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1. INTRODUCTION

This paper deals with the conjecture, communicated to the first author by A.
Lubotzky and A. Shalev:

Conjecture 1.1. Let M be a hyperbolic three-manifold. Let f(d) denote the num-
ber of subgroups of index d in w1 (M). There ezists an absolute positive constant Cy
such that, for all d sufficiently large, f(d) > exp(Cid).

This conjecture follows easily from the following one:

Conjecture 1.2. Let M be as above. For any prime p there exists infinitely many
finite d-sheated coverings N of M such that

rank, (H1(N)) > Cad, (1)
where Cy is an absolute positive constant.

Observe that for any finitely generated group G, and a subgroup H of index d,
rank, (H1(H)) < const - d, so that (1) is sharp up to a constant.

A much weaker growth rate than conjectured in (1), namely, rank, (H,(N)) >
(log d)?~¢ has been proved by Shalev [Sh]. It follows from the Class Tower Theorem
of [R1] that rank, (H1(N)) > (logd)?.

These conjectures about the subgroup growth should be compared with the
results of [Tu] and [SW] concerning the word growth of w1 (M).

Here we prove the following result for a priori a much wider class of manifolds
than hyperbolic manifolds (given the present status of the hyperbolization conjec-
ture). Recall the definition of rich fundamental groups given in [R1]:

(R) A closed irreducible three-manifold satisfies condition (R) if either
(a) the Casson invariant A(M) > #( representations of w1 (M) in SLy(F5)) or
(b) M is hyperbolic.

Main Theorem 1.1. Suppose the three-manifold M is a rational homology sphere
(that is Hi(M,Q) = 0) satisfying (R). Then for all, but at most two, primes £ with
£ =3 (mod 4), there exists a positive o such that there ezxist infinitely many finite
d-sheated coverings N of M such that either the inequality ranke H1(N) > cd®, or
rankg Hy(N) > cd/3, holds.

As a corollary we have:
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Theorem 1.2 (subgroup growth). Let M be as in the Main Theorem. Then
f(d) > exp(C d*).

Strategy of the proof. Step 1. By Theorem 9.1 of [R1], 71 (M) admits a Zariski dense
representation to SL2(C). We use the strong approximation of [W] to find surjective

maps from 7, (M) onto SL(F,), where F, are residue fields of an algebraic number
field K.

Step 2. If £ is a prime, ¢, s are prime powers such that £ divides both |SLy(F,)|
and |SLa(Fs)|, and 1 — m(N) = m1(M) — SL2(F,) x SLy(F,) — 1 is a Galois
covering, then H; (V) ), the £torsion part of Hy(V), is nontrivial. This is proved in
Proposition 2.1. Moreover, the action of SLy(F,) in H;(N ) is nontrivial (Propo-
sition 2.2).

Step 3. Using Theorem 3.2 it follows that for appropriate £, g the frank of Hy(N) g
must be ~ p, where g is a power of p.

It may in principle happen, that just one surjective map my (M) — SLy(F,) is
not enough to produce nontrivial £homology in N, where 71(N) = Ker a (see Step
2 above). We will prove that if this phenomenon happens for infinitely many p,
then M is hyperbolic in a weak sense (the Gromov simplicial volume is positive).

Theorem 1.3 (weak hyperbolization). Let M be atoroidal. Let O = O(K)
and let p : T (M) — SLy(Og) be a Zariski dense representation. Suppose that
for infinitely many primes £, there exists a rational prime p = £1 (mod £) and a
prime tdeal p C O over p with residue field Fy, such that the covering N defined by
1 = 7 (N) = m(M) = SLy(Fy) = 1 has trivial £-homology. Then M has positive
Gromov invariant.

Remark. It is enough to demand that £ 1 [H3(SL2(Os)ltors, S0 given the field K,
the conditions can be effectively checked.

The authors like to thank H.-W. Henn for some helpful comments.

2. HomoLoGy OF SLy(F,) x SLy(F,)-COVERINGS

In this section, we will study SLg(Fy) x SLy(Fs)-coverings of M where g and s are
prime powers and ¢ divides the orders of SLy(FF,) and SLy(Fs), but not gs.

Proposition 2.1. Let 1 — m1(N) = 7 (M) — SLy(Fy) x SLy(Fs) — 1 be a
Galois covering. Then either by(N) > 0, or (H1(N))w) # 0.

Proof. If N is a £homology sphere, then the direct product SL(Fq) x SLa(Fs)
has periodic £<ohomology, see [CE], so any abelian £group in SLy(F,) x SL(F,)
should be cyclic, which is obviously wrong. Q.E.

Consider the tower of coverings Q@ - N — M, where 1 = m(N) = m (M) —
SLy(F,) - 1 and 1 —» m(Q) — m(N) — SLy(Fs) — 1 are exact. Suppose
(Hl(M))(g) = 0. Then either (Hl(N))(g) 75 O, or (Hl(N))(g) =0 and (Hl(Q))(g) 75
0. Replacing M by N in the latter case, we can assume that the first case holds.

2



Proposition 2.2. Suppose 1 — m(N) = m (M) — SLo(F,) — 1 is a Galois
covering of rational homology spheres. Suppose Hi(M)y = 0 and H1(N) # 0.
Then the natural action of SL2(F,) in HY(N,F;)} is nontrivial.

Proof. By Quillen [Qu], the cohomology ring H*(SLz(Fy),Z), is freely generated
by one element of degree 4. Let W = H!(N,F;)}, then as an SLj(F,)module,
H?(N,TF,) ~ W*. The spectral sequence of the covering will look like

H*(SLa(F,), W™) = H'"" (M, F,)

1 0 0 I, Fe 0 0 IFe
If the action of SLo(F,) in W were trivial, then this would reduce to

F, 0 0 T F, 0 0
w* 0 0 W W* 0 0 = H*+i(M,F,)
w 0 0 W W 0 0
F, 0 0 T Fy 0 0

Then we see that W* which is indexed by (4k + 3,2) in the E2-term is not hit by
any differential and survives in £°°. This contradicts the finite-dimensionality of
H*(M). Q.E.D.

3. A VARIANT OF ARTIN’S PRIMITIVE ROOT CONJECTURE

In 1927 Artin conjectured that if @ # —1 or a square, then a is a primitive root mod
p for infinitely many primes p or, in other words, < a >= F} for infinitely many
primes p. Under the assumption that the Riemann Hypothesis holds for certain
number fields, a quantitative version of the conjecture was proved by Hooley [Ho].
The best known unconditional result to date is due to Heath-Brown [HB]. His main
result has the following theorem as a corollary:

Theorem 3.1. Let q, r and s be three distinct primes. Then at least one of them
s a primitive root for infinitely many primes.

In the proof of the Main Theorem we will use the following variant of Heath-
Brown'’s result:

Theorem 3.2. Let g, 7, s be three distinct primes each congruent to 3 (mod 4).
Then for at least one of them, say q, there are infinitely many primes p such that
q is a primitive root mod p, p = £1 (mod q), and moreover, |[{p < z : < q >=
Fr, p=—1 (mod ¢)}| > z(logz)~2.

(Notice that if £ = 1 (mod 4) with £ a prime, then, by quadratic reciprocity,
there are no primes p such that p = £1 (mod £) and < £ >= F;.) The proof of
Theorem 3.2 can be obtained by making minor modifications to Heath-Brown’s
proof of [Theorem 1, HB]. We start with a lemma: '

3



Lemma 3.1. Let q, v and s be three non-zero integers which are multiplicatively
independent. Suppose that none of q, r, s, —3qr, —3qs, —3rs and qrs is a square.
Then there exists a prime py such that

-3,/ q T s

Y=()=(2)=-1

Po Do Do Do
and (po — 1,16grs)|8.

Proof. Let 7(z) denote the number of primes not exceeding . Asymptotically the

S - (Ena-Eya-Ena-E)

= p P P P

T

is not less than w(z) (see [HB, p. 35]). Thus there are infinitely many primes p
satisfying ]
_ q p

(p) (p) (p) (p) 1 (2)
Using quadratic reciprocity and the supplementary law of quadratic reciprocity, we
see that there exists an integer d with 16 { d such that, for all p large enough, p
satisfies (2) iff p is in a set of progressions modulo d, each with begin term coprime
to d. Since there are infinitely many primes p satisfying (2), this set must be non-
empty. Since 16 { d, it follows using the prime number theorem for arithmetic
progressions, that the number of primes p < z satisfying (2) and p # 1 (mod 16)
is > z/logz. Let w(n) denote the number of distinct prime factors of n. Notice
that there are at most < log“(?"®) z primes p < z such that p # 1 (mod 16) and
(p — 1,16grs) 1 8. By taking z large enough, it then follows there exists a prime pg
satisfying the conditions such that (py — 1, 164qrs)|8. Q.E.D.

From the proof of [Theorem 1, HB] it is clear (see especially pp. 35-36) that it
is actually a proof of the following slightly stronger statement:

Theorem 3.3. Let q,r,s be nonzero integers which are multiplicatively indepen-
dent. Suppose none of q, r, s, —3qr, —3qs, qrs is a square. Then the number
N, s(z) of primes p < x, p = po (mod 16qrs), with po as in Lemma 3.1, for which
at least one of q, T, s is a primitive root, satisfies Ny . (v) > z(log z)~2.

Now we are in the position to prove Theorem 3.2.

Proof of Theorem 3.2. We show that we can find pg satisfying the conditions of
Lemma 3.1 and, in addition, py = —1 (mod grs). The result then follows from
Theorem 3.3. Let p be a prime satisfying

p=5 (mod6), p=5 (mod8)andp=-1 (mod grs). (3)

(There exist infinitely many such primes by the chinese remainder theorem and
the prime number theorem for arithmetic progressions.) Since p = 2 (mod 3),
(=3/p) = —1. Since p =1 (mod 4), (q/p) = (p/q)- So, since p = —1 (mod q) and,
by assumption, ¢ = 3 (mod 4), (¢/p) = (—1/q) = —1. Similarly, (r/p) = (s/p) =
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—1. By an argument as in the proof of Lemma 3.1 it can be shown that there exists
a prime po satisfying (3) such that in addition (pg — 1, 16¢rs)|8. Thus py satisfies
the conditions of Lemma 3.1 and in addition pp = —1 (mod g¢rs). Theorem 3.2 now
follows from Theorem 3.3. Q.E.D.

The conjecture alluded to in the heading of this section, is the conjecture that if
£ # 1 (mod 4), then there are infinitely many primes p such that p = +1 (mod £)
and < £ >= Fy. On the generalized Riemann hypothesis this can be shown to be
true, and moreover a quantitative version can be established [Mo].

4. PROOF OF THE MAIN THEOREM

By Theorem 9.1 of [R1], there is a Zariski dense representation of w1 (M) in SLy(Q).
Let K be the splitting field of this representation, and let n = [K : Q]. By {We],
there exists a finite covering N of M, such that for almost all rational primes p
the reduction modulo any prime over p in K will define a surjective map m,(N) —
SLy(F,),q =p™, m < n, and moreover, for two such primes p, f the map 71 (N) —
SLy(F,) x SLy(Fs), ¢ = p™,s = f7, is surjective. From now on we only look at
primes congruent to —1 modulo . Relabel N by M again. Suppose that the Zpart
of the homology of one such SL(Fy)<covering N is zero. If this happens for £ big
enough, this alone has far reaching consequences for the nature of M (the Gromov
invariant is positive), as we will see in the proof of Theorem 1.3. Now we just notice
that, by Proposition 2.1, we can relabel N by M and assume that for the rest of the
primes p, either the {-part of the homology of the SLq(F,)covering is nontrivial, or
these coverings have positive b1. In the first case, by Proposition 2.2, the action of
SLy(F,) in H'(N,F,) is nontrivial. Since PSLy(F,) is simple, any element of order
pin SLy(F,) also acts nontrivially. If m = dim H*(N, F;), then we see that p divides
|G L, (Fe)|, so that p|(£—1)(£2—1)---(£™~1 —1). By Theorem 3.2 for appropriate
¢, there are infinitely many primes p such that the order of £ in Fj equals p — 1. It
follows that m > p. On the other hand, [SLy(Fy)| ~ ¢* and n = log, ¢ is bounded
above by the degree of the number field, over which the representation of 7, (M) is
defined. Finally, m > const - |SLy(F,)|®, where 1/3c is the degree of the splitting
field. The proof is complete in this case. In the other case, we get infinitely many
SLy(FFg)-coverings with b1 (N) > 0. Since by (M) = 0, the representation of SLy(F,)
in Hy(N,C) does not have a trivial constituent. However, the smallest nontrivial
irreducible representation of SLy(F,) has dimension ~ g, so b,(N) > d*/3. Q.E.D.

Proof of Theorem 1.2. Let N be as above and m = rank,(H,(N)) > Cd®. There
are at least £™~! subgroups of index £ in H;(N)(y. So there are at least £64" 1
subgroups of index £d in 7 (M). Q.E.D.

Proof of Theorem 1.8. Suppose the Gromov invariant of M is zero. By Propo-
sition 5.4 of [R2], for representation ¢ : m (M) — SLy(K), the homology class
o«[M] € H3(SLy(K), Z) is torsion. This applies to the representation p : 71 (M) —
SLy(Og). Since the real cohomology of SL2(Og) and SLy(K) are isomorphic,
p[M] € H3(SL2(Qg)) is also torsion. Now, the H;(SL2(Og)) are finitely gener-
ated [BS], so for some 0 # N € Z, we have N - p,[M] = 0. From now on we assume
that £ does not divide N. Then p,[M]) € (H3(SL2(Os))tors)(ey = 0. For any

surjective homomorphism SLy(Og) 2, SLy(Fy), we will have 0 = (8p).[M]y €
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H3(SL3(F;)) ) On the other hand by Quillen [Qu], Hs(SLy(F,)) ) # 0 if £|p®—1.
Consider the homology spectral sequence of the covering 1 — 71 (N) = m (M) —
SLz(]Fq) —1:

= H1;+j(M, Z)

Since the map H3(M,Z) — H3(SLy(F,),Z) is zero, one of the two differentials ds :
H3(SL2(]FQ),Z)(5) — Hl(SLz(Fq),Hl(N))(g),dg :Kerdy — HQ(SL2(]FQ),H2(N))(E)
is nonzero. But if H3(N) # 0 then N is hyperbolic [Th] and the Gromov invariant
of M is positive. If Hy(N) = 0, then dy # 0, so Hy(N) g # 0. Q.E.D.
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