THREE-MANIFOLD SUBGROUP GROWTH, HOMOLOGY OF COVERINGS AND SIMPLICIAL VOLUME

Alexander Reznikov and Pieter Moree

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 53225 Bonn

Germany

Institute of Mathematics Hebrew University Giv'at Ram 91904 Jerusalem

Israel

--

THREE-MANIFOLD SUBGROUP GROWTH, HOMOLOGY OF COVERINGS AND SIMPLICIAL VOLUME

Alexander Reznikov and Pieter Moree

The Hebrew University and Max-Planck-Institut für Mathematik

1. INTRODUCTION

This paper deals with the conjecture, communicated to the first author by A. Lubotzky and A. Shalev:

Conjecture 1.1. Let M be a hyperbolic three-manifold. Let f(d) denote the number of subgroups of index d in $\pi_1(M)$. There exists an absolute positive constant C_1 such that, for all d sufficiently large, $f(d) > \exp(C_1 d)$.

This conjecture follows easily from the following one:

Conjecture 1.2. Let M be as above. For any prime p there exists infinitely many finite d-sheated coverings N of M such that

$$\operatorname{rank}_p(H_1(N)) > C_2 d,\tag{1}$$

where C_2 is an absolute positive constant.

Observe that for any finitely generated group G, and a subgroup H of index d, rank_p $(H_1(H)) \leq \text{const} \cdot d$, so that (1) is sharp up to a constant.

A much weaker growth rate than conjectured in (1), namely, $\operatorname{rank}_p(H_1(N)) > (\log d)^{2-\epsilon}$ has been proved by Shalev [Sh]. It follows from the Class Tower Theorem of [R1] that $\operatorname{rank}_p(H_1(N)) > (\log d)^2$.

These conjectures about the subgroup growth should be compared with the results of [Tu] and [SW] concerning the word growth of $\pi_1(M)$.

Here we prove the following result for <u>a priori</u> a much wider class of manifolds than hyperbolic manifolds (given the present status of the hyperbolization conjecture). Recall the definition of rich fundamental groups given in [R1]:

- (R) A closed irreducible three-manifold satisfies condition (R) if either
- (a) the Casson invariant $\lambda(M) > \sharp$ (representations of $\pi_1(M)$ in $SL_2(\mathbb{F}_5)$) or
- (b) M is hyperbolic.

Main Theorem 1.1. Suppose the three-manifold M is a rational homology sphere (that is $H_1(M, \mathbb{Q}) = 0$) satisfying (R). Then for all, but at most two, primes ℓ with $\ell \equiv 3 \pmod{4}$, there exists a positive α such that there exist infinitely many finite d-sheated coverings N of M such that either the inequality $\operatorname{rank}_{\ell} H_1(N) > c d^{\alpha}$, or $\operatorname{rank}_{\mathbb{Z}} H_1(N) > c d^{1/3}$, holds.

As a corollary we have:

Theorem 1.2 (subgroup growth). Let M be as in the Main Theorem. Then $f(d) > \exp(C d^{\alpha})$.

Strategy of the proof. Step 1. By Theorem 9.1 of [R1], $\pi_1(M)$ admits a Zariski dense representation to $SL_2(\mathbb{C})$. We use the strong approximation of [W] to find surjective maps from $\pi_1(M)$ onto $SL_2(\mathbb{F}_q)$, where \mathbb{F}_q are residue fields of an algebraic number field K.

<u>Step 2</u>. If ℓ is a prime, q, s are prime powers such that ℓ divides both $|SL_2(\mathbb{F}_q)|$ and $|SL_2(\mathbb{F}_s)|$, and $1 \to \pi_1(N) \to \pi_1(M) \to SL_2(\mathbb{F}_q) \times SL_2(\mathbb{F}_s) \to 1$ is a Galois covering, then $H_1(N)_{(\ell)}$, the ℓ -torsion part of $H_1(N)$, is nontrivial. This is proved in Proposition 2.1. Moreover, the action of $SL_2(\mathbb{F}_q)$ in $H_1(N)_{(\ell)}$ is nontrivial (Proposition 2.2).

<u>Step 3</u>. Using Theorem 3.2 it follows that for appropriate ℓ, q the ℓ -rank of $H_1(N)_{(\ell)}$ must be $\sim p$, where q is a power of p.

It may in principle happen, that just one surjective map $\pi_1(M) \xrightarrow{\alpha} SL_2(\mathbb{F}_q)$ is not enough to produce nontrivial ℓ -homology in N, where $\pi_1(N) = \text{Ker } \alpha$ (see Step 2 above). We will prove that if this phenomenon happens for infinitely many p, then M is hyperbolic in a weak sense (the Gromov simplicial volume is positive).

Theorem 1.3 (weak hyperbolization). Let M be atoroidal. Let $\mathcal{O} = \mathcal{O}(K)$ and let $\rho : \pi_1(M) \to SL_2(\mathcal{O}_S)$ be a Zariski dense representation. Suppose that for infinitely many primes ℓ , there exists a rational prime $p \equiv \pm 1 \pmod{\ell}$ and a prime ideal $\mathfrak{p} \subset \mathcal{O}$ over p with residue field \mathbb{F}_q , such that the covering N defined by $1 \to \pi_1(N) \to \pi_1(M) \to SL_2(\mathbb{F}_q) \to 1$ has trivial ℓ -homology. Then M has positive Gromov invariant.

Remark. It is enough to demand that $\ell \nmid |H_3(SL_2(\mathcal{O}_s)|_{\text{tors}})|_{\text{tors}}$, so given the field K, the conditions can be effectively checked.

The authors like to thank H.-W. Henn for some helpful comments.

2. Homology of $SL_2(\mathbb{F}_q) \times SL_2(\mathbb{F}_s)$ -coverings

In this section, we will study $SL_2(\mathbb{F}_q) \times SL_2(\mathbb{F}_s)$ -coverings of M where q and s are prime powers and ℓ divides the orders of $SL_2(\mathbb{F}_q)$ and $SL_2(\mathbb{F}_s)$, but not qs.

Proposition 2.1. Let $1 \to \pi_1(N) \to \pi_1(M) \to SL_2(\mathbb{F}_q) \times SL_2(\mathbb{F}_s) \to 1$ be a Galois covering. Then either $b_1(N) > 0$, or $(H_1(N))_{(\ell)} \neq 0$.

Proof. If N is a ℓ -homology sphere, then the direct product $SL_2(\mathbb{F}_q) \times SL_2(\mathbb{F}_s)$ has periodic ℓ -cohomology, see [CE], so any abelian ℓ -group in $SL_2(\mathbb{F}_q) \times SL_2(\mathbb{F}_s)$ should be cyclic, which is obviously wrong. Q.E.D.

Consider the tower of coverings $Q \to N \to M$, where $1 \to \pi_1(N) \to \pi_1(M) \to SL_2(\mathbb{F}_q) \to 1$ and $1 \to \pi_1(Q) \to \pi_1(N) \to SL_2(\mathbb{F}_s) \to 1$ are exact. Suppose $(H_1(M))_{(\ell)} = 0$. Then either $(H_1(N))_{(\ell)} \neq 0$, or $(H_1(N))_{(\ell)} = 0$ and $(H_1(Q))_{(\ell)} \neq 0$. Replacing M by N in the latter case, we can assume that the first case holds.

Proposition 2.2. Suppose $1 \to \pi_1(N) \to \pi_1(M) \to SL_2(\mathbb{F}_q) \to 1$ is a Galois covering of rational homology spheres. Suppose $H_1(M)_{(\ell)} = 0$ and $H_1(N)_{(\ell)} \neq 0$. Then the natural action of $SL_2(\mathbb{F}_q)$ in $H^1(N, \mathbb{F}_{\ell})$ is nontrivial.

Proof. By Quillen [Qu], the cohomology ring $H^*(SL_2(\mathbb{F}_q), \mathbb{Z})_{\ell}$ is freely generated by one element of degree 4. Let $W = H^1(N, \mathbb{F}_{\ell})$, then as an $SL_2(\mathbb{F}_q)$ -module, $H^2(N, \mathbb{F}_{\ell}) \approx W^*$. The spectral sequence of the covering will look like

$$\begin{split} \mathbb{F}_{\ell} & 0 & 0 \quad \mathbb{F}_{\ell} \quad \mathbb{F}_{\ell} \quad \dots \\ & H^{i}(SL_{2}(\mathbb{F}_{q}), W^{*}) \qquad \qquad \Rightarrow H^{i+j}(M, \mathbb{F}_{\ell}) \\ & H^{i}(SL_{2}(\mathbb{F}_{q}), W) \\ & \mathbb{F}_{\ell} \quad 0 \quad 0 \quad \mathbb{F}_{\ell} \quad \mathbb{F}_{\ell} \quad 0 \quad 0 \quad \mathbb{F}_{\ell} \quad \dots \end{cases}$$

If the action of $SL_2(\mathbb{F}_q)$ in W were trivial, then this would reduce to

\mathbb{F}_{ℓ}	0	0	\mathbb{F}_{ℓ}	\mathbb{F}_{ℓ}	0	0	•••	
W^*	0	0	W^*	W^*	0	0		$\Rightarrow H^{i+j}(M, \mathbb{F}_{\ell})$
W	0	0	W	W	0	0		
\mathbb{F}_{ℓ}	0	0	\mathbb{F}_{ℓ}	\mathbb{F}_{ℓ}	0	0		

Then we see that W^* which is indexed by (4k + 3, 2) in the E^2 -term is not hit by any differential and survives in E^{∞} . This contradicts the finite-dimensionality of $H^*(M)$. Q.E.D.

3. A VARIANT OF ARTIN'S PRIMITIVE ROOT CONJECTURE

In 1927 Artin conjectured that if $a \neq -1$ or a square, then a is a primitive root mod p for infinitely many primes p or, in other words, $\langle a \rangle = \mathbb{F}_p^*$ for infinitely many primes p. Under the assumption that the Riemann Hypothesis holds for certain number fields, a quantitative version of the conjecture was proved by Hooley [Ho]. The best known unconditional result to date is due to Heath-Brown [HB]. His main result has the following theorem as a corollary:

Theorem 3.1. Let q, r and s be three distinct primes. Then at least one of them is a primitive root for infinitely many primes.

In the proof of the Main Theorem we will use the following variant of Heath-Brown's result:

Theorem 3.2. Let q, r, s be three distinct primes each congruent to 3 (mod 4). Then for at least one of them, say q, there are infinitely many primes p such that q is a primitive root mod $p, p \equiv \pm 1 \pmod{q}$, and moreover, $|\{p \leq x : < q > = \mathbb{F}_p^*, p \equiv -1 \pmod{q}\}| \gg x(\log x)^{-2}$.

(Notice that if $\ell \equiv 1 \pmod{4}$ with ℓ a prime, then, by quadratic reciprocity, there are no primes p such that $p \equiv \pm 1 \pmod{\ell}$ and $\langle \ell \rangle = \mathbb{F}_p^*$.) The proof of Theorem 3.2 can be obtained by making minor modifications to Heath-Brown's proof of [Theorem 1, HB]. We start with a lemma:

Lemma 3.1. Let q, r and s be three non-zero integers which are multiplicatively independent. Suppose that none of q, r, s, -3qr, -3qs, -3rs and qrs is a square. Then there exists a prime p_0 such that

$$\left(\frac{-3}{p_0}\right) = \left(\frac{q}{p_0}\right) = \left(\frac{r}{p_0}\right) = \left(\frac{s}{p_0}\right) = -1$$

and $(p_0 - 1, 16qrs)|8$.

Proof. Let $\pi(x)$ denote the number of primes not exceeding x. Asymptotically the sum

$$\sum_{p \le x} (1 - (\frac{-3}{p}))(1 - (\frac{q}{p}))(1 - (\frac{r}{p}))(1 - (\frac{s}{p}))$$

is not less than $\pi(x)$ (see [HB, p. 35]). Thus there are infinitely many primes p satisfying

$$\left(\frac{-3}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{r}{p}\right) = \left(\frac{s}{p}\right) = -1.$$
 (2)

Using quadratic reciprocity and the supplementary law of quadratic reciprocity, we see that there exists an integer d with $16 \nmid d$ such that, for all p large enough, p satisfies (2) iff p is in a set of progressions modulo d, each with begin term coprime to d. Since there are infinitely many primes p satisfying (2), this set must be nonempty. Since $16 \nmid d$, it follows using the prime number theorem for arithmetic progressions, that the number of primes $p \leq x$ satisfying (2) and $p \not\equiv 1 \pmod{16}$ is $\gg x/\log x$. Let $\omega(n)$ denote the number of distinct prime factors of n. Notice that there are at most $\ll \log^{\omega(qrs)} x$ primes $p \leq x$ such that $p \not\equiv 1 \pmod{16}$ and $(p-1, 16qrs) \nmid 8$. By taking x large enough, it then follows there exists a prime p_0 satisfying the conditions such that $(p_0 - 1, 16qrs) \mid 8$.

From the proof of [Theorem 1, HB] it is clear (see especially pp. 35-36) that it is actually a proof of the following slightly stronger statement:

Theorem 3.3. Let q, r, s be nonzero integers which are multiplicatively independent. Suppose none of q, r, s, -3qr, -3qs, qrs is a square. Then the number $N'_{q,r,s}(x)$ of primes $p \leq x, p \equiv p_0 \pmod{16qrs}$, with p_0 as in Lemma 3.1, for which at least one of q, r, s is a primitive root, satisfies $N'_{q,r,s}(x) \gg x(\log x)^{-2}$.

Now we are in the position to prove Theorem 3.2.

Proof of Theorem 3.2. We show that we can find p_0 satisfying the conditions of Lemma 3.1 and, in addition, $p_0 \equiv -1 \pmod{qrs}$. The result then follows from Theorem 3.3. Let p be a prime satisfying

$$p \equiv 5 \pmod{6}, \ p \equiv 5 \pmod{8} \text{ and } p \equiv -1 \pmod{qrs}.$$
 (3)

(There exist infinitely many such primes by the chinese remainder theorem and the prime number theorem for arithmetic progressions.) Since $p \equiv 2 \pmod{3}$, (-3/p) = -1. Since $p \equiv 1 \pmod{4}$, (q/p) = (p/q). So, since $p \equiv -1 \pmod{q}$ and, by assumption, $q \equiv 3 \pmod{4}$, (q/p) = (-1/q) = -1. Similarly, (r/p) = (s/p) =

-1. By an argument as in the proof of Lemma 3.1 it can be shown that there exists a prime p_0 satisfying (3) such that in addition $(p_0 - 1, 16qrs)|8$. Thus p_0 satisfies the conditions of Lemma 3.1 and in addition $p_0 \equiv -1 \pmod{qrs}$. Theorem 3.2 now follows from Theorem 3.3.

The conjecture alluded to in the heading of this section, is the conjecture that if $\ell \not\equiv 1 \pmod{4}$, then there are infinitely many primes p such that $p \equiv \pm 1 \pmod{\ell}$ and $<\ell >= \mathbb{F}_p^*$. On the generalized Riemann hypothesis this can be shown to be true, and moreover a quantitative version can be established [Mo].

4. PROOF OF THE MAIN THEOREM

By Theorem 9.1 of [R1], there is a Zariski dense representation of $\pi_1(M)$ in $SL_2(\mathbb{Q})$. Let K be the splitting field of this representation, and let $n = [K : \mathbb{Q}]$. By [We], there exists a finite covering N of M, such that for almost all rational primes pthe reduction modulo any prime over p in K will define a surjective map $\pi_1(N) \rightarrow$ $SL_2(\mathbb{F}_q), q = p^m, m \leq n$, and moreover, for two such primes p, f the map $\pi_1(N) \rightarrow \infty$ $SL_2(\mathbb{F}_q) \times SL_2(\mathbb{F}_s), q = p^m, s = f^r$, is surjective. From now on we only look at primes congruent to -1 modulo ℓ . Relabel N by M again. Suppose that the ℓ -part of the homology of one such $SL_2(\mathbb{F}_s)$ -covering N is zero. If this happens for ℓ big enough, this alone has far reaching consequences for the nature of M (the Gromov invariant is positive), as we will see in the proof of Theorem 1.3. Now we just notice that, by Proposition 2.1, we can relabel N by M and assume that for the rest of the primes p, either the l-part of the homology of the $SL_2(\mathbb{F}_q)$ -covering is nontrivial, or these coverings have positive b_1 . In the first case, by Proposition 2.2, the action of $SL_2(\mathbb{F}_q)$ in $H^1(N, \mathbb{F}_\ell)$ is nontrivial. Since $PSL_2(\mathbb{F}_q)$ is simple, any element of order $p \text{ in } SL_2(\mathbb{F}_q)$ also acts nontrivially. If $m = \dim H^1(N, \mathbb{F}_\ell)$, then we see that p divides $|GL_m(\mathbb{F}_{\ell})|$, so that $p|(\ell-1)(\ell^2-1)\cdots(\ell^{m-1}-1)$. By Theorem 3.2 for appropriate ℓ , there are infinitely many primes p such that the order of ℓ in \mathbb{F}_p^* equals p-1. It follows that $m \ge p$. On the other hand, $|SL_2(\mathbb{F}_q)| \sim q^3$ and $n = \log_p q$ is bounded above by the degree of the number field, over which the representation of $\pi_1(M)$ is defined. Finally, $m > \operatorname{const} \cdot |SL_2(\mathbb{F}_q)|^{\alpha}$, where $1/3\alpha$ is the degree of the splitting field. The proof is complete in this case. In the other case, we get infinitely many $SL_2(\mathbb{F}_q)$ -coverings with $b_1(N) > 0$. Since $b_1(M) = 0$, the representation of $SL_2(\mathbb{F}_q)$ in $H_1(N,\mathbb{C})$ does not have a trivial constituent. However, the smallest nontrivial irreducible representation of $SL_2(\mathbb{F}_q)$ has dimension $\sim q$, so $b_1(N) > d^{1/3}$. Q.E.D.

Proof of Theorem 1.2. Let N be as above and $m = \operatorname{rank}_{\ell}(H_1(N)) > Cd^{\alpha}$. There are at least ℓ^{m-1} subgroups of index ℓ in $H_1(N)_{(\ell)}$. So there are at least $\ell^{Cd^{\alpha}-1}$ subgroups of index ℓd in $\pi_1(M)$. Q.E.D.

Proof of Theorem 1.3. Suppose the Gromov invariant of M is zero. By Proposition 5.4 of [R2], for representation $\sigma : \pi_1(M) \to SL_2(K)$, the homology class $\sigma_*[M] \in H_3(SL_2(K), \mathbb{Z})$ is torsion. This applies to the representation $\rho : \pi_1(M) \to SL_2(\mathcal{O}_S)$. Since the real cohomology of $SL_2(\mathcal{O}_S)$ and $SL_2(K)$ are isomorphic, $\rho_*[M] \in H_3(SL_2(\mathcal{O}_S))$ is also torsion. Now, the $H_i(SL_2(\mathcal{O}_S))$ are finitely generated [BS], so for some $0 \neq N \in \mathbb{Z}$, we have $N \cdot \rho_*[M] = 0$. From now on we assume that ℓ does not divide N. Then $\rho_*[M]_{(\ell)} \in (H_3(SL_2(\mathcal{O}_S))_{\text{tors}})_{(\ell)} = 0$. For any surjective homomorphism $SL_2(\mathcal{O}_S) \xrightarrow{\beta} SL_2(\mathbb{F}_q)$, we will have $0 = (\beta \rho)_*[M]_{(\ell)} \in (M_1(\mathcal{O}_S))$.

 $H_3(SL_2(\mathbb{F}_q))_{(\ell)}$. On the other hand by Quillen [Qu], $H_3(SL_2(\mathbb{F}_q))_{(\ell)} \neq 0$ if $\ell | p^2 - 1$. Consider the homology spectral sequence of the covering $1 \to \pi_1(N) \to \pi_1(M) \to SL_2(\mathbb{F}_q) \to 1$:

$$\begin{aligned} &H_i(SL_2(\mathbb{F}_q), \mathbb{Z}) \\ &H_i(SL_2(\mathbb{F}_q), H_2(N)) \\ &H_i(SL_2(\mathbb{F}_q), H_1(N)) \\ &H_i(SL_2(\mathbb{F}_q), \mathbb{Z}) \end{aligned} \Rightarrow H_{i+j}(M, \mathbb{Z}) \end{aligned}$$

Since the map $H_3(M, \mathbb{Z}) \to H_3(SL_2(\mathbb{F}_q), \mathbb{Z})$ is zero, one of the two differentials d_2 : $H_3(SL_2(\mathbb{F}_q), \mathbb{Z})_{(\ell)} \to H_1(SL_2(\mathbb{F}_q), H_1(N))_{(\ell)}, d_3$: Ker $d_2 \to H_0(SL_2(\mathbb{F}_q), H_2(N))_{(\ell)}$ is nonzero. But if $H_2(N) \neq 0$ then N is hyperbolic [Th] and the Gromov invariant of M is positive. If $H_2(N) = 0$, then $d_2 \neq 0$, so $H_1(N)_{(\ell)} \neq 0$. Q.E.D.

References

- [BS] A.Borel, J.-P.Serre, Corners and arithmetic groups, Comm. Math. Helv. 48 (1973), 436–491. [CE] A.Cartan, S.Eilenberg, Homological Algebra, Princeton University Press, 1956.
- [HB] R.Heath-Brown, A remark on Artin's conjecture, Quart. J. Math. Oxford 37 (1986), 27-38.
- [Ho] C.Hooley, Artin's conjecture for primitive roots, J. Reine Angew. Math. 225 (1967), 209–220. [Mo]P.Moree, On an conjecture stronger than Artin's primitive root conjecture, unpublished man-
- uscript, 1996.
- [Qu] D.Quillen, On the cohomology and K-theory of general linear group over finite fields, Ann. Math. 96 (1972), 552-586.
- [R1] A.Reznikov, Three-manifolds class field theory, preprint MPI, Bonn, 1995.
- [R2] A.Reznikov, Rationality of secondary classes, Journ. Diff. Geom., to appear.
- [SW]P.Shalen, P.Wagreich, Growth rates, Z_p-homology, and volumes of hyperbolic 3-manifolds, Trans. Amer. Math. Soc. 331(1992), 895-917..
- [Sh] A.Shalev, Personal communication.
- [Th] W.Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357–382.
- [Tu] V.Turaev, Nilpotent homotopy type of closed 3-manifolds, LNM 1060 (1984).
- [We] B.Weisfeller, Strong approximation for Zariski-dense subgroups of semi-simple algebraic groups, Ann.Math. 120 (1984), 271-315.

INST. OF MATHEMATICS, HEBREW UNIVERSITY, GIV'AT RAM, 91904 JERUSALEM, ISRAEL. E-mail address: simplex@math.huji.ac.il

MPI für Mathematik, Gottfried-Claren-Str. 26, 53225 Bonn, Germany. *E-mail address:* moree@mpim-bonn.mpg.de