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Abstract

We use the Yang-Mills gradient flow on the space of connections
over a closed Riemann surface to construct a Morse-Bott chain com-
plex. The chain groups are generated by Yang-Mills connections. The
boundary operator is defined by counting the elements of appropriately
defined moduli spaces of Yang-Mills gradient flow lines that converge
asymptotically to Yang-Mills connections.
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1 Introduction

Let (Σ, g) be a closed oriented Riemann surface. Let G be a compact Lie
group, g its Lie algebra, and P a principal G-bundle over Σ. On g we
choose an ad-invariant inner product 〈·, ·〉. The Riemannian metric induces
for k ∈ {0, 1, 2} the Hodge star operator ∗ : Ωk(Σ) → Ω2−k(Σ) on differential
k-forms. We denote by A(P ) the affine space of g-valued connection 1-forms
on P . The underlying vector space is the space Ω0(Σ, ad(P )) of sections
of the adjoint bundle ad(P ) := P ×Ad g. The curvature of a connection
A ∈ A(P ) is the ad(P )-valued 2-form FA = dA + 1

2 [A ∧ A]. For A ∈ A(P )
we consider the perturbed Yang-Mills functional defined by

YMV(A) =
1
2

∫
Σ

〈
FA ∧ ∗FA

〉
+ V(A), (1)

with a gauge-invariant perturbation V : A(P ) → R the precise form of which
will be fixed later. The corresponding Euler-Lagrange equation is the second
order partial differential equation d∗AFA+∇V(A) = 0, called perturbed Yang-
Mills equation. The negative L2-gradient flow equation resulting from the
Yang-Mills functional is the PDE

∂sA+ d∗AFA +∇V(A) = 0. (2)

The group G(P ) of principal fibre bundle automorphisms of P acts on the
space A(P ) by gauge transformations, i.e. as g∗A := g−1Ag + g−1dg. The
functional YMV in invariant under such gauge transformations, and hence
are the solutions of the perturbed Yang-Mills (gradient flow) equations. The
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action is not free. The occuring stabilizer subgroups are subgroups of G,
hence finite-dimensional. Restricting the action to the group G0(P ) of so-
called based gauge transformations, i.e. those transformations which fix a
prescribed fibre of P pointwise, one indeed obtains a free action. For this
reason we will study solutions to the gradient flow equation (2) only up to
based gauge transformations, cf. however the comment on a G-equivariant
extension of the theory below.

The study of Yang-Mills connections over a Riemann surface has been ini-
tiated by Atiyah and Bott in [5]. As shown there, the gauge-equivalence
classes of (unperturbed) Yang-Mills connections occur as a family of finite-
dimensional submanifolds of A(P )/G0(P ) which satisfy the so-called Morse-
Bott condition. This condition asserts that, for an equivalence class [A] of
Yang-Mills connections, the Hessian H[A]YMV is non-degenerate when re-
stricted to the normal space at [A] of the critical manifold containing [A].
Moreover, any Yang-Mills critical manifold is compact by a straight-forward
application of Uhlenbeck’s strong compactness theorem, cf. the exposition
[35]. Hence the situation one encounters for the functional YMV over a Rie-
mann surface is in precise analogy to that of finite-dimensional Morse-Bott
theory. As such it has been widely studied in [5], with remarkable appli-
cations e.g. to the cohomology of moduli spaces of stable vector bundles
over Σ (cf. e.g. [16] for a review of these results), however without properly
developing the analysis of the underlying L2-gradient flow (2). The aim of
the present work is to introduce and work out in full detail the analytical
setup for a Yang-Mills Morse homology theory over Σ.

Let us now briefly describe our setup. We shall work with so-called abstract
perturbations V : A(P ) → R, i.e. elements of a Banach space Y generated
by certain gauge-invariant model perturbations V`. These are of the form

V`(A) := ρ
(
‖α(A)‖2

L2

)
〈η, α(A)〉,

with ρ : R → R some cut-off function, η ∈ Ω1(Σ, ad(P )), and α(A) = g∗A−
A0 where g ∈ G(P ) is chosen such that the local slice condition d∗A0

α = 0 is
satisfied. Let

P(a) := {A ∈ A(P ) | d∗AFA = 0 and YMV(A) ≤ a}

denote the set of Yang-Mills connections of energy at most a. On the finite
dimensional manifold P(a) we fix a Morse function h : P(a) → R, i.e. a
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smooth function h with isolated non-degenerate critical points whose stable
and unstable manifolds intersect transversally. To a critical point x of h we
assign the non-negative number

Ind(x) := indYMV (x) + indh(x)

where indh(x) denotes the usual Morse index of x with respect to h and
indYMV (x) denotes the number of negative eigenvalues (counted with multi-
plicities) of the Yang-Mills Hessian H[x]YMV . For a regular value a of YMV

we consider the Z-module

CMa
∗ (h) :=

⊕
x∈crit(h)∩P(a)

〈x〉

generated by the critical points of h of Yang-Mills energy at most a. This
module is graded by the index Ind. Under certain transversality assump-
tions (which resemble the usual Morse-Bott transversality required in finite-
dimensional Morse theory) there is a well-defined boundary operator

∂∗ : CMa
∗ (h) → CMa

∗−1(h)

which arises from counting so-called cascade configurations of (negative) L2-
gradient flow lines, i.e. tuples of solutions of

∂sA+ d∗AFA +∇V(A) = 0,

whose asymptotics as s→ ±∞ obey a certain compatibility condition. Our
main result is

Theorem 1.1 For generic perturbation V ∈ Y the map ∂∗ satisfies ∂k ◦
∂k+1 = 0 for every k ∈ N0 and thus there exist well-defined homology groups

HMa
k (A(P ), h) =

ker ∂k
im ∂k+1

.

The resulting homology HMa
∗ (h) is called Yang-Mills Morse homology.

In finite dimensions the construction of a Morse homology theory from the
set of critical points of a Morse functions and the isolated flow lines con-
necting them goes back to Thom [32], Smale [28] and Milnor [19], and had
later been rediscovered by Witten [37]. For a historical account we refer to
the survey paper by Bott [8]. In infinite dimensions the same sort of ideas
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underlies the construction of Floer homology of symplectic manifolds, al-
though the equations encountered there are of elliptic rather than parabolic
type. More in the spirit of classical finite dimensional Morse homology is
the so-called heat flow homology for the loop space of a compact manifold
due to Weber [36], which is based on the L2 gradient flow of the classical
action functional. For another approach via the theory of ODEs on Hilbert
manifolds and further references, see Abbondandolo and Majer [2]. The cas-
cade construction of Morse homology in the presence of critical manifolds
satisfying a Morse-Bott condition is due to Frauenfelder [15].

1.1 Main results

In Section 3 moduli space problem for Yang-Mills gradient flow lines with
prescribed asymptotics as s→ ±∞ is put into an abstract Banach manifold
setting. The moduli space M̂(C−, C+) is exhibited as the zero set of a section
F of a suitably defined Banach space bundle. We subsequently develop the
necessary Fredholm theory for the operator DA obtained by linearizing F .
The main result is as follows.

Theorem 1.2 (Fredholm theorem) Let A : R → A(P ), be a smooth so-
lution of the Yang-Mills gradient flow equation (9) satisfying for Yang-Mills
connections A± the asymptotic conditions

lim
s→±∞

A(s) = A±

in the C∞(Σ)-topology. Then (for every p > 1) the operator DA = d
ds +HA :

Zδ,pA → Lδ,p associated with A is a Fredholm operator of index

indDA = indHA− − indHA+ − dim C−.

Section 6 is concerned with compactness up to convergence to broken tra-
jectories of the moduli space M(C−, C+), where we prove the following.

Theorem 1.3 (Compactness) Let (Aν ,Ψν), ν ∈ N, be a sequence of so-
lutions to the perturbed Yang-Mills gradient flow equation

∂sA+ d∗AFA − dAΨ +∇V(A) = 0. (3)

Assume that there exist critical manifolds C± such that every (Aν ,Ψν) is a
connecting trajectory between C− and C+. Then for every k < 2 and p <∞
and every compact interval I ⊂ R there exists a sequence gν ∈ G(I × P )
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of gauge transformations such that a subsequence of the gauge transformed
sequence (gν)∗(Aν ,Ψν) converges in W k,p(I × Σ) to a solution (A∗,Ψ∗) of
(3).

The main step here is a compactness theorem for solutions A of the Yang-
Mills gradient flow equation on time intervals I = [T0, T1] of finite length.
The proof of this result relies on certain a priori Lp estimates for the curva-
ture of A, the weak Uhlenbeck compactness theorem, and a combination of
elliptic and parabolic regularity estimates. We then discuss transversality of
the operator F at a zero x ∈ F−1(0). The aim is to prove, along the usual
lines using Sard’s lemma, that surjectivity of the linearized operator holds
for generic perturbations V ∈ Y . The relevant Banach spaces of admissible
perturbations are introduced in Appendix A. In Section 8.2 these results are
put together and a proof of the main Theorem 1.1 is given.

1.2 Outlook

Equivariant theory

For the ease of presentation we here develop Yang-Mills Morse theory for
the functional YMV on the space A(P )/G0(P ) of connections modulo based
gauge equivalence. On this quotient there still acts the group G by gauge
transformations as

g · [A] = [g∗A],

and the functional YMV is invariant under this group action. It thus seems
natural to implement this action in our setup and define a G-equivariant
Morse homology, cf. [31] for details. One possible approach is to use a
finite-dimensional approximation EnG to the classifying space EG. Since
the group G acts freely on EnG we obtain a free action of the full gauge
group G(P ) on the product A(P )× EnG via

g∗(A, λ) = (g∗A, ĝλ).

By extending YMV suiatably, our construction of Morse homology groups
then carries over almost literally to this product manifold.

Connection with Morse homology of loop groups

The Yang-Mills Morse homology is strongly related to heat flow homology,
at least in the case of the sphere Σ = S2. This connection is due to the
following result, cf. [30, 31].
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Theorem 1.4 For any compact Lie group G and any pricipal G-bundle P
over Σ, the chain homomorphism

Θ : CM∗

(A(P )× EnG

G(P )

)
→ CM∗

(ΩG× EnG

G

)
induces an isomorphism

[Θ] : HM∗

(A(P )× EnG

G(P )

)
→ HM∗

(ΩG× EnG

G

)
of Morse homology groups.

It would be interesting to work out a similar correspondence in the case
where Σ is a Riemann surface of arbitrary genus.

Products

In finite dimensional Morse homology it is well known how to implement
a module structure. In infinite dimensional situations one often encounters
similar algebraic structures, like e.g. the quantum product in Floer homology
or the Chas-Sullivan loop product in the Morse homology of certain loop
spaces, cf. [4, 6, 9]. Using finite-dimensional Morse homology as a guiding
principle, one should be able to implement a natural product structure in
the setup presented here. In a subsequent step one could ask how this relates
to products in loop space homology of ΩG.
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2 Yang-Mills functional

2.1 Preliminaries

Let (Σ, g) be a compact oriented Riemann surface. Let G be a compact
Lie group with Lie algebra g. On g we fix an ad-invariant inner product.
This exists by compactness of G. Let P be a principal G-fibre bundle over
Σ. A gauge transformation is a section of the bundle Ad(P ) := P ×G G
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associated to P via the action of G on itself by conjugation. Let ad(P )
denote the Lie algebra bundle associated to P by the adjoint action of G on
g. The spaces of smooth ad(P )-valued differential k-forms are denoted by
Ωk(Σ, ad(P )). The space A(P ) of smooth connections on P is an affine space
over Ω1(Σ, ad(P )). The group G(P ) of smooth gauge transformations acts
on A(P ) and on Ωk(Σ, ad(P )). The curvature of the connection A is FA =
dA + 1

2 [A ∧ A] ∈ Ω2(Σ, ad(P )). It satisfies the Bianchi identities dAFA = 0
and d∗Ad

∗
AFA = 0. Covariant differentiation with respect to the Levi-Civita

connection associated with the metric g and a connection A ∈ A(P ) defines
an operator ∇A : Ωk(Σ, ad(P )) → Ω1(Σ)⊗Ωk(Σ, ad(P )). Its antisymmetric
part is the covariant exterior differentiation operator

dA : Ωk(Σ, ad(P )) → Ωk+1(Σ, ad(P )), α 7→ dα+ [A ∧ α].

The formal adjoints of these operators are denoted by ∇∗A and d∗A. The
covariant Hodge Laplacian on forms is the operator ∆A := d∗AdA+dAd∗A, the
covariant Bochner Laplacian on forms is ∇∗A∇A. They are related through
the Bochner-Weitzenböck formula

∇A = ∇∗A∇A + {FA, · }+ {RΣ, · }.

Here the brackets { · , · } denote bilinear expressions with constant coeffi-
cients. The L2 gradient of the Yang-Mills functional YMV as in (1) at the
point A ∈ A(P ) is

∇YMV(A) = d∗AFA +∇V(A),

and its Hessian is the second order operator

HAYMV = d∗AdA + ∗[∗FA ∧ · ] +HAV : Ω1(Σ, ad(P )) → Ω1(Σ, ad(P )).

We also use the notationHA := d∗AdA+∗[∗FA∧ · ]. For a definition of Sobolev
spaces of sections of vector bundles, of connections, and of gauge transfor-
mations we refer to [35, Appendix B]. We employ the notation W k,p(Σ) and
W k,p(Σ, T ∗Σ ⊗ ad(P )) for the Sobolev spaces of ad(P )-valued sections, re-
spectively ad(P )-valued 1-forms whose weak derivatives up to order k are in
Lp. Similarly, the notation Ak,p(P ) indicates the Sobolev spaces of connec-
tions over Σ of class W k,p. We also use the parabolic Sobolev spaces

W 1,2;p(I × Σ, ad(P )) := Lp(I,W 2,p(Σ, ad(P ))) ∩W 1,p(I, Lp(Σ, ad(P )))

of ad(P )-valued sections over I×Σ, where I ⊆ R is an interval (and similarly
for ad(P )-valued 1-forms and for connections). Further notation we use
frequently is Ȧ := ∂sA := dA

ds , etc. for derivatives with respect to time.
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2.2 Perturbations

Our construction of a Banach space of perturbations is based on the following
L2-local slice theorem due to T. Mrowka and K. Wehrheim [20]. We fix p > 2
and let

SA0(ε) := {A = A0 + α ∈ A0,p(Σ) | d∗A0
α = 0, ‖α‖L2(Σ) < ε}

denote the set of Lp-connections in the local slice of radius ε with respect to
A0.

Theorem 2.1 (cf. [20, Theorem 1.7]) Let p > 2. For every A0 ∈ A0,p(Σ)
there are constants ε, δ > 0 such that the map

m :
(
SA0(ε)× G1,p(Σ)

)
/StabA0 → A0,p(Σ),

[(A0 + α, g)] 7→ (g−1)∗(A0 + α)

is a diffeomorphism onto its image, which contains an L2-ball,

Bδ(A0) := {A ∈ A0,p(Σ) | ‖A−A0‖L2(Σ) < δ} ⊆ im m.

We fix the following data.

(i) A dense sequence (Ai)i∈N of irreducible smooth connections in A(P ).

(ii) For everyAi a dense sequence (ηij)j∈N of smooth 1-forms in Ω1(Σ, ad(P ))
satisfying d∗Ai

ηij = 0 for all j ∈ N.

(iii) A smooth cutoff function ρ : R→ [0, 1] such that ρ = 1 on [−1, 1] and
supp ρ ⊆ [−4, 4] and such that ‖ρ′‖L∞ < 1. Set ρk(r) = ρ(k2r) for
k ∈ N.

To the triple ` = (i, j, k) ∈ N3 we assign the map

V` : A(P ) → R, A 7→ ρk(‖α‖2
L2(Σ))〈α, ηj〉, (4)

where g ∈ G1,p(P ) and α ∈ Lp(Σ, ad(P )) are uniquely determined by the
condition

g∗A−Ai = α and d∗Ai
α = 0. (5)

It follows from Theorem 2.1 that there exists a constant ε(Ai) > 0 such that
condition (5) is satisfied for a unique α ∈ Lp(Σ, ad(P )) whenever

dist2L2(Σ)(A,O(Ai)) ≤ ε(Ai).
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Given Ai we allow only for indices k ∈ N sufficiently large such that the
condition

supp ρk ⊆
[
− ε(Ai)

2
,
ε(Ai)

2

]
is satisfied. This determines V` uniquely on A(P ). Note that V` is invariant
under gauge transformations. Given V`, we fix a constant C` > 0 such that
the following two conditions are satisfied.

(i) supA∈A(P ) |V`(A)| ≤ C`,

(ii) ‖∇V`(A)‖Lp(Σ) ≤ C`
(
1 + ‖FA‖Lp(Σ)

)
for every A ∈ A(P ).

The existence of the constant C` follows from Proposition A.7. The universal
space of perturbations is the normed linear space

Y =
{
V :=

∞∑
`=1

λ`V`
∣∣∣λ` ∈ R and ‖V‖ :=

∞∑
`=1

C`|λ`| <∞
}
.

It is a separable Banach space isomorphic to the space `1 of summable real
sequences.

2.3 Critical points

In the following we shall make use of the well-known fact that the Yang-Mills
functional YM satisfies the Palais-Smale condition in dimension 2 (which
holds true also in dimension 3 but not in higher dimensions).

Definition 2.2 A sequence (Ai) ⊆ A(P ) is said to be a Palais-Smale se-
quence if there exists M > 0 such that ‖FAi‖L2(Σ) < M for all i, and

‖d∗Ai
FAi‖W−1,2(Σ) → 0 as i→∞.

Theorem 2.3 (Equivariant Palais-Smale condition) For any Palais-Smale
sequence (Ai) ⊆ A(P ) there exists a subsequence, which we denote (Ai), and
a sequence (gi) ⊆ G(P ) such that g∗iAi converges in W 1,2(Σ) to a Yang-Mills
connection A∞ ∈ A(P ) as i→∞.

Proof: For a proof we refer to [22]. 2
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Lemma 2.4 Let ε,M > 0. There exists a constant δ > 0 with the following
significance. If A ∈ A(P ) satisfies ‖FA‖L2(Σ) < M and

‖A−A0‖L2(Σ) > ε (6)

for every Yang-Mills connection A0 ∈ A(P ) then it follows that

‖d∗AFA‖W−1,2(Σ) > δ.

Proof: Assume by contradiction that there exists a sequence (Ai) satisfying
‖FAi‖L2(Σ) < M and (6) with

lim
i→∞

‖d∗Ai
FAi‖W−1,2(Σ) = 0.

Then by Lemma 2.4 there exists a subsequence, still denoted (Ai), a sequence
of gauge transformations (gi), and a Yang-Mills connection A∞ with

lim
i→∞

g∗iAi = A∞

in L2(Σ) (even in W 1,2(Σ)). Therefore, for i sufficiently large, the Yang-Mills
connection g∗iA∞ satisfies ‖(g−1

i )∗A∞ −Ai‖L2(Σ) < ε, contradicting (6). 2

Theorem 2.5 For every ε,M > 0 there exists a constant δ > 0 with the
following significance. Assume the perturbation V satisfies the conditions
‖V‖ < δ and

suppV ⊆ A(P ) \
⋃

A∈crit(YM)

Bε(A),

where Bε(A) := {A1 ∈ A(P ) | ‖A1−A‖L2(Σ) < ε}. Then the perturbed Yang-
Mills functional YMV has the same set of critical points as the functional
YM below the level M , i.e. it holds that

crit(YMV) ∩ {A ∈ A(P ) | YM(A) < M}
= crit(YM) ∩ {A ∈ A(P ) | YM(A) < M}.

Proof: The inclusion crit(YM) ⊆ crit(YMV) is clear because V is supposed
to be supported away from crit(YM). It remains to show that crit(YMV)∩
{A ∈ A(P ) | YM(A) < M} only contains points that are also critical for
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YM. Thus let A ∈ A(P ) \ ∪A∈crit(YM)Bε(A). Choosing δ > 0 sufficiently
small it follows from Lemma 2.4 and Propositions A.5 and C.3 that

‖∇YMV(A)‖W−1,2(Σ) ≥ ‖∇YM(A)‖W−1,2(Σ) − ‖∇V(A)‖W−1,2(Σ)

≥ ‖∇YM(A)‖W−1,2(Σ) − ‖∇V(A)‖L2(Σ) > 0.

Hence A /∈ crit(YMV), and this proves the remaining inclusion. 2

Proposition 2.6 There exists a constant C(P ) such that the estimate

sup
z∈Σ

|FA(z)|2 ≤ C(P )YM(A)

is satisfied for every Yang-Mills connection A ∈ A(P ).

Proof: Because A is a Yang-Mills connection, its curvature satisfies ∆AFA =
0. For the function u := 1

2 |FA|
2 there thus follows the differential inequality

∆Au = −|∇AFA|2 − 〈∇∗A∇AFA, FA〉
= −|∇AFA|2 − 〈∆AFA + {FA, FA}+ {RΣ, FA}, FA〉
= −|∇AFA|2 − 〈{FA, FA}+ {RΣ, FA}, FA〉
≤ c(u+ u

3
2 ).

The claim now follows from the elliptic mean value inequality C.6. 2

Theorem 2.7 For every C > 0 and every Yang-Mills connection A0 ∈ A(P )
there exists a constant δ > 0 with the following significance. If A ∈ A(P ) \
C(A0) is a Yang-Mills connection of energy YM(A) < C then A has L2-
distance at least δ to the Yang-Mills critical manifold C(A0) of A0.

Proof: Assume by contradiction that such a constant δ > 0 does not exist.
Applying the L2-local slice theorem 2.1 it then follows that there exists a
sequence αν ∈ L2(Σ, T ∗Σ⊗ ad(P )) such that

d∗A0
αν = 0 and d∗A0+ανFA0+αν = 0 (7)

and limν→∞ αν = 0 in L2(Σ). From the second condition in (7) we obtain

HA0α
ν = −1

2
d∗A0

[αν ∧ αν ]− ∗[αν ∧ ∗(FA0+αν − FA0)]. (8)
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By the assumption YM(A) < C and Proposition 2.6 there exists for every
p ≤ ∞ a constant C(p) such that ‖FA+αν‖Lp(Σ) < C(p) holds for all ν. This
yields for the two terms on the the right-hand side of (8) and fixed p > 2
the following estimate,

‖d∗A0
[αν ∧ αν ]‖W−1,p(Σ) ≤ c‖{∇A0α

ν , αν}‖W−1,p(Σ)

≤ c‖αν‖W 1,p(Σ)‖αν‖L2(Σ)

≤ c(1 + ‖FA0+αν‖Lp(Σ) + ‖αν‖L2(Σ))‖αν‖L2(Σ)

≤ c(1 + C(p))‖α‖L2(Σ).

The second line follows from Proposition A.6, the third line is by Proposition
A.7. The second term is estimated similarly,

‖[αν ∧ ∗(FA0+αν − FA0)]‖W−1,p(Σ) ≤ c‖FA0+αν − FA0‖Lp(Σ)‖α‖L2(Σ)

≤ c(1 + C(p))‖α‖L2(Σ).

Hence the right-hand side of (8) converges to 0 in W−1,p(Σ) as ν → ∞.
Elliptic regularity of the operator HA0 + dA0d

∗
A0

then implies convergence
‖αν‖W 1,p(Σ) → 0 as ν → ∞. This contradicts known results on W 1,p-
separation of Yang-Mills critical orbits and proves our claim. 2

3 Yang-Mills gradient flow

Definition 3.1 The perturbed Yang-Mills gradient flow is the nonlinear PDE

0 = ∂sA+ d∗AFA − dAΨ +∇V(A) (9)

for paths A : s 7→ A(s) ∈ A(P ) of connections and Ψ : s 7→ Ψ(s) ∈
Ω0(Σ, ad(P )) of 0-forms.

The term−dAΨ plays the role of a gauge fixing term needed to make equation
(9) invariant under time-dependent gauge transformations.

3.1 Moduli spaces

We fix a pair (Ĉ−, Ĉ+) of critical manifolds of the perturbed Yang-Mills
functional YMV and denote C± := Ĉ±

G0(P ) . We also fix numbers p > 3 and
δ > 0. Central to the construction of Morse homology groups (which will
be carried out in Section 8) will be the moduli space of gradient flow lines
between C− and C+. Let us define
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M̂(Ĉ−, Ĉ+) :=
{

(A,Ψ) ∈ A1,2;p
δ (P )×W 1,p

δ (R× Σ)
∣∣∣ (A,Ψ) satisfies (9),

lim
s→±∞

A(s) = A± for someA± ∈ Ĉ±
}
.

For a definition of the Sobolev spaces A1,2;p
δ (P ) and W 1,p

δ (R × Σ) we refer
to the next section. The group G2,p

δ (R× P ) acts freely on M̂(Ĉ−; Ĉ+). The
moduli space of gradient flow lines between C− and C+ is the quotient

M(C−, C+) :=
M̂(Ĉ−, Ĉ+)
G2,p
δ (R× P )

. (10)

The aim of the next section is to reveal M̂(Ĉ−, Ĉ+) as the zero set F−1(0) of
an equivariant section F of a suitably defined Banach space bundle E over a
Banach manifold B. After showing that the vertical differential dxF at any
such zero x ∈ F−1(0) is a surjective Fredholm operator, the implicit function
theorem applies and allows us to conclude that the moduli space M(C−, C+)
is a finite-dimensional smooth manifold.

3.2 Banach manifolds

In this section we introduce the setup which will allow us to view the moduli
space defined in (10) as the zero set of a Fredholm section of a certain
Banach space bundle. These Banach manifolds are modeled on weighted
Sobolev spaces in order to make the Fredholm theory work. We therefore
choose a number δ > 0 and a smooth cut-off function β such that β(s) = −1
if s < 0 and β(s) = 1 if s > 1. We define the δ-weighted W k,p-Sobolev norm
of a measurable function u over R × Σ to be the usual W k,p-Sobolev norm
of the function eδβ(s)su.

Let A1,2;p
δ (P ) denote the Sobolev space of connections on the principal fibre

bundle R × P which are locally of class W 1,2;p and for which there exist
limiting connections A± ∈ C± and times T± ∈ R such that the 1-forms
α± := A−A± satisfy

α− ∈W 1,p
δ ((−∞, T−], Lp(Σ)) ∩ Lpδ((−∞, T−],W 2,p(Σ)),

α+ ∈W 1,p
δ ([T+,∞), Lp(Σ)) ∩ Lpδ([T

+,∞),W 2,p(Σ)).

Similarly, let G2,p
δ (R × P ) denote the group of based gauge transformations

which are locally of class W 2,p and in addition satisfy the following two
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conditions.1 The ad(P )-valued 1-form g−1dg satisfies

g−1dg ∈ Lpδ(R,W
2,p(Σ, T ∗Σ⊗ ad(P ))).

There exist limiting based gauge transformations g± ∈ W 3,p(P ), numbers
T± ∈ R, and ad(P )-valued 1-forms

γ− ∈W 2,p
δ ((−∞, T−]× Σ) and γ+ ∈W 2,p

δ ([T+,∞)× Σ)

with

g(s) = exp(γ−(s))g− (s ≤ T−), g(s) = exp(γ+(s))g+ (s ≥ T+).

For a pair (C−, C+) of critical manifolds and numbers p > 3 and δ > 0 denote
by B̂ := B̂(C−, C+, δ, p) the Banach manifold of pairs

(A,Ψ) ∈ A1,2;p
δ (P )×W 1,p

δ (R× Σ).

The group G2,p
δ (R × P ) acts smoothly and freely on B̂ via g · (A,Ψ) =

(g∗A, g−1Ψg + g−1ġ). The resulting quotient space

B := B(C−, C+, δ, p) :=
B̂(C−, C+, δ, p)
G2,p
δ (R× P )

is again a smooth Banach manifold. The tangent space at the point [(A,Ψ)] ∈
B splits naturally as a direct sum

T[(A,Ψ)]B = T 0
[(A,Ψ)]B ⊕ Rdim C− ⊕ Rdim C+

,

where T 0
[(A,Ψ)]B can be identified with pairs

(α, ψ) ∈W 1,2;p
δ (R× Σ)⊕W 1,p

δ (R× Σ) (11)

which satisfy the gauge fixing condition

L∗(A,Ψ)(α, ψ) := ∂sψ + [Ψ, ψ]− d∗Aα = 0. (12)

Thus a tangent vector of the quotient space B is identified with its unique
lift to T B̂ which is perpendicular to the gauge orbit. We furthermore define

1For a definition of Sobolev spaces of gauge transformations we refer to [35, Appendix
B].
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the Banach space bundle E = E(C−, C+, δ, p) over B as follows. Let Ê be the
Banach space bundle over B̂ with fibres

Ê(A,Ψ) := Lpδ(R, L
p(Σ, T ∗Σ⊗ ad(P ))).

The action of G2,p
δ (R × P ) on B̂ lifts to a free action on Ê . We denote

the respective quotient space by E . We finally define the smooth section
F : B → E by

F : [(A,Ψ)] 7→ [∂sA+ d∗AFA − dAΨ +∇V(A)]. (13)

Note that the moduli space defined in (10) is precisely the zero set F−1(0).

4 Exponential decay

The aim of this section is to establish exponential decay towards Yang-Mills
connections for finite energy solutions of the Yang-Mills gradient flow equa-
tion (9). We shall prove the following result.

Theorem 4.1 (Exponential decay) For a solution A : R→ A(P ) of the
Yang-Mills gradient flow equation (9) the following statements are equivalent.

(i) The solution A has finite energy

E(A) =
∫ ∞

−∞
‖∂sA‖2

L2(Σ) ds.

(ii) There are positive constants k and c`, ` ∈ N0, such that the inequality

‖∂sA‖C`([T,∞)×Σ) + ‖∂sA‖C`((−∞,−T ]×Σ) ≤ c`e
−kT (14)

is satisfied for every T ≥ 1.

If (i) or (ii) is satisfied, then there exist Yang-Mills connections A± ∈ A(P )
such that it holds exponential convergence

lim
s→±∞

A(s) = A±

in the C∞(Σ)-topology.

For the proof of Theorem 4.1 we need a number of auxiliary results.
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Proposition 4.2 For every M > 0, ρ > 0, κ > 0, and p > 1 there exists
ε > 0 such that the following holds. If A : [−ρ, ρ] → A(P ) is a solution of
(9) with ‖FA(0)‖L2(Σ) ≤M and∫ ρ

−ρ
‖∂sA‖2

L2(Σ) ds < ε

then there is a Yang-Mills connection A∞ ∈ A(P ) such that

‖A(0)−A∞‖W 1,p(Σ) + ‖∂sA(0)‖L∞(Σ) < κ. (15)

Proof: Assume by contradiction that this is wrong for some ρ,M > 0 and
p > 1. Then there exists a constant κ > 0 and a sequence Aν : [−ρ, ρ] →
A(P ) of solutions of (9) with ‖FAν(0)‖L2(Σ) ≤M for all ν and

lim
ν→∞

∫ ρ

−ρ
‖∂sAν‖2

L2(Σ) ds = 0, (16)

but (15) fails. Hence by Theorem 6.2 there exists a sequence of gauge trans-
formations gν ∈ G(P ) such that (after passing to a subsequence) (gν)∗(Aν , 0) =
(gν)∗(Aν , (gν)−1∂sg

ν) converges in W 2,p(I × Σ) to a solution (A∞,Ψ∞) of
(9). After modifying the sequence gν we may assume that Ψ∞ = 0 and
thus limν→∞(gν)−1∂sg

ν = 0. Hence to every sufficiently large ν ≥ ν0 we
can apply a further gauge transformation to put the connection (gν)∗(Aν , 0)
in temporal gauge (i.e. to achieve that (gν)−1∂sg

ν vanishes), and (gν)∗Aν

still converges to A∞. By (9) and (16) it follows that A∞ is a Yang-Mills
connection. It holds that

lim
ν→∞

‖Aν(0)− (gν)−1,∗A∞‖W 1,p(Σ) = lim
ν→∞

‖((gν)∗Aν −A∞)(0)‖W 1,p(Σ) = 0,

lim
ν→∞

‖∂sAν(0)‖L∞(Σ) = lim
ν→∞

‖∂s((gν)∗Aν)(0)‖L∞(Σ) = ‖∂sA∞‖L∞(Σ) = 0.

Hence the assumption that (15) fails was wrong. This proves the Proposi-
tion. 2

For a critical manifold C of Yang-Mills connections and any connection
A ∈ A(P ) sufficiently close to C with respect to the W 1,∞-topology (this
assumption is needed in Proposition 4.4 below) there exists a Yang-Mills
connection A0 ∈ C such that α := A − A0 ∈ (TA0C)⊥. This follows
from the local slice Theorem 2.1. The Morse-Bott condition implies that
α ∈ (kerHA0)

⊥. We decompose the Yang-Mills gradient at the point A
orthogonally as d∗AFA = β0 + β1 with β0 ∈ imHA0 and β1 ∈ kerHA0 .
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Proposition 4.3 For every ε > 0 there exists a constant δ > 0 such that
the term β1 in the above decomposition satisfies

‖β1‖L2(Σ) ≤ ε‖d∗AFA‖L2(Σ),

whenever ‖α‖W 1,∞(Σ) < δ.

Proof: We expand β0 + β1 = d∗AFA = d∗A0+αFA0+α as

β0 + β1 = HA0α+
1
2
d∗A0

[α ∧ α]− [∗α ∧ ∗(dA0α+
1
2
[α ∧ α])]

=: HA0α+R(α). (17)

Note that there exists a constant c > 0 such that

‖R(α)‖L2(Σ) ≤ c‖α‖W 1,∞(Σ)‖α‖L2(Σ).

From (17) it follows that HA0α ∈ (kerHA0)
⊥ and hence

‖β1‖L2(Σ) ≤ ‖R(α)‖L2(Σ) ≤ cδ‖α‖L2(Σ).

Denoting by λ > 0 the smallest (in absolute value) non-zero eigenvalue of
HA0 it furthermore follows that ‖HA0α‖L2(Σ) ≥ λ‖α‖L2(Σ). It now follows
that (we drop subscripts after ‖ · ‖)

‖β1‖
‖d∗AFA‖

≤ cδ‖α‖
‖HA0α‖ − ‖R(α)‖

≤ cδ‖α‖
λ‖α‖ − ‖R(α)‖

=
cδ

λ
+

cδ‖R(α)‖
λ2‖α‖ − λ‖R(α)‖

≤ cδ

λ
+

cδ‖R(α)‖
λ2c−1δ−1‖R(α)‖ − λ‖R(α)‖

=
cδ

λ
+

cδ

λ2c−1δ−1 − λ
.

Choose δ > 0 small enough such that cδ
λ + cδ

λ2c−1δ−1−λ < ε is satisfied. The
claim then follows. 2

Proposition 4.4 Let C ⊆ A(P ) be a Yang-Mills critical manifold and let A
and A0 be connections as described before Proposition 4.3. Then there exists
a constant c(A0) > 0 such that the estimate

‖β‖L2(Σ) + ‖∇Aβ‖L2(Σ) ≤ c(A0)‖HAβ‖L2(Σ) (18)

is satisfied for every β ∈ (kerHA0)
⊥.
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Proof: Because C satisfies is a non-degenerate critical manifold it follows
that the restriction of the Yang-Mills HessianHA0 to (kerHA0)

⊥ is a bijective
operator

HA0 |(kerHA0
)⊥ : W 2,2(Σ, T ∗Σ⊗ ad(P )) ∩ (kerHA0)

⊥

→ L2(Σ, T ∗Σ⊗ ad(P )) ∩ (kerHA0)
⊥.

Thus there holds the estimate

‖β‖L2(Σ) + ‖∇Aβ‖L2(Σ) ≤ c(A0)‖HA0β‖L2(Σ) (19)

≤ c(A0)
(
‖HAβ‖L2(Σ) + ‖(HA −HA0)β‖L2(Σ)

)
for a constant c(A0) > 0 and every β ∈ (kerHA0)

⊥. Now the difference
HA −HA0 is the operator

HA0+α −HA0 = −dA0 ∗ [α ∧ ∗ · ] + [α ∧ d∗A0
· ]− ∗[α ∧ dA0 · ] + d∗A0

[α ∧ · ]

− [α ∧ ∗[α ∧ ∗ · ]]− ∗[α ∧ ∗[α ∧ · ]] + [∗(dA0α+
1
2
[α ∧ α]) ∧ · ],

which converges to 0 in L(W 1,2(Σ), L2(Σ)) as α→ 0 in W 1,∞(Σ). Thus for
‖α‖W 1,∞(Σ) sufficiently small the term ‖(HA−HA0)β‖L2(Σ) can be absorbed
in the left-hand side of (19). This proves the proposition. 2

Lemma 4.5 (L2-exponential decay of the gradient) Let s 7→ A(s) with
s ∈ R be a solution of the Yang-Mills gradient flow equation (9) such that
lims→±∞ ‖∂sA(s)‖L∞(Σ) = 0 and such that for a constant T > 0 the follow-
ing condition is satisfied. There exist Yang-Mills critical manifolds C± such
that the conclusion of Proposition 4.4 applies to all A(s) with |s| > T . Then
exponential decay ‖∂sA‖L2(Σ) → 0 for s → ±∞ holds, i.e. there exists a
constant k > 0 such that

‖∂sA(s)‖2
L2(Σ) ≤ ek(s+T )‖∂sA(−T )‖2

L2(Σ) (20)

is satisfied for all s ≤ −T . An analogue decay estimate holds for s ≥ T .

Proof: We use Lemma C.2 to show exponential decay. By the Yang-Mills
gradient flow equation (9) it follows the identity

Ä = −∂sd∗AFA = −d∗AdAȦ+ ∗[Ȧ ∧ ∗FA] = −HAȦ
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at every large enough |s| > T such that ∇V(A(s)) = 0. We furthermore
calculate

∂s(HAȦ) = HAÄ+ d∗A[Ȧ ∧ Ȧ]− ∗[Ȧ ∧ ∗dAȦ] + ∗[∗dAȦ ∧ Ȧ].

It then follows that

d2

ds2
1
2
‖Ȧ‖2

L2(Σ) =
d

ds
〈Ä, Ȧ〉

= ‖Ä‖2
L2(Σ) − 〈∂s(HAȦ), Ȧ〉

= 2‖HAȦ‖2
L2(Σ) − 〈Ȧ, d

∗
A[Ȧ ∧ Ȧ]〉+ 〈Ȧ, ∗[Ȧ ∧ ∗dAȦ]〉

+〈Ȧ, ∗[Ȧ ∧ ∗dAȦ]〉
= 2‖HAȦ‖2

L2(Σ) − 3〈dAȦ, [Ȧ ∧ Ȧ]〉. (21)

We use the orthogonal decomposition of Ȧ as described before Proposition
4.3 into Ȧ = β0 + β1 where β0 ∈ imHA0 and β1 ∈ kerHA0 . The last term in
(21) can then be estimated as

|〈dAȦ, [Ȧ ∧ Ȧ]〉|
≤ ‖Ȧ‖L∞(Σ)

(
‖dAβ0‖2

L2(Σ) + ‖dAβ1‖2
L2(Σ) + ‖β0‖2

L2(Σ) + ‖β1‖2
L2(Σ)

)
.

With β1 satisfying HA0β1 = 0, hence d∗A0
dA0β1 = − ∗ [∗FA0 ∧ β1] we find

that

‖dAβ1‖2
L2(Σ) ≤ 2‖dA0β1‖2

L2(Σ) + 2‖[α ∧ β1]‖2
L2(Σ)

≤ 2‖β1‖L2(Σ)‖d∗A0
dA0β1‖L2(Σ) + 2‖[α ∧ β1]‖2

L2(Σ)

= ‖β1‖L2(Σ)‖[∗FA0 ∧ β1]‖L2(Σ) + 2‖[α ∧ β1]‖2
L2(Σ)

≤ c‖β1‖2
L2(Σ)

(
‖FA0‖L∞(Σ) + ‖α‖2

L∞(Σ)

)
. (22)

Using Proposition 4.3 and the estimate (18) with constant c(A0), the right-
hand side of (21) can now further be estimated as follows. We put δ :=
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2− 3c(A0)2‖Ȧ‖L∞(Σ) > 0. Then,

d2

ds2
1
2
‖Ȧ‖2

L2(Σ) = 2‖HAȦ‖2
L2(Σ) − 3〈dAȦ, [Ȧ ∧ Ȧ]〉

≥ 2‖HAβ0‖2
L2(Σ) − 2‖HAβ1‖2

L2(Σ) − 3‖Ȧ‖L∞(Σ)

(
‖dAβ0‖2

L2(Σ) + ‖β0‖2
L2(Σ)

)
−c‖Ȧ‖L∞

(
1 + ‖FA0‖L∞(Σ) + ‖α‖2

L∞(Σ)

)
‖β1‖2

L2(Σ)

≥ δ‖HAβ0‖2
L2(Σ) − 2‖HAβ1‖2

L2(Σ)

−c‖Ȧ‖L∞(Σ)

(
1 + ‖FA0‖L∞(Σ) + ‖α‖2

L∞(Σ)

)
‖β1‖2

L2(Σ)

≥ δ‖HAβ0‖2
L2(Σ) − 2‖HAβ1‖2

L2(Σ) − c1(A0)ε2‖Ȧ‖2
L2(Σ)

≥ δ‖HAβ0‖2
L2(Σ) − 2‖HA −HA0‖2

L(W 1,2(Σ),L2(Σ))‖β1‖2
W 1,2(Σ)

−c1(A0)ε2‖Ȧ‖2
L2(Σ).

Thanks to Proposition B.5 we can bound the term ‖β1‖2
W 1,2(Σ) as

‖β1‖2
W 1,2(Σ) ≤ c

(
‖dAβ1‖2

L2(Σ) + ‖d∗Aβ1‖2
L2(Σ)

)
+ c‖FA‖L∞(Σ)‖β1‖2

L2(Σ)

≤ c‖β1‖2
L2(Σ)

(
1 + ‖α‖2

L∞(Σ) + ‖FA0‖2
L∞(Σ) + ‖FA‖2

L∞(Σ)

)
≤ c2(A0)ε2‖Ȧ‖2

L2(Σ).

In the second line we used (22) and the assumption d∗A0
β1 = 0, hence d∗Aβ1 =

− ∗ [α ∧ ∗β1]. The last line is by Proposition 4.3. Let us denote K :=
K(α) := HA − HA0 and ‖K‖ := ‖K‖L(W 1,2,L2). It then follows for ε > 0
sufficiently small, for the constant δ1 := δc(A0)2 > 0, and with ‖Ȧ‖2

L2(Σ) =
‖β0‖2

L2(Σ) + ‖β1‖2
L2(Σ) that

d2

ds2
1
2
‖Ȧ‖2

L2(Σ)

≥ δ‖HAβ0‖2
L2(Σ) − cε2‖K‖2‖Ȧ‖2

L2(Σ) − c1(A0)ε2‖Ȧ‖2
L2(Σ)

≥ δ1‖β0‖2
L2(Σ) − cε2‖K‖2‖Ȧ‖2

L2(Σ) − c1(A0)ε2‖Ȧ‖2
L2(Σ)

≥ δ1‖Ȧ‖2
L2(Σ) − δ1‖β1‖2

L2(Σ) − cε2‖K‖2‖Ȧ‖2
L2(Σ) − c1(A0)ε2‖Ȧ‖2

L2(Σ)

≥ δ1‖Ȧ‖2
L2(Σ) − δ1ε

2‖Ȧ‖2
L2(Σ) − cε2‖K‖2‖Ȧ‖2

L2(Σ) − c1(A0)ε2‖Ȧ‖2
L2(Σ)

≥ δ1
2
‖Ȧ‖2

L2(Σ).

The exponential decay estimate (20) now follows from Lemma C.2. 2

For solutions A : R → A(P ) of the Yang-Mills gradient flow equation (9)
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satisfying the assumptions of Lemma 4.5 one easily infers L2-convergence to
limit connections A± as s→ ±∞. Namely, these limits are given by

A− := A(−T )−
∫ −T

−∞
∂sA(s) ds, A+ := A(T ) +

∫ ∞

T
∂sA(s) ds, (23)

for any T > 0 large enough. These integrals converge due to the exponential
decay of ‖∂sA(s)‖L2(Σ). We now turn to the proof of Theorem 4.1.
Proof: (Theorem 4.1). With

YMV(A(s0))− YMV(A(s1)) ≤ E(A)

being satisfied for all numbers s0 ≤ s1 and the assumption that E(A) is
finite, we infer the uniform bound YMV(A(s)) ≤M for all s ∈ R. The finite
energy assumption furthermore yields for any ρ > 0, ε > 0 the existence of
a number T > 0 such that∫ −s+ρ

−s−ρ
‖∂sA‖L2(Σ) ds+

∫ s+ρ

s−ρ
‖∂sA‖L2(Σ) ds < ε

holds for every s ≥ T . Hence applying Proposition 4.2 we conclude estimate
(15) for some constant κ > 0. For κ sufficiently small the assumptions
of Lemma 4.5 are satisfied. Hence for s → ±∞, A(s) converges to limit
connections A± as given by (23). It furthermore follows L2-exponential
decay of ∂sA with constant k > 0, i.e.

‖∂sA(s)‖2
L2(Σ) ≤ ek(s−T )‖∂sA(−T )‖2

L2(Σ) (24)

holds for all s ≤ −T , and similarly for all s ≥ T . Estimate (24) now allows us
to prove the asserted forward and backward exponential decay (14). Consider
first backward exponential decay. As an intermediate step we claim for each
` ∈ N0 the existence of a constant c` > 0, which only depends on the energy
E(A), such that

‖∂sA‖W `,2((−∞,s]×Σ) ≤ c`‖∂sA‖L2((−∞,s+`]×Σ) (25)

holds for all s ≤ −T − `. This is achieved using standard parabolic boot-
strapping arguments as follows. Set α := ∂sA. Then with d∗Aα = 0 we find
that α satisfies the linearized Yang-Mills gradient flow equation

(∂s + ∆A)α = − ∗ [∗FA ∧ α]. (26)

As follows from 24, α is contained in L2((−∞,−T ]×Σ). Standard parabolic
estimates (cf. e.g. [18, Theorem 7.13]) apply to (26) and yield via induction
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on ` the sought for estimate (25). Now fix m ≥ 0. Then apply to each
interval (s − j, s − j + 1), j ∈ N, and for sufficiently large ` = `(m) the
Sobolev embedding

W `,2((s− j, s− j + 1)× Σ) ↪→ Cm((s− j, s− j + 1)× Σ)

to obtain from (25) the bound

‖∂sA‖Cm((−∞,s]×Σ) ≤ c`,m‖∂sA‖L2((−∞,s+`]×Σ). (27)

Finally, integrate estimate 24 over (−∞, s + `] and combine it with (27)
to complete the proof of backward exponential decay. Forward exponential
decay is obtained in a completely analogous manner. This proves the first
implication of Theorem 4.1.
(ii) ⇒ (i). By definition of the energy E(A) and the assumption on the
decay of ‖∂sA‖C0(Σ) it follows, setting T = 1, that

E(A) =
∫ ∞

−∞

∫
Σ
‖∂sA‖2

g ds

=
∫ 1

−1

∫
Σ
‖∂sA‖2

g ds+
∫ −1

−∞

∫
Σ
‖∂sA‖2

g ds+
∫ ∞

1

∫
Σ
‖∂sA‖2

g ds

≤ C + |Σ|
∫ −1

−∞
c20e

2ks ds+ |Σ|
∫ ∞

1
c20e

−2ks ds

= C +
|Σ|c20e−2k

k
.

This proves the second implication of Theorem 4.1. It remains to prove
exponential convergence lims→±∞A(s) = A± in C`(Σ). Exponential con-
vergence in L2(Σ) has been shown through (23). The same argument now
gives exponential convergence in C`(Σ) for all ` ∈ N0. By what we have
proved ‖∂sA(s)‖C`(Σ) converges to zero exponentially and thus

‖A(s0)−A(s1)‖C`(Σ) ≤
∫ s1

s0

‖∂sA‖C`(Σ) ds ≤
∫ s1

s0

c`e
ks ds ≤ c`e

ks1

k

holds for constants c`, k > 0 and all s0 ≤ s1 ≤ 0. Letting s0 → −∞ we
obtain backward exponential decay in C`(Σ). Forward exponential decay
follows similarly. Hence the proof of Theorem 4.1 is complete. 2
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5 Fredholm theory

5.1 Yang-Mills Hessian

Here we denote by HA the augmented Yang-Mills Hessian defined by

HA :=
(
d∗AdA + ∗[∗FA ∧ · ] −dA

−d∗A 0

)
. (28)

In order to find a domain which makes the subsequent Fredholm theory work,
we fix a smooth connection A ∈ A(P ) and decompose the space Ω1(Σ, ad(P ))
of smooth ad(P )-valued 1-forms as the L2(Σ)-orthogonal sum

Ω1(Σ, ad(P )) = ker
(
d∗A : Ω1(Σ, ad(P )) → Ω0(Σ, ad(P ))

)
⊕ im

(
dA : Ω0(Σ, ad(P )) → Ω1(Σ, ad(P ))

)
. (29)

Then let W 2,p
0 and W 1,p

1 denote the completions of the first component,
respectively of the second component with respect to the Sobolev (k, p)-
norm (k = 1, 2). Now define the space

W 2,p
A (Σ) := W 2,p

0 ⊕W 1,p
1 (30)

and endow it with the sum norm. Note that the this norm depends on the
connection A. For p > 1 we have the operator

HA : W 2,p
A (Σ)⊕W 1,p(Σ, ad(P )) → Lp(Σ, T ∗Σ⊗ ad(P ))⊕ Lp(Σ, T ∗Σ).

In the case p = 2 this is a densely defined symmetric operator on the Hilbert
space L2(Σ, T ∗Σ⊗ ad(P ))⊕ L2(Σ, T ∗Σ) with domain

domHA := W 2,2
A (Σ)⊕W 1,2(Σ, ad(P )). (31)

We show in Proposition 5.1 below that it is self-adjoint. For the further
discussion of the operator DA it is convenient to also decompose each β ∈
imHA as β = β0 +β1 where d∗Aβ0 = 0 and β1 = dAω for a 0-form ω. A short
calculation shows that for α = α0 + dAϕ this decomposition is given by

HAα = β0 + dAω,

where ω is a solution of

∆Aω = ∗[dA ∗ FA ∧ α]. (32)

As ∆A might not be injective due to the presence of ∆A-harmonic 0-forms,
the solution ω of (32) need not be unique. This ambiguity however is not
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relevant, as only dAω enters the definition of β0 and β1. With respect to
the above decomposition of the space of 1-forms the augmented Hessian HA

takes the form

HA

 α0

α1

ψ

 =

 ∆Aα0 + ∗[∗FA ∧ α0] + [d∗AFA ∧ ϕ]− dAω
−dAψ + dAω
−d∗Aα1

 , (33)

with α1 = dAϕ and ω a solution of (32).

Proposition 5.1 Let A ∈ A(P ) and p > 1. Then the operator HA with
domain domHA as defined in (31) is self-adjoint. It satisfies for all (α, ψ) ∈
dom HA and p > 1 the elliptic estimate

‖α‖
W 2,p

A
+ ‖ψ‖W 1,p ≤ c

(
‖HA(α, ψ)‖Lp + ‖(α, ψ)‖Lp

)
(34)

with constant c = c(A, p). If A is a Yang-Mills connection, then the number
of negative eigenvalues (counted with multiplicities) of HA equals the Morse
index of the Yang-Mills Hessian HAYM.

Proof: We show the elliptic estimate (34). Let (β0, β1, γ) = HA(α0, α1, ψ)
and assume that (β0, β1, γ) ∈ Lp(Σ, T ∗Σ⊗ ad(P ))⊕Lp(Σ, ad(P )). Then by
ellipticity of the operator ∆A on Ω∗(Σ, ad(P )) we obtain from equations (32)
and the the first line of (33) the estimate

‖α0‖W 2,p ≤ c
(
‖α0‖Lp + ‖ϕ‖Lp + ‖β0‖Lp + ‖ω‖W 1,p

)
≤ c
(
‖α‖Lp + ‖β0‖Lp

)
.

Applying d∗A to the second and third equation in (33) the same elliptic esti-
mate shows that

‖ψ‖W 1,p ≤ c
(
‖ψ‖Lp + ‖β1‖Lp + ‖α1‖Lp + ‖∆Aω‖Lp

)
≤ c
(
‖ψ‖Lp + ‖β1‖Lp + ‖α‖Lp

)
and

‖α1‖W 1,p ≤ c‖ϕ‖W 2,p ≤ c
(
‖ψ‖Lp + ‖γ‖Lp

)
.

Estimate (34) now follows and implies self-adjointness in the case p = 2. For
the last statement note that by choice of the weight δ > 0 the operators
HA and H−A := HA − δ have the same number of negative eigenvalues. Let
(α, ψ)T be an eigenvector of H−A with eigenvalue λ < 0. Let α = α0 + α1

be as above the Hodge decomposition with d∗Aα0 = 0 and α1 = dAϕ. Then
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the eigenvalue equation for H−A together with the first line of (33) gives
HAα0 = λα0. This uses that dAω = 0 and d∗AFA = 0 as A is a Yang-Mills
connection. Hence λ is a negative eigenvalue of HA. Conversely, any λ < 0
satisfying the eigenvalue equation HAα0 = λα0 is an eigenvalue of HA with
eigenvector (α0, 0)T . 2

5.2 Linearized operator

We next discuss the linearization of the Yang-Mills gradient flow (9). Since
any solution (A,Ψ) of the Yang-Mills gradient flow is gauge equivalent under
Gδ(P̄ ) to a solution satisfying Ψ ≡ 0, it suffices to consider the linearization
along such trajectories only. Let (A,Ψ) = (A, 0) be a solution of (9). For
p > 1 we define the Banach spaces

Zδ,pA :=
(
W 1,p
δ (R, Lp(Σ, T ∗Σ⊗ ad(P ))) ∩ Lpδ(R,W

2,p
A (Σ))

)
⊕ W 1,p

δ (R× Σ, ad(P ))
Lδ,p := Lpδ(R× Σ, T ∗Σ⊗ ad(P ))⊕ Lpδ(R× Σ, ad(P )).

The horizontal differential of the section F at (A,Ψ) is the linear operator

DA =
d

ds
+HA : Zδ,pA → Lδ,p,

and the linearized Yang-Mills gradient flow equation is the equation

DA
(
α
ψ

)
= 0. (35)

We next show that DA is a Fredholm operator and determine its index.

Remark 5.2 (i) The differential dFA acts on functions which converge
exponentially to constant tangent vectors α± ∈ TA±C± as s → ±∞,
i.e. on the space Zδ,pA ⊕ Rdim C− ⊕ Rdim C− . It follows that

ind dFA = indDA + dim C− + dim C−.

(To see that, we view dFA as a compact perturbation of the operator
DA, extended trivially to Zδ,pA ⊕ Rdim C− ⊕ Rdim C− .)

(ii) The operator DA arises as the linearization of the unperturbed Yang-
Mills gradient flow equation (9). The Fredholm theory in the case
V 6= 0 can be reduced to the unperturbed case because the terms
involving V contribute only compact perturbations to the operator DA.
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5.3 Fredholm theorem

Theorem 5.3 (Fredholm theorem) Let A : R → A(P ), be a smooth so-
lution of the Yang-Mills gradient flow equation (9) satisfying for Yang-Mills
connections A± the asymptotic conditions

lim
s→±∞

A(s) = A±

in the C∞(Σ)-topology. Then (for every p > 1) the operator DA = d
ds +HA :

Zδ,pA → Lδ,p associated with A is a Fredholm operator of index

indDA = indHA− − indHA+ − dim C−.

Weighted theory

As the Hessians HA± have non-trivial zero eigenspaces, we cannot apply
directly known theorems on the spectral flow to prove Theorem 5.3. As an
intermediate step we therefore use the Banach space isomorphisms

ν1 : Zδ,pA → Z0,p
A =: ZpA and ν2 : Lδ,p → L0,p =: Lp

given by multiplication with the weight function eδβ(s)s, where β denotes
the cut-off function introduced before. Then the assertion of Theorem 5.3 is
equivalent to the analogous one for the operator

DδA := ν2 ◦ DA ◦ ν−1
1 : ZpA → Lp,

which we shall prove now.

Case p = 2

We first show this theorem in the case p = 2, where it follows from well-
known results on the spectral flow for families B(s) : domB(s) → H, s ∈ R,
of self-adjoint operators in Hilbert space H, cf. [23]. Since the operators
we are concerned with have time-varying domains, we need an extension of
this theory as outlined in [26, Appendix A]. The case of general Sobolev
exponents p > 1 will afterwards be reduced to the Hilbert space case.

Set H := L2(Σ, T ∗Σ⊗ ad(P )). For the following it is convenient to use the
Hodge decomposition

H = X0(s)⊕X1(s)

:= {α | d∗A(s)α = 0} ⊕ {α = dA(s)ϕ for someϕ ∈ Ω0(Σ, ad(P ))}
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with respect to the connection A(s) ∈ A(P ). Recall from (31) that the
domain of the operator HA(s) is given by

domHA(s) = W 2,2
A(s)(Σ)⊕W 1,2(Σ, ad(P )) =: W (s)⊕W 1,2(Σ, ad(P )).

We fix s0 ∈ R and set A0 := A(s0). In the following we let β(s) := A(s)−A0.
Let H = X0 ⊕ X1 be the Hodge decomposition corresponding to A0 and
denote W0 := W (s0). For s ∈ R sufficiently close to s0 we define the map
Q(s) : H → H as follows. Let α ∈ H be decomposed as α = α0 + α1 ∈
X0 ⊕X1. Then set

Q(s)α := prX0(s) α0 + prX1(s) α1. (36)

A short calculation shows that

Q(s)α = α0 + dA(s)δ, (37)

where δ solves the elliptic equation

∆A(s)δ = ∆A0ϕ0 + ∗[β(s) ∧ ∗(α0 − α1)], (38)

with ϕ0 such that it satisfies dA0ϕ0 = α1. A solution δ exists and is unique
up to adding elements of ker dA(s).

Lemma 5.4 There exists ε > 0 such that the map Q(s) : H → H has the
following properties for every s ∈ (s0 − ε, s0 + ε).

(i) Q(s) is a Hilbert space isomorphism.

(ii) Q(s) preserves the Hodge decomposition of H, i.e. it holds that Q(s)X0 =
X0(s) and Q(s)X1 = X1(s).

(iii) The restriction of Q(s) to W0 yields an isomorphism Q(s) : W0 →
W (s).

Proof: Note that for β = 0 the map Q defined in (37) is the identity map
on H. Thus Q(s) is bijective for all s with β(s) sufficiently small.1 To show
(ii) we first observe that Q(s)Xi ⊆ Xi(s), i = 1, 2, holds by definition of

1One easily checks that ‖Q(s)−Q(s0)‖L(H) ≤ c‖β(s)‖C1(Σ) which goes to 0 as s → s0

because A ∈ W 2,p(I × Σ) for all p < ∞.
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Q(s) in (36). Now let α ∈ H be given and assume that α̂ := Q(s)α satisfies
d∗A(s)α̂ = 0. It then follows that

0 = d∗A(s)α0 + ∆A(s)δ

= − ∗ [β(s) ∧ ∗α0] + ∆A0ϕ0 + ∗[β(s) ∧ (∗α0 − ∗dA0ϕ0]
= ∆A0ψ0 − ∗[β(s) ∧ ∗dA0ψ0].

Now the kernel of the operator ϕ 7→ ∆A0ϕ−∗[β(s)∧∗dA0ϕ] contains ker dA(s)

and for ‖β(s)‖C0(Σ) sufficiently small it is not larger. It thus follows that
α1 = dA0ϕ0 = 0 and hence α = α0. This shows surjectivity of the map
Q(s) : X0 → X0(s). It follows similarly that also Q(s) : X1 → X1(s) is
surjective and completes the proof of (ii). To prove (iii) we introduce the
notation X2,2

0 (s) := pr0(W (s)) (with pr0 denoting projection onto the first
summand of X0(s) ⊕X1(s)), and X2,2

0 := X2,2
0 (s0). We have to verify that

Q(s) maps the space X2,2
0 bijectively to X2,2

0 (s). Thus let α ∈ X2,2
0 . Then

α1 = dA0ϕ0 = 0 and δ ∈ W 4,2(Σ, ad(P )) as follows from (38) by elliptic
regularity. Hence Q(s)α = α + dA(s)δ ∈ X2,2

0 (s), as claimed. The opposite
inclusion Q−1(s)X2,2

0 (s) ⊆ X2,2
0 follows similarly. 2

Proof: (Theorem 5.3 in the case p = 2). Lemma 5.4 shows that the
disjoint union

⊔
s∈RW (s) is a locally trivial Hilbert space subbundle of R×

H in the sense of [26, Appendix A]. Moreover, for s → ±∞ there holds
convergence A(s) → A± in C∞(Σ). Hence the operators Q(s) can be chosen
near the ends in such a way that Q(s) → Q± in L(H) as s → ±∞ for
appropriate Hilbert space isomorphisms Q± : H → H. One now easily
checks that the operators

(Q(s)⊕ id)−1 ◦ HA(s) ◦ (Q(s)⊕ id) :

W0 ⊕W 1,2(Σ, ad(P )) → H ⊕ L2(Σ, ad(P ))

converge in L(W0,H), as s→ ±∞, to the invertible operators (Q±⊕ id)−1 ◦
HA± ◦ (Q±⊕ id). Now Theorem A.4 of [26] applies and yields the claim. 2

Case p > 1

The Fredholm property in this case follows from standard arguments. Full
details can be found in [31]. The estimate (72) and bijectivity of the operator
DA for a stationary path A of connections yield the inequality

‖ξ‖Zp
A
≤ c(A)

(
‖DAξ‖Lp + ‖ξ‖Lp(I×Σ)

)
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for a constant c(A) and a compact interval I ⊆ R. Hence it follows from
the abstract closed range lemma (cf. e.g. [31, 36]) that the operator DA
has finite-dimensional kernel and closed range. Similarly, one can show that
cokerDA is also finite-dimensional, and that the dimensions of the kernel
and cokernel do not depend on p. This proves Theorem 5.3 in the general
case.

6 Compactness

Throughout this section we identify a pair (A,Ψ) with the connection A +
Ψ ds over the 3-dimensional manifold R× Σ. Its curvature is thus given by
F(A,Ψ) = FA+(dAΨ−∂sA)∧ds. Denote by P̄ := R×P the trivial extension
of the bundle P to the base manifold R× Σ. We use the symbols ∗̂, d̂(A,Ψ)

and d̂∗(A,Ψ) for operators acting on Ω∗(R× Σ, ad(P̄ )). In particualar, d̂(A,Ψ)

as an operator on 1-forms α+ ψ ds is given by

d̂(A,Ψ)(α+ ψ ds) = dAα+ dAψ ∧ ds+ (∂sα+ [Ψ, α]) ∧ ds. (39)

The Laplace operator ∆̂(A,Ψ) on functions ψ ∈ Ω0(R× Σ, ad(P̄ )) is

∆̂(A,Ψ)ψ = d̂∗(A,Ψ)d̂(A,Ψ)ψ = (∆A∞ − ∂2
s )ψ − ∂s[Ψ, ψ]. (40)

The local slice condition for a connection A + Ψ ds ∈ A(P̄ ) with respect to
the reference connection Â ∈ A(P̄ ) is

d∗
Â
(A− Â)− ∂sΨ = 0. (41)

Remark 6.1 We use the notation W k,l;p(I × Σ) for the parabolic Sobolev
spaces as defined in [17, Chap. 1.3, 2.2].

The aim of this section is to prove the following compactness theorem.

Theorem 6.2 (Compactness) Let (Aν ,Ψν), ν ∈ N, be a sequence of so-
lutions to the perturbed Yang-Mills gradient flow equation

∂sA+ d∗AFA − dAΨ +∇V(A) = 0. (42)

Assume that there exist critical manifolds C± such that every (Aν ,Ψν) is a
connecting trajectory between C− and C+. Then for every k < 2 and p <∞
and every compact interval I ⊆ R there exists a sequence gν ∈ G(I × P )
of gauge transformations such that a subsequence of the gauge transformed
sequence (gν)∗(Aν ,Ψν) converges in W k,p(I × Σ) to a solution (A∗,Ψ∗) of
(42).
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We start with the following weaker statement.

Theorem 6.3 Let (Aν ,Ψν) be a sequence of solutions of the perturbed Yang-
Mills gradient flow equation (42). Assume that every (Aν ,Ψν) is a connecting
trajectory between some fixed pair C± of critical manifolds. Then for every
r < ∞ and every compact interval I ⊆ R there exists a constant C(I, r),
a smooth connection A = A∞ + Ψ∞ ∧ ds ∈ A(I × P ), and a sequence
(gν) ⊂ G(I × P ) of gauge transformations such that the difference

αν := (gν)∗Aν −A∞, ψν := (gν)∗Ψν −Ψ∞

satisfies the uniform bound

‖αν‖W 1,2;r(I×Σ) + ‖ψν‖W 2,r(I×Σ) ≤ C(I, r).

Proof: The proof, which we divide into three steps, is based on Uhlenbeck’s
weak compactness theorem, cf. the exposition [35] for details.

Step 1 Let 1 < p < 4. There exists a constant C(p) such that there holds
the uniform curvature bound

‖F(Aν ,Ψν)‖Lp(I×Σ) ≤ C(p).

Since the estimate is invariant under gauge transformations it suffices to
prove it for Ψν = 0. Then the curvature is given by F(Aν ,0) = FAν +
(d∗AνFAν +∇V(Aν)) ds. Uniform Lp-bounds for the terms FAν and d∗AνFAν

hold by Lemmata B.7 and B.10. A uniform estimate for ∇V(Aν)) is given
by (56).

Step 2 Let 3 < p < 4 and choose ε > 0. There exists a sequence gν ∈
G2,p(P̄ ) of gauge transformations and a smooth reference connection (A∞,Ψ∞)
such that (up to extraction of a subsequence) the sequence (gν)∗(Aν ,Ψν) sat-
isfies the following three conditions.

(i) Each connection (gν)∗(Aν ,Ψν) is in local slice with respect to (A∞,Ψ∞).

(ii) The difference (βν , ψν) := (gν)∗(Aν ,Ψν) − (A∞,Ψ∞) is uniformly
bounded in W 1,p(I × Σ).

(iii) The sequence (βν , ψν) satisfies the uniform bound

‖βν‖C0(I×Σ) + ‖ψν‖C0(I×Σ) < ε.
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The sequence (Aν ,Ψν) satisfies a uniform Lp-curvature bound by Step 1.
Hence Uhlenbeck’s weak compactness theorem (cf. [35, Theorem 7.1]) yields
a sequence gν ∈ G2,p(P̄ ) of gauge transformations such that a subsequence
of (gν)∗(Aν ,Ψν) converges weakly in W 1,p(I × Σ) to a limit (A′,Ψ′). It is
in particular uniformly bounded in W 1,p(I ×Σ) and contains a subsequence
which converges in C0(I × Σ) to (A′,Ψ′). We again label this subsequence
by ν. It hence follows from the local slice theorem (cf. [35, Theorem 8.1])
that every (gν)∗(Aν ,Ψν) with ν large enough can be put in local slice with
respect to any smooth reference connection (A∞,Ψ∞) sufficiently close in
W 1,p(I × Σ) to (A′,Ψ′). Therefore condition (i) is satisfied. Moreover, the
local slice theorem asserts that this can be done preserving the uniform
bound in W 1,p(I×Σ) and the uniform bound (with constant ε) in C0(I×Σ).
Thus also conditions (ii) and (iii) are satisfied.

Step 3 Proof of the theorem.

In the subsequent calculations we drop the index ν. Expanding dA, d∗A and
FA as

dA = dA∞ + [β ∧ · ], d∗A = d∗A∞ − ∗[β ∧ ∗ · ],

FA = FA∞ + dA∞β +
1
2
[β ∧ β],

equation (42) reads

0 = ∂sA
∞ + ∂sβ + d∗A∞FA∞ − ∗

[
β ∧ ∗

(
FA∞ + dA∞β +

1
2
[β ∧ β]

)]
+ d∗A∞dA∞β

+
1
2
d∗A∞ [β ∧ β]− dA∞ψ − [β ∧ ψ]− dA∞Ψ∞ − [β ∧Ψ∞] +∇V(A).

(43)

We combine this equation with the local slice condition (41) to obtain for β
the parabolic PDE

∂sβ + ∆A∞β = −∂sA∞ − d∗A∞FA∞ + dA∞∂sΨ∞ − 1
2
d∗A∞ [β ∧ β] + dA∞∂sψ

+∗
[
β∧∗

(
FA∞+dA∞β+

1
2
[β∧β]

)]
+dA∞ψ+[β∧ψ]+dA∞Ψ∞+[β∧Ψ∞]−∇V(A).

(44)

Applying d∗A∞ to both sides of equation (43) and substituting

d∗A∞∂sβ = ∂2
sψ + ∂2

sΨ
∞ + ∗[∂sA∞ ∧ ∗β]
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according to (41), and using that

d∗A∞∇V(A) = d∗A∇V(A) + ∗[β ∧ ∗∇V(A)] = ∗[β ∧ ∗∇V(A)]

yields for ψ the elliptic PDE

∆̂A∞ψ = d∗A∞∂sA
∞+∂2

sΨ
∞−∆A∞Ψ∞+ ∗[∂sA∞∧∗β]+ [∗FA∞ ∧∗dA∞β]

− 1
2
[∗FA∞ ∧ ∗[β ∧ β]]− ∗dA∞

[
β ∧ ∗

(
FA∞ +

1
2
[β ∧ β]

)]
+ ∗
[
β ∧ ∗d∗A∞dA∞β

]
− d∗A∞ [β ∧ ψ]− d∗A∞ [β ∧Ψ∞] + ∗[β ∧ ∗∇V(A)]. (45)

Let p > 1 arbitrary. From equation (44) it follows by standard parabolic
regularity theory that

c−1‖β‖W 1,2;p ≤ 1 + ‖β‖Lp + ‖{β, [β ∧ β]}‖Lp + ‖{∇A∞β, β}‖Lp

+ ‖{β, ψ}‖Lp + ‖dA∞ψ‖Lp + ‖dA∞∂sψ‖Lp + ‖∇V(A)‖Lp . (46)

From equation (45) and elliptic regularity we obtain the estimate

c−1‖ψ‖W 2,p ≤ 1 + ‖β‖Lp + ‖{β, β}‖Lp + ‖∇A∞β‖Lp + ‖{dA∞β, β, β}‖Lp

+ ‖{β, d∗A∞dA∞β}‖Lp + ‖∇A∞ [β ∧ ψ]‖Lp + ‖ψ‖Lp + ‖[β ∧ ∗∇V(A)]‖Lp .
(47)

Now let 3 < p < 4. By Step 2 there holds a uniform bound for ‖β‖C0

and ‖β‖W 1,p . Applying Proposition A.7 we find that the term ‖∇V(A)‖Lp

is controlled by ‖FA‖Lp ≤ c
(
1 + ‖dA0β‖Lp + ‖[β ∧ β]‖Lp

)
. It thus follows

that each term on the right-hand side of (46), except the term ‖dA∞∂sψ‖Lp ,
is uniformly bounded. This term ‖dA∞∂sψ‖Lp can now be estimated using
(47). Namely, the expression

‖{β, d∗A∞dA∞β}‖Lp ≤ c‖β‖C0‖d∗A∞dA∞β‖Lp

appearing in (47) becomes absorbed by the left-hand side of (46) after fixing
ε in condition (iii) of Step 2 sufficiently small. Hence it follows that ψ is
uniformly bounded in W 2,p and β is uniformly bounded in W 1,2;p. As a
consequence we obtain for ∇A∞β the uniform bound (with p1 = 5

2 + r > 4)

‖∇A∞β‖p1Lp1 (I×Σ) ≤
∫
I
‖∇A∞β‖5

L3(Σ) + ‖∇A∞β‖2r
L6r(Σ)

≤
∫
I
‖∇A∞β‖5

L3(Σ) + c‖∇2
A∞β‖2r

L2(Σ).
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In the first line we used Hölder’s inequality, and the second line follows from
the Sobolev embedding W 1,2(Σ) ↪→ L6r(Σ). Both terms in the last line are
uniformly bounded for r < 2. For the last one this follows by what we have
already shown, while for the first one we use interpolation (cf. Lemma C.9)
and Sobolev embedding to obtain

‖∇A∞β‖L5(I,L3(Σ)) ≤ ‖∇A∞β‖
W

1
3 ,2(I,W

1
3 ,2(Σ))

≤ ‖β‖
W

1
3 ,2(I,W

4
3 ,2(Σ))

≤ ‖β‖W 1,2;2(I×Σ).

Thus indeed ∇A∞β is uniformly bounded in Lp1(I × Σ) for p1 <
9
2 and we

can repeat the previous line of arguments with p replaced by p1 to get uni-
form bound for ψ in W 2,p1 and for β in W 1,2;p1 . Repeating this argument a
finite number of times, we inductively obtain uniform such bounds for every
p <∞. This completes the proof. 2

Proposition 6.4 Let (Aν ,Ψν) be a sequence of connections satisfying the
hypothesis of Theorem 6.3. In the notation employed there, assume βν ∈
W 1,2;p(I × Σ) and ψν ∈ W 2,p(I × Σ) for all p < ∞. Then for every r > 1
and sufficiently large p = p(r) < ∞ there exists a constant c(I, r) such that
the estimate

‖FAν‖W 1,3;r(I×Σ) ≤ c(I, r)
(
1 + ‖βν‖W 1,2;p(I×Σ) + ‖ψν‖W 2,p(I×Σ)

)
holds for all ν ∈ N.

Proof: For simplicity we drop the index ν. Let A∞ ∈ A(R × P ) be the
smooth reference connection as in the proof of Theorem 6.3, i.e. β = A−A∞,
and let LA∞ := d

ds + ∆A∞ be the heat operator induced by A∞. From (9) it
follows that FA satisfies the evolution equation

LA∞FA = dAȦ+ ∆A∞FA

= −dAd∗AFA + dAΨ− dA∇V(A) + ∆A∞FA

= [dA∞ ∗ β ∧ ∗FA] + [β ∧ ∗[β ∧ ∗FA]] + dAΨ− dA∇V(A).

By our assumptions, the right-side of the equation is uniformly bounded in
W 0,1;r(I × Σ). To see that this holds for the term FA, we expand it as
FA = FA∞ + dA∞β + 1

2 [β ∧ β] and use the assumption on β. The required
bound on dA∇V(A) is satisfied by Proposition A.8. The claim then follows
from standard parabolic regularity results, cf. for instance [17, Chap. 5.1].
2
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Proposition 6.5 Let (Aν ,Ψν) be a sequence of solutions of the perturbed
Yang-Mills gradient flow equation (42) satisfying the assumptions of Theorem
6.3. Then for every r <∞ and every compact interval I ⊆ R there exists a
constant C(I, r) such that the uniform curvature bound

‖F(Aν ,Ψν)‖W 1,r(I×Σ) ≤ C(I, r)

holds for all ν ∈ N.

Proof: For simplicity we drop the index ν. After applying a suitable
gauge transformation we may assume that Ψ = 0. Then we have that
F(Aν ,Ψν) = FA − (d∗AFA + ∇V(A)). From Proposition 6.4 it follows that
‖FA‖W 1,3;p(I×Σ) is uniformly bounded. This immediately implies the required
uniform estimate for FA and for d∗AFA. The uniform bound for ∇V(A) fol-
lows from Proposition A.7. 2

Proof: (Theorem 6.2) By Proposition 6.5 the sequence (Aν ,Ψν) has curva-
ture uniformly bounded in W 1,p(I×Σ) for every p <∞. Hence Uhlenbeck’s
weak compactness theorem (with one derivative more, cf. [21]) applies and
shows that after modifying the sequence by suitable gauge transformations
and passing to a subsequence, there holds weak convergence

lim
ν→∞

(Aν ,Ψν) = (A∗,Ψ∗)

in W 2,p(I × Σ) for some limiting connection (A∗,Ψ∗), as claimed. 2

7 Transversality

7.1 Universal moduli spaces

For the construction of the relevant Banach space Y of perturbations we
refer to Appendix 2.2. We fix a pair of critical manifolds C± and consider
the smooth Banach space bundle

E(δ, C−, C+) → B(δ, C−, C+)× Y,

cf. Section 3.2 for definitions. We define the smooth section F of E by

F : [(A,Ψ,V)] 7→ [∂sA+ d∗AFA − dAΨ +∇V(A)].

Its zero set Muniv(C−, C+) := F−1(0) is the so-called the universal moduli
space. Thus the perturbation V = (V,V+) which had been kept fixed so far
is now allowed to vary over the Banach space Y .
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Theorem 7.1 The horizontal differential duF of the map F is surjective
for every u ∈ F−1(0).

We give the proof in the next section. Assuming Theorem 7.1 it follows from
the implicit function theorem that the universal moduli spaceMuniv(C−, C+)
is a smooth Banach manifold. Let π : Muniv(C−, C+) → Y denote the
projection onto the second factor. It is a smooth Fredholm map whose
index is given by the Fredholm index of DA. Hence we may apply to π the
Sard-Smale theorem for Fredholm maps between Banach manifolds, cf. [1,
Theorem 3.6.15], from which it follows that the set of regular values

R :=
{
V ∈ Y

∣∣ duπ is surjective for allu ∈M(C−, C+;V)
}
⊂ Y

is residual in Y . Hence in particular there exists a regular value V0 in ev-
ery arbitrarily small ball Bε(0) (with respect to the norm on Y ) around
zero. For such a V0, the moduli space M(C−, C+;V0) is a submanifold of
Muniv(C−, C+) of dimension equal to indDA.

7.2 Surjectivity of linearized operators

Let (A,Ψ,V) be a smooth solution of the perturbed Yang-Mills gradient
flow equation (63). After applying a suitable gauge transformation we may
assume Ψ = 0. The setup for the discussion of the linearization of the
section F parallels the one introduced in Section 5.2. It is given by the
linear operator

D̂(A,V) : Zδ,pA × Y → Lδ,p, (α, ψ, v) 7→ DA(α, ψ) +∇v(A).

Note that D̂(A,V) is the sum of the Fredholm operator DA and the bounded
operator v 7→ ∇v(A), and therefore has closed range. The Fredholm property
of DA has been shown in Theorem 5.3. The assertion on boundedness follows
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from

‖∇v(A)‖pLp(R×Σ) =
∫ T

−T
‖∇v(A)‖pLp(Σ) ds

≤
∫ T

−T

∞∑
`=1

|c`|p · ‖∇v`(A)‖pLp(Σ) ds

≤
∫ T

−T

∞∑
`=1

|c`|p · ‖v`‖p · (1 + ‖α(A)‖pLp(Σ)) ds

=
∞∑
`=1

|c`|p · ‖v`‖p ·
∫ T

−T
(1 + ‖α(A)‖pLp(Σ)) ds

≤ c

∫ T

−T
(1 + ‖FA‖pLp(Σ)) ds · ‖v‖

p.

The first line holds for some constant T < ∞ because A(s) is contained in
the support of v only for some finite time interval (by construction, supp v is
contained in the complement of some L2-neighbourhood of C−∩C+). The last
estimate is by Proposition A.7 and the definition of ‖v‖. Because D̂(A,V) has
closed range, the statement of Theorem 7.1 reduces to that of the following
Proposition.

Proposition 7.2 The image of the operator D̂(A,V) : Zδ,pA × Y → Lδ,p is
dense in Lδ,p, for every smooth solution (A, 0,V) of (63).

Proof: Density of the range is equivalent to triviality of its annihilator. This
means that, given η ∈ (Lδ,p)∗ = L−δ,q (where p−1 + q−1 = 1) with

〈DA,V(α, ψ, v), η〉R×Σ = 0 for all (α, ψ, v) ∈ Zδ,pA , (48)

then η = 0. Condition (48) is equivalent to

〈DA(α, ψ), η〉R×Σ = 0, (49)
〈∇v(A), η〉R×Σ = 0 (50)

for all (α, ψ, v) ∈ Zδ,pA . Assume by contradiction that there exists 0 6= η ∈
L−δ,q which satisfies both (49) and (49). Then it follows from the identity

0 = 〈η,DAξ〉R×Σ =
∫ ∞

−∞
〈D∗A(s)η(s), ξ(s)〉 ds
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that D∗Aη = 0, where D∗A := − d
ds +HA. Hence Proposition 7.5 below applies

and yields a contradiction to (50). This shows that η = 0 and proves the
proposition. 2

For the proof of Proposition 7.5 we need the following auxiliary results.

Proposition 7.3 (Slicewise orthogonality) Assume η ∈ L−δ,q satisfies
D∗Aη = 0 on R× Σ. Then the relation 〈Ȧ(s), η(s)〉 = 0 holds for all s ∈ R.

Proof: Set β(s) := 〈Ȧ(s), η(s)〉. Because Ȧ satisfies the linearized Yang-
Mills gradient flow equation DAȦ = 0 it follows that

β̇ = 〈Ȧ, η̇〉+ 〈Ä, η〉 = 〈Ȧ,HAη〉+ 〈−HAȦ, η〉 = 0.

Thus β is constant. Since lims→−∞ Ȧ = 0 it follows that β vanishes identi-
cally. 2

Proposition 7.4 (No return) For every δ > 0 there exists a constant ε >
0 with the following significance. Assume A is a solution (63) on R×Σ and
there exists s0 ∈ R such that A0 := A(s0) is not a Yang-Mills connection.
Then it holds that

distL2(A(s),O(A0)) < 3ε ⇒ s ∈ (s0 − δ, s0 + δ).

Proof: Assume by contradiction that there is a sequence of positive numbers
εi → 0 as i→∞ and a sequence (si) ⊆ R such that

distL2(A(si),O(A0)) < 3εi (51)

and si /∈ (s0 − δ, s0 + δ). Denote A± := lims→±∞A(s) ∈ C±. By the L2-
local slice theorem (cf. Theorem 2.1) and the assumption that A0 is not
Yang-Mills it follows that

distL2(A±,O(A0)) > 3εi (52)

holds for all sufficiently large i ≥ i0. Assume first that the sequence (si) is
unbounded. Hence we can choose a subsequence (without changing notation)
such that si converges to −∞ or to +∞. It follows that (for one sign ±)

A(si)
L2(Σ)−→ A± as i→ ±∞.

This contradicts (52). Therefore the sequence (si) has an accumulation
point s∗ ∈ R and there exists a subsequence (si) with limi→∞ si = s∗.
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By continuity of the gradient flow line A (as a map R → L2(Σ)) it fol-
lows that limi→∞A(si) = A(s∗) in L2(Σ). From (51) we hence infer that
distL2(A(s∗),O(A0)) = 0. Again by the L2-local slice theorem this implies
that A(s∗) ∈ O(A0) and YMV(A(s∗)) = YMV(A0). As YMV(A(s)) is
strictly monotone decreasing in s it follows that s∗ = s0, which contradicts
si /∈ (s0− δ, s0 + δ). Hence the assumption was wrong and the claim follows.
2

Proposition 7.5 Let A, A0, s0 be as in Proposition 7.4. Assume η ∈ L−δ,q
satisfies η(s0) 6= 0. Then there exists a constant ε > 0 and a gauge-invariant
smooth map V0 : A(P ) → R such that

(i) suppV0 ⊆ {A ∈ A(P ) | distL2(A,O(A0)) ≤ 2ε},

(ii) 〈∇V0(A0), η0〉Σ = ‖η0‖2
L2(Σ),

(iii) 〈∇V0(A), η〉R×Σ > 0.

Before entering the proof of the proposition we remark the following. Denote
α′(s) := dα(A(s))η(s), where α : A(P ) → L2(Σ, T ∗Σ⊗ ad(P )) is defined as
in (5). Then it follows from continuous differentiability of the path A : R →
L2(Σ) and continuity of the map η : R → L2(Σ) that there exists a constant
δ > 0 with the following significance. For all s ∈ (s0− δ, s0 + δ) we have that

(A) ‖η(s)‖L2 ≤ 2‖η0‖L2 ,

(B) 〈α′(s), η0〉 ≥ 1
2‖η0‖2

L2 > 0,

(C) and with µ := ‖∂sA(s0)‖L2 > 0 that

1
2
µ ≤ distL2(A(s)−O(A0))

|s− s0|
≤ 3

2
µ.

Proof: (Proposition 7.5) Let ε > 0 be such that the following two condi-
tions are satisfied. First, any A ∈ A(P ) with distL2(A,O(A0)) < 2ε can be
put in local slice with respect to A0. Second, the condition

distL2(A(s),O(A0)) < 3ε ⇒ s ∈ (s0 − δ, s0 + δ)

holds for all s ∈ R. The existence of such an ε follows from the L2-local slice
theorem and Proposition 7.4. Now let ρ : R → [0, 1] be a smooth cut-off

39



function with support in [−4, 4] and satisfying ‖ρ′‖L∞ < 1 and ρ(r) = 1 for
r ∈ [−1, 1]. Define ρε(r) := ρ(ε−2r). Note that ‖ρ′ε‖L∞ < ε−2. Define

V0(A) := ρε(‖α‖2
L2)〈η0 + α, η0〉

with α = α(A) as in (5). The perturbation V0 clearly satisfies condition (i).
Furthermore, it follows from Proposition A.3 (using ρε(0) = 1, ρ′ε(0) = 0,
and α(s0) = 0) that

dV0(A0)η0 = 〈η0 − dATA0,αη0, η0〉 = ‖η0‖2
L2 ,

so that condition (ii) is satisfied. It remains to show property (iii). We fix
constants σ1, σ2, s1, s2 with σ1 < s1 < s0 < s2 < σ2 as follows. Let s2 be
such that distL2(A(s2),O(A0)) = ε and distL2(A(s),O(A0)) < ε for all s ∈
(s0, s2), and similarly for s1. Let σ2 be such that distL2(A(σ2),O(A0)) = 2ε
and distL2(A(s),O(A0)) > 2ε for all s ∈ (σ2, s0 +δ), similarly for σ1. It then
follows that

〈∇V0(A), η〉R×Σ =
∫ s0+δ

s0−δ
dV0(A(s))η(s) ds =

∫ s0+δ

s0−δ
ρε(‖α‖2)〈α′, η0〉 ds

+ 2‖η0‖2

∫ s0+δ

s0−δ
ρ′ε(‖α‖2)〈α, α′〉 ds+ 2

∫ s0+δ

s0−δ
ρ′ε(‖α‖2)〈α, α′〉〈α, η0〉 ds.

We estimate the last three terms separately. For the first one we obtain∫ s0+δ

s0−δ
ρε(‖α‖2)〈α′, η0〉 ds ≥

∫ s2

s1

1 · 〈α′, η0〉 ds ≥
1
2
(s2 − s1)‖η0‖2

≥ 1
6µ
(
distL2(A(s1),O(A0)) + distL2(A(s2),O(A0))

)
‖η0‖2 =

1
3µ
‖η0‖2ε.

The second inequality uses property (B), the third one property (C) above.
We define functions f, g : R → R by

f(s) := 〈α(s), α′(s)〉 and g(s) := 〈α(s), η0〉.

As α(s0) = 0 it follows that f(s0) = g(s0) = 0. By Proposition A.3 we have
that α̇(s0) = Ȧ(s0) and α′(s0) = η0. Using Proposition 7.3 it follows that

ḟ(s0) = 〈α̇(s0), α′(s0)〉+ 〈α(s0), ∂s(α′)(s0)〉 = 〈Ȧ(s0), η0〉 = 0,

and similarly that

ġ(s0) = 〈α̇(s0), η0〉 = 〈Ȧ(s0), η0〉 = 0.
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Hence there exists a constant C(A) (independent of η) such that

|f(s)| ≤ C(A)‖η‖C0((s0−δ,s0+δ),L2(Σ))(s− s0)2 ≤ 2C(A)‖η0‖L2(Σ)(s− s0)2

(here we use property (A) in the second inequality) and

|g(s)| ≤ C(A)‖η0‖L2(Σ)(s− s0)2

holds for all s ∈ (s0− δ, s0 + δ). For the second term we therefore obtain the
estimate

2‖η0‖2

∫ s0+δ

s0−δ
ρ′ε(‖α‖2)〈α, α′〉 ds = 2‖η0‖2

∫ σ2

σ1

ρ′ε(‖α‖2)〈α, α′〉 ds

≥ −2ε−2‖η0‖2

∫ σ2

σ1

|〈α, α′〉| ds

≥ −4ε−2C(A)‖η0‖3

∫ σ2

σ1

(s− s0)2 ds

= −4
3
ε−2C(A)‖η0‖3

(
|σ2 − s0|3 + |σ1 − s0|3

)
≥ −4

3
ε−2C(A)‖η0‖3 ·

( 2
3µ
)3( distL2(A(σ2),O(A0))3

+distL2(A(σ1),O(A0))3
)

= −64
3
( 2
3µ
)3
C(A)‖η0‖3ε.

The last inequality is by property (C). The third term is estimated as follows.

2
∫ s0+δ

s0−δ
ρ′ε(‖α‖2)〈α, α′〉〈α, η0〉 ds

= 2
∫ σ2

σ1

ρ′ε(‖α‖2)〈α, α′〉〈α, η0〉 ds

≥ −8ε−2C(A)2‖η0‖2

∫ σ2

σ1

(s− s0)4 ds

= −8
5
ε−2C(A)2‖η0‖2

(
|σ1 − s0|5 + |σ2 − s0|5

)
≥ −8

5
ε−2C(A)2‖η0‖2 ·

( 2
3µ
)5( distL2(A(σ2),O(A0))5

+distL2(A(σ1,O(A0))5
)

= −512
5
C(A)2‖η0‖2 ·

( 2
3µ
)5
ε3.
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The last inequality follows again from property (C). Combining these esti-
mates it follows that

〈∇V0(A), η〉R−×Σ ≥
1
3µ
‖η0‖2ε− 64

3
( 2
3µ
)3
C(A)‖η0‖3ε− 512

5
( 2
3µ
)5
C(A)2‖η0‖2ε3.

The last expression becomes strictly positive after choosing ‖η0‖ and ε still
smaller if necessary (which does not affect the argumentation so far). This
shows property (iii) and completes the proof. 2

8 Yang-Mills Morse homology

8.1 Morse-Bott theory

We briefly recall Frauenfelder’s cascade construction of Morse homology for
Morse functions with degenerate critical points satisfying the Morse-Bott
condition (cf. [14, Appendix C]). Let (M, g) be a Riemannian (Banach)
manifold . A smooth function f : M → R is called Morse-Bott if the set
crit(f) ⊂ M of its critical points is a finite-dimensional submanifold of M
and if for each x ∈ crit(f) the Morse-Bott condition Tx crit(f) = kerHxf
is satisfied. As an additional datum, we fix a Morse function h : crit(f) →
R which satisfies the Morse-Smale condition, i.e. the stable and unstable
manifolds W s

h(x) and W u
h (y) of any two critical points x, y ∈ crit(h) intersect

transversally. We assign to a critical point x ∈ crit(h) ⊂ crit(f) the index

Ind(x) := indf (x) + indh(x). (53)

Definition 8.1 Let x−, x+ ∈ crit(h) and m ∈ N. A flow line from x−

to x+ with m cascades is a tuple (x, T ) := (x1, . . . , xm, t1, . . . , tm−1) with
xj ∈ C∞(R,M) and tj ∈ R+ such that the following conditions are satisfied.

(i) Each xj is a nonconstant solution of the gradient flow equation ∂sxj =
−∇f(xj).

(ii) For each 1 ≤ j ≤ m− 1 there exists a solution yj ∈ C∞(R, crit(f)) of
the gradient flow equation ∂syj = −∇h(yj) such that lims→∞ xj(s) =
yj(0) and lims→−∞ xj+1(s) = yj(tj).

(iii) There exist points p− ∈W u
h (x−) ⊂ crit(f) and p+ ∈W s

h(x+) ⊂ crit(f)
such that lims→−∞ x1(s) = p− and lims→∞ xm(s) = p+.

42



A flow line with m = 0 cascades simply is an ordinary flow line of −∇h on
crit(f) from x− to x+.

Denote by Mm(x−, x+) the set of flow lines from x− to x+ with m cascades
(modulo the action of the group Rm by time-shifts on tuples (x1, . . . , xm)) .
We call

M(x−, x+) :=
⋃

m∈N0

Mm(x−, x+)

the set of flow lines with cascades from x− to x+. In analogy to usual Morse
theory (where the Morse function is required to have only isolated non-
degenerate critical points), a sequence of broken flow lines with cascades
may converge to a limit configuration which is a connected chain of such
flow lines with cascades. This limiting behaviour is captured in the following
definition.

Definition 8.2 Let x−, x+ ∈ crit(h). A broken flow line with cascades from
x− to x+ is a tuple v = (v1, . . . , v`) where each vj , j = 1, . . . , `, consists of a
flow line with cascades from x(j−1) to x(j) ∈ crit(h) such that x(0) = x− and
x(`) = x+.

Theorem 8.3 Let x−, x+ ∈ crit(h). Under suitable transversality assump-
tions (as specified in [14, Appendix C]) the set M(x−, x+) is a smooth man-
ifold with boundary of dimension dimM(x−, x+) = Ind(x−)− Ind(x+)− 1.
It is compact up to convergence to broken flow lines with cascades.

Proof: For a proof we refer to [14, Theorems C.10, C.11]. 2

We denote by CM∗(M,f, h) the chain complex generated (as a Z-module) by
the critical points of h and graded by the index Ind. Thanks to Theorem 8.3
we may define a boundary operator ∂k : CMk(M,f, h) → CMk−1(M,f, h)
by linear extension of

∂kx :=
∑

Ind(x′)=k−1

n(x, x′)x′

for x ∈ crit(h) with Ind(x) = k. Here n(x, x′) denotes the (oriented) count
of elements in the zero dimensional moduli space M(x, x′). As was shown
in [14] the maps ∂k give rise to a boundary operator ∂∗ satisfying ∂2

∗ = 0.
We define the Morse-Bott homology HM∗(M,f, h) of (M,f, h) by

HMk(M,f, h) :=
ker ∂k

im ∂k+1
(k ∈ N0).
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8.2 Yang-Mills Morse complex

Let a ≥ 0 be a regular value of YM : A(P ) → R, V be a regular perturbation,
and h : P(a) → R be a smooth Morse function. Define

P(a) := {A ∈ A(P ) | d∗AFA = 0 and YMV(A) ≤ a}

to be the set of Yang-Mills connections of energy at most a. We denote by

CMa
∗ (A(P ),V, h)

be the complex generated (as a Z-module) by the set crit(h) ⊆ P(a) of
critical points of h. We define the Morse boundary operator

∂k : CMa
k (A(P ),V, h) → CMa

k−1(A(P ),V, h)

for k ∈ N0 as the linear extension of the map

∂kx :=
∑

x′∈P(a)

Ind(x′)=k−1

n(x, x′)x′,

where x ∈ P(a) is a critical point of index Ind(x) = k. The numbers n(x, x′)
are given by counting oriented flow lines with cascades between x and x′.

Theorem 8.4 (Morse homology) For any Morse function h : P(a) → R
and generic perturbation V ∈ Y , the map ∂∗ satisfies ∂k ◦ ∂k+1 = 0 for all
k ∈ N0 and thus there exist well-defined homology groups

HMa
k (A(P )) =

ker ∂k
im ∂k+1

.

The homology HMa
∗ (A(P )) is called Yang-Mills Morse homology. It is in-

dependent of the choice of perturbation V and Morse function h.

Proof: For critical points x± ∈ crit(h) let M(x−, x+) denote the moduli
space of flow lines with cascades from x− to x+. From compactness of the
moduli space M(C−, C+) (cf. Theorem 6.2) it follows that M(x−, x+) is
compact up to convergence to broken flow lines with cascades. The proof
that M(x−, x+) is a smooth manifold for regular perturbation V follows the
standard routine by writing M(x−, x+) as the zero set of a Fredholm sec-
tion F̂ of a suitable Banach space bundle, and then applying the implicit
function theorem. For this we remark that M(x−, x+) can be written as a
subset of products of moduli spaces M(C−i , C

+
j ) for suitable pairs (C−i , C

+
j ) of
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critical manifolds (cf. [14, Theorem C.13]). Hence the Fredholm theory for
M(x−, x+) reduces to that for the moduli spaces M(C−i , C

+
j ) as discussed

in Section 5. Surjectivity of the horizontal differential dF̂ is then achieved
by the same perturbation arguments as in Theorem 7.1 and does not require
any new arguments. From homotopy arguments standardly used in Floer
theory (cf. [13, 24]) it follows that the Yang-Mills Morse homology groups
do not depend on the regular perturbation V or on the Morse function h. 2

A Properties of the perturbations

We introduce the following operators (for A ∈ A(P ) and α ∈ Ω1(Σ, ad(P ))).

LA,α : Ω0(Σ, ad(P )) → Ω0(Σ, ad(P )), LA,αλ := ∆Aλ+ ∗[∗α ∧ dAλ],
RA,α := L−1

A,α : Ω0(Σ, ad(P )) → Ω0(Σ, ad(P )),

Mα : Ω1(Σ, ad(P )) → Ω0(Σ, ad(P )), Mαξ := ∗[α ∧ ∗ξ],
TA,α := RA,α ◦Mα : Ω1(Σ, ad(P )) → Ω0(Σ, ad(P )).

Proposition A.1 Fix A ∈ A(P ) smooth and α ∈ L2(Σ, T ∗Σ ⊗ ad(P )).
Then the operator

LA,α : L2(Σ, ad(P )) → L2(Σ, ad(P ))

is a densely defined self-adjoint operator with domain W 2,2(Σ, ad(P )). Its
inverse RA,α is a bounded operator

RA,α : L2(Σ, ad(P )) →W 2,2(Σ, ad(P )).

Furthermore, there exists a constant c1(A) such that for every α with ‖α‖L2(Σ) <
c1(A) the estimate

‖RA,αϕ‖W 2,2(Σ) ≤ c2(A)‖ϕ‖L2(Σ)

holds for a constant c2(A) and all ϕ ∈ L2(Σ, ad(P )).

Proof: Symmetry of the operator LA,α follows from an easy computation.
As the Laplace operator ∆A is self-adjoint with domain W 2,2(Σ) the same
holds true by the Kato-Rellich theorem for the perturbation LA,α of ∆A.
That RA,α : L2(Σ, ad(P )) → W 2,2(Σ, ad(P )) is bounded follows from ellip-
tic regularity. The assumption that A is a regular connection implies that
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∆A = LA,0 is injective and therefore (by self-adjointness) bijective. Thus the
bounded inverse theorem yields a constant c(A) such that

‖RA,0ϕ‖W 2,2(Σ) ≤ c(A)‖ϕ‖L2(Σ)

holds for all ϕ ∈ L2(Σ, ad(P )). It follows from this that for all λ ∈W 2,2(Σ)

‖λ‖W 2,2(Σ) ≤ c(A)‖LA,0λ‖L2(Σ) ≤ c(A)
(
‖LA,αλ‖L2(Σ) +‖[∗α∧dAλ]‖L2(Σ)

)
≤ c′(A)

(
‖LA,αλ‖L2(Σ) + ‖α‖L2(Σ)‖λ‖W 2,2(Σ)

)
.

As bijectivity is preserved under small perturbations (with respect to the
operator norm) we can put λ = RA,αϕ for some ϕ ∈ L2(Σ, ad(P )). Then
with ‖α‖L2(Σ) < c1(A) sufficiently small it follows that

‖RA,αϕ‖W 2,2(Σ) ≤ c2(A)‖ϕ‖L2(Σ),

as claimed. 2

Proposition A.2 Assume A0 ∈ A(P ) smooth and α ∈ L2(Σ, ad(P )). Then
the operator

T ∗A0,α : L2(Σ, ad(P )) → L2(Σ, T ∗Σ⊗ ad(P ))

is bounded with norm ‖T ∗A0,α
‖ ≤ c(A0).

Proof: By definition, T ∗A0,α
= M∗

α ◦ RA,α with M∗
α : ϕ 7→ [α, ϕ]. Let

ξ ∈ L2(Σ, ad(P )) be given. Then it follows from Proposition A.1 and the
Sobolev embedding W 2,2(Σ) ↪→ C0(Σ) that

‖T ∗A0,αξ‖L2(Σ) = ‖[α,RA,αξ]‖L2(Σ) ≤ c‖α‖L2(Σ)‖RA,αξ‖C0(Σ)

≤ c‖α‖L2(Σ)‖ξ‖L2(Σ),

and thus the claim follows. 2

Proposition A.3 The map V` : A(P ) → R has the following properties.

(i) (We denote A0 := Ai, η := ηij, and ρ := ρk.) Its differential and
L2-gradient are given by

dV`(A)ξ = 2ρ′(‖α‖2
L2)〈α, ξ̂〉〈α, η〉+ ρ(‖α‖2

L2)〈ξ̂ − dg∗ATA0,αξ̂, η〉,
g−1∇V(A)g = 2ρ′(‖α‖2

L2)〈α, η〉α+ ρ(‖α‖2
L2)(η + T ∗A0,α(∗[α ∧ ∗η]),

with ξ̂ := g−1ξg. Here we assume that ξ ∈ Ω1(Σ, ad(P )) satisfies
d∗Aξ = 0.
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(ii) We have that

dA∇V(A) = ρ(‖α‖2
L2)
(
dAT

∗
A0,α(∗[α ∧ ∗η]) + dAη

)
+ 2ρ′(‖α‖2

L2)〈α, η〉dAα

(iii) Let β ∈ Ω1(Σ, ad(P )) such that d∗Aβ = 0 and set γ := β − dA0TA0,αβ.
Then the Hessian of V(A) is the map HAV : Ω1(Σ, ad(P )) → Ω1(Σ, ad(P ))
given by the formula

g−1(HAVβ)g + [g−1∇V(A)g, λ] =
ρ(‖α‖2

L2)
(
S∗A0,α,γ(∗[α ∧ ∗η]) + T ∗A0,α(∗[γ ∧ ∗η])

)
+2ρ′(‖α‖2

L2)
(
〈α, γ〉(η + T ∗A0,α(∗[α ∧ ∗η]) + 〈η, γ〉α+ 〈α, η〉γ

)
+4ρ′′(‖α‖2

L2)〈α, γ〉〈α, η〉α.

Here we denote

SA0,α,γ := RA0,α ◦Mγ ◦ (1− dA ◦RA0,α) : Ω1(Σ, ad(P )) → Ω0(Σ, ad(P )).

Proof:

(i) Let A(t) = A + tξ. Assume A(t), α(t) and g(t) satisfy condition (5)
for t ∈ (−ε, ε) with ε > 0 sufficiently small. Set α̇ := d

dt

∣∣
t=0

α(t) and
λ := g−1(0) d

dt

∣∣
t=0

g(t). Differentiating the equation d∗A0
α = 0 at t = 0

yields

0 = d∗A0
(g−1ξg + dg∗Aλ)

= g−1(d(g−1)∗A0
ξ)g + d∗A0

dA0λ+ d∗A0
[α ∧ λ]

= g−1(dA−gαg−1ξ)g + ∆A0λ+ d∗A0
[α ∧ λ]

= −g−1 ∗ [gαg−1 ∧ ∗ξ]g + ∆A0λ+ d∗A0
[α ∧ λ]

= − ∗ [α ∧ ∗g−1ξg] + ∆A0λ+ d∗A0
[α ∧ λ]

= −Mαξ̂ + LA0,αλ.

Hence λ = TA0,αξ̂ by definition of TA0,α, and α̇ = ξ̂+dg∗ATA0,αξ̂. From
this we obtain

dV(A)ξ =
d

dt

∣∣∣∣
t=0

ρ(‖α(t)‖2)〈α(t), η〉

= 2ρ′(‖α‖2)〈α, α̇〉〈α, η〉+ ρ(‖α‖2)〈α̇, η〉
= 2ρ′(‖α‖2)〈α, ξ̂ + dg∗ATA0,αξ̂〉〈α, η〉+ ρ(‖α‖2)〈ξ̂ + dg∗ATA0,αξ̂, η〉
= 2ρ′(‖α‖2)〈α, ξ̂〉〈α, η〉+ ρ(‖α‖2)〈ξ̂ − dg∗ATA0,αξ̂, η〉.
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In the last line we used that d∗g∗Aα = 0. The formula for ∇V(A) follows
from this by taking adjoints and using that d∗g∗Aη = d∗A0

η−∗[α∧∗η] =
− ∗ [α ∧ ∗η].

(ii) This follows by direct calculation.

(iii) The formula follows from differentiating the expression for g−1∇V(A)g
in (i), and using the definition of the Hessian,

HAVβ =
d

dt

∣∣∣∣
t=0

∇V(A+ tβ).

The operator SA0,α,γ arises from differentiating

d

dt

∣∣∣∣
t=0

TA0,α =
d

dt

∣∣∣∣
t=0

L−1
A0,α

◦Mα = −L−1
A0,α

L̇A0,αL
−1
A0,α

+RA0,α ◦ Ṁα,

where L̇A0,α = ∗[∗γ ∧ dA0 · ] and Ṁα = Mγ .

2

Proposition A.4 Assume A0, A ∈ A(P ) smooth. Then ∇V(A) satisfies the
estimate

‖∇V(A)‖L2(Σ) ≤ c(A0)

for a constant c(A0) independent of A.

Proof: From Proposition A.2 and the formula for ∇V(A) stated in Propo-
sition A.3 it follows that

‖∇V(A)‖L2(Σ) ≤ c(1 + ‖α‖L2(Σ) + ‖T ∗A0,α(∗[α ∧ ∗η]‖L2(Σ)) ≤ c(A0).

2

Proposition A.5 For every ε > 0 there exists a constant δ > 0 with the
following significance. Assume the perturbation V satisfies ‖V‖ < δ. Then
for all A ∈ A(P ) there holds the estimate

‖∇V(A)‖L2(Σ) < ε.
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Proof: From Proposition A.2 and the expression for ∇V(A) given in Propo-
sition A.3 it follows the estimate ‖∇V(A)‖L2(Σ) < c(A0)‖η‖L2(Σ) for a con-
stant c(A0) and all A ∈ A(P ). Now choose the terms η(A0) accordingly. 2

Proposition A.6 For every p > 2 there exists a constant c(p) such the
estimate

‖uv‖W−1,p(Σ) ≤ c(p)‖u‖L2(Σ)‖v‖Lp(Σ) (54)

is satisfied for all functions u ∈ L2(Σ) and v ∈ Lp(Σ).

Proof: Let q < 2 denote the dual Sobolev exponent of p. Let r := 2p
2+p < 2

and s := 2q
2−q > 2, i.e. 1

r + 1
s = 1. Then the Sobolev embedding W 1,q(Σ) ↪→

L
2q

2−q (Σ) implies the dual embedding Lr(Σ) ↪→ W−1,p(Σ). Hence for a con-
stant c(p) it follows that

‖uv‖W−1,p(Σ) ≤ c(p)‖uv‖Lr(Σ),

and Hölder’s inequality (with exponents ` = 2
r > 1 and `′ = 2

2−r > 1) then
implies that

‖uv‖rLr(Σ) ≤
( ∫

Σ
|u|2
) r

2
( ∫

Σ
|v|r`′

) 1
`′ = ‖u‖rL2(Σ)‖v‖

r
Lp ,

as claimed. 2

Proposition A.7 Assume A0 ∈ A(P ) smooth and let p > 2. Then there
exists constants c(A0, p) and δ(A0, p) such that the estimates

‖α‖W 1,p(Σ) ≤ c(A0, p)
(
1 + ‖FA‖Lp(Σ)

)
, (55)

‖∇V(A)‖Lp(Σ) ≤ c(A0, p)
(
1 + ‖FA‖Lp(Σ)

)
, (56)

‖dA∇V(A)‖Lp(Σ) ≤ c(A0, p)
(
1 + ‖FA‖Lp(Σ) + ‖α‖2

L2p(Σ)

)
(57)

are satisfied for all A ∈ A(P ) such that ‖α‖L2(Σ) < δ(A0, p).

Proof: With α satisfying dA0α = FA − FA0 − 1
2 [α ∧ α] and hence

∆A0α = d∗A0
(FA − FA0)−

1
2
d∗A0

[α ∧ α] (58)
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we use elliptic regularity of the operator ∆A0 : W 1,p(Σ) → W−1,p(Σ) to
estimate

‖α‖W 1,p(Σ) (59)

≤ c(A0, p)
(
‖d∗A0

FA0‖W−1,p(Σ) + ‖d∗A0
FA‖W−1,p(Σ)

+‖d∗A0
[α ∧ α]‖W−1,p(Σ) + ‖α‖Lp(Σ)

)
≤ c(A0, p)

(
1 + ‖FA‖Lp(Σ) + ‖{∇A0α, α}‖W−1,p(Σ) + ‖α‖Lp(Σ)

)
≤ c(A0, p)

(
1 + ‖FA‖Lp(Σ) + ‖α‖L2(Σ)‖∇A0α‖Lp(Σ) + ‖α‖Lp(Σ)

)
.

In the last step we applied Proposition A.6. From the Sobolev embedding
W 1,2(Σ) ↪→ Lp(Σ) and the second inequality of the previous estimate we
furthermore obtain

‖α‖Lp(Σ) ≤ c‖α‖W 1,2(Σ)

≤ c(A0, 2)
(
1 + ‖FA‖L2(Σ) + ‖{∇A0α, α}‖W−1,2(Σ) + ‖α‖L2(Σ)

)
≤ c(A0, p)

(
1 + ‖FA‖L2(Σ) + ‖{∇A0α, α}‖W−1,p(Σ)

)
≤ c(A0, p)

(
1 + ‖FA‖L2(Σ) + ‖α‖L2(Σ)‖∇A0α‖Lp(Σ)

)
.

Now fix δ(A0, p) > 0 sufficiently small such that ‖α‖L2(Σ)‖∇A0α‖Lp(Σ) ≤
‖α‖W 1,p(Σ) holds for all α with ‖α‖L2(Σ) < δ(A0, p), to conclude estimate
(55). To get (56) we note that ‖∇V(A)‖Lp(Σ) is controlled by ‖α‖Lp(Σ) as
follows from Proposition A.3. To prove (57) let us denote β := ∗[α∧∗η] and
γ := RA0,αβ. From the expression for dA∇V(A) as in Proposition A.3 we
see that it suffices to estimate the terms dAα and

dAT
∗
A0,αβ = dA[α ∧RA0,αβ] = [dAα ∧ γ]− [α ∧ dAγ]. (60)

The required bound for dAα = dA0α+ [α∧α] follows by an estimate similar
to (59) where now an additional term ‖d∗A0

[α ∧ α]‖W−1,p(Σ) appears which
is controlled by ‖α‖2

L2p(Σ). From the Sobolev embedding W 2,2(Σ) ↪→ C0(Σ)
and Proposition A.1 we furthermore obtain

‖γ‖C0(Σ) ≤ c‖γ‖W 2,2(Σ) ≤ c(A0)‖β‖L2(Σ) ≤ c(A0)‖α‖L2(Σ). (61)

With ‖α‖L2(Σ) ≤ δ for some constant δ it remains to bound the term dAα,
which has been been done before. Finally consider the term [α ∧ dAγ] =
[α∧ dA0γ] + [α∧ [α∧ γ]] in (60). It is bounded by ‖α‖2

L2p(Σ) as follows from
the Sobolev embedding W 2,2(Σ) ↪→W 1,p(Σ) and an estimate similar to (61).
2
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Proposition A.8 For every p > 1 there exists a constant c = c(A0, p) such
that the estimate

‖∇A0dA∇V(A)‖Lp(I×Σ) ≤ c
(
1 + ‖FA‖4

L4p(I×Σ) + ‖α‖4
L4p(I×Σ)

)
holds for all A ∈ A(P ).

Proof: Denote γ := RA0,α ∗ [α ∧ ∗η]. From the expression for dA∇V(A) of
Proposition A.3 we see that it suffices to estimate the expression∫

I×Σ
|∇A0dAα|p + |[∇A0dAα ∧ γ]|p + |[dAα ∧∇A0γ]|p + |[∇A0α ∧ dAγ]|p

+|[α ∧∇A0dAγ]|p.

After applying Hölder’s inequality the terms to estimate are (apart from
some lower order terms)∫
I×Σ

|∇A0dAα|2p,
∫
I×Σ

|∇A0γ|2p,
∫
I×Σ

|∇A0α|2p,
∫
I×Σ

|∇A0dAγ|2p.(62)

After rewritig

dAα = FA − FA0 −
1
2
[α ∧ α]

the estimate of the first term in (62) reduces to that of
∫
I×Σ |FA|

2p+|∇A0α|4p.
Proposition A.7 then gives the bound∫

I×Σ
|∇A0α|4p ≤ c(A0, p)

∫
I×Σ

1 + |FA|4p + |α|4p,

as required. The estimate for the third term in (62) follows by the same
argument. The estimate∫

Σ
|γ|2p ≤ c(A0)

∫
Σ
|α|2p

with uniform constant c(A0) gives the required bound for the second and
fourth term in (62). 2
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B Perturbed Yang-Mills gradient flow

Let V : A(P ) → R be a perturbation as above. We call the equation

∂sA+ d∗AFA +∇V(A) = 0 (63)

the perturbed Yang-Mills gradient flow. In the following we fix I = [a, b] an
interval and I ′ = [a′, b], where a < a′ < b, a subinterval.

Proposition B.1 There exists a constant C = C(V) ≥ 0 such that

‖FA(s)‖L2(Σ) ≤ ‖FA(a)‖L2(Σ) + C

is satisfied for all s ∈ I, where A is a solution of (63) on I × Σ.

Proof: The energy YMV(A) = 1
2

∫
Σ |FA|

2 + V(A) is monotone decreasing
along flow lines, hence

1
2
‖FA(s)‖2

L2(Σ) ≤ YMV(A(s)) + |V(A(s))|

≤ YMV(A(a)) + sup
A∈A(P )

|V(A)|

=
1
2
‖FA(a)‖2

L2(Σ) + |V(A(a))|+ sup
A∈A(P )

|V(A)|

≤ 1
2
‖FA(a)‖2

L2(Σ) +
1
2
C2,

where C := 2 supA∈A(P ) |V(A)|
1
2 . The claim follows. 2

Let ∆Σ = −∗d∗d denote the Laplace-Beltrami operator on Σ and let LΣ :=
∂s + ∆Σ be the corresponding heat operator. For the following calculations
we need the Bochner-Weitzenböck formula

∆Aα = ∇∗A∇Aα+ {FA, α}+ {RΣ, α}, (64)

relating the covariant Hodge Laplacian ∆A and the connection Laplacian
∇∗A∇A on forms in Ωk(Σ, ad(P )), cf. [21]. Here {FA, α} etc. denote bilinear
expressions in FA and α, and RΣ is a term involving the curvature operator
of Σ. For a form α ∈ Ωk(Σ, ad(P )) there holds the identity

∆Σ
1
2
|α|2 = −|∇Aα|2 + 〈∇∗A∇Aα, α〉. (65)

We shall make use of the commutator identity

[∇A,∇∗A∇A]α = {α,∇Aα}, (66)

cf. [10, p. 17].
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Proposition B.2 Assume that A solves (63) on I ×Σ. Consider the func-
tion u0,p : I × Σ → R defined (for p ≥ 2) by

u0,p(s, z) :=
1
p
| ∗ FA(s)(z)|p.

Denote u0 := u0,2. Then the following holds.

LΣu0 = −|dA ∗ FA|2 − 〈∗FA, ∗dA∇V(A)〉,
LΣu0,p = | ∗ FA|p−2

(
−|dA ∗ FA|2 − 〈∗FA, ∗dA∇V(A)〉

)
,

Proof: We calculate, using (63),

d

ds

1
2
〈∗FA, ∗FA〉 = 〈∗FA, ∗dAȦ〉 = 〈∗FA,− ∗∆AFA − ∗dA∇V(A)〉.

From this it follows that

LΣu0 =
1
2
(
∂s − ∗d ∗ d

)
〈∗FA, ∗FA〉

= −〈∗∆AFA + ∗dA∇V(A), ∗FA〉 − ∗d ∗ 〈dA ∗ FA, ∗FA〉
= −〈∗∆AFA + ∗dA∇V(A), ∗FA〉 − 〈∗dA ∗ dA ∗ FA, ∗FA〉 − |dA ∗ FA|2

= −〈∗dA∇V(A), ∗FA〉 − |dA ∗ FA|2.

The formula for u0,p follows from that for u0 and the chain rule

(1
p
〈∗FA, ∗FA〉

p
2
)′ = 〈∗FA, ∗FA〉

p
2
−1〈FA, F ′A〉 = |FA|p−2〈FA, F ′A〉.

2

Proposition B.3 Assume that A solves (63) on I ×Σ. Consider the func-
tion u1 : I × Σ → R defined by

u1(s, z) :=
1
2
|∇A(s)FA(s)(z)|2.

It satisfies

LΣu1 = −|∇A∇AFA|2+〈∇AFA, {∇AFA, FA}+∇A{RΣ, FA}+{∇V(A), FA}
− ∇AdA∇V(A)〉. (67)

53



Proof: We calculate

d

ds
∇AFA = ∇AdAȦ+ {Ȧ, FA}

= ∇A

(
− dAd

∗
AFA − dA∇V(A)

)
+ {d∗AFA +∇V(A), FA}

= ∇A

(
−∇∗A∇AFA + {FA, FA}+ {RΣ, FA} − dA∇V(A)

)
+{d∗AFA +∇V(A), FA}

= −∇∗A∇A∇AFA + {∇AFA, FA}+∇A{FA, FA}+∇A{RΣ, FA}
−∇AdA∇V(A) + {∇V(A), FA}.

The third line is by (64), and the last line uses (66). Inserting this expression
into (65) we obtain

LΣu1 = −|∇A∇AFA|2 +
〈
∇AFA, {∇AFA, FA}+∇A{RΣ, FA}+ {∇V(A), FA}

−∇AdA∇V(A)
〉
,

as claimed. 2

The following estimate is a consequence of the Bochner-Weitzenböck formula
(64).

Proposition B.4 There exists a constant c1(P ) such that for every C1-
connection A and a further constant c2(A,P ) there holds

‖ϕ‖2
W 2,2(Σ) ≤ c1(P )‖∆Aϕ‖2

L2(Σ) + c2(‖A‖C1 , P )‖ϕ‖2
L2(Σ)

for every ϕ ∈ Ωk(Σ, ad(P )).

Proof: For a proof we refer to Struwe [29, Lemma 3.1]. 2

The following lemma is an adaption of a result by Struwe [29, Lemma 3.3].

Lemma B.5 Let A ∈ A1,2(P ) be a fixed connection and let p > 1. There
exists a constant c = c(p) such that for any section ϕ ∈ Ωk(Σ, ad(P )) there
holds

‖ϕ‖2
Lp ≤ c

(
‖dAϕ‖2

L2(Σ) + ‖d∗Aϕ‖2
L2(Σ)

)
+ c〈{FA, ϕ}, ϕ〉.

Proof: The proof of [29, Lemma 3.3] applies with minor modifications. The
first one is the Sobolev embedding W 1,2(Σ) ↪→ Lp(Σ) for all p <∞ (instead
of only W 1,2 ↪→ L4 in dimension 4). The second one is that at this point we
do not further estimate the term 〈{FA, ϕ}, ϕ〉. 2

As a consequence of the lemma we obtain the following estimate for FA.
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Proposition B.6 Let p > 1 and I = [a, b]. There exists a constant c =
c(I, p) such that if A is a solution of (63) on I × Σ, then∫

I
‖FA(s)‖2

Lp(Σ) ds ≤ c
(
1 + YMV(A(a))

)
.

Proof: Integrating the estimate of Lemma B.5 with ϕ = FA and using the
Bianchi identity dAFA = 0 gives∫

I
‖FA‖2

Lp(Σ)

≤ c(p)
∫
I

(
‖d∗AFA‖2

L2(Σ) + ‖FA‖3
L3(Σ)

)
≤ c(p)

∫
I

(
2‖d∗AFA +∇V(A)‖2

L2(Σ) + 2‖∇V(A)‖2
L2(Σ) + ‖FA‖3

L3(Σ)

)
≤ 2c(p)YMV(A(a)) + 2|I| sup

A∈A(P )
‖∇V(A)‖2

L2(Σ) + c(p)‖FA‖3
L3(I×Σ).

The middle term is bounded by a universal constant C. It remains to esti-
mate the last term. Using Hölder’s inequality we obtain

‖FA‖3
L3(I×Σ) ≤

∫
I
‖FA‖L2(Σ)‖FA‖2

L4(Σ) ≤ ‖FA‖L∞(I,L2(Σ))‖FA‖2
L2(I,L4(Σ)).(68)

Now choose a locally finite cover of Σ with balls Bε(xi) of radius ε > 0. We
can then further estimate

‖FA‖2
L2(I,L4(Σ)) ≤

∫
I

∑
i

( ∫
Bε(xi)

|FA|4
) 1

2

≤
∫
I

∑
i

( ∫
Bε(xi)

|FA|8
) 1

4 ·
( ∫

Bε(xi)
1
) 1

4

= vol(Bε)
1
4

∫
I

∑
i

( ∫
Bε(xi)

|FA|8
) 1

4

≤ cε
1
2 ‖FA‖2

L2(I,L8(Σ)).

For p ≥ 8 and ε > 0 and sufficiently small (compared to ‖FA‖L∞(I,L2(Σ)) ≤
‖FA(a)‖L2(Σ) ≤ C) the last term in (68) is absorbed by

∫
I ‖FA‖

2
Lp(Σ). The

claim thus follows. 2

Lemma B.7 Let 1 < p < 4 and I = [a, b]. There exists a constant c(I, p)
such that if A is a solution of (63) on I × Σ, then

‖FA‖2
Lp(I×Σ) ≤ c(I, p)

(
1 + YMV(A(a))

)
.
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Proof: Hölder’s inequality yields for p < 4 the estimate

‖FA‖pLp(I×Σ) ≤ ‖FA‖p−2
L∞(I,L2(Σ))

‖FA‖2

L2(I,L
4

4−p (Σ))
.

Each of the last two factors is uniformly bounded. For the first one this
follows from Proposition B.1, and for the second one it follows from Propo-
sition B.6. 2

A similar kind of estimate also holds for d∗AFA.

Proposition B.8 Let p > 1 and I = [a, b]. There exists a constant c(I, p)
such that if A is a solution of (63) on I × Σ, then∫

I
‖d∗A(s)FA(s)‖2

Lp(Σ) ds ≤ c(I, p)
∫
I
‖dAd∗AFA‖2

L2(Σ). (69)

Proof: Integrating the estimate of Lemma B.5 with ϕ = d∗AFA and using
that d∗Ad

∗
AFA = 0, we obtain∫

I
‖d∗A(s)FA(s)‖2

Lp(Σ) ds ≤ c

∫
I
‖dAd∗AFA‖2

L2(Σ) + c

∫
I

∫
Σ
〈{FA, d∗AFA}, d∗AFA〉.

Proceeding as in the proof of Proposition B.6, the last term may be absorbed
by
∫
I ‖d

∗
A(s)FA(s)‖2

Lp(Σ) ds. The claim then follows. 2

Proposition B.9 Let I = [a, b]. Suppose A is a solution of (63) on I × Σ.
Then the function R(s) := 1

2‖d
∗
A(s)FA(s)‖2

L2(Σ) satisfies the estimate

sup
a≤s≤b

R(s) ≤ R(a) +
∫
I
‖dA∇V(A)‖2

L2(Σ)

+
∫
I

∫
Σ

∣∣〈d∗AFA, {d∗AFA, FA}〉∣∣+ ∣∣〈d∗AFA, {∇V(A), FA}〉
∣∣,

where {·} indicates a certain bilinear expression with smooth (time-independent)
coefficients.

Proof: From equation (63) it follows for every a ≤ s ≤ b that

d

ds
R(s) = 〈d∗AFA, d∗AdAȦ− ∗[Ȧ ∧ ∗FA]〉

= −〈d∗AFA, d∗AdAd∗AFA + d∗AdA∇V(A)− ∗[(d∗AFA +∇V(A)) ∧ ∗FA]〉
= −‖dAd∗AFA‖2 − 〈dAd∗AFA, dA∇V(A)〉+ 〈d∗AFA, ∗[(d∗AFA +∇V(A)) ∧ ∗FA]〉
≤ ‖dA∇V(A)‖2 +

∣∣〈d∗AFA, {d∗AFA, FA}〉∣∣+ ∣∣〈d∗AFA, {∇V(A), FA}〉
∣∣.
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Integrating this inequality over the interval [a, s] ⊆ I and taking the supre-
mum over a ≤ s ≤ b yields the result. 2

Lemma B.10 Let 1 < p < 4, I = [a, b] and I ′ = [a1, b], where a1 ∈ (a, b).
There exists a constant c(I, I ′, p) such that if A is a solution of (63) on I×Σ,
then

‖d∗AFA‖Lp(I′×Σ) ≤ c(I, I ′, p)
(
YMV(A(a)) + ‖FA(a)‖2

L2(Σ) + ‖FA(a)‖3
L2(Σ)

)
.

Proof: By Fubini’s theorem we can find s0 ∈ (a, a1) such that

‖d∗A(s0)FA(s0)‖2
L2(Σ) ≤ 2(a1 − a)−1

∫ a1

a
‖d∗A(s)FA(s)‖2

L2(Σ) ds

≤ c(a1 − a)−1YMV(A(a)).

Now apply Proposition B.9 with R(a) := R(s0) to obtain the estimate

sup
s∈I′

‖d∗A(s)FA(s)‖2
L2(Σ) ≤ c(a1 − a)−1YMV(A(a)) +

∫
I
‖dA∇V(A)‖2

L2(Σ)

+
∫
I

∫
Σ

∣∣〈d∗AFA, {d∗AFA, FA}〉∣∣+ ∣∣〈d∗AFA, {∇V(A), FA}〉
∣∣,

The last term in the first line and the two terms in the second line admit
the required bound as follows from Proposition B.12 (use Lemma B.7 to
further estimate the integral over |FA|3). The same type of estimate holds
for ‖d∗AFA‖L2(I′(Lp(Σ)) by Proposition B.8, for any p < ∞. To see this we
apply Proposition B.13 to bound the term

∫
I ‖dAd

∗
AFA‖2

L2(Σ) on the right-
hand side of (69). Using Hölder’s inequality as in the proof of Lemma B.7
then completes the proof. 2

The following Propositions B.11, B.12, B.13, and B.14 are auxiliary results
needed in the proofs of Lemmata B.7 and B.10.

Proposition B.11 Let A solve (63) on I×Σ. Then the product |FA|2|dA∇V(A)|
admits the estimate∫

I×Σ
|FA|2|dA∇V(A)| ≤ c(I)

(
1 + YMV(A(a))2

)
.

for a constant c(I).
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Proof: Using the Sobolev embedding W 1,2(Σ) ↪→ Lp(Σ) for every p < ∞
we may combine (55) and (57) to get for any fixed ε > 0 the estimate

‖dA∇V(A)‖Lp(Σ) ≤ c
(
1 + ‖FA‖Lp(Σ) + ‖FA‖2

L2+ε(Σ)

)
.

For p = 3 it follows that∫
I×Σ

|FA|2|dA∇V(A)| ≤
∫
I

( ∫
Σ
|FA|3

) 2
3 ·
( ∫

Σ
|dA∇V(A)|3

) 1
3

≤ c

∫
I

( ∫
Σ
|FA|3

) 2
3 ·
(
1 +

( ∫
Σ
|FA|3

) 1
3 +

( ∫
Σ
|FA|2+ε

) 2
2+ε
)

≤ c

∫
I

( ∫
Σ
|FA|3

) 2
3 + c

∫
I×Σ

|FA|3 + c

∫
I

( ∫
Σ
|FA|3

) 4
3

+c
∫
I

( ∫
Σ
|FA|2+ε

) 4
2+ε

≤ c
(
‖FA‖3

L3(I×Σ)) + ‖FA‖4
L4(I,L3(Σ))

)
.

The bound for ‖FA‖3
L3(I×Σ)) follows from Lemma B.7. By the same argu-

ments as used there and Hölder’s inequality

‖FA‖4
L4(I,L3(Σ)) ≤ ‖FA‖2

L∞(I,L2(Σ))‖FA‖
2
L2(I,L6(Σ))

we obtain the required estimate for the last term. 2

Proposition B.12 Let A solve (63) on I × Σ. Then the function |FA| ·
|d∗AFA|2 : I × Σ → R as in Proposition B.2 satisfies the estimate∫

I′×Σ
|FA| · |d∗AFA|2 ≤ c(I, I ′)

(
1 + YMV(A(a))2

)
for a constant c(I, I ′).

Proof: Consider the function u0,3 = 1
3 | ∗ FA|

3 : I × Σ → R as defined in
Proposition B.2. It satisfies

LΣu0,3 = −| ∗ FA|
(
|dA ∗ FA|2 + 〈∗FA, ∗dA∇V(A)〉

)
.

Lemma C.8 thus yields the estimate∫
I′×Σ

|FA| · |d∗AFA|2 ≤ c(I, I ′)
∫
I×Σ

1
3
|FA|3 + |FA| · |〈∗FA, ∗dA∇V(A)〉|.

Now apply Lemma B.7 and Proposition B.11 to obtain the result. 2
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Proposition B.13 There exists a constant c > 0 such that if A is a solution
of (63) on I × Σ, then∫

I′×Σ
|∇A∇AFA|2 ≤ c

(
‖FA(0)‖2

L2(Σ) + ‖FA(0)‖3
L2(Σ)

)
.

Proof: We apply the mean value inequality (cf. Lemma C.7) to (67). This
yields for a universal constant C = C(I, I ′) the estimate∫
I′×Σ

|∇A∇AFA|2 ≤ C
( ∫

I×Σ
|∇AFA|2 + |∇AFA|2|FA|+ |FA|2 + |∇V(A)|2

+|∇AdA∇V(A)|2
)
.

We estimate the terms on the right-hand side separately. The estimate for
|∇AFA|2|FA| follows from Proposition B.12. The term |∇AdA∇V(A)|2 can
be estimated using Proposition B.14. 2

Proposition B.14 Let p > 2. Then there exists a constant c = c(I, p) such
that ∫

I×Σ
|∇AdA∇V(A)|2 ≤ c

(
1 +

∫
I
‖FA‖4

Lp(Σ) +
∫
I
‖∇AFA‖2

L2(Σ)

)
holds for all A ∈ A(P ).

Proof: We first consider the term |∇AdAα|2 appearing in ∇AdA∇V(A), cf.
Proposition A.3. With dAα = FA − FA0 + 1

2 [α ∧ α] it suffices to estimate
the term |∇A[α ∧ α]|2. Set q−1 := 1 − p−1. Using Hölder’s inequality and
estimate (55) we find that∫

I×Σ
|∇A[α ∧ α]|2 ≤ c

∫
I×Σ

|∇Aα|2|α|2

≤ c

∫
I

( ∫
Σ
|∇Aα|p

) 4
p +

( ∫
Σ
|α|q

) 4
q

= c

∫
I
‖∇Aα‖4

Lp(Σ) + ‖α‖4
Lq(Σ)

≤ c
(
1 +

∫
I
‖FA‖4

Lp(Σ)

)
.

Denote β := ∗[α ∧ ∗η] and γ := RA0,αβ. We estimate the remaining term

∇AdAT
∗
A0,αβ = ∇AdA[α ∧RA0,αβ] = ∇A[dAα ∧ γ]−∇A[α ∧ dAγ]

= [∇AdAα ∧ γ] + [dAα ∧∇Aγ]− [∇Aα ∧ dAγ]− [α ∧∇AdAγ].
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Estimates for the last four terms are obtained similarly as above for ∇AdAα.
Here we use that ‖γ‖W 2,2(Σ) and hence ‖γ‖C0(Σ) is bounded in terms of
‖α‖L2(Σ) as follows from Proposition A.1. 2

C Auxiliary results

We derive an a priori estimate for the linearized Yang-Mills gradient flow
along a path s 7→ A(s) ∈ A(P ) of connections. This linearization is given by
the operator DA = d

ds +HA with

HA

 α0

α1

ψ

 =

 ∆Aα0 + ∗[∗FA ∧ α0] + [d∗AFA ∧ ϕ]− dAω
−dAψ + dAω
−d∗Aα1

 (70)

the augmented Yang-Mills Hessian as defined in (33). Here α = α0 + α1

denotes the Hodge decomposition of α with respect to A (i.e. d∗Aα0 = 0 and
α1 = dAϕ for some ϕ ∈ Ω0(Σ, ad(P ))). The map ω has been defined as the
solution of the equation

∆Aω = ∗[dA ∗ FA ∧ α]. (71)

Proposition C.1 Fix p > 3. For any path A ∈W 2,p(I ×Σ) of connections
and compact intervals I1 ⊂ I ⊆ R there exists a constant c(A, I1, I, p) such
that the estimate

‖α0‖W 1,2;p(I1×Σ) + ‖α1‖W 1,p(I1×Σ) + ‖ψ‖W 1,p(I1×Σ)

≤ c(A, I1, I, p)
(
‖DAξ‖Lp(I×Σ) + ‖ψ‖Lp(I×Σ)

)
(72)

is satisfied for every ξ = (α0, α1, ψ) ∈ domDA.

Proof: We first remark that the term dAω appearing in the first and second
line of (70) can be estimated as ‖dAω‖Lp(I1×Σ) ≤ c(A, I1, p)‖α‖Lp(I1×Σ) for
some constant c(A, I1, p). This follows from (71) by elliptic regularity which
yields for fixed s ∈ R the estimate

‖dA(s)ω(s)‖Lp(Σ) ≤ c(A(s))‖[dA(s) ∗ FA(s) ∧ α(s)]‖W−1,p(Σ)

≤ c(A(s))‖dA(s) ∗ FA(s)‖L2(Σ)‖α(s)‖Lp(Σ).

The last inequality is by (A.6). Integrating this estimate over I1, the result
follows. The estimate for the term α0 follows from the first line of (70)
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via a standard parabolic estimate for the linear heat operator d
ds + ∆A(s) :

W 1,2;p(I ×Σ) → Lp(I ×Σ). It remains to estimate the terms α0 and ψ. For
this let us define the linear operator

B :=
(

0 −dA
−d∗A 0

)
acting on pairs (α1, ψ)T and denote by

M := [B, ∂s] =
(

0 [Ȧ ∧ · ]
− ∗ [Ȧ ∧ ∗· ] 0

)
its commutator with ∂s. We also set

L := (−∂s +B)(∂s +B) = −∂2
s +B2 +M =: diag(L1, L2) +M

with L1 = −∂2
s + dAd

∗
A and L2 = −∂2

s + d∗AdA. Note that L2 equals the
Laplace operator ∆̂A on ad-valued forms over R×Σ as introduced in Section
6. Similarly, L1 acts on α1 = dAϕ as

L1α1 = (−∂2
s + dAd

∗
A + d∗AdA)α1 − d∗AdAdAϕ

= ∆̂Aα1 + [∗FA ∧ ∗α1]− [d∗AFA ∧ ϕ].

We consider −∂s + B as a bounded operator Lp(I × Σ) → W−1,p(I × Σ)
and denote by K its norm. The claimed estimate then follows from elliptic
regularity of the Laplace operator ∆̂A : W 1,p(I × Σ) →W−1,p(I × Σ),

‖α1‖W 1,p + ‖ψ‖W 1,p

≤ c
(
‖∆̂Aα1‖W−1,p + ‖∆̂Aψ‖W−1,p + ‖α1‖Lp + ‖ψ‖Lp

)
≤ c

(
‖L1α1‖W−1,p + ‖[∗FA ∧ ∗α1]− [d∗AFA ∧ ϕ]‖W−1,p + ‖L2ψ‖W−1,p

+‖α1‖Lp + ‖ψ‖Lp

)
≤ c

(
‖L(α1, ψ)T ‖W−1,p + ‖M(α1, ψ)T ‖W−1,p + (1 + ‖FA‖L∞)‖α1‖Lp

+(1 + ‖d∗AFA‖Lp)‖ϕ‖L∞
)

≤ c
(
K‖(∂s +B)(α1, ψ)T ‖Lp + (1 + ‖FA‖L∞)‖α1‖Lp

+(1 + ‖d∗AFA‖Lp)‖ϕ‖W 1,p

)
≤ c

(
K‖∂sα1 − dAψ + dAω‖Lp + ‖dAω‖Lp +K‖∂sψ − d∗Aα1‖Lp

+(1 + ‖FA‖L∞)‖α1‖Lp + (1 + ‖d∗AFA‖Lp)‖α1‖Lp

)
.

The fourth inequality follows from boundedness of the operator M : Lp →
Lp. Using the remark on the estimate for dAω made initially, the proof is
complete. 2
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Lemma C.2 Let f : (−∞, T ) → R be a bounded C2-function such that
f ≥ 0 and the differential inequality

f ′′ ≥ c0f + c1f
′ (73)

is satisfied for constants c0 > 0 and c1 ∈ R. Then f satisfies the decay
estimate

f(s) ≤ ek(s+T )f(T )

for a constant k = k(c0, c1) > 0 and all −∞ < s ≤ T .

Proof: Set

k := −c1
2

+
1
2

√
4c0 + c21 > 0

λ :=
c1
2

+
1
2

√
4c0 + c21 > 0.

Assume by contradiction that f ′(s0) − kf(s0) < 0 for some s0 ≤ T and set
g(s) := eks(f ′(s)− λf(s)). Then

g′ = eks(f ′′ + (k − λ)f ′ − kλf) = eks(f ′′ − c1f
′ − c0f) ≥ 0,

so g is monotone increasing. Therefore g(s) ≤ g(s0) for all s ≤ s0 and

f ′(s) ≤ λf(s) + ek(s0−s)(f ′(s0)− λf(s0)).

Because f is bounded and f ′(s0) − kf(s0) < 0 it follows that f ′(s) → −∞
as s → −∞. This contradicts the boundedness of f as f(s0) − f(s) =∫ s0
s f ′(σ) dσ. Therefore the assumption was wrong and f ′(s) − kf(s) ≥ 0

holds for all −∞ < s ≤ T . Then with h(s) := e−ksf(s) it follows that

g′ = e−ks(f ′ − kf) ≥ 0,

which implies f(s) ≤ ek(s−T )f(T ) for all s ≤ T . 2

Proposition C.3 For every 1-form β ∈ L2(Σ, T ∗Σ⊗ad(P )) there holds the
estimate ‖β‖W−1,2(Σ) ≤ ‖β‖L2(Σ).

Proof: The result follows from the estimate

‖β‖W−1,2(Σ) = sup
‖ϕ‖W1,2(Σ)=1

∣∣∣ ∫
Σ
〈β, ϕ〉

∣∣∣ ≤ sup
‖ϕ‖W1,2(Σ)=1

‖ϕ‖L2(Σ)‖β‖L2(Σ)

≤ ‖β‖L2(Σ) sup
‖ϕ‖W1,2(Σ)=1

‖ϕ‖W 1,2(Σ) = ‖β‖L2(Σ),

where we used the Cauchy-Schwarz inequality in the second step. 2
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Lemma C.4 For each γ < 1 there is a continuous embedding L
2

1+γ (Σ) ↪→
W−γ,2(Σ).

Proof: The usual Sobolev embedding theorem asserts that W γ,2(Σ) embeds
continuously into L

2
1−γ (Σ). It thus follows for ϕ ∈ C∞(Σ) that

‖ϕ‖W−γ,2(Σ) = sup
‖ψ‖Wγ,2(Σ)=1

〈ϕ,ψ〉 ≤ sup
‖ψ‖Wγ,2(Σ)=1

‖ϕ‖
L

2
1+γ (Σ)

‖ψ‖
L

2
1−γ (Σ)

≤ C‖ϕ‖
L

2
1+γ (Σ)

.

In the second step we used Hölder’s inequality. This proves the claim. 2

Lemma C.5 (Sobolev multiplication) For every 1 < p < 2 there is a
constant C(p) such that the estimate

‖uv‖Lp(Σ) ≤ C(p)‖u‖L2(Σ)‖v‖W 1,2(Σ)

is satisfied for all functions u ∈ L2(Σ) and v ∈W 1,2(Σ).

Proof: The claim follows with q := 2
2−p from the estimate∫

Σ
|uv|p ≤ ‖|u|p‖

L
2
p (Σ)

‖|v|p‖Lq(Σ) = ‖u‖p
L2(Σ)

‖v‖pLpq(Σ) ≤ C‖u‖p
L2(Σ)

‖v‖p
W 1,2(Σ)

.

In the first step we used Hölder’s inequality, and the last step follows from
the Sobolev embedding W 1,2(Σ) ↪→ Lr(Σ) for all 1 ≤ r <∞. 2

Lemma C.6 (Elliptic mean value inequality) There is a constant c >
0 such that the following holds for all r > 0 smaller than the injectivity radius
of M . If a ≥ 0 and the function u : M → R is of class C2 in such that

u ≥ 0 and ∆Σu ≤ au,

then for all x ∈M ,

u(x) ≤ c

rn

∫
Br(x)

u.

Proof: For the proof we refer to [24]. 2
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Lemma C.7 (Parabolic mean value inequality) There is a constant c >
0 such that the following holds for all r > 0 smaller than the injectivity ra-
dius of M . If a ≥ 0 and the function u : R ×M → R is of class C1 in the
s-variable and of class C2 in the spatial variables such that

u ≥ 0 and (∂s + ∆Σ)u ≤ au,

then for all x ∈M ,

u(x) ≤ cear
2

rn+2

∫
Pr(x)

u.

Proof: For the proof we refer to [25, Lemma B.2]. 2

Lemma C.8 Let R, r > 0, u : PR+r → R be a C2 function and f, g :
PR+r → R be continuous functions such that

−LΣu ≥ g − f, u ≥ 0, f ≥ 0, g ≥ 0.

Then ∫
PR/2

g ≤ 2
(
1 +

r

R

)(∫
PR+r

f +
( 4
r2

+
1
Rr

) ∫
PR+r

u

)
.

Proof: For the proof we refer to [25, Lemma B.5]. 2

Lemma C.9 (Interpolation) For real numbers r, r′, s, s′ the intersection
W r,s;2(I×Σ)∩W r′,s′;2(I×Σ) is a Banach space with norm

(
‖ · ‖W r,s;2(I×Σ)+

(‖ · ‖W r′,s′;2(I×Σ)

) 1
2 . For any θ ∈ [0, 1] there is a bounded embedding

W r,s;2(I × Σ) ∩W r′,s′;2(I × Σ) ↪→W θr+(1−θ)r′,θs+(1−θ)s′;2(I × Σ).

Proof: For the proof we refer to [38, Lemma A.0.3]. 2

Lemma C.10 (Traces) For r > 1
2 the map u 7→ u(0) on smooth functions

extends to a bounded map (trace map) W r,s;2([0, T ]× Σ) →W s,2(Σ).

Proof: For the proof we refer to [38, Lemma A.0.3]. 2
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