THREE-MANIFOLD SUBGROUP GROWTH, HOMOLOGY OF COVERINGS AND SIMPLICIAL VOLUME

Alexander Reznikov and Pieter Moree

Max-Planck-Institut	Institute of Mathematics
für Mathematik	Hebrew University
Gottfried-Claren-Str. 26	Giv'at Ram
53225 Bonn	91904 Jerusalem
Germany	Israel

THREE-MANIFOLD SUBGROUP GROWTH, HOMOLOGY OF COVERINGS AND SIMPLICIAL VOLUME

Alexander Reznikov and Pieter Moree
The Hebrew University and Max-Planck-Institut für Mathematik

1. Introduction

This paper deals with the conjecture, communicated to the first author by A. Lubotzky and A. Shalev:

Conjecture 1.1. Let M be a hyperbolic three-manifold. Let $f(d)$ denote the number of subgroups of index d in $\pi_{1}(M)$. There exists an absolute positive constant C_{1} such that, for all d sufficiently large, $f(d)>\exp \left(C_{1} d\right)$.

This conjecture follows easily from the following one:
Conjecture 1.2. Let M be as above. For any prime p there exists infinitely many finite dsheated coverings N of M such that

$$
\begin{equation*}
\operatorname{rank}_{p}\left(H_{1}(N)\right)>C_{2} d \tag{1}
\end{equation*}
$$

where C_{2} is an absolute positive constant.
Observe that for any finitely generated group G, and a subgroup H of index d, $\operatorname{rank}_{p}\left(H_{1}(H)\right) \leq$ const $\cdot d$, so that (1) is sharp up to a constant.

A much weaker growth rate than conjectured in (1), namely, $\operatorname{rank}_{p}\left(H_{1}(N)\right)>$ $(\log d)^{2-\epsilon}$ has been proved by Shalev [Sh]. It follows from the Class Tower Theorem of [R1] that $\operatorname{rank}_{p}\left(H_{1}(N)\right)>(\log d)^{2}$.

These conjectures about the subgroup growth should be compared with the results of [Tu] and [SW] concerning the word growth of $\pi_{1}(M)$.

Here we prove the following result for a priori a much wider class of manifolds than hyperbolic manifolds (given the present status of the hyperbolization conjecture). Recall the definition of rich fundamental groups given in [R1]:
(R) A closed irreducible three-manifold satisfies condition (R) if either
(a) the Casson invariant $\lambda(M)>\sharp\left(\right.$ representations of $\pi_{1}(M)$ in $\left.S L_{2}\left(\mathbb{F}_{5}\right)\right)$ or
(b) M is hyperbolic.

Main Theorem 1.1. Suppose the three-manifold M is a rational homology sphere (that is $H_{1}(M, \mathbb{Q})=0$) satisfying (R). Then for all, but at most two, primes ℓ with $\ell \equiv 3(\bmod 4)$, there exists a positive α such that there exist infinitely many finite d-sheated coverings N of M such that either the inequality $\operatorname{rank}_{\ell} H_{1}(N)>c d^{\alpha}$, or $\operatorname{rank}_{\mathbb{Z}} H_{1}(N)>c d^{1 / 3}$, holds.

As a corollary we have:

Theorem 1.2 (subgroup growth). Let M be as in the Main Theorem. Then $f(d)>\exp \left(C d^{\alpha}\right)$.

Strategy of the proof. Step 1. By Theorem 9.1 of [R1], $\pi_{1}(M)$ admits a Zariski dense representation to $S L_{2}(\mathbb{C})$. We use the strong approximation of [W] to find surjective maps from $\pi_{1}(M)$ onto $S L_{2}\left(\mathbb{F}_{q}\right)$, where \mathbb{F}_{q} are residue fields of an algebraic number field K.

Step 2. If ℓ is a prime, q, s are prime powers such that ℓ divides both $\left|S L_{2}\left(\mathbb{F}_{q}\right)\right|$ and $\left|S L_{2}\left(\mathbb{F}_{s}\right)\right|$, and $1 \rightarrow \pi_{1}(N) \rightarrow \pi_{1}(M) \rightarrow S L_{2}\left(\mathbb{F}_{q}\right) \times S L_{2}\left(\mathbb{F}_{s}\right) \rightarrow 1$ is a Galois covering, then $H_{1}(N)_{(\ell)}$, the ℓ torsion part of $H_{1}(N)$, is nontrivial. This is proved in Proposition 2.1. Moreover, the action of $S L_{2}\left(\mathbb{F}_{q}\right)$ in $H_{1}(N)_{(\ell)}$ is nontrivial (Proposition 2.2).

Step 3. Using Theorem 3.2 it follows that for appropriate ℓ, q the ℓ rank of $H_{1}(N)_{(\ell)}$ must be $\sim p$, where q is a power of p.

It may in principle happen, that just one surjective map $\pi_{1}(M) \xrightarrow{\alpha} S L_{2}\left(\mathbb{F}_{q}\right)$ is not enough to produce nontrivial ℓ homology in N, where $\pi_{1}(N)=\operatorname{Ker} \alpha$ (see Step 2 above). We will prove that if this phenomenon happens for infinitely many p, then M is hyperbolic in a weak sense (the Gromov simplicial volume is positive).

Theorem 1.3 (weak hyperbolization). Let M be atoroidal. Let $\mathcal{O}=\mathcal{O}(K)$ and let $\rho: \pi_{1}(M) \rightarrow S L_{2}\left(\mathcal{O}_{S}\right)$ be a Zariski dense representation. Suppose that for infinitely many primes ℓ, there exists a rational prime $p \equiv \pm 1(\bmod \ell)$ and a prime ideal $\mathfrak{p} \subset \mathcal{O}$ over p with residue field \mathbb{F}_{q}, such that the covering N defined by
 Gromov invariant.

Remark. It is enough to demand that $\ell \nmid \mid H_{3}\left(\left.S L_{2}\left(\mathcal{O}_{s}\right)\right|_{\text {tors }}\right.$, so given the field K, the conditions can be effectively checked.

The authors like to thank H.-W. Henn for some helpful comments.

2. Homology of $S L_{2}\left(\mathbb{F}_{q}\right) \times S L_{2}\left(\mathbb{F}_{s}\right)$-coverings

In this section, we will study $S L_{2}\left(\mathbb{F}_{q}\right) \times S L_{2}\left(\mathbb{F}_{s}\right)$-coverings of M where q and s are prime powers and ℓ divides the orders of $S L_{2}\left(\mathbb{F}_{q}\right)$ and $S L_{2}\left(\mathbb{F}_{s}\right)$, but not $q s$.

Proposition 2.1. Let $1 \rightarrow \pi_{1}(N) \rightarrow \pi_{1}(M) \rightarrow S L_{2}\left(\mathbb{F}_{q}\right) \times S L_{2}\left(\mathbb{F}_{s}\right) \rightarrow 1$ be a Galois covering. Then either $b_{1}(N)>0$, or $\left(H_{1}(N)\right)_{(\ell)} \neq 0$.

Proof. If N is a ℓ homology sphere, then the direct product $S L_{2}\left(\mathbb{F}_{q}\right) \times S L_{2}\left(\mathbb{F}_{s}\right)$ has periodic ℓ-cohomology, see [CE], so any abelian ℓ-group in $S L_{2}\left(\mathbb{F}_{q}\right) \times S L_{2}\left(\mathbb{F}_{s}\right)$ should be cyclic, which is obviously wrong.
Q.E.D.

Consider the tower of coverings $Q \rightarrow N \rightarrow M$, where $1 \rightarrow \pi_{1}(N) \rightarrow \pi_{1}(M) \rightarrow$ $S L_{2}\left(\mathbb{F}_{q}\right) \rightarrow 1$ and $1 \rightarrow \pi_{1}(Q) \rightarrow \pi_{1}(N) \rightarrow S L_{2}\left(\mathbb{F}_{s}\right) \rightarrow 1$ are exact. Suppose $\left(H_{1}(M)\right)_{(\ell)}=0$. Then either $\left(H_{1}(N)\right)_{(\ell)} \neq 0$, or $\left(H_{1}(N)\right)_{(\ell)}=0$ and $\left(H_{1}(Q)\right)_{(\ell)} \neq$ 0 . Replacing M by N in the latter case, we can assume that the first case holds.

Proposition 2.2. Suppose $1 \rightarrow \pi_{1}(N) \rightarrow \pi_{1}(M) \rightarrow S L_{2}\left(\mathbb{F}_{q}\right) \rightarrow 1$ is a Galois covering of rational homology spheres. Suppose $H_{1}(M)_{(\ell)}=0$ and $H_{1}(N)_{(\ell)} \neq 0$. Then the natural action of $S L_{2}\left(\mathbb{F}_{q}\right)$ in $H^{1}\left(N, \mathbb{F}_{\ell}\right)$ is nontrivial.

Proof. By Quillen [Qu], the cohomology ring $H^{*}\left(S L_{2}\left(\mathbb{F}_{q}\right), \mathbb{Z}\right)_{\ell}$ is freely generated by one element of degree 4 . Let $W=H^{1}\left(N, \mathbb{F}_{\ell}\right)$, then as an $S L_{2}\left(\mathbb{F}_{q}\right)$-module, $H^{2}\left(N, \mathbb{F}_{\ell}\right) \approx W^{*}$. The spectral sequence of the covering will look like

$$
\begin{array}{lccccccc}
\mathbb{F}_{\ell} & 0 & 0 & \mathbb{F}_{\ell} & \mathbb{F}_{\ell} & \cdots & \\
H^{i}\left(S L_{2}\left(\mathbb{F}_{q}\right), W^{*}\right) & & & & & \Rightarrow H^{i+j}\left(M, \mathbb{F}_{\ell}\right) \\
H^{i}\left(S L_{2}\left(\mathbb{F}_{q}\right), W\right) & & & & & \\
\mathbb{F}_{\ell} \quad 0 \quad 0 \quad \mathbb{F}_{\ell} & \mathbb{F}_{\ell} & 0 & 0 & \mathbb{F}_{\ell} & \ldots
\end{array}
$$

If the action of $S L_{2}\left(\mathbb{F}_{q}\right)$ in W were trivial, then this would reduce to

\mathbb{F}_{ℓ}	0	0	\mathbb{F}_{ℓ}	\mathbb{F}_{ℓ}	0	0	\cdots	
W^{*}	0	0	W^{*}	W^{*}	0	0		
W	0	0	W	W	0	0		$\Rightarrow H^{i+j}\left(M, \mathbb{F}_{\ell}\right)$
\mathbb{F}_{ℓ}	0	0	\mathbb{F}_{ℓ}	\mathbb{F}_{ℓ}	0	0		

Then we see that W^{*} which is indexed by $(4 k+3,2)$ in the E^{2}-term is not hit by any differential and survives in E^{∞}. This contradicts the finite-dimensionality of $H^{*}(M)$.
Q.E.D.

3. A variant of Artin's primitive root conjecture

In 1927 Artin conjectured that if $a \neq-1$ or a square, then a is a primitive root mod p for infinitely many primes p or, in other words, $\langle a\rangle=\mathbb{F}_{p}^{*}$ for infinitely many primes p. Under the assumption that the Riemann Hypothesis holds for certain number fields, a quantitative version of the conjecture was proved by Hooley [Ho]. The best known unconditional result to date is due to Heath-Brown [HB]. His main result has the following theorem as a corollary:

Theorem 3.1. Let q, r and s be three distinct primes. Then at least one of them is a primitive root for infinitely many primes.

In the proof of the Main Theorem we will use the following variant of HeathBrown's result:

Theorem 3.2. Let q, r, s be three distinct primes each congruent to $3(\bmod 4)$. Then for at least one of them, say q, there are infinitely many primes p such that q is a primitive root $\bmod p, p \equiv \pm 1(\bmod q)$, and moreover, $\mid\{p \leq x:<q\rangle=$ $\left.\mathbb{F}_{p}^{*}, p \equiv-1(\bmod q)\right\} \mid \gg x(\log x)^{-2}$.
(Notice that if $\ell \equiv 1(\bmod 4)$ with ℓ a prime, then, by quadratic reciprocity, there are no primes p such that $p \equiv \pm 1(\bmod \ell)$ and $<\ell>=\mathbb{F}_{p}^{*}$.) The proof of Theorem 3.2 can be obtained by making minor modifications to Heath-Brown's proof of [Theorem 1, HB]. We start with a lemma:

Lemma 3.1. Let q, r and s be three non-zero integers which are multiplicatively independent. Suppose that none of $q, r, s,-3 q r,-3 q s,-3 r s$ and $q r s$ is a square. Then there exists a prime p_{0} such that

$$
\left(\frac{-3}{p_{0}}\right)=\left(\frac{q}{p_{0}}\right)=\left(\frac{r}{p_{0}}\right)=\left(\frac{s}{p_{0}}\right)=-1
$$

and ($\left.p_{0}-1,16 q r s\right) \mid 8$.
Proof. Let $\pi(x)$ denote the number of primes not exceeding x. Asymptotically the sum

$$
\sum_{p \leq x}\left(1-\left(\frac{-3}{p}\right)\right)\left(1-\left(\frac{q}{p}\right)\right)\left(1-\left(\frac{r}{p}\right)\right)\left(1-\left(\frac{s}{p}\right)\right)
$$

is not less than $\pi(x)$ (see [HB, p. 35]). Thus there are infinitely many primes p satisfying

$$
\begin{equation*}
\left(\frac{-3}{p}\right)=\left(\frac{q}{p}\right)=\left(\frac{r}{p}\right)=\left(\frac{s}{p}\right)=-1 . \tag{2}
\end{equation*}
$$

Using quadratic reciprocity and the supplementary law of quadratic reciprocity, we see that there exists an integer d with $16 \nmid d$ such that, for all p large enough, p satisfies (2) iff p is in a set of progressions modulo d, each with begin term coprime to d. Since there are infinitely many primes p satisfying (2), this set must be nonempty. Since $16 \nmid d$, it follows using the prime number theorem for arithmetic progressions, that the number of primes $p \leq x$ satisfying (2) and $p \not \equiv 1(\bmod 16)$ is $\gg x / \log x$. Let $\omega(n)$ denote the number of distinct prime factors of n. Notice that there are at most $\ll \log ^{\omega(q r s)} x$ primes $p \leq x$ such that $p \not \equiv 1(\bmod 16)$ and ($p-1,16 q r s) \nmid 8$. By taking x large enough, it then follows there exists a prime p_{0} satisfying the conditions such that $\left(p_{0}-1,16 q r s\right) \mid 8$. Q.E.D.

From the proof of [Theorem 1, HB] it is clear (see especially pp. 35-36) that it is actually a proof of the following slightly stronger statement:
Theorem 3.3. Let q, r, s be nonzero integers which are multiplicatively independent. Suppose none of $q, r, s,-3 q r,-3 q s, q r s$ is a square. Then the number $N_{q, r, s}^{\prime}(x)$ of primes $p \leq x, p \equiv p_{0}(\bmod 16 q r s)$, with p_{0} as in Lemma 3.1, for which at least one of q, r, s is a primitive root, satisfies $N_{q, r, s}^{\prime}(x) \gg x(\log x)^{-2}$.

Now we are in the position to prove Theorem 3.2.

Proof of Theorem 3.2. We show that we can find p_{0} satisfying the conditions of Lemma 3.1 and, in addition, $p_{0} \equiv-1(\bmod q r s)$. The result then follows from Theorem 3.3. Let p be a prime satisfying

$$
\begin{equation*}
p \equiv 5 \quad(\bmod 6), p \equiv 5 \quad(\bmod 8) \text { and } p \equiv-1 \quad(\bmod q r s) \tag{3}
\end{equation*}
$$

(There exist infinitely many such primes by the chinese remainder theorem and the prime number theorem for arithmetic progressions.) Since $p \equiv 2(\bmod 3)$, $(-3 / p)=-1$. Since $p \equiv 1(\bmod 4),(q / p)=(p / q)$. So, since $p \equiv-1(\bmod q)$ and, by assumption, $q \equiv 3(\bmod 4),(q / p)=(-1 / q)=-1$. Similarly, $(r / p)=(s / p)=$
-1 . By an argument as in the proof of Lemma 3.1 it can be shown that there exists a prime p_{0} satisfying (3) such that in addition $\left(p_{0}-1,16 q r s\right) \mid 8$. Thus p_{0} satisfies the conditions of Lemma 3.1 and in addition $p_{0} \equiv-1(\bmod q r s)$. Theorem 3.2 now follows from Theorem 3.3.
Q.E.D.

The conjecture alluded to in the heading of this section, is the conjecture that if $\ell \not \equiv 1(\bmod 4)$, then there are infinitely many primes p such that $p \equiv \pm 1(\bmod \ell)$ and $\langle\ell\rangle=\mathbb{F}_{p}^{*}$. On the generalized Riemann hypothesis this can be shown to be true, and moreover a quantitative version can be established [Mo].

4. Proof of the Main Theorem

By Theorem 9.1 of [R1], there is a Zariski dense representation of $\pi_{1}(M)$ in $S L_{2}(\overline{\mathbb{Q}})$. Let K be the splitting field of this representation, and let $n=[K: \mathbb{Q}]$. By [We], there exists a finite covering N of M, such that for almost all rational primes p the reduction modulo any prime over p in K will define a surjective map $\pi_{1}(N) \rightarrow$ $S L_{2}\left(\mathbb{F}_{q}\right), q=p^{m}, m \leq n$, and moreover, for two such primes p, f the map $\pi_{1}(N) \rightarrow$ $S L_{2}\left(\mathbb{F}_{q}\right) \times S L_{2}\left(\mathbb{F}_{s}\right), q=p^{m}, s=f^{r}$, is surjective. From now on we only look at primes congruent to -1 modulo ℓ. Relabel N by M again. Suppose that the ℓ-part of the homology of one such $S L_{2}\left(\mathbb{F}_{s}\right)$-covering N is zero. If this happens for ℓ big enough, this alone has far reaching consequences for the nature of M (the Gromov invariant is positive), as we will see in the proof of Theorem 1.3. Now we just notice that, by Proposition 2.1, we can relabel N by M and assume that for the rest of the primes p, either the ℓ-part of the homology of the $S L_{2}\left(\mathbb{F}_{q}\right)$-covering is nontrivial, or these coverings have positive b_{1}. In the first case, by Proposition 2.2, the action of $S L_{2}\left(\mathbb{F}_{q}\right)$ in $H^{1}\left(N, \mathbb{F}_{\ell}\right)$ is nontrivial. Since $P S L_{2}\left(\mathbb{F}_{q}\right)$ is simple, any element of order p in $S L_{2}\left(\mathbb{F}_{q}\right)$ also acts nontrivially. If $m=\operatorname{dim} H^{1}\left(N, \mathbb{F}_{\ell}\right)$, then we see that p divides $\left|G L_{m}\left(\mathbb{F}_{\ell}\right)\right|$, so that $p \mid(\ell-1)\left(\ell^{2}-1\right) \cdots\left(\ell^{m-1}-1\right)$. By Theorem 3.2 for appropriate ℓ, there are infinitely many primes p such that the order of ℓ in \mathbb{F}_{p}^{*} equals $p-1$. It follows that $m \geq p$. On the other hand, $\left|S L_{2}\left(\mathbb{F}_{q}\right)\right| \sim q^{3}$ and $n=\log _{p} q$ is bounded above by the degree of the number field, over which the representation of $\pi_{1}(M)$ is defined. Finally, $m>$ const $\cdot\left|S L_{2}\left(\mathbb{F}_{q}\right)\right|^{\alpha}$, where $1 / 3 \alpha$ is the degree of the splitting field. The proof is complete in this case. In the other case, we get infinitely many $S L_{2}\left(\mathbb{F}_{q}\right)$-coverings with $b_{1}(N)>0$. Since $b_{1}(M)=0$, the representation of $S L_{2}\left(\mathbb{F}_{q}\right)$ in $H_{1}(N, \mathbb{C})$ does not have a trivial constituent. However, the smallest nontrivial irreducible representation of $S L_{2}\left(\mathbb{F}_{q}\right)$ has dimension $\sim q$, so $b_{1}(N)>d^{1 / 3}$. Q.E.D.
Proof of Theorem 1.2. Let N be as above and $m=\operatorname{rank}_{\ell}\left(H_{1}(N)\right)>C d^{\alpha}$. There are at least ℓ^{m-1} subgroups of index ℓ in $H_{1}(N)_{(\ell)}$. So there are at least $\ell^{C d^{\alpha}-1}$ subgroups of index ℓd in $\pi_{1}(M)$.
Q.E.D.

Proof of Theorem 1.3. Suppose the Gromov invariant of M is zero. By Proposition 5.4 of [R2], for representation $\sigma: \pi_{1}(M) \rightarrow S L_{2}(K)$, the homology class $\sigma_{*}[M] \in H_{3}\left(S L_{2}(K), \mathbb{Z}\right)$ is torsion. This applies to the representation $\rho: \pi_{1}(M) \rightarrow$ $S L_{2}\left(\mathcal{O}_{S}\right)$. Since the real cohomology of $S L_{2}\left(\mathcal{O}_{S}\right)$ and $S L_{2}(K)$ are isomorphic, $\rho_{*}[M] \in H_{3}\left(S L_{2}\left(\mathcal{O}_{S}\right)\right)$ is also torsion. Now, the $H_{i}\left(S L_{2}\left(\mathcal{O}_{S}\right)\right)$ are finitely generated $[\mathrm{BS}]$, so for some $0 \neq N \in \mathbb{Z}$, we have $N \cdot \rho_{*}[M]=0$. From now on we assume that ℓ does not divide N. Then $\rho_{*}[M]_{(\ell)} \in\left(H_{3}\left(S L_{2}\left(\mathcal{O}_{S}\right)\right)_{\text {tors }}\right)_{(\ell)}=0$. For any surjective homomorphism $S L_{2}\left(\mathcal{O}_{S}\right) \xrightarrow{\beta} S L_{2}\left(\mathbb{F}_{q}\right)$, we will have $0=(\beta \rho)_{*}[M]_{(\ell)} \in$
$H_{3}\left(S L_{2}\left(\mathbb{F}_{q}\right)\right)_{(\ell)}$. On the other hand by Quillen [Qu], $H_{3}\left(S L_{2}\left(\mathbb{F}_{q}\right)\right)_{(\ell)} \neq 0$ if $\ell \mid p^{2}-1$. Consider the homology spectral sequence of the covering $1 \rightarrow \pi_{1}(N) \rightarrow \pi_{1}(M) \rightarrow$ $S L_{2}\left(\mathbb{F}_{q}\right) \rightarrow 1:$

$$
\begin{aligned}
& H_{i}\left(S L_{2}\left(\mathbb{F}_{q}\right), \mathbb{Z}\right) \\
& H_{i}\left(S L_{2}\left(\mathbb{F}_{q}\right), H_{2}(N)\right) \\
& H_{i}\left(S L_{2}\left(\mathbb{F}_{q}\right), H_{1}(N)\right) \quad \Rightarrow H_{i+j}(M, \mathbb{Z}) \\
& H_{i}\left(S L_{2}\left(\mathbb{F}_{q}\right), \mathbb{Z}\right)
\end{aligned}
$$

Since the map $H_{3}(M, \mathbb{Z}) \rightarrow H_{3}\left(S L_{2}\left(\mathbb{F}_{q}\right), \mathbb{Z}\right)$ is zero, one of the two differentials d_{2} : $H_{3}\left(S L_{2}\left(\mathbb{F}_{q}\right), \mathbb{Z}\right)_{(\ell)} \rightarrow H_{1}\left(S L_{2}\left(\mathbb{F}_{q}\right), H_{1}(N)\right)_{(\ell)}, d_{3}: \operatorname{Ker} d_{2} \rightarrow H_{0}\left(S L_{2}\left(\mathbb{F}_{q}\right), H_{2}(N)\right)_{(\ell)}$ is nonzero. But if $H_{2}(N) \neq 0$ then N is hyperbolic [Th] and the Gromov invariant of M is positive. If $H_{2}(N)=0$, then $d_{2} \neq 0$, so $H_{1}(N)_{(\ell)} \neq 0$.
Q.E.D.

References

[BS] A.Borel, J.-P.Serre, Corners and arithmetic groups, Comm. Math. Helv. 48 (1973), 436-491.
[CE] A.Cartan, S.Eilenberg, Homological Algebra, Princeton University Press, 1956.
[HB]R.Heath-Brown, A remark on Artin's conjecture, Quart. J. Math. Oxford 37 (1986), 27-38.
[Ho] C.Hooley, Artin's conjecture for primitive roots, J. Reine Angew. Math. 225 (1967), 209-220.
[Mo]P.Moree, On an conjecture stronger than Artin's primitive root conjecture, unpublished manuscript, 1996.
[Qu] D.Quillen, On the cohomology and K-theory of general linear group over finite fields, Ann. Math. 96 (1972), 552-586.
[R1] A.Reznikov, Three-manifolds class field theory, preprint MPI, Bonn, 1995.
[R2] A.Reznikov, Rationality of secondary classes, Journ. Diff. Geom., to appear.
[SW]P.Shalen, P.Wagreich, Growth rates, \mathbb{Z}_{p}-homology, and volumes of hyperbolic 3-manifolds, Trans. Amer. Math. Soc. 331(1992), 895-917..
[Sh] A.Shalev, Personal communication.
[Th] W.Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-382.
[Tu] V.Turaev, Nilpotent homotopy type of closed 3-manifolds, LNM 1060 (1984).
[We] B.Weisfeller, Strong approximation for Zariski-dense subgroups of semi-simple algebraic groups, Ann.Math. 120 (1984), 271-315.

Inst. of Mathematics, Hebrew University, Giv'at Ram, 91904 Jerusalem, Israel. E-mail address: simplex@math.huji.ac.il

MPI für Mathematik, Gottfried-Claren-Str. 26, 53225 Bonn, Germany.
E-mail address: moree@mpim-bonn.mpg.de

