Uv) = N(A)(v,0).

(3) The adjoint U} in the associated Hilbert space inner product (-, -) of (8.7) satisfies
Ur = U, since

Urers = (kUlK)er+ = c(Ul)ey +

_ (™) 0 CfePN g -
B 0 c(e_p(’\)) CIN.E = 0 P ey, = Ueex +.

Consider then the operator |DZ| acting on the associated real Hilbert space by

|DH2(|€A,i = ('N(())\H |N(())\)|> e\ +-
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We restrict |D]12<| to the orthogonal complement of the zero modes, ¢.e. on the span
of the ey + with A # 0. We then obtain

(827) Y [(Ueer s, [DEUcer )|~/ = Y (20 4 e 20) =2 N () =572,
AA£0 AA£0
This can be written equivalently as
(8.28) DS e N N (),
ke, pe(A~{0})/V

using the unique decomposition A = A’:(,u), for k € Z and pu € Fy, associated to
the choice of the fundamental domain. Thus, we see that the finite summability
condition holds. O

Definition 8.15. The eta function of a Lorentzian K-spectral triple is the function

(8.29) np(s) =Y _sign((Uen, D*Uey)) [(Uen, |D2|Uen>|_s/2,

where the sum is over an orthonormal basis for the complement of the zero modes
of |D?| in the Hilbert space Vg ;.

The following result relates the Shimizu L-function to the Lorentz K-spectral triple.
Corollary 8.16. The eta function for the Lorentz K-spectral triple of Proposition
8.14 is of the form

(8.30) oy (s) = L(A,V,8/2) Z(5/2),

where L(A,V, s) is the Shimizu L-function and Z(s/2) = 3y op(€2F + e 2k)=/2,

Proof. The argument is the same as in Proposition 8.14. We have

. —s/2
Z sign((Ueea +, DgUcers)) |(Ueer +, |Dg |Ucer 2| /
240

= sign(N(X))(e?W) 4 e 2PN) o2 N ()2

=D (EF T Y sign(N ()N (u)] 2.

ke pe(A~{0})/V
The result then follows since L(A,V,5) = >, c(aop),v Sign(N (1)) [N (1) 7. O

8.5. Eta function and 3-dimensional geometry. The zeta and eta functions we
obtained in Proposition 8.14 and Corollary 8.16 for the Lorentzian spectral geometry
are closely related to those one can obtain from the spectral geometry of the 3-
dimensional solvmanifold X, and the signature operator on the noncommutative
torus.

We have seen in §7.4 above that the Dirac operator @x,. on the 3-dimensional solv-
manifold X¢ can be related to the signature operator [Dg g of (7.33) on the non-
commutative torus Tp ;. Up to a unitary equivalence, we have written in (7.36)
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the operator [Dg ¢ in terms of the operators ;b;‘ﬁ, = D} By, with pn € (A~ {0})/V,
defined as in (7.37).

The zeta an eta functions for the operator lbg,@/ have the following form.

Lemma 8.17. The operator @9,9/ has an associated zeta function of the form

(8.31) Chy o (5) =2Ze(s/2) D IN)I™

ne(AN{0})/V

The eta function of ]2)979/ vanishes due to the symmetry in the spectrum. However,

.. ~+ ~ ..
the restriction ]Z)M, of Do to the subspace H of the positive modes of the operator
By has a nonvanishing eta function of the form

(s) = L(A, V,5/2)Z(5/2) = npy (s)-

0 ek — ek
By = <e‘k + i€k 0 )

Spec(By) = {&(e** + ¢ 2)1/2}

.32 -
(8.32) b,

Proof. The operator

has spectrum

which is symmetric around zero. Thus, for the zeta function we have

Cpop (= D INWIT22Y (@ e,

pe(AN{0})/V keZ

while the eta function vanishes.
One can restrict the spectral triple for the noncommutative torus T 4 ; to the subspace
H™ of the positive modes of the operator By, since the action of the R preserve

. " . ar I . _
this decomposition. The new Dirac operator Dy, is then given by the restriction

of @979/ to HT. It has a corresponding decomposition
~
Pogo= Y, DyByf,
ne(AN{0})/V

where Spec(B,) = {(?* + ¢2*)1/2}. Thus, in this case one obtains

77@39,(5) = L(A7 ‘/7 8/2) CBS’ (8)7

where

Cpp(s) = Ze(s/2) = Y _(EF + )2,

k
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8.6. The residue. The special value L(A,V,0) of the Shimizu L-function can be
extracted from the eta function n o (s) in the following way.
6,6"

Corollary 8.18. The function ”if (s) has a pole of order one at s =0 with
0.,0!

_ LA V,0)
(833) Ress:() 77@;6‘/ (8) = W

Proof. Consider the function
Z(s) :== Z(e% + e 2k)7s,
keZ
It suffices to show that it has a simple pole at s = 0 with residue

1

(8.34) Ress—0Z(s) = g’

One writes
I'(s)Zc(s) :/ ge(t) 5~ Lde,
0
where

(8.35) ge(t) = (Z e—(g2k+e2k)t>

kEZ

for t > 0. The function g(t) satisfies

—e2k¢

ge(t) = —e 2 4 2 (t) =2 e (1 e ),
k=0

where

he(t) =Y e "
k=0

We can estimate —e™? = —1 + O(t) when t — 0 and (1 — e_f_%t) = O(e2kt),
uniformly. Notice that

he(t) — he(e2) = et = f: (_r—l')rt’”
r=0 ’
hence
_ B U e VA
(8.36) he(t) = TTone log(1/t) +C =) e 1)75 .
r=0

Thus, the function I'(s) Zc(s) has a double pole at s = 0 and simple poles at s € Z .
Thus, the function Z,(s) has a simple pole at zero with residue 1/loge. O
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