
Max-Planck-Institut für Mathematik
Bonn

The spectral measure of the Markov operator related to
3-generated 2-group of intermediate growth and its

Jacobi parameters

by

Rostislav I. Grigorchuk
Yaroslav S. Krylyuk

Max-Planck-Institut für Mathematik
Preprint Series 2011 (64)





The spectral measure of the Markov operator
related to 3-generated 2-group of
intermediate growth and its Jacobi

parameters

Rostislav I. Grigorchuk
Yaroslav S. Krylyuk

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Texas A&M University
Department of Mathematics
Mailstop 3368
College Station, TX 77843-3368
USA

De Anza College
21250 Stevens Creek Blvd.
Cupertino, CA 95014
USA

MPIM 11-64





The Spectral Measure of the Markov Operator

related to 3-generated 2-group of intermediate

growth and its Jacobi Parameters ∗

R.I.Grigorchuk and Ya.S. Krylyuk

Introduction

The diatomic linear chain is one of the most studied and used models in
physics and chemistry [Bri53]. What can relate this model to the tor-
sion group of intermediate growth G, a highly non-commutative object con-
structed by the first author in [Gri80]. The goal of this preprint is to describe
the relation between these two apparently completely different instances and
to draw some consequences.

Let us start with some history. The groups of Burnside type (i.e. finitely
generated infinite torsion groups [Gol64, GL02]) and the groups of inter-
mediate (between polynomial and exponential) growth [Gri83, Gri84] had
appeared respectively in 60-th and 80-th of the last century, and during
decades were considered as exotic groups.

A rich source of such interesting examples is the class of so-called au-
tomata groups introduced in 1963 and studied in [Hoř63, Ale72, GNS00b].

Recent developments show that this class together with the closely re-
lated classes of self-similar groups and branch groups introduced in [Gri88,
Gri00a, Gri00b] (see also the monograph of V. Nekrashevych [Nek05]) play
important role in various studies in mathematics and other areas of science.

In this preprint we will show how groups of intermediate growth can be
used to interpret classical results from the new perspective, and to bring a
broader vision to some facts known for a long time. Our investigation is
based on results from [BG00a].

∗The first author is supported by NSF grants DMS-0456185 and DMS-06000975. Both
authors are supported by Max-Planck Institut of Mathematiks, Bonn.
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Namely we will describe the connection between G and the diatomic
linear chain model [Whe84, Gau84], expressed in the form of a relation
between associated Jacobi parameters and spectral measures.

The part of the preprint is devoted to a simple introduction to the the-
ory of Schreier graphs related to self-similar groups acting on rooted trees
and to their spectral theory. Additional information on this topic can be
find in [BG00a, Gri05, Gri11]. Appendix contains the computation of some
integrals needed in the proof of the main statements.

While Cayley graphs of finitely generated groups are very popular in
combinatorial group theory and its geometric branches, Schreier graphs
didn’t play a big role (at least in infinite group theory) until recently. Ac-
tions of self-similar groups on regular rooted trees demonstrate usefulness of
Schreier graphs in different topics of holomorphic dynamics [Nek05], fractal
geometry [BGN03], and combinatorics [GŠ06].

One of the interesting ideas related to groups generated by finite au-
tomata is to use them for constructing families of expanders. If implemented,
it would provide a new construction of expanders, much more effective in
practice than the existing constructions. The first step in this direction has
been made in [Gri11] where the so called asymptotic expanders are con-
structed using finite automata. Proving that some finite automata may
produce a sequence of expanders has to go through computation (or esti-
mation) of the second after 1 (in the decreasing direction) eigenvalue of the
Markov operator of Schreier graphs arising from the action of the group on
levels of the regular rooted tree. This is related to the computation of the
spectrum, i.e. to the diagonalization of the operator (the involved operators
are self-adjoint and therefore diagonalizable).

Another example leading to a spectral problem is the well known com-
binatorial problem related to Hanoi Towers game on k ≥ 4 pegs (see [GŠ06]
[GŠ07]).

The problem of computation of spectra of operators (or graphs) related
to self-similar groups is hard and solved only in a few cases [BG00b, GŻ01,
GSŠ07a]. The tested examples are related to finite Mealy type automata
generating amenable (in von Neumann sense [vN29])) groups. It is known
that amenable infinite groups can not be used for construction of expanders
by taking the sequence of finite quotients. Nevertheless even in the amenable
case the study of spectra of associated objects is a challenging problem as
it could be related to other topics, for instance, to the topics around the
Atiyah Problem on L2-Betti numbers, as shown in [GLSŻ00]. Although this
problem has been solved recently [Aus09, Gra09, LW10, PSZ10] there is still
a lot of open questions around and one of them is if different groups from
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the Lampligher group can contribute to the problem.
There is no universal method for computing the spectrum, but there

is a general method based on Schur complement transformation of matrices
with operator valued entries which works well in certain situations [GSŠ07b,
GN07], in particular in the one that we are going to discuss.

Let us consider an easier problem. Namely, using the classical algorithm
(say of Hessenberg) let us transform the matrix of the Markov operator to
the tridiagonal form and consider it as a Jacobi matrix. We would like to
determine what type of Jacobi matrices can appear in this way, what type
of orthogonal polynomials correspond to these matrices, and which spectral
information (including the information about spectral measures) is obtained
in the process. We expect that the Jacobi matrices and orthogonal polyno-
mials arising from self-similar groups to possess some interesting properties.

The goal of this preprint to follow this plan (at least in part) in the case
of the group G. The definition of this group in various forms (including the
one given by the action on binary rooted tree) will be given in Section 3.
Notions related to graphs and spectral measures will appear in Section 2.

The study of asymptotic properties of graphs and groups is related to
the study of spectral measures, first of all of the so called Kesten spectral
measure which is the spectral measure of the Markov operator associated
with the random walk on the group.

Recent investigations show usefulness of the so called Kesten-von Neumann-
Serre (KNS) spectral measure [BG00a]. It is analogous to integrated density
of states in mathematical physics and can be rigorously defined for any graph
which is the limit of a covering sequence of finite graphs [GŻ01, GŻ04]. Our
main result is the following

Theorem 1. Let Γ = Γ(G, P, γ) be a Schreier graph of the group G, where
γ is any point of the boundary of the binary rooted tree on which G acts,
except in the orbit of the point 1∞, and let P = stG(γ). Then

• The KNS spectral measure of Γ coincides with the Kesten’s spectral
measure, and coincides (up to affine transformation of R) with the
density of states of the corresponding diatomic linear chain.

• The Jacobi matrix associated to the Markov operator and the initial
vector δγ given by the δ-function at vertex γ is

J =




a1 b1 0 0 0 0 . . .
b1 a2 b2 0 0 0 . . .
0 b2 a3 b3 0 0 . . .

. . .


 ,
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where the diagonal elements an = 1 for n = 1, 2, 3, . . . and

b1 =
√

5,

bn =





√
2n + 4
2n + 1

if n is even,
√

2n+1 + 1
2n−1 + 1

if n is odd, n ≥ 3.

The coincidence of spectral measures is not an absolute phenomenon due
to the following result.

Theorem 2. For the graph Γ and γ belonging to the orbit of 1∞ the Kesten
and KNS spectral measures are different, but have the same support and
are absolutely continuous with respect to Lebesgue measure (the density of
Kesten spectral measure is explicitly computed in Lemma 6.1).

We would like to mention that some of results presented in this preprint
are already known ([BG00a, GŻ04], so the preprint can be considered partly
as a survey. Also authors are aware that part of the results may be obtained
in a shorter way. We preferred to use longer but classical way, based on
application of Stieltjes transform.

It would be interesting to check whether in the case of a contracting self-
similar group ([Nek05, Gri11]), the uniform the Kesten and KNS spectral
measures coincide for almost all points on the boundary of the tree, or
whether at least the measures have the same support for all boundary points.

1 Groups acting on rooted trees, automata groups
and related representations

In this preprint we shall consider only the torsion group G of intermediate
growth defined in [Gri83, Gri84] (see the definition in Section 3), but in order
to put our investigation in the general perspective let us briefly review the
necessary facts and definitions from the theory of groups acting on regular
rooted trees (see, for instance [BG00a, Nek05]). Let Σ be a finite alphabet.
The vertex set of the tree T = TΣ is the set of finite sequences over Σ;
two sequences are connected by an edge when one can be obtained from
the other by right-adjunction of a letter in Σ. The top node is an empty
sequence, and the ”children” of σ are all the σs, for s ∈ Σ. We suppose
Σ = Z/dZ, with the operation s̄ = s + 1 mod d. Let a, called the rooted
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automorphism of TΣ, be the automorphism of T defined by a(sσ) = s̄σ: it
acts non-trivially on the first symbol only, and geometrically is realized as
a cyclic permutation of the d subtrees just below the root.

For any subgroup G < A (A is the group of all automorphisms of the
tree T ) stG(σ) denotes the subgroup of G consisting of automorphisms that
fix the sequence σ, and stG(n) denotes the subgroup of G consisting of the
automorphisms that fix all sequences of length n:

stG(σ) = {g ∈ G | gσ = σ}, stG(n) =
⋂

σ∈Σn

stG(σ).

The stG(n) are normal subgroups of finite index in G.
A subgroup G < A is level-transitive if the action of G on Σn is transitive

for all n ∈ N. We shall always implicitly make this assumption.
G acts naturally on the boundary ∂T = {0, . . . , d− 1}N, and this action

preserves the uniform Bernoulli measure ν on the compact space ∂T . We
associate the dynamical system (G, ∂T, ν) to the group G.

This dynamical system is naturally isomorphic to the dynamical system
(G, [0, 1],m), where m is the Lebesgue measure, and G acts on [0, 1] by
measure-preserving transformations in the following way: let g ∈ G, and
γ ∈ [0, 1] be a d-adic irrational point with base-d expansion 0.γ1γ2 . . .. Then
g(γ) = 0.δ1δ2 . . ., where the infinite sequence (γ1, γ2, . . .) is mapped by g to
(δ1, δ2, . . .). This defines the action of G on a subset of full measure of [0, 1].

Definition 1.1. The infinite sequences σ, τ : N→ Σ are confinal if there is
N ∈ N such that σn = τn for all n ≥ N .

Confinality is an equivalence relation, and equivalence classes are called
confinality classes.

A ray e in T is an infinite geodesic starting at the root of T , or equiva-
lently an element of the boundary ∂T = ΣN.

Let G < A and e be a ray. The associated parabolic subgroup is
P = stG(e) =

⋂
n≥0 Pn, where Pn = stG(en) and en is the length-n prefix

of e.
Since G acts on the boundary ∂T of the tree by homeomorphisms (with

respect to the natural topology on ∂T ) and preserves the uniform measure
on the boundary, we have a unitary representation π of G in L2(∂T, ν), or
equivalently in L2([0, 1],m). Let Hn be the space of L2(∂T, ν) spanned by
the characteristic functions χσ supported on the rays e starting by σ, for
all σ ∈ Σn. It is of dimension dn, and can equivalently be seen as spanned
by the characteristic functions in L2([0, 1],m) of the intervals of the form
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[(i− 1)d−n, id−n], 1 ≤ i ≤ dn. These Hn are invariant subspaces, and admit
representations πn = π|Hn . Since πn−1 is a subrepresentation of πn, we set

π⊥n = πn ª πn−1, so that π =
∞⊕

n=0
π⊥n .

Denote by ρG/P the quasi-regular representation of G in `2(G/P ) given
by the left action and, for n ≥ 1, denote by ρG/Pn

the finite-dimensional
representations of G in `2(G/Pn). Since G is level-transitive, the represen-
tations πn and ρG/Pn

are unitary equivalent.

Definition 1.2. Let G be a group generated by a set S and H be a subgroup
of G. The Schreier graph S(G,H, S) is the directed graph on the vertex set
G/H, with an edge from gH to sgH withevery s ∈ S and every gH ∈ G/H.
The base point of S(G,H, S) is the coset H.

If a group G acts on a set X and x ∈ X, then the Schreier graph
Γ(G,S, stG(x)) can be interpreted as the connected component of the graph
of action (i.e. the graph whose vertices are the points of orbit of x and two
vertices are joined by an edge if one can pass from one vertex to another by
the action of a generator). In the case of a transitive action the graph of
the action is isomorphic to the Schreier graph.

Let Γn be the Schreier graph of the action of a group G on the n-th level
of the tree and let Γ be the Schreier graph of the action of G on the boundary
with the set of vertices belonging to the orbit of some point ξ ∈ ∂T . Let
vn be a vertex of the ray ξ at level n. We consider Γn as a marked graph
with a distinguished vertex vn and Γ as a marked graph with a distinguished
vertex ξ. Then Γn converge to Γ in the natural topology on the space of
marked graphs of given degree (two graphs are close in this topology if
they have isomorphic neighborhoods of large radius around distinguished
vertices) [GŻ99]. On the language of representations this corresponds to the
approximation of the infinite dimensional quasi-regular representation ρG/P

by the finite-dimensional ρG/Pn
, n ∈ N.

Definition 1.3. The Markov operator Mn on Γn is the operator on `2(Γn)
given by

(Mnf)(v) =
1
|S|

∑
w∼v

f(w),

where w ∼ v means that w is a neighbor of v in Γn. This formula defines
a Markov operator M also on Γ and more generally on any regular locally
finite graph.

We have parallel definitions of Hecke type operators M̃n and M̃ for the
quasi-regular representations ρG/Pn

and ρG/P in the Hilbert spaces `2(G/Pn)
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and `2(G/P ) respectively. For example, M̃n is defined on `2(G/Pn) by
formula

(M̃nf)(x) =
1
|S|

∑

s∈S

(ρG/Pn
(s)f)(x) for x ∈ `2(G/Pn).

It is clear that in the case of a level transitive action we can identify M̃n

with Mn and M̃ with M as they are symmetric.
The study of the Markov operator M̃ with a distinguished vector δP (i.e.

the study of the corresponding spectral measure, the Jacobi matrix, etc.) is
closely related to the study of the simple random walk on Γ.

This allows to employ the convergence of the marked graphs {Γn} to Γ in
the space of marked graphs in order to find the spectral measure µ of Γ (i.e.
the spectral measure of M̃ , with initial vector δP ) and the corresponding
Jacobi matrix J for (M̃, δP )).

We shall prove that in the case of group G, the measure µ coincides with
the KNS-measure calculated in [BG00a]. Generally, it is a very interest-
ing question what kind of measures and what kind of Jacobi matrices and
the corresponding orthogonal polynomials stand behind a group acting on
a regular rooted tree, in particular, an automaton group. Computer experi-
ments of drawing histograms of spectra associated with automata, even with
a small number of states, show that corresponding distributions and their
supports may have complicated topological and measurable structure and
there is a lot of open questions in this area [BGK+07].

2 Spectral measures

Let Γ be a graph and M be its Markov operator. For any two vertices x, y
and n ∈ N let pn

x,y be the probability that a simple random walk starting at
x will be at y after n steps. Recall that if δv is the characteristic vector of
the vertex v, then

pn
x,y = 〈Mnδx|δy〉.

Spectral measures (not necessary positive) are given by their distributions
(or spectral functions) σx,y via the moments

pn
x,y =

1∫

−1

λn dσx,y(λ) ∀n ∈ N,

or, equivalently,
σx,y(λ) = 〈M(λ)δx|δy〉,
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where M(λ) is the spectral decomposition of M . In case x = y the dis-
tribution determines a positive probabilistic measure. Set σx = σx,x. The
corresponding measure dσx(λ) is called the Kesten spectral measures as it
was introduced in [Kes59] in the situation of Markov operators corresponding
to symmetric random walks on groups. (In the case of the uniform distribu-
tion on a finite generating set Kesten measure is the spectral measure of the
Markov operator on the corresponding Cayley graph of the group). We will
usually identify spectral functions and corresponding measures, but will be
more careful when using them in integral expressions.

It is natural to expect that if Γ is infinite, regular and connected, then
all the measures σx are equivalent, and in particular, have the same support,
but there is no proof of this fact as far as we know.

One of approaches to study infinite graphs is to approximate them by
finite graphs and to use limit type theorems.

The traditional way is to approximate infinite graphs by ascending se-
quence of finite subgraphs. For instance in the case of an amenable graph
one can use the approximation by a sequence of Fölner sets. Recent studies
show the usefulness of another approach when the infinite graph is the limit
of a covering sequence of finite graphs. This is the case of Schreier graph
of the group G and other groups acting on rooted trees. In the algebraic
language this corresponds to the approximation of the infinite group by its
finite quotients. To be more precise, consider the family of subgroups

H ≤ G,H =
∞⋂

n=1

Hn,

where Hn is a descending sequence of subgroups of finite index in G. Then
the sequence of finite graphs Tn = S(G,Hn, S) is a covering sequence (in
the sense that each next graph covers the previous one) which converges to
the graph T = S(G,H, S) in the space of regular marked graphs of degree
|S|, and the following statement holds.

Proposition 2.1 ([GŻ99]). Let σn and σ be the Kesten measures of the
Schreier graphs Tn and T . Then σn(λ) → σ(λ) weakly.

On the other hand, we have the counting measure τn on each finite
Schreier graph Tn , counting the average number of eigenvalues in any given
interval. The measures τn converge to some measure τ∗ which was called in
[GŻ04] the KNS spectral measure on T . This is analogous to the notion of
integrated density of states often used in mathematical physics literature.
The existence of the limit measure τ∗ is the corollary of one of results of
Serre [Ser97].
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Problem 1. Under what conditions on marked graph T which is the limit
of covering sequence Tn of finite marked graphs the KNS−spectral measure
τ∗ coincides with the Kesten spectral measure?

As we shall show this is the case for the two ended Shreier graphs of
3-generated 2-group G of intermediate growth with the standard set of gen-
erators S = {a, b, c, d}.

In this case the corresponding KNS measure is a continuous measure,
given, up to multiplication by 4 and shift by 1 along R is given by the
following formula:

(2.1) τ∗(dλ) =
|λ| dλ

π
√

(λ + 3)(λ + 1)(λ− 1)(3− λ)
, λ ∈ [−3,−1] ∪ [1, 3].

TThe measure τ∗ was computed in [BG00a] in the following way. The
Markov operator M on the infinite Schreier graph Γ is replaced by the
operator 4M and is included in a two parametric family of operators Q(λ, µ).
These operators are in certain sense approximated by operators Qn(λ, µ) in
2n dimensional space and include, for the value λ = −1, µ = −1, the operator
4Mn where Mn is the Markov operator on the n-th approximation Γn of the
graph Γ by the Shreier graphs of the action of G on the n-th level of the
tree, n = 1, . . . . The operator 4Mn is represented by the following matrix




3 1 0 0 0 . . . 0
1 1 2 0 0 . . . 0
0 2 1 1 0 . . . 0
0 0 1 1 2 . . . 0. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 2 0
0 0 0 . . . 2 1 1
0 0 0 . . . 0 1 3




of size 2n in a suitable basis (related to nonstandard ordering of vertices
of the n-th level of the tree discussed in Section 3). A tricky computation
based on the existence of a recursion between the spectrums of Qn(λ, µ), n =
1, 2, . . . which involves a two dimensional rational map and the semiconju-
gacy of this map to the Chebyshev-von Neumann-Ulam map x → 2x2 − 1
results in that the spectrum of the above matrix is

{1±
√

5− 4 cos(θ) : θ ∈ 2πZ/2n} − {0, 2}.
When n → ∞ the distribution of values of θ tends to the uniform

distribution and hence the distribution of eigenvalues of the above ma-
trix tends to the image of the uniform distribution under the functions
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{1 ±
√

5− 4 cos(θ)}, that is to the distribution supported in [−2, 0] ∪ [2, 4]
with density

|x− 1|
π
√

x(x− 2)(x + 2)(4− x)
.

The shift of R by 1 (which corresponds to transform 4M → 4M − 1)
gives the above measure 2.1.

Let us compare the way in which this measure appears in diatomic linear
chain on one hand and in association with G on the other hand. The reader
is advised to consult [Whe84] and [Gau84] for details on used notions and
formulas.

The allowed frequencies ω± of the one-dimensional diatomic linear chain
are given by

ω±
γ

=
(

1
m

+
1
M

)
±

[(
1
m

+
1
M

)2

− 4 sin2 θ

mM

]1/2

,

where δ is the harmonic force constant, and m and M are the masses of
the two kinds of particles which alternate on the chain.

Setting x = (ω/ωm)2 where ωm = {2δ[1/m + 1/M)]}1/2 gives

x =
1
2
{1± [1− y sin2 θ]1/2},

where
y =

4mM

(m + M)2
.

The allowed values of x lie in the union of two intervals 0 ≤ x ≤ r/(1+r)
and 1/(1 + r) ≤ x ≤ 1 where r = m/M .

The values of θ are uniformly distributed on (0, π/2) and therefore x
is distributed in the union of the above intervals withthe law given by the
density

|1− 2x|
2π

√
x(1− x)[r/(1 + r)− x][(1 + r)−1 − x]

.

In the case m = 1,M = 2 the parameter r = 1/2. The linear transform
z = 6x− 2 leads to the distribution 2.1.

The same type of argument shows that there is a relation between the
diatomic linear chain to the model of Markov operator related to G and Γ
in the case of arbitrary value of the parameter r.
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3 The group G and its Schreier graphs

In the sequel we shall need only information about the Schreier graphs Γn

and Γ related to group G, but for completeness lets us recall the original
definition from [Gri00a] of this group as well as the realization of it by a
finite automaton. Also we will describe the corresponding action on a 2-
regular rooted tree T2.

The vertices of this tree can be naturally identified with the words over
the alphabet Σ = {0, 1} (the words of length n correspond to the vertices of
level n). One can view the tree as embedded into a plane (with the root at
the top) and with the lexicographic ordering of vertices of n-th level given
by 0 < 1.

Then a is the automorphism permuting the top two branches of T2. Let
define b recursively as the automorphism which acts as a on the left branch
and as c on the right, where c is the automorphism which acts as a on the
left branch and as d on the right, and finally d is the automorphism which
acts as 1 on the left branch and as b on the right. In formula,

b(0xσ) = 0x̄σ, b(1σ) = 1c(σ),
c(0xσ) = 0x̄σ, c(1σ) = 1d(σ),
d(0xσ) = 0xσ, d(1σ) = 1b(σ),

where σ represents any finite binary sequence. G is the group of automor-
phisms of the tree T2 generated by {a, b, c, d}. It is readily checked that these
generators are of order 2 and that {1, b, c, d} constitute a group isomorphic
to the Klein group. Therefore any of the generators {b, c, d} can be omitted
from generating set (but we prefer to keep all of them). One can visualize
the definition of generators by Figure 1, where e represents the trivial action
below a vertex and ε represents a switch.

Originally the group G was defined in [Gri80] by its action on the interval
[0, 1] from which rational dyadic points are removed. This definition is
presented by Figure 2 where P stands for permutation of halves of the
interval and I represents the identity transformation.
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Figure 1: Action on the tree
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Figure 2: Action on the interval [0, 1]
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More precisely, the transformations a, b, c, d ) act as

a(z) =





z +
1
2

if z <
1
2

z − 1
2

if z ≥ 1
2

b(z) =
0

a a 1 a ...
1

4
3

8
7 1

2

c(z) =
0

a a ...1 a

d(z) = a a 1 ...  1

Here the subintervals represent the whole interval [0, 1], labeled with either
a or 1 (the identity transformation) which act on the described subintervals
in a similar way as a or id act on [0, 1].

Also G can be defined as a group generated by the automaton given by
Figure 3 (the identity and non-identity elements of the symmetric group on
two symbols are represented as 1 and ε and are used to label states of the
automaton). For more on automata groups (called also self-similar groups)
see [GŠ07, GNS00a, BGK+07, Nek05].

1

1

1

1

0

0

0

ε

0,1
1 d

ba

c 1

Figure 3: The automaton for G.

The action of G on the interval preserves the Lebesgue measure m and
the action on ∂T2 preserves the uniform measure ν (which is the Bernoulli
{1/2, 1/2} measure). It is easy to see that there is a natural isomorphism of
two dynamical systems (G, [0, 1],m) and (G, ∂T2, ν) given by the presentation
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of 2−adic irrational points by corresponding binary sequences (which in turn
are identified with points of the boundary).

Now we are going to summarize the known information about the Schreier
graphs Γn and the orbit graph Γ = Γζ of the action of G on the orbit of
ζ ∈ ∂T2.

a
0

b

d d

cc
1

b

Figure 5: Axiom.

The sequence Γn is the sequence of substitutional graphs i.e. can be
described by the initial graph called the axiom (in our case it is the graph
given by Figure 5 and represents the action of G on the first level of the tree)
and by the substitutional rule that allows to get Γn+1 from Γn (in our case
the substitutional rule is presented by Figures 6 and 7).

d

b

c

aa

a
vu

d

1u 1v

Figure 6: Rule 1.

The application of one (respectively two) times of the rule to the axiom
gives the Schreier graphs for levels 2 (respectively 3) represented on the
bottom of Figure 4 (it takes some time to realize that the graphs of the
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u b v u c v u d v

d b c1u 1v 1u 1v 1u 1v

Figure 7: Rule 2.

action of G on levels of the tree represented in the top part of Figure 4 are
isomorphic to the corresponding graphs given in the bottom part (see the
more precise statement about the isomorphism below). The iteration of this
process allows to build Γn for any n = 1, 2....

The vertices of Γn are naturally identified with Σn where Σ = {0, 1} is
supplied with the lexicographic ordering:

00 . . . 0, 00 . . . 1, . . . , 11 . . . 1

(the ordering of the vertices on nth level of T2 from the left to the right).
On the other hand, in order to realize Γn as a chain with one loop at each
vertex (as was suggested in [BG00a]) we need to consider another ordering.
This new ordering, to which we shall refer as the non-standard ordering, is
defined by induction ; if the ordering of Σi−1 is (σ1, . . . , σ2i−1), the ordering
of Σi is

(1σ1, 0σ1, 0σ2, 1σ2, 1σ3, 0σ3, . . . , 0σ2i−1 , 1σ2i−1).

The non-standard ordering gives the possibility to draw the figure of the
Schreier graph in the form of a chain as is shown in Figure 4.

Figure 8: Two ends.
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Now let γ ∈ ∂T2 be any point of the boundary and vn be a vertex
belonging to the path γ and to the n-th level of the tree. Then, as mentioned
above the sequence of marked graphs (Γn, vn) converges in the space of
marked labeled graphs to the infinite marked graph (Γ(γ), γ) whose vertices
are points of the orbit of γ and γ is the distinguished vertex of the graph.

It is known (and easy to see) that the partition of the action of G on ∂T2

in orbits is the confinality partition described in Definition 1.1. Another fact
is that the infinite graphs Γγ are all isomorphic to the graph represented in
Figures either 8 or 9. In other words, these are graphs looking as a two-
periodic chain with one or two ends and with a loop at each vertex (except
for the left vertex in one ended case, which has three loops). More precisely,
if γ is not in the orbit of point 1∞ then Γγ is isomorphic to the two ended
chain, while for the points in the orbit of 1∞ the graph is the one ended
chain.

The labeling of the graph depends on γ. For the case of 0∞ it is presented
in the bottom of the Figure 8 and the case of 1∞ is presented inFigure 9.

Figure 9: One end.

For the rest of the text we will choose the distinguished vertex o = 0∞ and
will denote by en its n-th vertex 0n. The vertex e3 = 000 is on the 3-rd place
according to the non-standard ordering. Generally, en will occupy K(n)−th
place according to the non-standard ordering, where

K(n) =
{

1
3(2n+1 + 2) if n is odd,
1
3(2n+1 + 1) if n is even.

Observe that K(n) asymptotically behaves as 2
3m, where m = 2n and

n → ∞. Therefore the limit of graphs (Γn, en) is the two ended chain as
was already mentioned.
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4 Calculation of the Green function for Γ

In this Section we shall compute the Green function of the simple random
walk on the two ended Schreier graph Γ of the group G (more precisely on its
modification obtained by deletion of loops). This is not difficult and surely
the expression for the function exists somewhere in literature, but we were
unable to find a reference. The computation of the Green function can be
provided by standard probabilistic methods but instead we will use a small
”trick” coming from the theory of orthogonal polynomials and moments
problem. The matrix M0

n = 4Mn− 1, where 4Mn is the “adjacency” matrix
for Γn, has the size 2n and has the following tridiagonal form:

M0
n =




2 1 0 0 0 . . . 0
1 0 2 0 0 . . . 0
0 2 0 1 0 . . . 0
0 0 1 0 2 . . . 0. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0 1
0 0 0 . . . 0 1 2




.

M0
n can be interpreted as the “adjacency” matrix of the graph Γ0

n, when we
remove from Γn one loop out each vertex. Graph Γ0

n is a 3-regular graph
and 1

3M0
n can be interpreted as the Markov operator on the graph Γ0

n. Since
the marked vertex en = 0n in the graph Γ0

n is on the K(n) ≈ 2
32n place,

Γ0
n converge to the infinite directed graph Γ0, which determines the Markov

chain X given in Figure 10.

X qpqq p

q p q p q qp

p q

−3 −2 −1 0 1 2 3 4

  :

Figure 10: The Markov chain X, corresponding to Γ0.

Here p = 2/3, q = 1
3 . In order to calculate the Green function (also called

random walk generating function) ϕX(t) of this Markov chain,

ϕX(t) =
∞∑

n=0

Pn
1,1t

n,

(Pn
1,1 is the probability of return to the initial point 1 of random walk after n

steps) we notice that ϕX(t) is the even part of the walk generating function
ϕY (t) = ΣQn

1,1t
n of the following semi-infinite Markov chain Y given in

Figure 11 below.
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1 2

q

qp

pq

q

pY:
3 4

Figure 11: The Markov chain Y .

Lemma 4.1. There is one to one correspondence between the even length
paths on X starting at 1 and ending at 1 and even length paths on Y starting
at 1 and ending at 1. The length and the transition probabilities under this
correspondence are preserved.

In order to get this correspondence one imagines the mirror “perpendic-
ular” to our chain (assuming that states are at integer points on the x-axis)
at x = 1

2 and use the reflection of those parts of the trajectory that stay to
the left of 1.

Lemma 4.1 implies that

(4.1) ϕX(t) =
ϕY (t) + ϕY (−t)

2
.

Now, in order to calculate ϕY (t), we shall calculate the moment gener-
ating function

mY (z) =
m̃0

z
+

m̃1

z2
+ · · ·

of the matrix, which is 3-times the matrix of transition probabilities of the
Markov chain Y , i.e. of the following infinite tridiagonal matrix M0,

M0 =




2 1 0 0 0 . . .
1 0 2 0 0 . . .
0 2 0 1 0 . . .
0 0 1 0 2 . . .

. . . . . . . . . . . .




,

where m̃n is the (1, 1) position matrix element of the n−th power of matrix
M0 (we assume that the rows and columns of M0 are numerated by numbers
1, 2, . . . i.e. by states of the Markov chain Y ). Using the well known corre-
spondence between the moment generating function of the Jacobi matrices
and the continued fraction (see, for example, [Akh65]) we have asymptotic
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expansion

(4.2) mY (z) =
1

z − 2− 1

z − 4

z − 1

z − 4
z − . . .

.

Consider ψ(z) =
1

z − 4

z − 1

z − 4
z − . . .

.

Obviously,

(4.3) ψ(z) =
1

z − 4
z − ψ(z)

,

which immediately implies that ψ(z) is a root of quadratic equation

(4.4) z[ψ(z)]2 − (z2 − 3)ψ(z) + z = 0.

i.e

(4.5) ψ(z) =
z2 − 3−√z4 − 10z2 + 9

2z

with the appropriate choice of a branch of the square root function.
Therefore,

mY (z) =
1

z − 2− ψ(z)
=

1

z − 2− z2−3−√z4−10z2+9
2z

=
2z

z2 − 4z + 3 +
√

z4 − 10z2 + 9
.

We will omit the index Y and write m(z). Next we can calculate

ϕM0(t) = m̃0 + m̃1t + m̃2t
2 + · · · .
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Since

ϕM0(t) =
1
t
m

(
1
t

)

=
2
t2

1
t2
− 4

t + 3 +
√

1
t4
− 10

t2
+ 9

= − 1
4t

(
1−

√(
1 + 3t

1− 3t

) (
1 + t

1− t

))
,

we get,

(4.6) ϕM0(t) = − 1
4t

(
1−

√(
1 + 3t

1− 3t

) (
1 + t

1− t

))
.

The walk generating function of the paths on Y starting at 1 and ending
at 1, ϕY (t) is related to ϕM0(t) by equation ϕM0(t) = ϕY (3t). Now we are
ready to calculate the walk generating function for X, ϕX(t). Recall that
ϕX(t) is the even part of ϕY (t). Let ϕ(t) is the even part of ϕM0(t). (It is
clear that ϕ(t) = ϕX(3t).) We have

ϕ(t) =
ϕM0(t) + ϕM0(−t)

2

=
1
2
{− 1

4t

[
1−

√(
1 + 3t

1− 3t

)(
1 + t

1− t

)]
+

1
4t

[
1−

√(
1− 3t

1 + 3t

)(
1− t

1 + t

)]
}

=
1√

(1− 3t)(1 + 3t)(1− t)(1 + t)
.

Hence,

(4.7) ϕ(t) = ϕX(3t) =
1√

(1− 3t)(1 + 3t)(1− t)(1 + t)
.

and we are done with the computation.

5 Proof of the result

Define m1(z) from the equation

(5.1) m1(z) =
1
z
ϕ

(
1
z

)
.
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i.e

(5.2) m1(z) =
z√

(z + 3)(z − 3)(z − 1)(z + 1)
.

Remark 1. There is a shortcut to obtain m1(z) from m(z) directly. It is
clear that m1(z) is the odd part of m(z). Hence, m1(z) = m(z)−m(−z)

2 . We
shall obtain the same formula for m1(z).

Recall that for any measure dσ(x) on R with a compact support its
Stieltjes transform S(z) is defined by

S(z) =
∫

R

dσ(x)
z − x

, x ∈ C.

From what we have discussed follows that

m1(z) =
m0

z
+

m1

z2
+ · · ·

is the Stieltjes transform of the spectral measure of the operator 4M−1 and
initial vector δγ , γ = 0∞ where M is the Markov operator of simple random
walk on (two ended) graph Γ.

Theorem 1 will follow from the next two propositions. Observe first of
all that in two-ended case (i.e. when γ /∈ Orbit(1∞)) the Kesten spectral
measure does not depend on γ as the change of γ corresponds (up to isomor-
phism of graphs) to the change of initial point in Markov chain X, but this
does not lead to the change of transition probabilities and therefore does
not effect the measure. Therefore, we can choose γ = 0∞.

Proposition 5.1. The KNS-measure for the Markov operator M with initial
vector δγ, γ = 0∞, coincides with the Kesten measure of the marked Schreier
graph (Γ, γ).

Proof. It follows immediately from the equation 5.2, the calculation of the
KNS-measure in [BG00a] (the measure is presented by formula 2.1), the fact
that the coincidence of Stieltjes transforms implies the coincidence of mea-
sures, and the Lemma 5.1 the proof of which is postponed to the Appendix.

Lemma 5.1. Let ρ be a measure with support B = [−3,−1]∪ [1, 3] given by
the following density function

p(x) =
|x|

π
√

(x + 3)(x + 1)(x− 1)(3− x)
, x ∈ B.

Then the Stieltjes transform of ρ is f(z) = z√
(z+3)(z−3)(z+1)(z−1)

.
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Proposition 5.2. The Jacobi matrix J0 of the operator 4M − 1 for the
Schreier graph of the group G and initial vector δγ, γ = 0∞ has the following
tridiagonal form

J0 =




0 b1 0 0 . . .
b1 0 b2 0 . . .
0 b2 0 b3 . . .
0 0 b3 0 . . .




where
b1 =

√
5,

bn =





√
2n + 4
2n + 1

if n is even,
√

2n+1 + 1
2n−1 + 1

if n is odd, n ≥ 3.

Proof. Proposition 5.2 follows from the results of [Gau84], where the Jaco-
bian parameters are calculated for a class of densities, including density

dρ(t) =

∣∣t− 1
2

∣∣
π
√

t
(
t− 1

3

) (
t− 2

3

)
(1− t)

dt,

which is different from the density (2.1) just by the affine transformation.
As was already mentioned in the introduction, this measure is related to the
diatomic linear model in chemistry (see [Gau84], [Whe84] and references
therein).

To be more precise, let us show how to get the Jacobi parameters from
the results of [Gau84]. First of all, let us mention that the Jacobi param-
eters, Kesten spectral measure, Green function for the random work with
beginning at the distinguished point of a Scheier graph, and moments of the
Kesten spectral measure determine each other. The graph (Γ, γ) is the limit
of the sequence (Γn, vn) where vn = 0n, the graph Γn looks like a chain of
length 2n, and the distinguished point vn occupies the place K(n) ≈ 2

32n

in this chain. It is obvious that the Green functions Gn(z) of (Γn, vn) in
some neighborhood of 0 converge pointwise to the Green function G(z) of
(Γ, γ) (indeed, we have the stabilization of coefficients for each power of z in
the asymptotic expansion of G(z)). This, in fact, corresponds to the conver-
gence of Kesten spectral measures of (Γn, vn) to the Kesten spectral measure
of (Γ, γ). The same holds for the moments and for the Jacobi parameters.
Hence, we may start with the spectral measure given by density (5.2) and
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compute the corresponding Jacobi parameters. The computation was made
in [Gau84] even in more general setting.

Consider the symmetric Jacobi matrix J0 corresponding to operator
4M − 1 with the elements on upper and lower diagonals b1, b2, . . . (get-
ting zeros along the main diagonal). Our bi correspond to

√
βi, where βi are

parameters from the Gautschi paper used there to describe the recurrent
relations for the orthogonal polynomials. To see this, remind that starting
with a symmetric Jacobi matrix




a1 b1 0 0 . . .
b1 a2 b2 0 . . .
0 b2 a3 b3 . . .
0 0 b3 a4 . . .

. . . . . . . . . . . .




one gets a sequence of orthogonal polynomials {pk(λ)} satisfying the recur-
rent relation

bk−1pk−2(λ) + akpk−1(λ) + bkpk(λ) = λpk−1(λ).

The corresponding {pk(λ)} are polynomials of degree k, but not monic. To
be able to use the formulas from [Gau84] we have to replace {pk(λ)} by
proportional monic polynomials qk(λ). Let qk(λ) = b1b2 · · · bkpk(λ). Then
we have

bk−1
qk−2

b1 . . . bk−2
+ ak

qk−1

b1 . . . bk−1
+ bk

qk

b1 . . . bk−1
= λ

qk−1

b1 . . . bk−1
.

After multiplication by b1 . . . bk−1 we obtain

b2
k−2qk−2 + akqk−1 + qk = λqk−1,

which is equivalent to

qk = (λ− ak)qk−1 − b2
k−1qk−2.

As Gautschi’s paper deals with monic orthogonal polynomials and uses
the above recurrent formula, we have to take the square root of parameters
βi as was mentioned above.

Again returning to notations of Gautschi paper, we notice that in our
case r = 1/2 for the two-sided Markov chain represented by Figure 3,

ξ =
1− r

1 + r
=

1
3
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(the parameter ξ appears on page 473 of [Gau84]), and

η =
1− ξ

1 + ξ
=

1
2

(the definition of η is just before the formula (5.6) on page 480 of [Gau84]).
Now, we use the formulas (5.6) and (5.7) from [Gau84] to find β2k and β2k+1,
respectively. We have

β2k =
1
4

(
1− 1

3

)2

1 =

((
1
2

)2k
)

/

(
1 +

(
1
2

)2k
)

=
1
9

(
22k + 4
22k + 1

)
,

β1 =
1
2

(
1 +

(
1
3

)2
)

=
5
9
,

β2k+1 =
1
4

(
1 +

(
1
3

)2
)(

1 +
(

1
2

)2k+2
)

/

(
1 +

(
1
2

)2k
)

=
1
9

(
22k+2 + 1
22k + 1

)

which completes the proof of Proposition 5.2 and therefore the proof of
Theorem 1.

Proof. The proof of Theorem 2 is based on the same type arguments that
were used for the proof of Theorem 1 and on Lemma 6.1 the proof of which
is done in the Appendix.

6 Appendix

The integrals needed for proofs of the technical lemmas can be computed
using the computers software. Nevertheless, in order to be completely rig-
orous in our arguments, we provide in this Appendix the proof of Lemma
5.1 as well as of Lemma 6.1. We start with the proof of Lemma 5.1.

Proof. Introduce the ε-neighborhood of the set B in w-complex plane

B(ε) = {w ∈ C | d(w, B) ≤ ε} (0 < ε < 1).

Let ∂B(ε) = γ = γ1 ∪ γ2 and
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Figure 12:

let g(z) be the Stieltjes transform of ρ:

(6.1) g(z) =
∫

B

(
1

z − x

) |x|
π
√

(x + 3)(x + 1)(x− 1)(3− x)
dx.

Introduce an auxiliary path integral Iε(z) of the function

h(w) =
1

(z − w)
w√

(w + 3)(w + 1)(w − 1)(w − 3)
,

namely

(6.2) Iε(z) =
∫

γ

(
1

z − w

)
w dw√

(w + 3)(w + 1)(w − 1)(w − 3)
.

In order to calculate g(z) defined by (6.1) we consider limit in (6.2) as ε
approaches 0. On one hand, using the right hand side of (6.2) this limit
turns out to be proportional to g(z). On the other hand, we can calculate
the path integral (6.2) using the residue calculus and then take limit as
ε → 0. We will find the Stieltjes transform of the measure ρ.

In order to calculate Iε(z) using the residue calculus, we will apply
Cauchy’s Integral formula for the open region D in w-plane with the bound-
ary γ∪CR∪Cr. Here CR is the circle with center at 0 of radius (big enough)
R, Cr is the circle of radius (small enough) r with center at z (see Figure
15).
Before we will proceed further we need to fix which branch of h(w) we are
considering in D and check that this branch defines holomorphic function in
D. Since

h(w) =
(

1
z − w

)
w√

(w + 3)(w + 1)(w − 1)(w − 3)

=
1

(z − w)
w√

w + 3 · √w + 1 · √w − 1 · √w − 3
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Figure 13:

we need to choose branches for each square root in the denominator. We
indicate the branch for

√
w in the complex plane with the cut along the

negative part of the real part: if w = reiθ where θ is the angle from positive
real axis to w, r = |w|, then

√
w =

√
r e

iθ
2 . Similarly we choose branches for

each square root with obvious modification. For such identified branches of
h(w) we can check that h(w) is a holomorphic function on D. For example,
let us assume that we choose the path τ that goes only along γ1 but not γ2,
starting with the point P on the real axis.

-3 -1 1 3

τ

P

γ 1
γ

2

.

Figure 14:
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√
w − 1 and

√
w − 3 are holomorphic functions on τ , but both

√
w + 1 and√

w + 3 are changing sign when we make their continuation along τ . Since
h(w) contains their product

√
w + 3 · √w + 1, it will not change. The same

is true for a path that goes along γ2, since in this case
√

w + 3 and
√

w + 1
will not change, only both

√
w − 1 and

√
w − 3 will change. Again, since

they participate in h(w) as a product, the function h(w) will not change.
Hence, the Monodromy Theorem guarantees that h(w) with this choice of
branches for the square root is holomorphic in D.

We can apply the Cauchy Integral Formula for the region D and a holo-
morphic function h(w) in D:

(6.3)
∫

CR

h(w)dw =
∫

γ

h(w) dw +
∫

Cr

h(w) dw.

Now
∣∣∣∣∣∣∣

∫

CR

h(w) dw

∣∣∣∣∣∣∣
≤

∫

CR

|w| dw

|(z − w)||
√

(w + 3)(w + 1)(w − 1)(w − 3)| ∼
R

R ·R2
·2nR =

2π

R

and approaches 0 as R → +∞. From (6.3) it follows that

(6.4)
∫

γ

h(w) dw = −
∫

Cr

h(w) dw.

Since the disc with boundary Cr contains only one singular point of h(w),
namely, w = z,
∫

Cr

h(w) dw = −2πi · Res h(w)|w=z = −2πi(−1)
w√

(w + 3)(w + 1)(w − 1)(w − 3)

∣∣∣
w=z

= 2πi
z√

(z + 3)(z + 1)(z − 1)(z − 3)
.

From (6.4) we have

(6.5)
∫

γ

h(w) dw = −2πi
z√

(z + 3)(z + 1)(z − 1)(z − 3)
.

Letus investigate now the limit lim
ε→0

I(z)
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Since, I(z) =
∫
γ1

h(w) dw +
∫
γ2

h(w) dw, we compute the limit for each
∫
γi

h(w) dw (i = 1, 2). We have

(6.6)
∫

γ1

h(w) dw =
∫

C′1

h(w) dw +
∫

γ+
1

h(w) dw +
∫

C′′1

h(w) dw +
∫

γ−1

h(w) dw.

First, we show that the integrals over C ′
1 and C ′′

1 converge to 0 as ε → 0.
We have for C ′

1:
∣∣∣∣∣∣∣

∫

C′1

h(w) dw

∣∣∣∣∣∣∣
≤ max

C′1
|h(w)| length C ′

1 = max
C′1

|h(w)| · πε.

Now |h(w)| = 1
|√w+3| ·

∣∣∣∣ w

(z−w)
√

(w+1)(w−1)(w−3)

∣∣∣∣ ≤ 1√
ε
M ′

1(ε), where M ′
1(ε) =

max
C′1

∣∣∣∣ w

(z−w)
√

(w+1)(w−1)(w−3)

∣∣∣∣. Since the function w

(z−w)
√

(w+1)(w−1)(w−3)
is

holomorphic at w = −3 we have M ′
1(ε) ≤ M ′

1 (some constant) for 0 < ε ≤ 1
2 .

Hence

∣∣∣∣∣
∫
C′1

h(w) dw

∣∣∣∣∣ ≤
1√
ε
·M ′

1 ·πε = πM ′
1

√
ε. Therefore, lim

ε→0

∫
C′1

h(w) dw = 0.

Similarly, lim
ε→0

∫
C′′1

h(w) dw = 0. Now, lim
ε→0

∫
γ+
1

h(w) dw =
−1∫
−3

[lim
ε→0

h(x + iε)]dx.
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Note that

lim
ε→0

h(x + iε) =
x

(z − x)
√

x + 3 ·
√
−(x + 1) · i ·

√
−(x− 1) · i ·

√
−(x− 3) · i

=
x

(z − x)i3
√

(x + 3)(x + 1)(x− 1)(3− x)

= (−i)
−x

(z − x)
√

(x + 3)(x + 1)(x− 1)(3− x)

= (−i)
|x|

(z − x)
√

(x + 3)(x + 1)(x− 1)(3− x)
.

On the other hand, for x ∈ [−3,−1] lim
ε→0

h(x − iε) = − lim
ε→0

h(x + iε), since

3 branches, namely 1√
w+1

, 1√
w−1

, and 1√
w−3

change their signs. Because the

direction of γ−1 is the opposite to the direction of γ+
1 , we immediately obtain

that
lim
ε→0

∫

γ−1

h(w) dw = lim
ε→0

∫

γ+
1

h(w) dw,

and

(6.7) lim
ε→0

∫

γ1

h(w) dw = −2i

−1∫

−3

|x| dx

(z − x)
√

(x + 3)(x + 1)(x− 1)(3− x)
.

Similarly, we obtain

(6.8) lim
ε→0

∫

γ2

h(w) dw = −2i

3∫

1

|x| dx

(z − x)
√

(x + 3)(x + 1)(x− 1)(3− x)
,

and

lim
ε→0

h(x + iε) =
x

(z − x)
√

x + 3
√

x + 1 · √x− 1 · i
√
−(x− 3)

= −i
x

(z − x)
√

(x + 3)(x + 1)(x− 1)(3− x)

= −i
|x|

(z − x)
√

(x + 3)(x + 1)(x− 1)(3− x)

(since x > 0 in this case).) Therefore

(6.9) lim
ε→0

∫

γ

h(w) dw = −2iπ · g(z).

30



Comparing (6.5) and (6.9) we derive

(6.10) f(z) =
z√

(z + 3)(z + 1)(z − 1)(z − 3)
,

as required.

Lemma 6.1. The spectral measure of the operator 4M − 1 and the initial
vector δη, where M is the Markov operator on the one-ended Screier graph
corresponding to the orbit of the point η = 1∞ is the continuous measure
with the following density function:

p1(x) =
1
4π

√
(x + 1)(x + 3)
(x− 1)(3− x)

, x ∈ [−3,−1] ∪ [1, 3].

Proof. The proof is similar to the proof of Lemma 5.1 with some modifica-
tions. We need to prove that the Stieltjes transform of the measure p1(x) dx
is the function computed in section 4

m(z) = −1
4

(
1−

√
(z + 1)(z + 3)
(z − 1)(z − 3)

)
=

2z

z2 − 4z + 3 +
√

z4 − 10z2 + 9
.

Consider

(6.11) I1(z) =
∫

γ

h1(w) dx,

where

(6.12) h1(w) =
1

(z − w)

√
(w + 1)(w + 3)
(w − 1)(w − 3)

.

Then we follow exactly the same scheme as in the proof of Lemma 5.1. The
only difference is that the function h1(w) is not regular any more at w = ∞,
and that is why we need to calculate

∫
CR

h1(w) dw using the residue of h1(w)

at w = ∞. Using substitution w = 1
u we have

h1

(
1
u

)
=

1(
z − 1

u

)
√(

1
u + 1

) (
1
u + 3

)
(

1
u − 1

) (
1
u − 3

)

=
1(

z − 1
u

)
√

(1 + u)(1 + 3u)
(1− u)(1− 3u)

=
u

(uz − 1)

√
(1 + u)(1 + 3u)
(1− u)(1− 3u)

.
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Now

h1(w) dw = h1

(
1
u

)
d

(
1
u

)
= h1

(
1
u

)(
− 1

u2

)
du

= − 1
u(uz − 1)

√
(1 + u)(1 + 3u)
(1− u)(1− 3u)

du

Res h1

(
1
u

)
d

(
1
u

) ∣∣∣
u=0

= −
[

1
uz − 1

√
(1 + u)(1 + 3u)
(1− u)(1− 3u)

∣∣∣∣∣
∣∣∣∣
u=0

= 1.

Hence,
∫

CR

h1(w) dw = +2πi. Therefore,

(6.13)
∫

γ

h1(w) dw =
∫

CR

h1(w) dw −
∫

Cr

h1(w) dw = +2πi−
∫

Cr

h1(w) dw.

Now
∫

Cr

h1(w) dw = −2πi · res h1(w)|w=z

= −2πi · (−1)

√
(w + 1)(w + 3)
(w − 1)(w − 3)

∣∣∣
w=z

= 2π

√
(z + 1)(z + 3)
(z − 1)(z − 3)

.

Hence,

(6.14) I1(z) =
∫

γ

h1(w) dw = +2πi− 2πi

√
(z + 1)(z + 3)
(z − 1)(z − 3)

.
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On the other hand,

lim
ε→0

I1(z) = 2

−1∫

−3

1
(z − x)

i
√
−(x + 1) · √x + 3

i
√
−(x− 1) · i

√
−(x− 3)

dx

+ 2

3∫

1

1
(z − x)

√
x + 1 · √x + 3√

x− 1 · i
√
−(x− 3)

dx

= −2i



−1∫

−3

1
(z − x)

√(
x + 1
x− 1

)(
x + 3
3− x

)
dx +

3∫

1

1
(z − x)

√(
x + 1
x− 1

)(
x + 3
3− x

)
dx




= −2i · 4πS1(z) = −8πim(z),

where m(z) is the Stieltjes transform of the measure µ1. Comparing the last
equation with (6.14) we obtain

+2πi− 2πi

√
(z + 1)(z + 3)
(z − 1)(z − 3)

= −8πim(z),

and hence,

(6.15) m(z) = −1
4

+
1
4

√
(z + 1)(z + 3)
(z − 1)(z − 3)

= −1
4

[
1−

√
(z + 1)(z + 3)
(z − 1)(z − 3)

]

as required.
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2001, Trends Math., Birkhäuser, Basel, 2003, pp. 25–118. MR
MR2091700

[Bri53] L. Brillouin, Wave propagation in periodic structures. Electric
filters and crystal lattices, Dover Publications Inc., New York,
N. Y., 1953, 2d ed. MR MR0052978 (14,704a)

[Gau84] Walter Gautschi, On some orthogonal polynomials of interest
in theoretical chemistry, BIT 24 (1984), no. 4, 473–483. MR
MR764820 (86d:65030)

[GL02] Rostislav I. Grigorchuk and Igor Lysenok, Burnside problem, The
Consice handbook of algebra, A.V. Mikhalev and Gunter F. Pilz
(eds.), Kluwer Academic Publishers, 2002, pp. 111–115.
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[GSŠ07b] Rostislav Grigorchuk, Dmytro Savchuk, and Zoran Šuniḱ, The
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