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THE INTERSECTION FORM IN H*(Mon ) AND THE EXPLICIT

KÜNNETH FORMULA IN QUANTUM COHOMOLOGY

RALPH KAUFMANN

Max-Planck-Institut für Matheruatik, Boun, GefInany

ABSTRACT. We prove a general formula for the interseetion form of two arbitrary
monomials in boundary divisors. Furthermore wc prcsent. a tl'ce basis of thc cohomol­
ogy of Mon. With the help of thc interseetion form wc detennine the Gram matrix
for this basis and give a formula for its inverse. This enables us to calculate the ten­
sor product of the lligher order multiplications arising in quantum cohomology and
formal Frobenius manifolds. In the context of quantum cohomology this establishes
the explicit Künneth formula.

o. Introduction

Let MOn be the rnoduli space of genus 0 curvcs with n rnarked points. Its
cohomology ring was cleterrnined by Keel [Ke] 1 who gavc a presentation in terms of
boundary divisors, their iutersections and relations. A bounclary divisor is specified
by a 2-partition SIll S2 of TI: := {I, ... , n}. The additive structure of this ring was
studied anel presented in [KM] and [KMK]. Although llluch about the structure
of this ring is known there are still several open questions. The complete study
of the intersection theory of this space howcver is of ilnportance for thc theory
of quantum cohomology. In particular it is necessary in order to understand the
Künneth formula for quantum cohomology, which is given by thc tensor product of
Cohomological Field Theories, cf. [KM] and [KMK].

In §2 of this paper wc prove a fOfInula for thc intersection form for any two
polynomials in thc boundary divisors of cOlllplernentary degrec. More precisely,
after thc introduction of the notion of trees with nlultiplicities anel good multiplicity
orientatioIlS wc can formulate the following

Theorem. Let mon(u1' rnI) and mon(u2, m2) be two monomials 0/ complementary
degree in H*(Mon ). I/ there is no good multiplicity orientation 0/ (T, m) := T(U1 U
0'2, m1 + m2) then (mon(O'l, mdmon(O'l, md) = O. If there does exist one then:

( ( ) ( )) - TI (- )lv l-3 (lvi - 3)1 TI ( () - )'mon 0'1, rn1 mon 0'1, m1 - 1 n (l (/))1 2 1n e 1.,
V fEF(v) 171.U t .vE T eEET

where mult is the unique multiplicity orientation fOT (T, 711,) provided by the Lemma
2.3 whose value is given in the formula (2.3).

The notation mon((T, 111,)) := neEE
T
D:C~») used in this theorem along with an

exposition of the different cOlnbinatorics of trees involveel in the intersection theory
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of MOn is explained in the introdllctory §l, where also Keel's presentation is briefly
reviewed.

. In §3_we will give a monomial basis Bn ofH,* (MOn). together .with.a.tree.reprcsen­
tation for it. Thc basis which is presented here and the proof of linear independence
is inspired by the work of Yuzvinsky [Yu}, who worked out a basis in another pre­
sentation of the cohomology ring developed by DeConcini and Procesi [CP] via
hyperplane arrangements. Using the results of §2 we can write down thc GraIn
matrix for this basis and give a formula for its inverse.

Thc realization of this basis in terms of boundary divisors is necessary for appli­
cations to quantuln coholnology and opcrads [KM,G], since these structures make
explicit use of the presentation of H· (MOn) in tenns of tree strata.

As an application to this field we use the rcsults of §3 to calcll1atc the tensor
product of thc higher order products and correlation functions stemming from a
tree level cohomological field theory which appear in the tensor product of formal
Frobenius manifolds and yield thc explicit Künneth fornnlla for quantum cohomol­
ogy.

Corollary. For two projective algebraic manifolds V and W the potential q.v x w
yielding the quantum cohomology of V x W in terms of iJ? v and <I> W is given by the
formula:

cI> v x W(,' 0 'Y") = L ~! L Y' (;L) (,'0" )rnl'vY" (1:') (,"0n )
n2:3 Jj,vEß n

where Bn is the basis of §3, (mJjv)JjvEB n is ds Gram 1natrix (3.14), {tLltL E Bn }

is the dual basis obtained via the inverse Grarrt matrix (3.15) and {Y'(r)} resp.
{Y"(r)} are the operadie ACF's obtained from iJ?v res]). epw via (4.3) and (4.5).

As an cxample the first higher order products are written out explicitly.
I would likc to thank S. Yuzvinsky for sending his rnanuscript before publication

and the Max-Planck-Institut für Mathematik for its financial support anel stimu­
lating atnlosphere. Most of all I want to express lllY gratitude to Yu. 1. Manin for
his continuous support and encouragement.

0.1 Notation.

Throughout this paper we will denote by C the strict inclusion and use ~ for the
not necessarily strict relation. Furthermore we denote by N thc positive integers,
and we will use thc notation n to denote thc set {I, ... ,n}.
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§1 Partitions and trees

1.1 Notation.

We will consider a tree r to be a collection of sets of vertices, edges and tails
(V-Tl En TT) with given incidence relations. A Hag will be a pair (vertex, incident
edge) 01' (vertex, incident tail). The set of all Hags will be denoted by FT , those
incident to one vertex v by FT (v).

1.2 Keel's presentation.

Usually the cohomology ring of M os is presented in terms of classes of boundary
divisors as generators and quadratic relations as introdllced by [Ke]. The additive
structure of this ring anel the respective relations can then naturally be described
in terms of stable trees (see [KM] and [KMK]). The boundary divisors of M os are
in Olle to one correspondence with unordereel 2-partitions {SI, S2} of S, satisfying
ISll 2: 2 and 182 1 2: 2 (stability). Let {Dala = {SI, S2} a stable S-partition} be a
set of cOlllmuting independent variables. Considcr the ideal In C Fn iu thc graded
polynomial ring Fs := K[D{S1,S2}] generated by the following relations:

(i) D{S1 ,s2}D{s~,S~}, if the nuruber of non-erupty pairwise intersection of these
sets equal to 4.

(ii) V distinct i, j, k, l ES: L:ijakl Da - L:kjril Dr

where the notation of the type ijakl is used to inlply that {i, j} and {k, l} are
subsets of different parts of a.

Set Hs:= Fs / I s. Kcels Theorem statcs that thc luap

Da t---t dual cohomology dass of the boundary divisor

in Mon corresponding to the partition a

induces the isomorphisnl of rings (doubling thc degrees)

Hs....::., H*(Mon , K). (1.1)

1.3 Additive structure of H~.
Thc additive structure of the coholnology can be nicely prcsented in terms of

trees (see [KMK]). There (proposition 1.3) it is provcel that thc set of trees with r
edges is in bijection with thc set of gooel mononüals of clegree r. We will briefly quote
some of the notions and results from that paper. A luononüal D a1 ••• D aa E Fs
is called good, if the fanüly of 2-partitions {all'" 1 aa} is gooel, Lc. a(ai' aj) = 3,
where for two unordercd stable partitions a = {Sr, S2} aud r = {Tl, T2} of 8

a(a, r):= thc number of non-enlpty pairwise

distinct sets among Si n Tj , i, j = 1, 2.

1.3.1 Lemma (1.2 in (KMK)). Let r be astahle 8-tree with IETI 2:: 1. For
each e E E T , denote by a(e) the 2-parlition 01 8 cOTTcsponding to the one edge
S -tree obtained by contracting alt edges except for e. Then

is a good monomial.

1n011,(r) := TI Da(e)
eEEr

3

(1.2)



1.3.2 Proposition (1.3 in [KMKJ). For any 1 :S l' :S 181- 3, the map T~
mon(T) establishes a bijection between the set 0/ good monomials 0/ degree r in
Fs and stable 8 -trees T with IEr I = r modulo 8 -isorno1phism. There are no good
monomials 0/ degree greater than 181 - 3.

1.3.3 Additive relations.
In [KMK] it is shown that the good mononüals span the COhOl1l0logy space and

furthermore that all linear relations between them are generated by the relative
versions of (ii);

2:= mon(T') = 2:= 111,071,(T")
ijr ' kl ikr" j l

(1.3)

where {ijT' kl} and {ikT"lj} are the preimages of the contraction onto a given T
contracting exactly one edge onto a fixed vertex v scperating the flags lllarked by
i, j and k, l resp. i, k and j, l in such a way that thcy lie on different components
after severing e, where the 111arkillgs i, j, k, I refer to flags which are part of the
edges of the unique paths from v to the tails i , j, k, l in T and it rcquired that the
paths start along different edges.

1.4 Trees with multiplicity.

Since we will have to deal with lllonomials, which are not necessarily good, we
will extend the notion of trees to that of trees with lllultiplicity.

1.4.1 Definition. A 8-tree with multiplicity is a pair (T, rn) consisting of a
8-tree and a function m : Er --+ N.

If no multiplicity function is given we will asslllnc that it is identically 1.
CaU a lllononual D;;l/ ... D~h nice if a(CTil Oj) = 2 01' 3.
Set

1non((T, m)):= I1 D:c.~).
eEET

(1.4)

1.4.2 Proposition. For any 1 :S r :S ISI- 3, the map: (T,1ft) f---+ mon((T, m))
establishes a bijection between the set 0/ nice rnonomials 01 degree r in Fs and stable
S -trees with multiplicity (T, m) witk deg(T,1TI,) := L:eEE

T
m(e) = r.

Proof. Irnmediate froln 1.3.2.

1.4.3 Remark. Noticc that unlikc in thc case of gooel monolnials it can happen
that a nice Inononüal can represent a zero dass even if the degree is less or equal
to ISI- 3.

1.5 Rooted trees and ordered partitions.

1.5.1 Remark. If wc choose a distinguished elmncnt S E 8, wc can define
natural bijections between thc following three sets:

a) unordered 2-partitions (T = {SI, S2} of S
b) ordered 2-partitions (T = (SI, S2) with the conelition s E 8 2

c) subsets T ~ S \ {s}.
This is due to the fact that given the first cOlnponent of an orelered pair of the
above type the second one is uniquely determined.
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1.5.2 The case of n.
In particular for S = n we choose n as the distinguished eleu1ent and we equiv­

alently index the generators of H* by subsets S c n - 1 with the restriction
2 ~ ISI ~ n - 2 (note that this exc1udes the set n - 1 itsclf). We will denote
the generator corresponding to such a set S:

Ds := DS,n\S'

for S C n - 1. Thc relations (i) and (ii) statccl in this notation bccome:

(i') DsDT if Sn T =I 0 and the two sets satisfy HO inclusion relation.
(ii') For any fOUf nun1bers i, j, k, l:

L DT + L DT - L D~ - L D!r
n-l:JT~{i,j} n-l:JT~{k,l} n-l:JT'2{i,k} n-l:JT'~{j,I}

k,lfl.T i,jftT j,lft.T i,kfl.T

The expression for D~ for a choice i, j E Sand k t/:- S reaels:

(1.5)

(1.6)D~ = - L DsDT - L DsDT .

SCT~ {i,j} S:JT:Jn-1
k~T

This is thc formula (1. 7) fro1l1 [KMK] with i, j, k, n playing the role of i, j, k, l.
The analogs of formula (1.3) follow in the sanle Inanner.

1.5.3 Rooted trees and orientation.

A rooted S-tree will be a pair (T, vrood consisting of a S-trce T anel one of
its vertices Vroot called root. An orientation of a tree is considcred to be a map
or : Er -> Vr , with the restriction that e is incident to or(e). We will use the
terminology e is pointing towards V to indicate V = or(e) (pointing away will be
usecl on the same basis). The set 01' -1 (v) will be called the incoming edges, the
remaining incident edges will be considered as outgoing. Furthermore notice that
an oriented edge e of a tree defines a subtrec by cutting e and selecting the tree
containing or(e). This subtree will be called the branch of c.

1.5.4 Natural orientation für a rOüted tree.

For a rootcd tree (r, Vroot) there is a natural oricntation defined by setting 01' (e) =
the vertex of e, which is furthest away fronl the root (i.c. e is part of the uniquc
path froln this vertex to thc root). Notice that in this orientation there is exactly
one incoming edgc to each vcrtcx except for thc foot, which has none. Therefore
the restriction of or induces an one to one corrcspondence of V(r) \ {vroot} and
E(r).

eMvertex to which e is pointing inversely VM thc unique incoming edge
(1. 7)

1.5.5 Orientation for an n-tree.

For a given n-tree we will fix thc root to be the vertex with the Rag llumbered
by n emanating fron1 it. This defines a Olle to one corrcspondence of n-trees with
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rooted n trees. Using this picture and rCInark 1.3.1 we can equivalently view a n­
tree (with multiplicity) as either given by the good (nice) collection of 2-partitions
associated to its edges or as a good (nice) collection of subsets of TL - 1 associated to
its vertices. In the latter case we associate to each vertex the set S of thc 2-partition
corresponding to the inconüng edge, which does not contain n. In this way denote
for given nicc (1 and S E (1 by Vs (resp. es) the vertex (resp. ceige) corresponding
to S.

Adopting this point of view we can express quantities which are defined in the
language of Rcmark 1.5.1 c) in terms of oriented n-trees. Let a be a collection of
stable subsets ofn, i.e. for each S E aSe n - 1 and IBI 2: 2. Define for any S E a:

Wa(S) = {TIT c Sand maxilnal in this respcct}

deptha(S) = !{TIT E a and T 2 S}I

The definitions of (1.8) translate in the followiug way iuto tree language:

(1.8)

ISI = I{tai1s Inarked by i E n - 1 on the brauch of es}1

wa(S) = {outgoing edges of vs}

deptha(S) = thc distance from Vs to Vroot (1.9)

where the distance is the llwnber of edges along thc uniclue shortest path.
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§2 The intersection form

2.1 Notation.

To ealculate the intersection form we need a formllla for two nlonomials of com­
plementary degree. Recall that for a tuple ((1, rn) of a nice colleetion of subsets of
n - 1 and a Illultiplicity function m : (1 H N we denote by 171,071,((1, m) the mono-

mial IlsEa D;(S). The degree of such a monomial is L:SEa 171,(8). Furthermore let
r((1, m) be the tuple (r((1), 171') where 7((1) is the tree corrcsponding to the gooel
monomial IlSEa Ds, and m' : Er(a) -r N is the the Inultiplicity function given by
es -r m(S).

2.2 Definition. A nlultiplicity oricntation for a trcc with lnultiplicity (7, m) is
a map mult : PT \ Tr H Pi such that if VI and V2 are the vertiees of an edge e:

1nult((VI, e)) + mult((V2l e)) = Tn(e) - 1.

It is called good if for evcry V E V.,. it satisfies:

L mult(f) = lvi - 3.
fEFT(v)

(2.1)

(2.2)

This is thc analog of the good orientation in [KMK].

2.3 Lemma. For a n-tree (7, m) in top degree (i.e. LCEE
T

m(e) = n - 3) there
exists at most onc good rnultiplicity onentation.

Proof. Assume that therc are two good orientations 1nult, mult'. Consider thc
union of all edges on which rnult =j:. rnult'. Each conncctecl C0111pOnent of this union
is a tree. Choose an end edge e of this tree and an end vertex v of e. At v, the sum
over all flags f of mult(f) and mult'(f) lUUSt be equal, but on (v, e) these differ.
Hence there IllUS t exist an edge e' =I- e incident to v 11pOIl whieh 7nult ((v, e')) and
rnult' ((v, e')) differ. But this contradiets to the choiee of v and e.

Thc next lemma gives a way to decide whether this goocI lnultiplicity orientation
exists and if so to calculate it.

2.4 Lemma. Assnme that an n-tree 7((1, 7n) in top degree has (L !Jood multiplicity
orientation mult. Let vs be the vertex corresponding to 8 E (1 and 1s be the /lag 0/
the unique incoming edge then the Jollowing /ormula JOT its m1lltiplicity holds:

1711llt(fs) = 181- 2 - L 'lTl.(T).
TEalTCS

(2.3)

Proof. We will use induction on the distance froln thc end vcrtiees (i.e thosc
vertiees with only onc inconüng edge) in the natural oricntation of n-trees given
by 1.5.5; thc ease for thc end vcrtiees being trivial. Now let Vs bc thc vertex
corresponding to 8. By induction we can assullle that for all outgoing flags (2.3)
holds; Le. for all (v, eT) with T E wa(S):

m1llt((v, eT)) = m(T) - 1 -ITI + 2 +
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Inserting this into thc condition (2.2) we arrivc at

mult(fs) =Ivsl- 3 - :L (m(T) - 1- rnul/,((v,eT)))
TEwo (S)

=181- I U TI + Iwa (8)1- 2 - :L (1n(T) -ITI + :L m(T') + 1)
TEwer (8) TEw". (8) T' EalT'cT

=181 - 2 - :L m(r),
TEalTCS

where in the last step we havc uscd that IUTEw".(S) TI = L:TEw".(S) ITI, since a is
a nice collection.

Consider the functional fMo,s : H*(Mo,s) ---4 K is given by

{
I, if deg 171.(7) = 181- 3,

m(7) f------t 0 otherwise.

for any trce 7 with m - 1.
We put ((7b md (T2,111.2)) = fMos mon((Tl' 1nt})rnon((T2, 1712)) and set to calcu­

late this intersection index for the case when eleg rnon( (Tl, ml) )+deg mon( (72, m2)) =
181 - 3. Generally, we will writc (/1,) instead of .f~os J-L.

2.5 Theorem. Let 1non(ab md and mon(a2,n~2) be two rnonomials 0/ com­
plementary degree in H~. /1 there is no good 111:U.ltiplicity onentation 0/ (T, m) :=
T(al U a2, ml + m2) then (mon(al' mdmon(al' md) = O. If there does exist one
then:

( ( ) ( )) - rr (- )lv l-3 (1711- 3)! rr ( () - )1
man ab ml man al, ml - 1 n (rnult(j))!2 m e 1.,

vEV-r fEF(v) eEE-r

where muli is the unique multiplicity orientation 0/ (T, 171) provided by the Lemma
2.3 whose value is givcn in the /ormula (2.3).

Proof. Set E := {e E Erlm(e) > I} anel t5 thc subtree consisting of E with
multiplicity mlE and its vertices. Consider thc canonical elnbedding <PT : M T ---4

Mos.
(rnon(al, mdmon(ab ml)) = (rr <P; (D;(~))-l)),

eEE

(2.4)

wherc thc cup product in the r.h.s. is takcn in H*(M r ) ~ ®vEv-rH*(Mo,F-r(v))'
Applying an appropriate version of thc fonnulas (1.5) we can write for any e E E
with vertices Vb V2:

where
Evi,e E H*(Mo,F-r(vd) ® rr [l\10,F.,.(v)]

V#Vi

8
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anel [MO,FT(v)] is the fundamental dass. Later we will choose an expression for
"Evi,e depending on the choice of flags denoted i, j 01' k,l in (1.5).

Inserting (2.5) into (2.6), we get

(mon(O"ll ml)mon(al, rn1)) = L II (m(e)-l)!( II
or eEET (lO,e)EFJ

or«v,e»>l

1 ( _ E )or ( (v ,e) ) )
01' ((v, e))! v ,e ,

(2.7)
where or runs over all llluitiplicity orientatians of 6". Thc sUlllllland of (2.7) cor­
responding to a given 07' can be non-zero only if for every v E Vö the surn of thc
degrees of faetors equals dirn M O,FT(v) = lvi - 3. This is what was called a gooel
multiplicity orientatian. By Lcmma 2.3 there can only exist one such orientation.
Now assume that one goael orientation mult exists. We can rewrite (2.7) as

II (m(e) - I)! II
eEET (v,e)EFJ

m.ult«v.e»>l

1 ((-~v elrmlt«v,e))).
rnuZt ((v, e))! '

(2.8)

In view of (2.6), this expression spEts inta a proc!llct of tenns computed in all
H* (MO,FT(v)), v E V'T separately. Each such tenn elepends only on lvi, and we want

to demonstrate that it equals (_1)lv l-3 n (jvl(-3)~t(J))r' Put lvI = m, so m 2:: 3.
!EF(,,) mu .

Let us identify F'T with {I, ... , m} and denote by Dbm
) the class of a bOllndary

divisor in H* (Mo,m) corresponding to astable partition p of {I, ... , m} and set
di := mult((v, ed), where Ci is thc edge beionging to the Rag i E {I, ... ,m}. The
contribution of v in (2.8) becomes

m

II (( _Eim))di ) := g(d1, .. . l dm),
i=l

(2.9)

where _"E~m) is the elelnent of (2.6) and the superscript (m) is again included to
keep track of the spaces involved. We will prove the following properties of the
f . (d d) . 1 t'fy' 't (1)m-3 (m-3)!unctlon 9 1, ••• , m l( en 1 Ing 1 as - (11 [ ...d

m
!·

a) g(O, 0, 0) = 1.
b) g(d1, ... , dm ) is symmetrie in the di .

e) If dm = 0 thcn
g(d1 , ... , dm ) = - L:i:di>1 g(d1 , ... l di - 1, ... , dm ).

2.5.1 Remarks. Noticc that up to the nlinus sign in c) these are exactly the
conditions satisfied by the numbers (Tal' .• TC't m ) in genus zero [K]. Furthermore we
can always choose the Rags in such a way that the flags 1, ... , k (k ::; rn - 3) belong
to the edges e with muLt(j(v, e)) > 1.

ad a) We have by definition ([M0,3]) = 1.
ad b) The symInetricity rcsults from thc fact that thc integral in question does

not depend on a renumbering of the flags.
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ad c) First we can use relation (2.5) for any k, l to write

_~~m) = L -D1m ) (2.10)
p: ip{ k,l}

We will calculate (2.9) inductively. COllsider thc projection map (forget­
ting the (1n)~th point) p: M O,m ---1 M O,m-l anel thc i-th section map
Xi : Mo m-l -t Mo tn obtaineel via the identification of Mo m+3 with the

universal curve. We 'have po Xi = id, a.nd Xi identifies M o,m'-l with D~~)
where

tJi = {{m, i}{l, ... ,7, ... ,111, - I}};

so if we choose some k, l =j:. m:

L -D1m) = -p. ( L D~:n-l)) - :Ci* ([Mo,nt-I]). (2.11)
p: ip{k,l} pi: ipl{k,l}

We will now replace one of the ~i for each i with di > 1 using (2.10) with
SOlne arbitrary k, l =j:. 771.. Then (2.9) reaels

TI((-p* ( L D~:n-l)) - Xi. ((Mo,m-d)) (_~~m))di-l) (2.12)
i=l pi: ipl{k,l}

where p' runs over stable partitions 0 f {I, ... 1 rH - I}. We represent the
rcsulting expression as a SUln of proelucts consisting of scveral p*~terms

and several xi*-tenns each. If such a product contains ;::: 2 xi.-terms, it
vanishes because the structure sections pairwise do not intersect. We obtain

L ( TI (-p*( L D~:n-l))( _~)m)Ylj-l) (-xi*([Afo,m-l])))

i:di>1 j=#;i:dj>l pi: J'p'{k,l}

+( TI p* (- L D~~-I))(_~)m))dj -1). (2.13)
i:di >1 pi: ip' {k,l}

If di - 1 > 0 then the summand containing an xi.-term will vanish. Ta see
this again rcplace ouc of the Ei using (2.10) but with k = m and same l. In
case di - 1 = 0 we can write the respective tenn in the sum in (2.13) as

((p* (- L D~:n-l))dj-l)( -Xi* ([MO,m-l])))

pi: jp'{k,l}

by replacing thc I:j according to (2.11) and again using thc fact that the
structure sections do not pairwise interscct. Using induction on the last
sununand in (2.13) we arrive at thc situation, where all l:~m) 's have been

replaced. And the product only contains p* (1:~m -1) )- term butthis term
vanishes becausc dirn Mo m-l = m - 2. Fillally, we are left with for one,
sluumand for each i : di > 1 containing only oue xi*-term and p*-terms.
Using the projection formula

(p* (X)Xi* ([MO,m+2])) = (X)
one sees that each such term equals -g(d l , . .. di - 1, ... ,dm-I)' And thc
result follows.
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§3 A boundary divisorial basis and its tree representation

The work presented in this section is inspired by the presentation of a basis of thc
cohonlology ring of MOn givcn in terms of hyperplane sections in (Yu]; especially the
notions of the >I< -operation and the order have been adaptcd to the present contcxt.

3.0 Preliminaries.

In order to state the basis we make use of certain classes

(3.1)

where 'Irf s >I< : Mo,nLI f 5 -t MOn is the forget fnl Inap fo rget t ing the point I s·
Another way to present these classes is given by thc following observation. Con­

sider the following deconlposition of D~ using (1.6):

D~ = D s ( L D T + L D~) =: Ds(xs + ys) (3.2)
{i,j}CTCS n-I::>T1:JS

kr/;T'

for any choke of i, j E S, k,l t/:. S. With the notation (3.2) we can write D~+l in
thc same spirit as:

k

Dk+l D("" (k) i k-i)
S = S ~ i xsYs .

1=0

(3.3)

In the context of thc proof of theorem 2.5 each sunllnand of (3.3) corresponds to
a choice of nutltiplicity orientation. In particular the tenn with x~ corresponds to
the one which satisfies mult(fs) = i, mult(lsc) = k - i, for thc flags Is and Isc of
es so that we can identify (3.1) with the sUllunand corresponding to mult(/s) =
k, mult(/sc) = O.

3.0.1 A tree representation.

A tree representation for a dass (3.1) is given by a choke an ordered k + 1
element subsct (/1,"" Ik+l) of S as the sunl over a.ll assignruents of the flags of
S \ {/b"', Ik+l} to the vertices of the linear trce determined by

D{ft ,f'.dD{ft ,h,fg} ... D{ft ""'/k+d

Dsx~ = Ds
(SI, ... ,Sk)

5 111 ...118.1<=5\{ft ,... '/.I<+I}

(3.4)
or more generally let T given by DTI ••• DTk be any tree with IVTi I 3 for

i = 1, ... ,k and Tl II ... II Tk = {lI,' .. , Ik} then

Dsx~ = Ds
(SI, ... ,Sk)

SILI· .. LISk=S\{!1 ,.. ·,h+l}

(3.5)

Both (3.4) and (3.5) follow from (1.5) with t.he appropriate clloices for thc Hags.

11



3.1 The basis.

Consider a dass of the following type

- (D m(SI) ... D m(SdD_ m(n-l))J.L-7rn * SlXSl SkXSJc n-lXn_l 1 rn(8) 2: ° (3.6)

To this dass we associate the nudel'lying n-tree 7 (p,) detennined by D SI' .. D Sk D n -1 .

The powers m(S) then determine a uniquc rnultiplicity orientation in the sense of
3.0 given by mult(fs) := m(S), 7nult(fsc) = 0, where fs anel fsc are the flags
corresponding to the edge es in 7(J.L).

Using the equations of the type (3.4) we cau associatc to cach monornial J.L a surn
of good monomials, which we will caU tree(Ji').

Consider the following set

3.1.1 Proposition. The set ßn is a basis foT' A *(MOn)'

Proof. By Lemma 3.1.2 and 3.1.5.

3.1.2 Lemma. The set ßn spans A*(Mon ).

Proof. From [Ke} and [KMK} wc know that 'the gooel rnononüals span, so it will
be sufficient to show that any such monomial is in thc span of Bn . Now let 7 (J.L) be
the tree corresponding to such a good lllonolnial J-L. If for all v E Vr lvi 2: 4, then the
monomial is already in Bn . If not let 73 be a Inaxinlal subtree of 7 whose vcrtices
except for the root (induccd by thc natural oricntation) all have valency three; call
such a tree a 3-subtree and thc number of its cdgcs its length. Furthermore let
R be the set associated with the root. Let F3(73) thc set of tails of 73 without
thc ones coming from thc root. The formula (3.5) for thc trcc representation of
DRXh with thc choice of F3(73) as thc fixcd set anel 73 as a 3-subtree expresses 7

in terms of trees with less maximal 3-subtrees of InaxiInal length, whose verticcs
either cornply with the conditions of ßn 01' are part of a unique lllaximal whose
root VR has multiplicity 0, i.e. XR does not divide thc lllonornial corresponding to
the tree. Notice that if the root VR of any 3-subtrec is threc valent then R = n - 1.
We can now proceecl by incluction of the nurnber of such nlaxilnal 3-subtrees with
thc maxünal number of edgcs l.

3.1.2 The *-operation.

We define the following involution on Bn :

(3.8)

12



This operation prescrves thc underlying tree r(J-L) but changcs the multiplic­
ities in such a way that IL and J-L* have c0I11plhnentary cliInensions. More prc-

cisely consider J-L as the push forward of the dass Q91JSEV.,.(tJ) ;c;(S) E H* (MT{J.'))

to H*(Mon ), then locally at each vertex we have a dass of clegree m(S). This
class is replaced under the *-operation by a "dual" dass of cornplimentary degree
dim(MD,P.,. (vs)) - m(S) J which is provided as a sumrnand of epDs (Dsx~S 1-4-m(S)).

3.1.3 Lemma.
For two elements I)" v of Sn the integral ./~On ILV* does not vanish iJJ r(J-Lv*)

is nonzero and if there is one good multiplicity orientation among the multiplic­
ity onentations satisfying (fs) = mJ.' (S) + n~v· (8) + 1, 7nult(fSc) = 0 or (fs) =
mJ.'(8) + m V

• (8), mult(fsc ) = 1, where fs, fs c are the fiags 0/ the edge es. 11 such
an orientation exists it is unique and

Proof. Thc forrnula (3.9) and the conditions for IL and 1/ as weH as the oues
for the considered nulltiplicity orientations follows frorn theorern 2.5 by consielering
the summancls of

corresponeling via 3.0 to the given rnonomial

with €(8) E {I, 2}.

Notice that in the formula (3.9) the binornial coefficients C;~;'~:()f~~) which appear
in theorem 2.5 are absent. This is due to thc fact that these factors stemming from
the expansion of Dr;(es) as in (3.3) are strippcd off in thc definition of the classes

Dsx~.

3.1.4 An order.

Given two nlonornials 11" /1' of type (3.6) of the sarne degrce we caH JL -< J-L' if
for the maximal integer k such that all sets of the depth d vertices for 1 ::; d ::; k
coinciele anel 1n(8) = 171,' (8) for all sets of the depth d' vertices, for 1 ::; d' < k one
of the following conditions holds

(a) m(S) ::; m'(8) for all 8 of dcpth k and thc inuquality is strict for at least
one 8 or

(b) 171,(8) = 171,'(8) and Ivsl ::; Iv~1 for all S of depth k and there is at least one
8 where the inequality is strict.

It is easy to check that this clefines a half order on ßn .

The *-operation connects with the half order -< in the followirlg way:

13



3.1.5 Lemma. If J.L, V E Bn are two distinct basis elements (J.L #- v) and J.Lv* #- 0
then J.L -< v.

Proof. Wc will use superscripts Jl, v to rcfer to the quantities concerning the
monomials /-L, v and take quantities without any supcrscript to refer to Jlv*. So
the notation IVsl is used for the valency of the vertex Vs in the tree T(V) and
Ivsl without any superscript is taken to be thc valcncy of thc vertex vs in the
trec T(/-LV*). If /l-v* #- 0 then thc underlying tree of /-LIJ* carrics a unique good
multiplicity orientation by theorem 2.5. Furthcrmore thc undcrlying trecs of Jl and
v coincide up to depth kj this is the first condition for k. From this togcther with
Lemma 3.1.3 it follows that the good multiplicity oricntation up to depth k - 1 is
given by mult(!s) = Ivsl- 3. Now at depth k we IllUSt have m,ult(fs) ::; Ivsl- 3
and because the multiplicity orientation is fixed for all lower dcpths as specified
we also have mult(!s) = m~(S) + mV" (8) + 6S,n-l = rn(8) + lVsl - 3 - mV(S).
Combining these two relations we find thc condition:

(3.10)

Furthermore we have the inequalities Ivsi:::; ]vsl, Ivsl ::; lv~I, since T(J.L) and T(V*) =
T(V) rcsult from T(JlV*) via contractions of edges which only increase the number
of Hags at thc renlaining vertex. So the left hand siele of (3.10) is less 01' equal to
zero:

(3.11 )

Thus if the inequality is strict for sonle 8 we arrivc at condition (a), if howcver
mP(S) = mV(S) for all S of depth k thc following incquality IllUSt also hold:

(3.12)

Equality for all S in (3.12) however would contradict thc choice of k since if m J! (S) =
mV(S) and IvJ!(S)1 = lvV(S)1 we have IvV(S)1 = Iv(S)1 = IvJ!(S)) from the above
inequalities, so that there are no contractions fronl T(ILV*) to T(/l') and T(V) up to
depth k + 1 and the sets of depth k + 1 corresponding to the outgoing edgcs of v~
and VV(S) fiUst also coincide.

3.1.6 Lemma.
Consider the matrix T = (t~,v)~,vEßn given by

This matrix is unipotent and the entry t~,v is dctcrmined by Lernma 3.1.3.
In parlicular, the set B is linear independent.

Proof. For the diagonal entries JlLtL* 11'1/nlt(fs) = Ivs I - 3 is a good fiuIti­
plicity orientation so that (3.9) renders t~~ .. = 1. Fllrthennore by considering any
extension of the half order to a total order the llnipotency is proved by Lemma
3.1.5.
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3.2 The intersection form and its inverse for the basis Sn.

With the help af thc matrix T intraduccd in 3.1.6 we can writc the matrix M
far the intersectian fann in the basis Bn as M = T P 1 W here the lnatrix P is the
Inatrix representation of the *-operation given by thc signed pernnitatian matrix

(3.13)

Theorem 3.2.1. The Gram-matrix (mjjv ) fOT the basis Bn is given by

(3.14)

and its inverse matrix (mJ-!V) is given by the fonnu[a:

m lJV = (_1)n-3- IE T
(J.) I(ÖJ-!-v + L L tjjOTJTIT2" ·tTk_lTktTkV) (3.15)

k;:::O IJ- -<Tl·" -<Tk-<V

where the values for the ter,er ' are given by (3.9) and the sum over k is finite.

Proof.
Formula (3.14) follows froln the abovc decolnposition M = T P. Ta prove formula

(3.15) set N := id - T. Accarding to LelTIlna 3.1.6 N is nilpotcnt and the inverse
to the intersection fornl can now be written as

M-1 = PT- 1 = P(id + N + N 2 + ... )

where the SUITI in (3.16) is finite.
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§4 Applications to Frobenius manifolds and quantum cohomology

4.1 Particular cases.

Writing clown thc results of §2 ancl §3 wc obtain thc following intersection nla­
trices Mn for small values of 11,:

11, = 3 M3 = (1).
11, = 4 For the basis 1T"5* (D1,2,3), 1T5*(D1,2,3Xl,2,3) wc obtain

11, = 5 For the basis '7r6* (D1,2,3,4), D 1,2,3, D 1,2,4, D 1,3,4, D 2,3,4, '7r6* (D1,2,3,4Xl,2,3,4),
'7r6* (D1,2,3,4Xi,2,3,4) thc intersection lllatrix is:

0 0 0 0 0 0 1
0 -1 0 0 0 0 0
0 0 -1 0 0 0 0

M 5 = 0 0 0 -1 0 0 0
0 0 0 0 -1 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0

n = 6 In this case the interscction matrix also has only nonzero entries for the
integrals of dual classcs under the *-opcration: IMan tttt* whose values are
(_1)3-IET(~)I.

11, 2:: 7 For the higher values of 11, the strllcture of the lllatrix T is not diagonal since
also cntries other than thosc coming fronl thc procluct of *-dual classcs can
be nonzero e.g. (Di -i k lXi -i k lDi -i k lXi -i k l) in Mo 7· Thus the *-operation

)J" JJJ' J.,J J' 'JJ' J

fails to give the Poincare duality for these spaccs.
However on thc subspace A l(MOn) EB An-4 (MOn) the *-operation does

provide the Poincare duality as can be decluced fforn Letnilla 3.1.3. On this
subspace the matrix T is just the idcntity matrix, so that thc restriction to
this subspace of Mn is given by P. In thc casc of slnall 11, < 7 this subspace
is already thc whole space, so that the Inatrices in the previous cases are
just given by P.

4.2 Tensor product of higher order operations of formal Frohenius
manifolds.

2.4.1 Frobenius manifolds

A formal Frobenius manifolcls is a tripie (H, g, additional structure), where H is
a (super) vector space over a field K of characteristic zero, 9 is a non-degcnerate
even scalar product on Hand the additional structurc is one of thc following [D,
KM, KMK]:

(i) a Cohomological Field Theory (CohFT) (In),
(ii) a potential <I> for a set of Abstract Correlatioll Functions (ACF) (Yn ) satis­

fying the WDVV-cquations or
(iii) a structure 0 f cyclic C00-algebra on H (on).
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The lnoduli space of rank one CohFT and the respective structure of tensor
product is presented in [KMK] and [KMZ].

As abrief rClninder we recall that a CohFT Oll (li, g) is given by aseries of
Sn-equivariant lnaps:

which satisfy the relations:

cp;(In(/1 ® ... ® In)) = E(a)(In1 +1 ® I n2+d( ® Tj ®!J. ® (® Tk)) (4.1)
jE SI kES'J

where CPer for a = 81 II 82 is the inclusion map of the divisor Der, CPer : M 0,!SII+1 X

M 0,IS'JI+1 -+ Mon, !J. = ~!J.a ® ßbgab is the Casimir elenIent, anel E(a) is the sign
of the permutation induced on the odd arglunents ,1, ... "n'

4.2.2 Equivalences of the different structures
Given a CohFT the associated system of ACF'a is defined as folIows:

(4.2)

Thc potential for a systCln of ACF's is given (after a choice of a basis {ß a } and dual
coordinates x a of H) as a fonnal power serics clepcnding on a point I = L: x a Da

by:

(4.3)

Thc conditions (4.1) on thc In are equivalent to thc WDVV or associativity equa­
tions [KM]:

L oa8b8e<I> . gefof8e8diI! = (_1)u(b+e) L aboeBe<!> • geIOlOu8di.b. (4.4)
ef ef

Here we llse the simplified notation (-1)a(b+c) for (-1)Xn (Xb +xc ) where x is the
Z2-degree of x.

The reverse direction of (4.2), Le. the reconstruction of a CohFT from its ACF's
is contained in the second rcconstruction theoTeln of [KM]. In this context the In
can be recovered by extcnding thc Yn to a set of operaclic ACF, i.c. a set {Y(r)lr
is a n-tree} satisfying

Y(r)('l" ',n) = ( ® y!vl)(,l ~ ... 0'71 ~ ß0
E
.)

1JEV(-r)

(4.5)

where the arguments Y1vl are labeled by the fiags of v (for thc precise formalism
of operadic ACF see [KM]). the In themsclves cau bc calculatcd via their Poincare
duals with thc hclp of the fonnula:

(4.6)

17



The explicit calculation of the maps In givcn potential cI> or a set of Yn thus
depends on the knowledge of thc Poincare duality as noted in (KMK] and is Inade
possible by the results of §2 and §3.

The lügher order multiplications are deriveel froln thc ACF's in the following
Inanner:

.- H0n Yn+l H~ 9 H
°n'- ~...::..; (4.7)

I

I

In thc opcradic setting given a set of higher order Inultiplication therc is a natural
operation associated to cach n-tree r (see [GK]) whieh wc will eall °(r ). Sueh an
operation corresponds to a cyclic word with parenthesis roughly as follows. Denote
the multiplication On by the word (x}, . .. ,xn ) and think of it as a one vertex tree
with n incoming fiags anel one outgoing fiag. COlnposing two lüghcr multiplications
corresponds to grafting two such trees in such a way that the outgoing Hag of one
tree is fused together with one of the incoming flags of the other tree to form an
edge, e.g. the flag i for (Xl,' .. , Xi-I, (Xi, ... ,Xi+k), Xi+k+I, ... , .'Z:n)' Continuing in
this way we obtain a tree from any such word anel vice versa we can associate to
any n tree with the orientation of 1.5.5 a (n-1)-ary operation of conlposecl higher
nlultiplications.

4.2.3 Tensor product far Frabenius manifolds

In the languagc of CohFT the tensor product of two fonnal Frobenius (Hf, g', {I~})
anel (H", g", {I~}) is givcn by the tensor proelnct CohFT on H' ® H" which is nat­
urally defined via the cup product in H+(Mou,K):

(1' f")('" ''') (' ")1' ( , ') f"( " ") (4 8)n ® n I'1l2'1'1 CS) .. '01'n 01'n := EI', I' u 1'1 CS) .. 'CS)'Yu A 11 1'1 0· . '01'n .

where E(1",1''') is the superalgebra sign.
Using (4.2 - 4.7) one cau transfer this definition of the tensor product onto any

of the other structures (Yn , Y(r), «P , On, o(r)).
In particular using Y~ and Y~' we obtain:

(Y~ ® y~f)(1'~ 0,~ 0··· ®,~ ® I'~) =

r I' ( I f ) f" ( " ")Jr n'1 0 ... @ 'n A Tl '1 0 ... 0 'n
Mon

(4.9)

In order to calculate the integrals on thc right ha.nd side of (4.5) we will üse
the basis, the calculation of its Granl matrix and its inverse obtained in previous
paragraph. We also utilize thc opcradic correlation fUllctions corresponding to
Y~, Y~' (see [KM]) and use the notation Y(J-L) for Y(tTee(j.t)) for a J-L in Sn' Now,
let Sn be the basis of H* (MOn) given in 3.1 anel jL = L: /LV 711

'
-
W

') tbe elual basis.
Combining the results of §3 with thc fornulla (4.6) we obtain tbe following:
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4.2.4 Corollary. The tensor product 01 two CohFT (H', g', Y') and (H", g", yll)
is given by:

(Y~ ® y~')(,~ ®,~ ® ... 0,~ ® 'Y~) =

L yl(rL)('Y~ ® ... ® ,:J7nIlVY"(ii)(,~' ® ... ® ,~). (4.10)
ll,vEß n

4.2.5 Corollary. The tensor product 01 two Frobenius manifolds in terms 01 the
higher order multiplications is given by

, "(' 1/ , ")on ® On 1'1 ® 'I ® ... ® 'n ® ln =

"'(")(' ') "(")(1/ 1/)L..J 0 p, , 1 ® ... ® 'Yn m llv 0 lJ , 1 ® ... ® , n .

1J"vEBn

(4.11)

4.3 The Künneth formula in quantum cohomology

4.3.1 Quantum cohomology

The quantum cohomology of a projective Inanifold V will bc rcgardcd as a formal
deformation of its coholnology ring with thc coordinates of thc space H* (V) being
the paralncters. Thc structurc constants are givcn by a fonnal scries cI> V 1 which is
defined iu terms of Gromov-Witten invariants [KM]. Ouc can regard the quantum
cohomology as the a structure of Frobenius Inauifold on (H* (V) 1 Poincare pairing)
with the GW-invariants playing the role of thc In and the potential cI> v being thc
potential of (4.2). Thc quantlun cohomology of a prochlct V x W rcgarded as a
Frobenius lnanifold is just the tensor product of the Frobenius 11lanifolds H* (V) ®
H* (W), Poincare pairing1 <I> v x W , as can be shown using [B] 1. Put ting together (4.4)
and the corollary 4.2.1 we obtain thc cxplicit Kiinncth formula:

Corollary 4.3.2. The potential cI>vxw 0/ the quardurrt cohomology 01 V x W is
given by the lormula:

cI>VxW (,' ® 1'1/) = L L Y'(P,)(,'071)7HIlIJyl/(v)('Y"071).
71~3 ll,vEB n

(4.12)

1
'~

\

4.4 Examples.

4.4.1 Higher order correlation functions.

Using the calculations of 4.1 we obtain the following fonnulas for thc tensor prod­
lict of thc first higher order correlation flll1ctions of (H'l g', ~~) and (H", g", Y~').

• '" Ir/ b
l

'"" "a'l b" ATo wnte down thc fonnulas let LJa'bl ßa' 9 ßb' anel LJa"I/' ß(J,II 9 Ub" thc
Casimir elements for 9 and g'.

n=3

1K. Behrend private communication
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n=4

(Y1 0 yt)(1'~ 0 1'~' 0 ... ® 1'~ 01~) =

Y~('Y~ ® ... ® 'Y~) L Y~'(I~ ® I~ ® ~a" )g"allb"y~'(~~" 0 I~ 0 1'~)+
a" ,b"

"Y'(' , A) ,a'b'y'( A' , ')Y"(" ")L...J 3 1'1 0 1'2 ® U a' 9 3 Wob' 0 13 01'4 4 1'1 0 .. ·01'4 (4.14)
a' ,b'

L y~( ® I~ ® Ll~, )g,a'b'y~(~~, ® 1'; 0 T~)
lE{1,2,3,4} a' ,b' iE{l,2,3,4}\{l}

0,/1 ,bI!

n=5

(Y~ 0 Y~')('Y~ 0 I~ ® ... 0,~ ® ,~) =

y~ (1'~0· . '01'~) L y~' (Ir ®T~'®~a" )g"a"b" y~' (~;:II®I~ ®ß~" )g"C"d" y~' (ß~,,01'~0 1g)
a" ,b" ,c" ,d"

L

+

x

X Y " ( t<::/\ " 101 A" ) !la" 1/' y" ( A 101 'V" IV-. ")
4 '<Y 'i '0' Wo a" 9 3 Wob" '0' /1 '<Y'5

iE{1,2,3,4}\{I}

" " Y;' (t<::/\' A') 'a'// y' ( A' t<::/\ , , )L,.; L...J 111+1 '<Y li ® u a' g 6-111 ub' '<Y 'Yj 0 15

{l,2}~lC{l,2,3,4} a' ,b' iEl jE{1,2,3,4} \1

'" '" y;" (t<::/\" A") la" b" "'\7" ( A" t<::/\ " ")L,.; L,.; 1.11+1 '<Y 'Yi 0 U a " 9 16-111 Wob" \C:>I Ij 0 "'15
{l,2}~JC{l,2,3,4} al! ,b" iEJ jE{l,2,3,4}\J

+ L y~ (T~ <::9'Y~<::9Llat )g'a' b' y~ (Ll~,<::9T~®Ll~,)g'C' d' y~ (Ll~,®,~®I~)y~'(,~'0· .. (6)'Yg)
a',b',c',d' (4.15)

4.4.2 Higher order multiplications

By applying Corollary 4.2.5, using the notation ('11 ... ,'Yn) for On ("'11 (6) .. ·®'Yn),
we find:

n=2
( ' ", ") (' ') (" ")11 ® "'11 '12 <::9 "'12 = 11"2 <::9 '1'12 (4.16)

n=3

(4.17)

n=4

( '101" 'IV-.")"'11 '<Y 111 ... "4 '<Y'4 =

( , ') 101 (((" ") ") ") + ((( I ') ') ') 101 ( " ")'11·· ·'4 'öl '1,T2 "3 "4 T1,'2 "3 ,"'14 '<Y '11·· ·'4

'" (("') ') ((" " ") ")L...J Ti' Ti,'k , Tl <::9 'i' 'j "k ,'l
{i,j,k} 11 {l} == {I ,2 ,3,4}

+ L (('Y~)'T{1,2,3,4}\I) ® L (('Y~)1'{'1,2,3,4}\J)' (4.18)
{l,2}~IC{l,2,3,4} {1,2}~JC{1,2,3,4}

where in the last expression we have used thc abbreviation ('Yd to denote

°111 (®iEl'Yi).
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