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Recently, several authors heve investigated congruences between

modular forms of half-integral weight (cf. eg. [5,8J). In [8J Maeda gave

an example where a congruence modula ~ bet~een two cusp farms of even

integer weight 2k and level N descends via the Shimura correspondence ta

a congruence modula ..e. between twa cusp farms of weight k+~ (in Maeda' s

example k=4, N=52,~ =433), and in [5],§1. Koblitz remarked that the

classical congruence module 691 between the discriminant function ~ ane

the Eisenstein series G12 on SL2 (X) (normalized to have constant ter~

69124.2730)descends to a correspondin b congruence oetween a cusp form and

an Eisenstein series of weight 1~ on rO(4).

The purpose of this note is to give anather example for the above

phenomenon where congruences between modular farms of integer weight

descend to (ar are induced from) cangruences between modular farms of

half-integer weight. Let p be a prime with p=3(mod4) end let n be a nega-

tive fundamental discriminant. Suppose that ~ is a prime which divides
. n-1

the exact numerator of ~ but does not divide the class number h(D). TheI

Mazur ([9J, cf. also Gross (4],§11.) showed that there is a non-zero cusp

form of weight 2 o? rO(p) with ~-integral coefficients which modulo ~

is congruent to the properly normalized Eisenstein series of weight 2 on

rO(p) and which, moreover, has the property that under the Hecke algebra

it generates the ~-linear space spanned by those Hecke eigenforms F which

satisfy L(F,1)L(F@ED,1)tO; here L(F,s) resp. L(F@ED,S) are the Hecke L

functions associated to F resp. the twist F~fD and t n is the quadratic

character attached to the extension ~(~)/~.

In the special case D=-p we shall show that Mazur's congruence is
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and the (properly normalized) Cohen-Eisenstein series of weight ~ on

r
Q

(4p). Moreover, the Hecke module generated by ~p is spannen over [ by

those eigenforms f for which L(F,l)cf(p)~Q (ar equivalently, by results oj

Waldspurger ([12J), L(L,!)L(F8~ ~,])tQ), where F corresponds to f·by the
.- t"

Shimura isomorphism and ef(p) is the pth Fourier coefficient of f.

The method of proof essentially i5 the same as that in [6] where it was
used to show a refined version of the theorem of Waldspurger for modular
forms on SL

2
(:l) •

Probably· our rasul t (and also a more general statement for higher
weights) is true for general D and'could be proved by the same metbods
as here. However, since the technical details become much more tedious
in the general case (compare with [6J) we ,have restricted to D=-p.

Acknowledgement: The authors would like to thank D. Zagier for a useful

discussion.

2. Modular forms of integral and half-integral weight

As before, p denotes a prime congruent to 3 module 4, and h(-p) is

the class number of the field extension ~(~)/~. We shall assume p>3.

We sometimes denote by E =(-) the Legendre symbol.--p p

. Let us begin with recollecting several facts from the theory of modu-

lar forms of integral and half-integral weight.

We denote by M2(p) (S2(P)) the space of modular forms (cusp forms) 0:

weight 2 on rO(p) on which the Atkiq-Lehner involution Wp acts witb eigen

value -1 (ar equivalently, on which the Hecke operator U which replacesp

the nth Fourier coefficient by the pnth one acts as the identity) •. Pne ha;

where

( 2n izq=e ,z~~=upper h~lf-plane

c; (n) = L d)
1 p dln,p~d

is the normalized Eisenstein series of weight 2 on fg(p).
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We let MJ/2 (p) (S3/2(P)) be the sp8ce of modular forms (cusp farms)

af weight ~ on ro(~p) which heve a Fourier expansion ~ c(n)qn with
n~O

where

~3/2,p(z) = ~ H(n) qn
n~O p

i5 the Cohen-Eisenstein series. By definition,

H(n) = H(p2n )-pH(n)
p

with H(n) (for n>O) the number.of classes of positive definite binary

quadratic forms cf discriminant -n (where forms equivalent to a multiple

of x2 t y2 or i
2 txy+y2 are counted with multiplicity ; or ~, respectively).

1and with H(O)=-T2.

The series I H(n)qD (whieh is not a modular form) and its trans-
n~O

formation law under rO(4) have been studied by Cohen ([2]) and Zagier

([13]). From the formulas given there it is easy to see that ~3/2,p is

indeed a true modular form of weight ~ on r
O

{4p) (cf. also [4],§12.).

For every prime ~ there. i5 a Hecke operator on M3/2(P) preserving

the Eisenstein space aH 3/ 2 ,p and the space of eusp farms Sj/2(P). The

spaces S3/2(P) and S;(p) are isomorphie as modules over the Hecke algebra

([~J). More precisely, for every normalized Hecke eigenform F = L a(n)q
n~1

{S;(p) thera is a non-zero Hecke eigenform f = I c(n)qn in sj/2(P)
n~1

(unique up to multiplication by non-z~o scalars) which has the same

eigenvalues as F, and the Fourier eoefficients of Fand f are related by

(1 ) e ( J DI )a (n) = (n~1, D<O a fundamen-

tal discriminant).

We denote by ~_p:M3/2(P)~M2(P) the Shimura lifting assoeiated ta

the fundamental discriminant -p and defined by

(2) ~_p L e(n)qn = ~h(-p)e(O) + L ( 2: (_pd)c(pn 2 /d2 ) )qn.
n~O n~1 dln



Then

(3 ) Io;j. 1t:3/ 2 = h(-p)G 2 ,.-p ,p . ,p

and ~ maps cusp forms to cusp farms.
-p

3. Statement of result·and proof

Ws let

() 1 h ( ) + L (~ (d»q n
G1,p Z = 2 -p n~1 d/n p

be the Eisenstein aeries of weight 1 and Nebentypus [_p on PO(p) for the

cusp ico and put

E.:..lr.2 1 ( )2
Cp = 12u 1,p - ~ -p G2 ,p·

Then Cp is in S;(p), and if ~ is a prime which divides the exact numerato:

of P1~ but daes not divide h(-p), then clearly Cp has ~-integral Fourier

coefficients not all zero modulo ~ and is congruent modulo ~ to

_~(_p)2G2,P (note that R.*2 sinee p=3(mod4»; moreover, if tFu)u=1, ••• ,r

is the basis of normalized Hecke eigenforms for S;(p), then

1 r L(Fy ,1)L(Fv 8E. ,1)
(4) C = P-12 "d." (P 2= 2 -p F\) •

P v=1 "F'.>ll

wbere ~ i8 a non-zero constant not depending on p, L(F~,s) resp•.

L(F~8( ,s) are the Hecke L-functions defined by analytic continuation
-p

of the Dirichlet aeries L a~(n)n-s resp. L (np)a~(n)n-S (Re s)~; a~(n)
n~ 1 n~1

= n th Fourier coefficient of F'J ) and "F\) 11 2 = S J Fv (z )1 2dxdy
ro(p)\~

(x=Re z,y=Im z) is the square of the Petersson norm of F~ (cf. [4J;

actually the above case is not treated explicitely in [4J, but the

methods, of course, work also here).

We shall show that Cp is the image under S_p of a form in S3/2(P),

which has properties similar to those of C • Let
p

-1' 1
~p(z) = ~1,p(4z)e(pz) - 2h(-p)~3/2_p(z),
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1is the standard theta function of weight 2 on f o(4)

([1 OJ). Then Cp isa ""loJv!qT form of .wei gh t ~ on r0 (4p). and, in fact, using

that dfn (~) = 0 for (~)=-1 we see that t'p lies in the subspace Sj/2(P).

Theorem. Let p be a prime congruent to 3 modulo 4, and let ~ be a prime

E=.l clwhich divides the exact numerator of 12' but does not ivide the class

number h(-p). Then:

i) The funct.ion 'e'p has ~-integral Fourier coefficients, i8 nOE-zero modul<

1
~, Rnd the congruence ~p=-2h(-p)~3/2,p(mod~)holds.

11) ODe has ~ ~ =C , where ~ is the Shimura map defined by (2).
-p P P -p

iii) Let {f~1~=1, ••• ,r be R basis cf Hecke eigenforms for Sj/2(P), with

f'J corresponding to F" and {F'J} -1 the basis of normalized He:cke
~- , •.• ,r

eigenforms for S;(p). Let c~(p) be the oth Fourier coefficient of f~. Let

L(F~,s) be the Hecke L-function attached to Fu Rnd defined by analytic

continuation of the Dirichlet series L. a~(n)n-s (Re s>~; a",(n)=n th

n~1

Fourier coefficient of F\).). Then

(5 ) ~p
= E.=1.. ~'.

12

r
2:

\) =1

L (F\) , 1 ) c ~ (p )

l\f,JJ 2
f\l ,

where ~' i8 a non-zero constant not depend1ng on p and "f~I,2 =
J \ lf" (z)12y-1/2dxdy (x=Re z,y=Im z) 15 the square of the Peterssol

rO(4p) ~

norm of fl).

Remarks. i) By results of Waldspurger ([12J; cf. also Gross (41) c v (p)2

18 proportional to L(F~8E ,1), hence it follows from assertion i11) of-p
the Theorem that the Hecke module generated by C is generated over ~

p

by those Hecke eigenforms f u for which L(Fv,1)L(F~~E ,1)tO. By (4) the-p
same. of course, is true for Cp • with f~ replaced by Fv •

i 1) Usin g t he commuta ti 0 n ru1 e U 'f =:1' U2 an d 0 bse r vin g (3) an d t he fa c tp -p -p p

that ~p is in the subspace Sj/2(P) one can easily check that Cp lies in

the subspace S;(p).
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Proof. Assertion i) is obvious onee noticing that W'2~/2,p has ~ntegral

coefficients, whe~e W is the exaet denominator of P1~ (cf. [4],§§1 .• ".).

2Let us now prove ii). By (3) it suffices to show that G,(z) i8 the

image under ~_p of G,(4z)8(pz). This follows by the same arguments as

used in [6] (proof of Propos. 3,p.'86). Write c(n) r~sp. R(n) for the n th

Fourier coefficient of G,(4z)e(pz) resp. G,(z). Then
2

c(n) = ~2 n R(n-Zr ).
rf:'lI,r ~-

p

n::pr
2 (4)

Henee the n th Fourier coefficient a(n) for n>O of the image of G,(4z)6(pz

under ~ equals
-p

a (n) = ~
dln

( ) () n-rd n+rd
Observing that R pm =R m for any m~O and writing n'=--2--' D 2=--2--' we sel

that

a (n) = L
D, ,n2~O
D, +n2 =n

By the multiplicative property of R(n) the inner sum equals R(n,)R(n 2 ),

hence

a(n) = L R(n,)R(n2 ),
n"n2~O

n, +n2 =n

which is the n th Fourier coefficient cf G,(z)2.

Assertion iii) will folloW from Rankin's trick, which was already

used in a similar context as bere in [6] and which is also tbe main tool

in proving formula (4) ([4]). Set
, , 2

E, 4 (z) =p- (G, (4z) - -2(-)G1 (2z»,, p p "p p,p

where

, 2 1
Po :: (, - - ( -) ). -h ( - p ) •
rp 2 p 2

Then E,.4p J.·5 the EJ."sensteJ."n serJ."es of i ht 1 r (4) d Nebentypuswe g on 0 p an
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( fOT the cusp im normalized to bave constant term 1 (compere with [6J,
-p

p.185). According to Rankin's trick ([141,p.145) the Petersson product cf

1
E

1
,4p(z)·e(pz) against f~ equals (up to a simple faetor) the value at s=2

of the convolution of the L-series of f~(z) and e(pz) (there i8 a alight

problem of ~onvergenee, sinee our Eisenstein series has weight 1; but

reeall that E
1

,4p(Z) 1s the holomorphie eontinuation te 8=0 cf the non

holomorphic Eisenstein series cf weight 1

, E. (d) Im z
E ( ) 1 L- -p ( 2 ) s

1,4p Z;S = 2 ab
(ed)€ rClO \ro(4p) cz+d lez+dl

(ZEJ,;s~a:,Re s,;;rco={(~~)1nt:7})
. 2e~(p) L(Fv ,2s)

(Hecke's trick». By (1) this convolution is equal to s
P L(E ,28)

-p

(L«( ,8)=Dirichlet series attaehed to E ).
-p -p

On the ether hand, if pr denotes the projection from the spaee" cf

modular forms of weight ~ on rO(4p) onto the subspaee of forms having an..

expansion L c(n)qn ([,.],§2.), then an easy caIculation (similaJ
n~O,n=O,3(4) .

to that in [6·],p.195) shows that th(-p)prE1,4P(z) = G1,p(4z)6(pz). Obser

ving that pr is hermitean on cusp forms and maps Eisenstein series to

Eisenstein series we thus deduee (5). This concludes the proof of the

Theorem.

We end up wi th discussing the example p=11,.! =5 (cf. also [4-J, p. 6?f.

The spaces 82(11) and 83/2 (11) are 1-dimensional with generators F(z) =

"t.(z)2~(11z)2 end fez) = ~u4g(z), where g(z) _= "1{(2z)~(22z)e(11z), respee

tively (for the latter cf. [11],p.123); here ~(z) is the Dedekind eta

funetion and U
4

i8 the operator defined by U4La(n)qn=La(4n)qn. The

functions Fand f have Fourier eoefficients in ~, and the first few

coefficients of f are given in [4],p.68. Comparing the coefficients at

q3 and using c(3)=1 we find f=~'~5' hence from the eongruence e5;-~'~3/2,11.

(modS) we obtain f:3~3/2,11(mod5). In particular, if D<O is a fundamental
Ddiscriminant, then we conclude from H(D)11=(1-(,,»h(D) and the above
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congruence that

(6) 5Ic(ID')~ 51h(D) (if (~) t 1 ) •

Using descend-theoretic arguments, assertion (6) can be used to prove

that (for (~1)'1) c ( IDI) is divisible by 5 if and only if the 5-Selmer

group S(5)(E(D),~) of E(D) over ~ i8 non-trivial, where E(D) is the

elliptic curve XO(11)/~ twisted with D (cf. [1J and [3J, where also other

examples are discussed; cf. also [4],§14.). This 1s in accordance with

the conjectures of Birch and Swinnerton-Dyer.
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