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ABSTRACT.

In {Br], Bryant gave examples of torsion free connections on four-manifolds whose
holonomy is exotic, i.e. is not contained on Berger's classical list of irreducible ho
lonomy representations (Ber). The holonomy in Bryant's examples is the irreducible
four-dimensional representation of SI(2, IR) (Gl(2,lR) resp.) and these connections are
called H 3-connections (G3-connections resp.).

In this paper we give a complete classification of homogeneous G3-connections.
The moduli space of these connections is four-dimensional, and the generic homoge
neous G3-connection is shown to be locally cquivalent to a left-invariant connection
on U(2). Thus, we prove the existence of compact manifolds with G3-connections.
This contrasts a result in (Sch] which states that there are 00 compact manifolds
with an Ha-connection.

§O Introduction.
Since its introduction by Elle Cartan, the ho1onomy of a connection has played an

important role in differential geometry. Most of the classical results are concerned
with the holonomy of Levi Civita connections of Riemannian metrics. In 1955,
Berger [Bel'] classified the possible irredueible lliemannian holonomies and mueh
work has been done sinee to study these holonomies and their applications. See
[Bes] and [Sa] for a historical survey and also [J] for more reeent results.

At the same time, Berger also partially classified the possible non-Riemannian
holonomies of torsion free connections. However 1 his classification omits a finite
number of possibilities, which are referred to as exotic ho1onomies. Until now, the
complete list of exotic holononües is still not known.

The incompleteness of Berger's list and therefore the existence of exotic holono
mies was shown by Bryant [Br]. He investigated the irreducible representations of
81(2, IR). For each cl ~ 1, we can regard 81(2, IR) aB a subgroup Hd ~ G1(d+ 1, IR) via
the (unique) (d + 1)-dimensional irreducible representation of 81(2, IR). Moreover, if
we let Gd ~ Gl(d+ 1, IR) be the centralizer of Hd, then Gd may be regarded as a rep
resentation of G1(2, IR). For d ~ 3, these I'epresentations do not occur on Berger's
list of possible holonomies and are therefore candidates for exotie holonomies.

In his paper, Bryant showed that in the case d = 3 torsion free connections
with holonomies H3 and G3 do exist. We shall refer to them aB H 3 -conneetions
(G3 -connections resp.).

1991 Mathematic~ Subject Cla3~ijication. Primary 53A15; Secondary 53B05.
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The "moduli space" of Ha-connections is the union of a one-diInensional space
ancl six points. Moreover, there is exactly one homogeneous (non-flat) Ha- con
nection with a five-clitnensional symmetry group. For other global properties of
Ha- connections see [Sch]. On the other hand, the moduli space of Ga- connec
tions is infinite dilnensional; namely, the "generic" Ga-connection depends on foul'
functions of three variables.

In this paper, we investigate certain "non-generic" Ga-connections. The generic
condition in [Br] implies that the connection does not admit any non-zero infin
itesimal symmetries. In asense, we assurne the exact opposite and consider the
question if there exist any (locally) homogeneous Ga-connections besides the flat
and the (unique) homogeneous Ha-connection. The answer to this question which
had been raised in [Br] is affirmative. In fact, we shall arrive at a complete classi
fication of homogeneous Ga -connections.

At this point, we shall state some consequences of this classification.

Theorem 0.1. Any homogeneous Ga-connection whose holonomy is not contai1led
in Ha is locally equivalent to a left-invariant connection on a jour-dimensional Lie
group.

Theorem 0.2. U]) to isomor])hism, there are twelve distinct l'ossibilities jor the
Lie algebm oj the symmetry group oj a Ga -connection satisjying the hypothesis oj
Theorem 0.1. One oj them is nil]JOtent, nine are solvable and the rernaining two
are gl(2, IR) and u(2).

Theorem 0.3. The moouli space oj homogeneous Ga - connections is jour-dimen
sional. More s])ecificallYJ the moouli s]Jace has one jour-dimensional com]JOnent,
seven one-dimensional components and jourteen points, including the fiat connec
tion and the homogeneo'Us Ha -connection.

Theorem 0.4. The reduced holonomy 0/ a homogeneous Ga - con1lection is either
trivial, equal to Ha or equal to all oj Ga.

Here, the reduced holonomy stands for the identity component of the holonolny
group. This result foHows froln a case-by-case investigation of aH entries of the
classification.

Theorem 0.5. Generically, the symmetry group 0/ a homogeneous Ga -con1lection
has Lie algebra u(2), i.e. the generic homogeneous Ga-connection is locally equiva
lent to a Zejt-invariant connection on the (compact) Lie group U(2).

As a consequence, this yields the remarkable

Corollary 0.6. There are Ga -connections on com]Jact manifolds.

CoroHary 0.6. contrasts a result in [Sch] which states that there are 110 H3 

connections on cOlnpact four-manifolds.

In §1, we briefly recall the structure equations for a torsion free Ga-connection,
following the notation of [Br].

In §2 , the core of this paper, we first show that every connection other than the
Hat and the hOlllogeneous H 3 -connection has a sYlnmetry group of dilnension at
most foul'. As a consequence, every hOlllogeneous Ga-connection other than these
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two fiuSt be locally equivalent to a left-invariant connection on a four-dimensional
Lie group. These connections are then shown to be in one-to-one corresponclence
with the orbit space of polynolnials satisfying certain equations. Those polynomials
can be completely classified.

FinaIly, in §3 we explicitly present the different polynomials that yield homo
geneaus G3 - connections. We also determine the Lie algebras of their symluetry
groups which essentially determine, of course, the underlying manifolds.

The main part of the work presented here has been completed while the author
was a visiting faculty member at Washington University in St. Louis, Mo, and he
wishes to thank the department of Mathematics there for its hospitality.

§1 The structure equations.
We begin with abrief description of the irreelucible 81(2, IR )-representations.
For dEN, let Vd ~ R[x, y] be the (d + l)-dimensional subspace of hOluogeneous

polynolnials of degree d. There is an 81(2, IR )-action (Gl(2, IR )-action resp.) on Vd
induced by the transposed action of 81(2, IR) (Gl(2, IR) resp.) on IR 2 , i.e. if p E Vd
and A E 81(2, IR) (A E G~2, IR) resp.) then

(A . p)(x, y) := p(u, v) with (1l, v) = (x, y)A.

It is weIl known that this action is irreducible for every d and luoreover that 
up to equivalence - this is the only irreduci~le (d + 1)-dimensional representation
of 81(2, IR) (Gl(2, R) resp.) (cf. [Rn. We let Hd ~ Gl(Vd) (Gd ~ Gl(Vd) resp.) be
the image of this representation and let ~d ~ gl (Vd) (gd ~ gl(Vd) resp.) be the Lie
algebra of Hd (Gd resp.).

The Clebsch-Gordan formula [R] describes the irreducible decomposition of a
tensor product of irreducible 81(2, IR )-nlodules:

A convenient tool to compute the decomposition of polynomials into their irre
ducible components are the bilinear pairings

1 ~ k (p) apu apv
(n, v)p = p! L.,..( -1) k akxap-ky 8p- kx8ky

k=o

It can be shown that these pairings are 81(2, IR)-equivariant and therefore are the
projections auto the sumlnanels of the Clebsch-Gordan fonuula.

Now we shall describe the structure equations for G3 -collnections. Let M be a
four-manifold anel let 7r : ~ --+ M be the V3 -coframe bundle, i.e. each 1l E ~ is a
linear isomorphism u : T1T(u)M""':""V3 • Then ~ is naturally a principal right Gl(V3 )

bundle over M, where the right action R g : .cr --+ ~ is defined by R g ( u) = 9 -} ou. The
tautological I-form w on .cr with values in V3 is defined by letting w(v) = u( 7f* (v))
for v E Tu.cr. For w, we have the GI(V3 )-equivariance R;(w) = g-lw.

A G3 -structure on M is, by definition, a G3 -subbundle F ~~. For any G3 

structure, we will denote the restrietions of 7r and w to F by the same letters.
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We now turn to describe connections on F. Sinee Ga is canonically iSOlll011)hic
to GI(2, IR), we Inay regard the GI(2, IR)-representations Vd equally well as G3 

representations. Moreover, it is easily seen that the map Pd : V2 EB Vo --t Elld(Vd)
defined by Pd(a2 + aO)(ad) := ((P,ad)o + (a2 ,ad )1 for all ai E Vi establishes an
isomorphism V2 EB VOt-=--+gd. We will use this to regard a connection on F as a
Ga-equivariant, V2 EB Vo-valued I-form 'P = q; + A on F where q; and A take values
in V2 and Vo resp. The torsion of 'P is then represented by the Va-valued 2-fonn
T('P) = dw + (q;, w)l + (A, w)o and the curvature of'P by the (V2 EB Vo)-valued 2-fonn
R,('P) = drp + k(rp,rp)l = dA + dq; +! (q;,</J)I'

If we assume that 'P deseribes a torsion free eonneetion, then the first structure
equation T('P) = 0 reads

(1)

Differentiating (1) yields

dw = -A 1\ W- (</J,w)l .

This equation, whieh is the first Bianehi identity, can be solved to show that there
is a (V2 EB V4 )-valued function a = a2 + a4 on F with a i : F --t Vi, such that the
second structure equations hold:

(2)
dA = (a\ (W,W)1)4'

d</> = -~ (</>, </>). + a2(w,w}3 - 11
2

(a2, (w,w}.)2 + 11
2

(a4, (W,W}.)3 .

Note that, in particular, we obtain as a formula for the eurvature

Differentiating these equations onee again and solving for a we find that there is
a (VI EB VJ EB Vs EB V7 )-valued function b = b1 + bJ + b5 + b7 on F with bi : F --t Vi,
such that the third structure equations hold:

(4)
da2 =2..\l\a2 -(</J,a2

)1 + IO(b1,w)1 +(bJ,w)2+I4(b5,w)J'

da4 =2Al\a4 -(</J,a4
)1 +9(b1 ,w)o-5(b5 ,w)2+(b7 ,w)J'

The funetion b represents the covariant derivative V R of the curvature. In
particular, we emphasize that (\7R)(x) = 0 at same x E M if and only if b('ll) = 0
for all u E 7T" -1 (x) .

We can also obtain formulas for db by differentiating (4). Sinee these fonnulas
are fairly involved we shall not write them in fuH. However, we eau describe the
GJ-equivarianee of b by the equations

(5)

A GJ-connection on M is, by definition, a Ga-structure on M which carries
a torsion free eonnection. A manifold M with a GJ-conneetion will be ealled a
GJ-manifold.
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§2 Homogeneous G3-structures.
Throughout this section, we shall assurne that 1\11 is a connected G 3 -manifold.

We begin with same definitions.

Definition 2.1. Let M be a connected G3 -manifold with connection \7 and let
7r : F -+ M be the a..'3sociated G3-structure.

(1) A (Ioeal) symmetry on M is a (local) diffeomorphism 0' : M -+ M such that
g.(\7X Y) = \7Q. (X)Q.,.(Y) for aH X, Y E X(M).

(2) A (Ioeal) symmetry on F is a (local) diffeomorphism u : F -+ F such that
u*(w) = w and Q*(<p) = <po

There is a one-to-one correspondence between symmetries on M and on F. In
fact, given a (local) symmetry 0' on M, there is a unique (local) symnletry 0' Oll F
making the diagrarn

F 0) F

M f!.)M

commute, and vice versa.

Definition 2.2. Let M and 7r : F -+ M as before.

(1) An infinitesimal symmetry on M is a vector field 5 E X( M) such that
..c~\7 = 0, i.e. [5, \7 X Y] - \7~,X]Y - \7x[S, Y] = 0 for all X, Y E X(M).

(2) An infinitesimal symmetry on Fis a vector field S E x(F) such that ..csw =
..cs(} = o.

Again, there is a one-to-one correspondence between infinitesimal symmetries on
M and on F: in fact, given an infinitesimal symmetry S E X(M), then there is
a unique infinitesimal symmetry S on F s.th. S = 7r.(S). Conversely, given an
infillitesimal sYlnmetry SEX(F) then the vector field 7r*(S) is weIl defilled and is
an infinitesimal symmetry on M.

Note that the flow along an infinitesimal symmetry on M (on F resp.) yields a
one-parameter family of loeal sYlnmetries on M (on F resp.). In fact, the infinites
imal symmetries fonn the Lie algebra of the group of (local) synunetries.

Due to the above mentioned one-to-one correspondences, we will frequently speak
of symmetries (local, infinitesimal syrrnnetries resp.) of the G 3 -connection without
specifying whether they are regarded as symlnetries (local, infinitesimal symmetries
resp.) on M 01' on F.

The group of (local) symmetries will be denoted by G and its Lie algebra of
infinitesimal symmetries by g.

It is worth relnarking that as a consequence of the structure equations (2) and
(4) we have da(S) = db(S) = 0 for any infinitesimal symmetry S on F.

In this paper we will be concerned with homogeneou~~ G 3 -manifolds, i.e. those
G3 -1nallifolds whose sYlnmetry group acts transitivelyon M. First, we will prove
a Lemma which will yield same relation between the isotropy and the curvature at
a point of M.
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Lemma 2.3. Let M be a G3 -mani/old, let tr : F -f M as be/ore and let x E M be
a point such that neither the curvature R. nor it~ covariant derivative \7R vanish at
x, and let gx ~ g be the set 0/ infinitesimal symmetries on M which vanish at x.
/f Qx =1= 0 th en there exists a ])()int UD E tr -1 ( x) suchthat

either

or

a2(uo) = r2 x2 ,
b1(uo) = 0, b3 ( UD) = S3 x3 ,

a4 (uo) = r4 x3 y,
b5 (uo) = S5 x4 y, b7 (uo) = S7 x5 y2

,
\

ai
(UD) = rixi, /or i = 2,4 bi (UD) = Sixi, for i = 1,3,5, 7.

for some constants r i , siE IR.

Proof. The hypothesis that R and '\7R da not vanish at x implies that a(u) i- 0
and b(u) =1= 0 for all U E tr- 1 (x).

Now let ° =1= 5 E g,x, and let 5 E X(F) be the corresponding infinitesilual
symmetry on F. Clearly, tr.(5u ) = 0 and hence w(Su) = 0 for 311 u E 1f-l(x).
Since e.p + w is a cofrarne on Fand S =f. 0, we have 4'(5) #- 0. Moreover, since S is
an infinitesimal sYlnmetry, we also have da(5) = db(5) = O.

Applying (4) and (5) to 5, we obtain that at any point u E tr- 1 (x), we have

(6-1)

(6-2)

2A(5)ai
- (4)(5), a i

)) = 0 for i = 2,4,

3A(5)bi
- (4)(5), bi)l = 0 for i = 1,3,5,7.

Now consider the following two cases:

(1) case 1: 4>( 5) E V2 factors into two independent linear factors over C. Then
there is sorne 9 E SI(2, C) such that p~ (9) . cP( 5) = cxy for SOllle c E C.

We deduce from (6-1) and a =f 0 that 2"\(5) = kc with k E {O, ±2, ±4}.
Likewise, frolll (6-2) and b #- 0 we deduce that 3"\(5) = kc with k E
{±1, ±3, ±5, ±7}.

The only possibility for these to hold simultaniously is that '\(5) = ±c.
In particular, c E IR. Froln here we cau conclude that </>(5) factors over IR,
hence at same point ud E tr-

1 (x) we have </>(Sua) = A(Sua)XY and '\(Sua) #
O. FrOln (6-1) and (6-2) we 0 btain that a(UD) and b (uo) are of the first fonn
presented above.

(2) case 2: 4>(5) is the square of a linear polynomial. Then there is same
Uo E rr-) (x) such that </>( Sua) = x2 .

We deduce from (6-1) and a =f 0 that "\(Sua) = O. Again, equations (6-
1) and (6-2) irnply that a(UD) and b (uo) are of the second fonn presented
above.

(3) case 3: 4>(5) = O. Then we deduce from (6-1) and a #- 0 that '\(5) = 0, i.e.
4'(S) = 0 which is impossible. 0

Now we obtain the following remarkable

Theorem 2.4. Let M be a (loeally) homogeneous G 3 -mani/old. Then either

(1) the G 3 -eonneetion is jlat, or
(2) M is loeally equivalent to the unique homogeneous H 3 -rnani/old, or
(3) the isotrapy grau]} 0/ the ]KJints 0/ M is diserete, hence the (ioeal) symmetry

group has dimension jour.
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Proof. Let G denote the group of sYll1metries and suppose that G acts transitively
onM.

First of all, note that there eannot be a loeally symmetrie non-flat G3 -eonnection:
the isotropy of asymmetrie G3 -conlleetion eontains all of G3 . But the 111ap a : F -t

V2 EB V4 fiust be invariant under the action of the isotropy group, therefore we mnst
have a = 0, Le. the eonnection is ftat.

We will now assurne that the G 3 -connection is neither Hat nor locally symlnetric
and that the isotropy group at eaeh point is at least one-dimensional. We shall
eonclude from these assumptions that the holonomy is contained in H3 , and this
will complete the proof.

From Lemma 2.3. we conclnde that there are GI(2, IR)-equivariant functions
Vi : F -+ VI for i = 1,2 such that (V], V2)] =1 and funetions [i' §..i : M -+ IR such
that

either

(*)

01'

a2 = r2 vi,
b] = 0, b3 = 83 V~ ,

a4 = T4V~V2,

b5 = S5 VtV 2,

(**)

where Ti = !:i 01T and Si = §..i 0 1T.

Sinee the connection is homogeneous we mayassume that Vi is G-invariant for
i = 1,2 and that !:i'~i are constant for all i. Thus, so are Ti and Si.

If (*) holds, then the structure equations (4) imply that

2T2 dv] = 2r2,,\/\v] - 2r2 (1), V])]

+(38 3 + 5685)V2 (V:,W)3 + 3(2885 -: 83)V] (ViV2,W)3
2r2T4 v] dV2 =-2'2r4'xI\V] V2 - 2'2 r4v] (1), V2)]

+( -9r4s3 - 60r2 85- 16~'4s5 + 20r287 )v? (v~ ,w)3
+(9r48 3 + 20'285 - 252'4 8 5 +40r2 8 7)V]V2 (v;v2,w}3

+10r2(4s5 + 87 )v? (v] v~, W)3

Taking the latter equation modulo V], we conclude that

If we fluthermore assume that '2'4 =f 0 then we get for the exterior derivatives

However, taking exterior derivatives of these equations we conclude that '2'4 = 0
which is iInpossible.
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The remaining eases ean be dealt with in a similar fashion: if T2 = 0 then the
ahove equations iInply that S3 = S5 = 0. From (4) and the equation

we ean get explieit expressions for dv) and dV2. If we take exterior derivatives then
we eonclude that r4 = 0, Le. the eonneetion is flat.

Ir we assurne that 7'4 =°then we eonclude that S5 = S7 = 0, anel from thcre it
follows that the holonomy group is eontained in the subgroup H3 ~ G3 .

Finally, if (**) holds then, by a similar analysis, we ean eonclude that the holo
nomy of the G3 -conneetion is eontained in Ha. 0

We turn now to the problem of classifying the homogeneous G3 -manifolds. By
the preeeding Theorem, it will suffice to consider Ieft-invariant G3 -connections on
four-dimensional Lie groups. In faet, if M is a (locally) homogeneous G3 -nlanifold
with a four-dilnensional (loeal) symmetry group G then, for some fixed point p E M,
the map 9 l---1' g' p yields a local diffeomorphism from (an open suhset of) G into M
whieh ean be nsed to define a Ieft-invariant G3 -conneetion on G. By eonstruction,
this connection is loeally equivalent to the connection on M.

Now let us deseribe left-invariant G3 -structures on a Lie group G.

Proposition 2.5. Let G be a jour-dimensional Lie groU]J with Lie algebra g. Then
there is a one·to-one correspondence between G3 -structures on Gwhich are invari
ant under the natuml left-action oj C J and the set 01 equivalence classes oj linear
isomorphisms {z : g~Va} / '" J where 'l '" 9 0 Z lor all 9 E G3 .

Proof. Fix a linear isomorphism z : g~V3' For any p E C anel 9 E Ga, we let
D:(p,g) : TpG~Va be the linear isomorphism D:(p,g) := g-1 0 Z 0 (wG )p, where WG

denotes the Maurer-Cartan fann of G. Then F := {O'(p,g) : TpG~Valg E G3 , p E
C} ~ ~ defines a left-invariant C3 -strneture on G. Note that if we replaee the
isomorphism z : g l---1' Va by 9 0 1 for any 9 E G3 then the G3 -strueture remains
unchanged.

Conversely, given a left-invariant G3 -structure 1r : F --t G, pick any z E 1T- l (e)
and regard it as an isomorphism t : T~G = g~Va. It is left to the reader to verify
that this establishes the desired one-to-one correspondence. 0

Now suppose that we are given a left-invariant Ga-connection on C. We want
to find explicit expressions far the tautological and the conneetion I-forms.

Let 1r : F --t G be the underlying G3-structure and let z : g~V3 be a corre
sponding isomorphism. The map 0' : G x Ga --t F giyen by (p, g) l---1' a (p ,9) is clearly
a diffeomorphism, and we will use 0' as a eoordinate system of F. Pulling baek the
Maurer-Cartan fonn on G x G3 to F via a- l

, we obtain a natural g EB g3-valued
eoframe on F. Using the isomorphism:+ p-;l : g EBga~Va EB V2EB Va, with P3 from
the previous section, we get a V3 EB V2 EB Va-valued coframe on F which we denote
by W + r.p where wand r.p take values in V3 and V2 EB Va resp. We also let r.p = 1> +~

be the decomposition of r.p into its components. In this notation the tautol;gieal
I-fonn W on F is given by w = g-lw.

The connection I-form r.p := 1> + ,,\ Oll F takes values in V2 EB Va, and W + 1> + ,,\
yields another Va EB V2 EB Vo-valued eofraIne on F. In fact, the left-illvarianee of the
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connection implies that there is a linear map tpo : V3 ---1' V2 Ei1 Vo such that at a
point a(P!g) E F, we have the relations

(7)
w = g-l w
tp - 'f.. + 9 -1 (tpo 0 w).

We can decompose tpo = f/Jo + AO with f/Jo E V; ® V2 ,....", VI EB V3 EB Vs and
AO E V; ® Vo ~ V3 • It follows that there is a polynomial r E VI Ei1 2V3 EB Vs
such that if we let r = r l + r 3 + r S + 8

3 with r i E Vi and 8
3 E V3 then ePo(v) =

(r 1,v)1 + (r3,v)2 + (r5,v)3 and AO(V) = (83,V)3 for all v E V3.
Note that if we replace the isomorphism t : g -+ V3 by go t for 9 E G3 then the

connection will be given by the polynolnial 9 . r.
Let us now compute the torsion of the connection. We have

T(tp) = dw + f/J 1\ w

=9 -1 (dw + (rPO 0 w, 02 + (Ao 0 w, w)0)

= g-l(dw + ((rl ,W)1 + (r3,w)2 + (rS,W)3 ,w)2 + ((83'W)3 ,w)o)'

Thus, the connection is torsion free if and only if

Taking the exterior derivative of (8), a calculation yields

tO
- ( r

3
, 8

3
) 3 '

t2
- - 90(r 1

)
2

- 15 (r1
, 9r3 - 8

3
) 1 - 3 (r3, 3r3 + 8

3
) 2 - 7 (r5, 9r3 - 8

3
) 3

(10) +26(1·s ,rS)4'
t 4

_ -9r1 (5r 3
- 8

3
) +3(rS ,5r3

- 8
3

)2 + (r3
,8

3
)I'

t6 60r 1 r S
- 3r3 (3r 3 + 8

3
) + 2 (r 5 ,9r3

- 8
3

)1 - 9 (rS
, r 5

)2 .

If we define the map

T: VI EB 2V3 EB Vs ----1' Vo EB V2 EB V4 Ei1 V6

r t--+ tO + t 2 + t 4 + t6

with t i as in (10) then it is easy to see that (9) is satisfied if and only if r(r) = O.
Conversely, given r E VI EB 2V3 EB Vs with r(r) = 0, then (8) determines a Lie

algebra structure on V3 and w and i.p defincd as in (7) establish a left-invariant
G3 -connection on the G3-structure 1T : G x G3 =: F -t G.

Thus, we have the following
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Proposition 2.6. There is a one·to·one correspondence between left-invariant G3 

connections on connected, simply connected jour-dimensional Lie groups and the set
oj G~2, IR)-orbits oj r- 1 (0).

Of course, the condition that the Lie group be simply connected is only imposed
to make this correspondence one-to-one.

Let us now compute the curvature of the connection determined by r. The
second structure equation and a calculation yields

(11)

where

R(<p) = d<p + <p 1\ <p

1
= 9 -1 ( d (<Po 0 w) + 2 (<Po 0 w, <Po 0 w) 1 )

= g-l((Q4, (W,W)1)4 + Q2 (W,W)3

- 11
2

(g2, (w, w)))2 + 11
2

(g4, (w, W)))3 + T),

Clearly, if r(r) = 0 then T = O. Also, comparing (11) with (3) yields

(12)

As we mentionecl earlier, the holononlY of the connection is contained in H3 ~ G3

if and only if a4 - 0 . Therefore, we have as a consequence of Proposition 2.6.

Corollary 2.7. Let r E V1 ffi2V3 ffiVs such that r(r) = 0 and -6r1s3+ (r3,s3)1 +
2 (r 5

, 8 3 )2 =j:. O. Then the holonomy oj the G3 -connection defined by r is not con
tained in H 3 . In particular, the connection is not flat.

Thus, in order to classify the homogeneous G3 -connections we have to classify
the Gl(2, IR)-orbits of r which satisfy the two conditions of Corollary 2.7. This can
be done by a careful case-by-case investigation.

The necessary calculations (all of which were performed by MATHEMATICA) are
not presented here. However, the author shall provide the interested reader with
copies of the MATHEMATICA files used to compile this classification. The results are
presentecl in the following section.



ON HOMOGENEOUS CONNECTIONS WITH EXOTIC HOLONOMY 11

§3 Classiflcation of Homogeneous G3 -structures.
In this section we will state the result of the classification of homogeneous G3 

connections whose holonomy is not contained in Ha. As it turns out, this implies
that the holonomy equals all of G3 .

Suppose that for a given r = r 1 + r 3 + r 5 + 8
3 with r i E Vi, 53 E V3 we have

r(r) = 0 and a4 =1= O.
There are two cases to be distinguished.

Case A: r = r 1 + r 3 + r 5 + 53 and 53 f. 5r3 •

In this case, the orbits of r can be parametrized as follows:

r 3 r 5 53

(Al) _2 11V2
1
1
0 v 3 (311 2 + tv2

) -v2(6u + v)5

(A2) ~u(7v2 =F u 2
) - 1

3
0 U

2V(v 2 ± u 2
) -15u(v2 ± u 2

)

(A3) ~u(V2 =F 17u2
) - /0 u 2v (V

2 =F u 2
) 3u(7v2 ± ( 2 )

(A4) tu (_u2 ± 2uv + v 2
) - /0 u 2 v(u + v)(u + 3v) u(u2 + 6uv + 3v 2

)

(A5)
...!..(5u3 - 45u2v /ou{v-u)(2v-u) 5u3

- 21u2 v15
+90uv2

- 54v3
) (3v - 2u)(3v - u) +30uv2

- 18v3

Here we asSUlue in each case that u, v E VI is a basis with (u, V)1 = 1, and also
that r 1 = v.

The Lie algebras of the symmetry groups can be represented as follows:

(±a 6a 0

D(Al)
-4ta ±a 12a

g= o -2ta ±a
o 0 0

ca b n(A2) g= a

ca b n(A3) g= 2a

(* 0

~)(A4), (A5) g= *

Thus, in all these cases the symmetry groups are solvable.
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Case B: r = ,1 + ,3 + r 5 + 5r3
•

In this case, tO = t 4 = 0 follows immediately. The orbits of these r with T(r) = 0
and a4 =1= 0 can be parametrized as follows:

,3

(BI) ±!u3
oS

(B2) 130 u(±u2 - v2)

(E3) _~u(2V2± 1l2)

(B4) - §.uv2
5

(E5) -ku (49u 2 + 361lV + 6v 2)

(B6) :!llV2
5

(E7) ~1l(v2 ± '112)

(ES) luv2
5

(B9) ~u(2C'll2 + v2)

(BIO) 130 u( (3c - 2)u2 - 3uv - v2)

(BII) ~u(cu2 - 6uv - 2v2)

(EI2) 110 v( -3u2 + (3 - c)v2)

/0 u2(4u + 3v)(8u2 + cu2 + 4uv + v2)

6~C( _u2
- 2uv + (c - l)v 2

)

(1l 3 + 3u2v + 3(c + l)uv2 + (1 - 3c)v3)

(BI3)

(B14)

(BI5)

5~;2 u( (28c2 1= 3)u2

+3c2uv - c2v2)

135~C2c; U ( ci (600ci + 360C2ci

-25c~C4 - 15c~c4 + 18c~c4)u2

-180C1 (10 + 3C2 )C3C4 uv
+1350c~v2)

4bc((c + l)u2 + 2uv + v2)
((3 - c)u 3 + 3(3 + c)u2v + 9uv2 + 3v3

)

2430012 3 .. (ci (40c~ + 5c~ C4 + 6c~ C4 )'ll2ct c2 c..
-120C1 C3C4UV + 90c~v2)

(10c~c3( -8c~ + 3C~C4)U3

+9cic4(40c~ - 5C~C4 + 3C~C4)u2v)

-540Cl C3C~UV2 + 270c~V3

Again, we assume in each case that u, v E VI is a basis with (u, v)1 = 1, and
that r 1 = v.
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The Lie algebras of the symlnetry groups in each case are a.s follows:

(BI)

(B2), (B3)

(B4)

{

u(2)
g-

gl(2, IR)

if ± =' +'

if ± =' -'

(B5)

(B6) - (BIl)

(B12)

(BI3)

g=

g=

g = u(2)

g = gl(2,IR)

u(2) if c # 18

(0 ** ~*) if c = 18

u(2) ifc#-~

(
0 ** 0** ) 'f 81 C =-9

u(2) if I210c2 # ±189

(B14) g=

(0 ** 0**) if I2I0c2 = ±189
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u(2)

o
a-b

o

if C3 = 6C2 + 5 = 0 anel C4 < 0

if C3 = 6C2 + 5 = 0 anel C4 > 0

if 648c~ + (3C2 - 2)(6c2 + 5?C4 = 0
and 6C2 + 5 f:. 0c:n

n
(~b ~ n

(BI5) g =

From this we can conclude that the "llloduli space" of homogeneous G3 - con
nections has one four-dimensional component (BI5), seven one-dimensional com
ponents (Al) and (B9) - (BI4), and fOluteen points, including the Rat connection
and the homogeneous H 3 -connection.
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