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1. Introduction

Recently, several authors have investigated congruences between
modular forms of half-integral weight (cf. eg. [5,8]). In [8) Maeda gave
an example where a congruence modulo £ between two cusp forms of even

integer weight 2k and level N descends via the Shimura correspondence to

1
2

example k=4, N=52, £ =433), and in (5], §1. Koblitz remarked that the

a congruence modulo £ between iwo cusp forms of weight k+x (in Maeda’s

classical congruence modulo 691 between the discriminant function 4 and

the Eisenstein series 012 on SLz(Z) (normalized to have constant ter:

691
2£.2730

an Eisenstein series of weight l% on FO(A).

Jdescends to a corresponding congruence between a cusp form and

The purpose of this note is to give another example for the above
phenomenon where congruences between modular forms of integer weight
descend to (or are induced from) congruences between modular forms of
half-integer weight. Let p be a prime with pz3(modi) and let D be a nega-
tive fundamental discriminant. Suppose that £ is a prime which divides
the exact numerator of E%% but does not divide the class number h(D). Ther
Mazur ([9], cf. also Gross [4],§11.) showed that there is & non-zero cusp
form of weight 2 on fb(p) with £-integral coefficients which modulo R
is congruent to the properly normalized Eisenstein series of weight 2 on
Fo(p) and which, moreover, has the property that under the Hecke algebra
it generates the C-linear space spanned by those Hecke eigenforms F which
satisfy L(F,1)L(F®ED,1)#O; here L(F,s) resp. L(F@ED,S) are the Hecke L-
functions associated to F resp. the twist F@ED and €y is the quadratic
character attached to the extension Q(\D)/®.

In the special case D=-p we shall show that Mazur’s congruence is



]

induced viz & Shimure map from a congruence modulo £ belwesn a cusp form

C_ and ihe (properly normalized) Cohen-Eisenstein series of weight on
B

=3 N

by

*

PQ‘Ap). Moreover, the Hecke module generated Dby Qp is spanned over

those eigenforms f for which L(F.l)cf(p)¥g (or eguivalently, by results of

waldspurger ([12}), L(L,1)L(F&g__,1)%0), where F corresponds to f by the

P
th

Shimura isomorphism and cf(p) is the p Fourier coefficient of f.

The method of proof essentially is the same as that in (6] wnere it was
used to show a refined version of the theorem of Waldspurger for modular
forms on SLz(W).

Probably our result (and also a more general statement for higher
weights) is true for general D and could be proved by the same methods
as here. However, since the technical details become much more tedious
in the general case (compare with [6])) we have restricted to D=-p.

Acknowledgement: The authors would like to thank D. Zagier for a useful

discussion.

2. Modular forms of integral and half-integral weight

As before, p denotes a prime congruent to 3 modulo 4, and h(-p) is
the class number of the field extension Q(V-p)/@. We shall assume p>3.
We sometimes denote by g_p=(5) the Legendre symbol.
. Let us begin with recollecting several facts from the theory of modu
lar forms of integral and half-integral weight.
We denote by ME(P) (Sg(p)) the space of modular forms (cusp forms) o
weight 2 on Fg(p) on which the Atkin-Lehner involution wp acts with eigen

value -1 (or equivalently, on which the Hecke operator U_ which replaces

the n‘t'h Fourier coefficient by the pnth one acts as the identity). . One ha
A‘Mz(p) = GG2’p@SE(p). r
where _ _ '
- E-] + n - 2niz _ _
G2'p(z) 57 Egl Gi(n)pq (qg=e » 2¢%.=upper hglf-plane
«(n) = 2 4d)
- p dln,p}d

is the normalized Eisenstein series of weight 2 on To(p).
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We let M5/2(p) (35/2(p)) be the space of modular forms (cusp forms)

of weight % on FO(Ap) which have a Fourier expansion S c(n)g™ with
. n20

¢{n)=0 whenever n:z1,2(mod4) or (% =-1 ({10,7%]). One has

Mg/?(p) = GXB/z'paas;/z(p).

where

Wy 00 = Z Hn) o

n20
is the Cohen-Eisenstein series. By definition,
Hin) = H(p°n)-pi(n)
with H(n) (for n>0) the number. of classes of positive definite binary
quadratic forms of discriminant -n (where forms equivalent to a multiple
of x2+y2 or x2+xy+y2 are counted with multiplicity % or %. respectively),

and with H(o)z-]—z.

The series 2 H(n)q" (which is not a modular form) and its trans-
nx0

formation law under PO(A) have been studied by Cohen ([2]) and Zagier

([137). From the formulas given there it is easy to see that’x3/2 p is

1 4

indeed a true modular form of weight % on PO(Ap) (cf. also [47,§12.).

For every prime R there is a Hecke operator on M;/é(p) preserving
the Eisenstein space GH3/2'p and the space of cusp forms 83/2(p). The
spaces Sg/z(p) and SE(P) are isomorphic as modules over the Hecke algebra

([#]). More precisely, for every normalized Hecke eigenform F = 2 af(n)q
nx1

eSé(p) there is a non-zero Hecke eigenform £ = 2 c(n)q” in 55/2(p)

n21
(unique up to multiplication by non-z ero scalars) which has the same

eigenvalues as F, and the Fourier coefficients of F and f are related by

(1) c(iDl)a(n) = 2 (g)C(IDInZ/dz) {n21, D<O a fundamen-
din,ptd .
tal discriminant}).

We denote by T_p:Mg/z(p)~+M5(p) the Shimura 1ifting associated to

the fundamental discriminant -p and defined by

(2) g Z cln)g® = tal-ple(0) + Z ( %

(Lye(pn?/d?) )o".
p nz0 n21 dln P



Then

(3) -5 = h{-p)G

p¥3/2,p 2,p’
and Slp maps cusp forms to cusp forms.

3. Statement of result -and proof

We let

Gy (z) h( p) + 2 (& ( ))q"
P nx1 din
be the Eisenstein series of weight 1 and Nebentypus ¢, on Po(p) for the

cusp iw and put

_ p-1,.2
P 2 1,p 2-P.
Then Cp is in Sé(p), and if & is a prime which divides the exact numerato

C - ;_—h(-p)zc

of E%% but does not divide h{-p), then clearly Cp has L-integral Fourier

coefficients not all zero modulo X and is congruent modulo X to

1 2 . - .
_Eh(-p) G2,p (note that & ¥2 since psz3(mod4)); moreover, if {F }

v=l,40e,T
is the basis of normalized Hecke eigenforms for Sé(p), then

] r L(F\,,1)L(F‘,9£_p.1)
(4) Cp = Fgar VP L ENT. i

where « is a non-zero constant not depending on p, L(F,,s) resp. .

L(Foaf_p,s) are the Hecke L-functions defined by analytic continuation

of the Dirichlet series 2 a,(n)n"®° resp. 2 (;r)—l)za.o(n)n"S (Re s>%; ay(n)
n21 nz1

= n®® Fourier coefficient of F, ) and I)Foflz = j lFo(z)lzdxdy

Mo (p)\Ly
(x=Re z,y=Im z) is the square of the Petersson norm of F, (ef. [4];
actually the above case is not treated explicitely in [4), but the
methods, of course, work also here).
We ghall show that Cp is the image under S_p of a form in 85/2(p)'

which has properties similar to those of Cp. Let

f (z) = 27501 (42)0{pz) - —h( p)® 3/2,p (z),



2 .
where O(z) = 2 q" is the standard theta function of weight % on I'n{(4)
ne?
(C10])). Then Cp is a modwar form of weight % on FO(Ap), and, in fact, using

that ;§n (%) = 0 for (%):-1 we see that fp'lies in the subspace 85/2(p)'

Theorem. Let p be a prime congruent to.3 modulo 4, and lei £ be a prime

which divides the exact numerator of E%%, but does not divide the class

number h(-p). Then:

i) The function fb has R-integral Fourier coefficients, is nom-zero modulc

1
R zo=h{-pn)%
, and the congruence ?p_ 2h( p)”3/2.p(mod£) holds.

ii) One has 3;pe§=cp, where ?_p is the Shimura map defined by (2).

iii) Let {f“}v=1 be a basis of Hecke eigenforms for 85/2(p), with

g oo ey

f, corresponding to F, and {F,} _, . the basis of normalized Hecke

P oy

eigenforms for S-5(p). Let cy(p) be the o*" Fourier coefficient of £, . Let

L(F,,s) be the Hecke L-function attached to F, and defined by analytic

continuation of the Dirichlet series > ay,{n)n”° (Re s>%; av(n)=nth
n:i
Fourier coefficient of F,.). Then
. T L(F,,1)e (p)
(5) e =Rl o — I
p v =1 et '
where «° is a non-zero constant not depending on p and l\f“ilz =
i ]fv(z)lzy"1/2dxdy (x=Re z,y=Im z) is the square of the Peterssor
PO(Ap)\xa-

norm of f,.

Remarks. i) By results of Waldspurger ([12]); cf. also Gross [4]) cv(p)2
is proportional to L(F“Gc_p,T). hence it follows from aséertion iii} of
the Theorem that the Hecke module generated by Cp is generated over €

by those Hecke eigenforms f, for which L(Fv,1)L(F“GE;p,1)#O. By (4) the
same, of course, is true for Cp. with f, replaced by F,.

ii) Using the commutation rule Upjip=jpr§ and observing (3) and the fact
that f; is in the subspace 55/2(p) one can easily check that Cp lies in

the subspace Sg(p).



Proof. Assertion i) is obvious once noticing that w-%ﬁé/z.p has integral
coefficients, where W is the exact denominator of E%% (cf. [47],§881.,11.).
Let us now prove ii). By (3) it suffices to show that G1(z)2 is the
image under ?_p of G1(Lz)9(pz). This follows by the same arguments as
used in [é] (proof of Propos. 3,p.186). Write c(n) resp. R(n) for the nth

Fourier coefficient of G,(42)@(pz) resp. G,{(z). Then

n- 1'2
cn) = 2, = R(EPL),
red, r <=
, P
nzpr- (4)

Hence the n' Fourier coefficient a(n) for n>0 of the image of G1(Az)0(pz

under f_p equals

am) = & De(pn?/d?)
din P
2 2.2
-r d
=2 z R(p=E55-) ).
dln réd??,rs%(2) 4Ld*
Observing that R(pm)=R(m) for any m>0 and writing n1=n5rd’ n2=E%£Q, we sel
that
, n,n
atn) = Z 2 SIr(-152).
nq,n,20 dl(n1.n2) d
n1+n2=n

By the multiplicative property of R(n) the inner sum equals R(n1)R(n2),
hence
a(n) = 2 R(n;)R(ny),
n1.n210
n1+n2=n

which is the n°®P

Fourier coefficient of G1(z)2.
Assertion iii) will follow from Rankin’s trick, which was already
used in a similar context as here in [ 6] and which is also the main tool

in proving formula (4) ([41). Set

B up(2) =P

1,2
p (

( G1’p(42) -3 E)G1-P(2Z) e

where
By = (1-5(2))- Sn(-p).

Then E1,4p is the Eisenstein series of weight 1 on PO(Ap) and Nebentypus



¢ _ for the cusp iw normalized to have constant term 1 (compare with [6],

p.185). According to Rankin’s trick ([147,p.145) the Petersson product of
(2)- ©(pz) against f, equals (up to a simple factor) the value at s=%

B1,4p
of the convolution of the L-series of f,(z) and ©(pz) (there is a slight

problem of convergence, since our Eisenstein series has weight 1; but

recall that E (z) is the holomorphic continuation to s=0 of the non-

1'1&P
holomorphic Eisenstein series of weight 1
E_p(d) Im 2z

;
= (
(2g)enm\ro(4p) cz+d |cz+dl2

E1.Lp(z;s) =3

(zet, ;8¢C,Re s>%;ﬂn={(é?)fn62})
' 2¢,(p) L(F,,2s)

(Hecke’s trick)). By (1) this convolution is equal to =
p L(E_p,2s)

(L(s_p.s)=Dirichlet series attached to E-p)'
On the other hand, if pr denotes the projection from the space. of
modular forms of weight % on FO(Lp) onto the subspace of forms having an.

expansion z c(n)qn ({#J),82.), then an easy calculation (simila:
n20,nz0,3(4) . .

to that in [6],p.195) shows that %h(-p)prE1 Ap(z) = G, p(Az)B(pz). Obser-
? 4
ving that pr is hermitean on cusp forms and maps Eisenstein series to

Eisenstein series we thus deduce (5). This concludes the proof of the

Theoremn.

We end up with discussing.the exanple p=11, & =5 (ecf. also [4],p.67f.
The spaces 85(11) and 85/2(11) are 1-dimensional with generators F(z) =
%(z)?n(11z)2 and f(z) = %UAg(z), where g(z) = %(22)%(22z)0(11z), respec-
tively (for the latter cf. [ 11],p.123); here %(z) is the Dedekind eta
function and U, is the operator defined by UAZa(n)qn=Za(l+n)qn. The
functions F and f have Fourier coefficients in Z, and the first few

coefficients of f are given in [4]},p.68. Comparing the coefficients at
3 3 = 3 —i'e > :_1_
q” and using c(3)=1 we find f-2-5, hence from the congruence 65_ 3%3/2,11
(mod5) we obtain f5333/2 11(mod5). In particular, if D<O is a fundamental
14

discriminant, then we conclude from H(D)11=(1-(%T))h(D) and the above



congruence that _
(6) 5fc(Ip]) <= 5/n(D) (ir (Bp)).
Using descend-theoretic arguments, assertion (6) can be used to prove

that (for (%T)#1) c(ID}) is divisible by 5 if and only if the 5-Selmer

group sV (£(2) q) or £(P) (D)

elliptic curve XO(11)/Q twisted with D (e¢f. [1) and [ 3], where also other

over Q@ is non-trivial, where E is the
examples are discussed; cf. also [4,§14.). This is in accordance with

the conjectures of Birch and Swinnerton-Dyer.
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