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Abstract

We describe an infinite-dimensional Kac-Moody-Virasoro algebra of new hidden
symmetries for the self-dual Yang-Mills eqnations related to conformal transforma-
tions in the 4-dimensional base space.

1 Introduction

The self-dual Yang-Mills (SDYM) equations in the space B! with the metric ol signature
(4++4+-+) or (++4——) are the famous example of the nonlinear integrable equations in four
dimensions. These equations are invariant under the group of gauge transformations and
the group of conformal transformations of the space R', both of which are the “obvious
symmetries”. 1t is well-known by now that the SDYM equations in ' have an infinite-
dimensional algebra of “hidden symmetries” [1-5]. Tor the Yang-Mills (YM) potentials
with values in a Lie algebra G these symmetries are an affine extension of the Lie algechra
G of global gauge transformation to the Kac-Moody algebra G @ C(A, A™"). It is also well-
known that for integrable models in two dimensions the algebra of hidden symmetries
includes Virasoro-like generators (for a recent discussion and relerences see [6]). We shall
show that the SDYM equations also have Virasoro-like and new Kac-Moody syminetries,
which generate new solutions from any old one.
New Kac-Moody-Virasoro symmetries may be interesting for applications because

e they give new arguments in support of the old idea that the SDYM theory is a
generalization of the d = 2 conformal theories to dimension d = 4;
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e the SDYM equations are known to arise in N = 2 supersymmetric open string theory
and Kac-Moody-Virasoro symmetries may underlie the cancellation of almost all
amplitudes in the theory of N = 2 self-dual strings;

o the study of symmetries is important for understanding non-pertubative properties
and quantization of Yang-Mills theories and N = 2 self-dual strings;

o the SDYM equations are “master” integrable equations since a lot of integrable
equations in 1 < d < 3 can be obtamed from them by suitable reductions (for
a recent discussion and rveferences see [7]). In particular, the matrix Ernst-type
equations appearing in the study of T- and S-duality symmetries of string theory
may be obtained by reduction of the SDYM equations. Their symmetries in turn
may also be obtained by an appropriate reduction of symmetries of the SDYM
equations.

Clearly this hist of reasons is not complete and can be extended.

2 Definitions and notation

We shall consider the Euclidean space R*® with the metric g,, = diag(+1, +1, +1, +1),
where p,v,... = 1,..,4. Let us denote by A, the potentials of the YM fields F,, =
A, = 0, A, + [Ay, A], with 9, := 0/02*. The fields A, and F,, take values in a Lie
algebra G. For simplicity one may think that G = si(n,C).

The SDYM equations have the form

1

5 Enwpo PP = Fy, (1)
where €,,,, is the completely antisymmetric tensor in R*® ( g1934 = 1). In R*® we
introduce complex coordinates y = ' + 2%,z = 2% — izt = 2' — 12?7z = 2% 4+ i2* and

set Ay = %(Al —iAz), Az = %(A3+IA4), Ag = %(Al +’-':A2),A;g = %(AQ,—Z.A.;). The SD\II\'I
equations read then

Fyz = 0, ]ng = 0, (2((’7)

Fyg + Fzg = 0. (2!))

These equations can be obtained as compatibility conditions of the following linear system

of equations [8]:

[0 + Az — MO, + A)|¥(z, ) =0, (3a)

(B + As + A(D, + A)]W(m, 2) = 0, (30)

where W € (' is a group-valued function depending on the coordinates x# of R™ and a

complex parameter A € C P!, Infact, ¥ is defined on the twistor space Z = R*"x C P' for

the space R'® and eqs. (3) are equivalent to the holomorphicity of the matrix-function

¥ (Ward theorem [9]).
Equation (2a) implies that the gauge potentials can be written in the form

A, = h7'Ouh, A, = h™'0.h, Ay = h™'0;k, A; = h™'9;h, (4)

where h and h are some group-valued functions on R, One may perform the following
gauge transformation:

Ag — [3g = ilAﬁﬁHl 4+ ilagi‘lil = 0, A;, — B'z' = E,Agfl_l + i’lagi‘l_l = 0, (5&)
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Ay, = By =hAR + hORT = g7 09, A, = B, = hART 4 1007 = g7 0.9, (5b)

where g := k™!, and thus fix the gauge By = B; = 0 [10,1-5]. Then eqs. (2) are replaced
by the matrix equation

Qg By + 0:8, = 0y(g™ ' 9y9) + 9z(g7 ' 8,9) = 0. (6)

It is also possible to perform the gauge transformation

Ay = hAgh™ + hdgh™ = 909", Az = hAzh™" + hO:h™ = gdz97", (Ta)
Ay = hAL™ + ho,h™ =0, A, = hAR™  + hO,R7! =0, (7b)

then eq.(2) gets converted into the equation
9y(9059™") + 0:(gdzg™") = 0. (8)

Let C denote a contour in the A-plane about the origin, C.. denote C and the inside of
C, and C_ denotes C and the outside of C' (C = C; N C_). Then there exist two matrix
functions Wi(x, A) holomorphic and nonsingular on Cy, each satislying egs. (3) (sce e.g.
[5)). From the linear system (3) it is easy to see that

h=W'A=00), h=W'(A=0). (9)

Therefore, it is obvious that eqs. (6) are the compatibility conditions of the linear system

dgn — M0, + B:)n =0, (10a)
a1+ M, + By)n =0, (10b)

obtained from (3) for W, by performing the gauge transformation Wi(x,A) = n(z,A)
= U 2,0)Pe(z,A) = h(2)Vyi(z,A), A € Cy. Analogously, egs. (8) are compatibility
conditions for the linear system

1
X(aﬁ + 9059~ )i = 029 = 0, (11a)

1
S(0s + 98eg™ )i+ 0,7 = 0, (116)

where H(A) = UZ'(co)W_(A) is well defined for A € C_.

In the following, we shall consider the space Z, = R*® x C € Z = R x CP,
matrix-valued function 7 on 24, the linear system (10) and the Wess-Zumino-Novikov-
Witten-type eq.(6). In this short paper we describe new hidden symmetries of eqs. (6)
omitting direct computations and writing out only the final formulas.

3 Space-time symmetries

Let A, be a solution of the SDYM equations (1). Then § : A, — 64, is called an in-
finitesimal symmetry transformation if A, satisfies the linearized form of eqgs.(1). It is
well-known that the group of conformal transformations is the maximal group of trans-
formations of the space R*® under which the SDYM equations (1) are invariant. This
group is locally isomorphic to the group SO(5,1).



Let us introduce the self-dual 7%, and the anti-self-dual 77, °t Hooft tensor,
Mo = {6t = by =¢; b,,v =467, =4}, (12a)

i, = {eg, it =byv=c —5z, v=4;8 =4}, (126)

where ¢,b,... = 1,2,3 and ¢, are the structure constants of the group SO(3). Then the
generators of the group SO(5,1) can be realized in terms of the following vector fields on
RL!,O’

Xg = 5017772:/'73;101/: Ya= ‘Sﬂbﬁﬁu”’#au: P, = au:

1 .
K, = ;:c,,rcai)“ -z, D, D=uz,0,, (13)

where {X,} and {Y,} generate two commuting SO(3)-subgroups in SO(4), P, are the
generators of translations, K, are the generators of special conformal transformations and
D is the generator of dilatations.

Infinitesimal transformations of the YM potentials A, under the action of the confor-
mal group SO(5,1) are given by

51\'A,u = ‘C'NA;,: = A'WA#,V + Aujv‘l; B (14)

where N = N"0J, is any generator of the conformal group, and Ly is the Lie deriva-
tive along the vector field N. 1t is not hard to show that for each N € so(5,1) the
transformation (14) constitutes a symmetry of the SDYM equations (1).

The group-valued functions W, satisfying the linear equations (3) are defined on the
subspaces Z4 = " x C. of the twistor space Z. Therefore, we have to define the action
of SO(5,1) on Z4 preserving the linear system (3). The lifted vector fields N on zZ,,
which form the generators of SO(5,1), are given by [7],

Xo=X,, V=Y. +2%, P,=P,

R.I‘ = ]\“# + ﬁg,ﬂ;a Zﬂ’ ‘D = Ds (15)

with the lollowing expression for the generators Z, of the SO(3) rotations on Cy C CP:

|t~‘.

Zy = (2\2-1)8,\—%(7\2~1)8;\, 7y = é(,\2+1)a\+é(3\2+1)a;, Z3y = iAdy —1iAd;. (16)

s

N

L

Here A is the complex conjugate to A € C. and dy := 8/dX. For Z_ we have analo-
gous formulas. Using identities for the ’t Hooft tensors [11], it can be easily shown that
[Xo, Xb] = —2¢5,X,, [Xo, V3] = 0,[V., V5] = —2¢5, Y. and so on. Now one can define
the infinitesimal transformation of the group-valued function ¥, under the action of the
conformal group [7]: .

Sy =Ly = NV, (17)

where N is any of the generators defined in (15). It is not hard to show that the linear
system (3) is invariant under the transformations (14}, (17).

Obviously the gauge By = Bz = 0 is not invariant under conformal transformations,
because in general (Ly By) |B,=o# 0, (LnBs) |B,=0# 0. However, as noticed by Pohlmeyer
{1], conformal invariance can be restored by compensating gauge transformations. We
shall write out the explicit formulas for these compensating gauge transformations. First,
it can be shown that

8x.By = Lx,By = B,XY, 4+ B.XZ, =0, &, Bs=0,
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JP“BQ = 6[JPB§ = 0, Jl)Bg = (SD'BE = 0, 5)'3 Bg = (Syan = 0, (18)
and for N € {Y1, Yo, N, } we have §y By # 0 and éy Bz # 0. For example,

5)/.2337 = —Bz, 6}’2 Bz = By, (J.gﬂ,)

51\!;’]35 = *—ZBZ, 6}\'y B;, = Zlgy, (].gb)
where B, and B, are defined in (5).

As a second step, for an arbitrary generator N of (15) let us introduce the Lie algebra-
valued function 5 (2,A) on 24,

b(e,A) = (NN~ (M) € 6, (20)

and consider the function oy = 9% (z) = g (z, A = 0), the infinitesimal gauge transfor-
mation d,pn +[B,, ¢n] of the YM potentials generated by ¢n(z), and the transformation

8% By = 6nBy + 0yon + By, onl, 6% B, = 6nB. + O + [Byon],  (21a)

which is a combination of the conformal transformations éy and a gauge transformation.
By direct calculation one may verify that

8% By = OnBy + Ogpn = 0, 8% Bz = Sn Bz + dzon = 0, (21b)

for any generator N of the conformal group. The identity #{z, A = 0} = 1 implies that
pn = 0 and 8% = oy for N € {P,, Xo, Y} and oy # 0if N € {V, Yz, K, }. Using egs.
(14) and (21), it is easy to show that
0 0

[6%,, 5?;,]By = J[M,N]By’ [627!, 5%,]32 = 6[@'.1’(’]82’ [(5?:[, 5?\-',]Bg = O, [5%,, 5%,]85 = O, (22)
i.c. the transformations 8% define an action of the conformal algebra so(5,1) on the YM
potentials which preserves the gauge By = B; = 0.

The action of 6% on the group-valued function 5(x, A) has the form

-

§xn(A) = xn(A) — en(@)n(A) = N(An(A) — en(z)n(A), (23)

where 5%, is precisely the combination of a conformal and a compensating gauge transfor-
mation. It may be shown that the linear system (10) is invariant under the transformations
(21), (23). Thus, fixing a complex structure on the space R*® and fixing the gauge (5)
does not destroy the conformal invariance of the SDYM cquations and the linear system
for them.

4 Hidden symmetries
In Sect.3 we assigned to each generator N of the conformal group SO(5, 1} a function

Yz, A) on Zy with values in the Lie algebra G (see (20)). Using egs. (10) on n(z, M),
one can verify that the function %5 satisfies the equations

g (A) + L By — M5 (A) + [Bz, (A + LaB:) = 0, (24a)
DY (A) + Ln Bz + MOz (A) + [By, bg(A)] + La By) = 0, (24b)
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where Ly is the Lie derivative along the vector field N (see Sect.3).
Let us recall that the group-valued function n(z, A) is holomorphic and nonsingular
for A € C4. Hence 95 can be expanded in powers of A:

Vel ) = 3 V(o) (29)

where the coefficients ¢%, depend only on z* € R* and are conserved nonlocal charges
(cf. [1-4]). After substituting (25) into (24) we obtain the following recurrence relations:
LBy + aﬁ"»[)%v =0, Ly Bz + dstby =0, (26a)

Jy l,[)N d. 'l,bo- — [B:,¢; ] LyB, =0, 0; z,bN + Byz,bN + [By,t,bN] +LnB, =0, (26b)

g ¢n+1 - Bz'lib::r - [Bzad)ﬂ[ = 01 af'll);:';}.l + 3y¢1§r [13!;1‘1[)]9] = 01 n 2 L (266)

The starting point (26a) is true by construction ol 5%,:

§%B; =0, §3B: =0. (27a)

For B, and B, we obtain
Sy By = 0% + By, w}] + Ly By = —9sp, (270)
6% B: 1= 0:9% + [Bo, 3] + Ly B = 03¢k (27¢)

Using eqs. (27) it is trivial to deduce the invariance of the SDYM equations (6) under
conformal transformations:

337((5%, 13 ) (9 (51\' ) —358541)};, -I" 0;351,[)11&, == 0. (28)

Eqs. (26) are straightforward to generalize eqs.(27) to an infinite number of infinitesimal
transformations 6% with n > 0:

0By =0, d3Bz:=0, n>1, (29a)

53By = 0,83 + By ) = —0sbTH, n > 1, (290)

8% B, = 0.4 + (B, ¢%] = aggb;;jfl, n>1. (29¢)

Introducing d5(C) = X310 ("0%, ¢ € Cy, we obtain a one-parameter family of infinitesi-
mal transformations

61\_'(C)B§ =0, 6:{'(C)Bi =0, (30a)

; . 1 .
S5 (Q)By i= Dy (Q) + [By, ¥ (O)] + Ln B, = (0 Pi(C) + L Bz), (300)

S () Bz = :9x(C) + (B, ¥ (O)) + L B. = —(3;7%7(() + Ly By). (30c)

¢
Clearly §3(() generates a symmetry of the SDYM equations (6), since il B, and B, satisfy
eqs. (6) then
; : 1., .
95(65(C) By) + 0:(85(C) B:) = —E{f)ﬁ(ﬁNBz) — 0:(Ln By)} =0, (31)
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for any generator N of the conformal group. For example, for Y; from {19a) we have
. . 1
(VB + 0x(55, () ) = ~ {0y By + 1B} = 0.

To find the infinitesimal transformation n(A) = é5({)n(A) corresponding to the trans-
formations (30) let us consider the variation of eqs. (10). We obtain

x5 (A €)= MOex 5 (A, Q) + [Bay Xz (A Q) = Adz() B. = 0, (32a)
OEXN(’\aC) + /\(ay,\'ﬁ/(’\a C) + [Bya/\'ﬂ/()\,{;)]) + A‘SN(C)By = 0, (32b)

where x 5(X, () = {Sx(On(M) I~ (A). One can verify that the function yg(A, () satisfies
eqs. (32) (cf. [1-6]):

X80, = T2 () — (0} =

SalOnN) = T s = a(Oh) (39)

For ¢ = 0 formula (33) coincides with eq. (23). Thus, we succeeded to assign to cach
generator N of the conformal group a one-parameter family d5(¢), ¢ € C, of infinitesimal
transformations of solutions of the SDYM equations and of the solution 7 of the associated
linear system. For each N € so(5, 1) these transformations are new “hidden symmetries”
of the SDYM equations.

5 Algebraic structure of the symmetries

In Sect.4 we described the infinitesimal symmetry transformations, the exponentiation of
which acts on the set M of solutions of the SDYM equations (6). Let us consider any
solution {B,} = {B,, B,, B; = 0, B; = 0} of these equations. Then the solutions d5(¢) B,
of the linearized SDYM equations describe the vector space tangent to the manifold M
of solutions at the point {B,}. So, the inlinitesimal symmetries é5({) are vector fields on
the manifold M and they define a map B, — é5(()B,.

Notice that we consider A,( € C;. We restrict our attention to only half of the
symmetries. The rest will be obtained when we focus on Z_ = R*Y x C_, the linear
system (11) for 77 on Z_ and the function qu('L, Q)= {NOHOIH ), ¢ € C-. Werecall
that the function 7 is holomorphic and nonsingular for ¢ € C_ and therefore ¢N(C) =

“ o C‘”'A'J’\!,. Then we can derive for ;LN an equation analogous to 1q.(24) and introduce
a second set of symmetry transformations §3(¢) similar to (30) and (33) with 'gLN replacing
(2

Let us discuss now the algebraic properties of the “on-shell” symmetry transformations
85 (¢) that preserve the equations of motion. After a lengthy computation using the
formulas of Sect.3 and Sect.d, we obtain the following expression for the commutator
between two successive infinitesimal transformations:

[65(A), 85 ()] By = A—l_—c{,\d[ﬁs,,m(,\) — (8 i (O)} By— (34a)

_Ag(,\l_ = {CQM’\ (Ad5(N) = CO5(0)) + NENC (A6 5 (M) — (:6}17!((:))} B,+ (34b)
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+5 i C{n?f%)c(_c(sf;,(g)) + N6 (A5 (M)} B+ (34c)

+{]E1{r;_5,¢,()\) - %M;aﬁ(g)wy— (34d)
1
- C{ﬁ'f‘(Jc'ebN( §) + NSOy (M) }+ (34¢)
ANS (M2

+ ( g)g{d)ﬂl( ) Jllbt\jl(C)} ( ) {lle( ) 11[;1'(’(()} (34f)

Here NV, N*, ... arc the components ol any generator of SO(5, ]) of (15): N = N¥9, +
N9, + N‘d + N9, + N9, + N*9;5. The commutator (651 (N), 85(0)]B; looks similar to
(34), except N';, 1\4;,1\’:" and M§ replace N4 etc. in lines (34(1)-(34f).

Tt is obvious that because of the terms (34e) and (34f) the commutator (34) does not
close in general. The terms (34¢) and (34[) are nonzero when 1{’\ # 0 and Nf\ # 0, but
this holds only for the generators ]\,‘ of special conformal tlansfmmatlons T hetcfmc if
at least one of the vector fields M or N coincides with one of the generators K, then the
commutator of two symmetries is no longer a symmetry.

Now we consider the 8-dimensional algebra A with generators {P,, X,;, D} and the
11-dimensional algebra B with generators {P,, X,, D,Y,}. Both algebras A and B are
subalgebras of so(5,1). For each generator N of the algebra A C B we have N =N
(P, = P, Xy = X, D = D), ie these generators have no components along the vector
fields dy and 5. Momovel for all of them N% = Nfg = 0 and hence all terms (34b)-(34f)

are zero. Thus, for M, N € A eq. (34) reduces to

1
(A =0
which defines the analytic half of the Kac-Moody algebra A ® C(A, A7"), the affine ex-

tension of the algebra A € so(5,1). Let us define the variations é% for all n > 0 by the
contour integral

[Bar(A), SN (Q)] = = { M. (A) — oy (O) 1, (35)

A
s _fc L Am=150(0), (36)

2w
where the contour C’ circles once around A = 0. We may choose C' = C = C, NC..
Using the definition (36) and the commutator (35), Cauchy’s theorem allows us to deduce
the commutators hetween half of the gencrators of the affine Lie algebra A ® C(A, A7)

(67, 6] = dnimy, myn > 0. (37)

For the gencrators {Y,} of the so(3)-subalgebra of the algebra B we have Y/\- = ';’\

0, Yz_ = const, Y)¥; = const and thus the terms (34e) and (34f) are zero. Insteacl of { ~’;}
it is convcm(nt to rewrite the generators as follows:

~

Yy = Yy —iY, = 2205 — 2y0: + A Zy — i2y), Yo := 220, — 250, + 2(Zy +i2,), (38a)

Yo = —iYs = yd, + 20, — §05 — 205 — 2 Zs, (38b)
[Y/Oa ?+] = ‘)}}+a D”/Cl Y’—] = _2‘}—a [}.}+a f/—] = _4}?0 (38‘:)



Using the explicit form (38) of the vector fields Yo, Yi and egs. (34) we obtain:

..

(67, 62) = —4(m — n)6p+", 62 = }i AT (), (39)
m n m+n—1 6111 . d)‘ —-m—lé‘ v
(67,67, = —4(m —n)ag+™!, 67 = j{: AT, (), (39b)
m 1 mTT m (lA —m— s
(6% ,6% ) = —4(m — n)dgtnel 67 .= jéc _QTriA 15s (M), (39¢)

m
).’D’
subalgebras of the symmetry algebra. Obviously these Virasoro-like subalgebras do not
commute with each other. Using eq.(34), the contour integral definitions and Cauchy’s

theorem one finds

From (39) one can see that ¢ (5;{: and 87 generate three different Virasoro-like

(0%, 0%] = (56‘,:}{,} + 4ndytT, (40a)

[6;-,'1,5;{,] = 5[";,:'"};] + dndpinTt (400)
157,33 = By + dndgrH, (40¢)

63, 6;3,+] = 5{‘?:;‘1] + 4116}?,:*‘” - 4?7?.5;{;"'"", (40d)
(6,83 ) = 6% |+ AnSpF" — dmsT, (40¢)
107,63 ] = 67 - dnbEnt — amspie, (40)

m m

hus, the subset of symmetries of the SDYM equations with generators ép , 8%, , 0 and
6% forms a Kac-Moody-Virasoro algebra with commutation relations (37), (39) and (40).

In [7] it has been shown that the linear system for the SDYM equations will be invariant
under the action of the conformal group only if we add the combinations of the Virasoro
generators Lo = —Ady, L, = —A?0)\ and L_, = —0d, to the generators Y, and K, .
Therefore, the appearance of a Virasoro-like algebra as an algebra of symmetries ts not
surprising. Beyond expectation the symmetry algebra contains three different Virasoro-
like subalgebras with the generators 5;3,;,5;-',1 and 5;—',‘_. In comparison with the previously
known symmetries of the SDYM equations, these new symmetries are the affine extension
not of gauge symmetries, but of space-time symmetries of the SDYM equations.

r11

6 Off-shell Kac-Moody and Virasoro algebras

We will now proceed to deline the “off-shell” action of the graded Lie algebra so(5,1) &
C(A) and the Virasoro algebra on the space of YM potentials and group-valued [unctions
. The action of the Virasoro algebra docs not preserve the SDYM equations. As to
the algebra so(5,1) ® C(A), only the action of the subalgebra A @ C(A) of this algebra
preserves eq. (6).

As usual, we assign to each vector field N the function ¥y (z,¢) = {Nn({)}n~'(¢) on
Z, and consider the following transformation of the YM potentials:

Sn(Q)By == 0PN (C) + [By, ¥n (O] + L By, n(C) By = L By, (41a)
on(()B: = 0PN (C) + [Bey dn(Q)] + LBz, 6n(()Bs 1= L Bs. (410)



For n(z, A) we postulate the following transformation rule:

A
Sn(Cm(A) = /\——C{W(A) —n(C)In(A). (41c)
Now it is not hard to show that

(6ar(A), SN (O] By = O {n(C)bar(A) — Sm(M)en(()} +
+[ By, Sn(C)ar(A) — Sar(A ) (€)]
+[6n () By, ¥ar(A)] = [0a1(A) By, ¥ (0]
+Lu{0n(C) By} — Ln{da(() By} (42)

and we have the same formula for B,. From (41), (42) and

Sn(Qar(A) = {M (S (M)}~ (A) + {Mn(N)}n (™" (A)

it follows that :
[6a1(A), 6n(C)] = W{AJ[M,N](/\) — Com,m(€) (43)

when we consider the action on By, B,, By and Bz, as well as . By (41) we have for B;
or B; simply

[8as(A), 6n(()] B5 = (/\lfo{/\cs[,\4,,\r](z\) — COparv)(€)} By = Liar,n By

Using eq. (43), it is not difficult to deduce the commutators of half of the affine Lie
algebra $o(5,1):

™m n m-+n n (lA —T—
(65385 = Sy, O = fc AT, M2 0. (45)

If we consider also 7, P and generators Sn, then we obtain (45) with —co < m,n < 400,
i.e. the full affine extention §6(5,1) = so(5,1) @ C(A,A™!) of the conformal algebra

So(aéctl){sider now the vector field V = Ady on 'y and the Lic algebra-valued function
Py, A) = {V (M)~ (A). (46)
Let us define for {B,} and 7 the following transformation rules
8(0) By := 9ybv(¢) + [By v (()], 6(¢)By =0, (47a)
§(C)B: = 0:bv (C) + [ Bz b (C)),  6(¢) Bz := 0, (47b)
SN = T2l () = (O (47¢)

One can verify that
[6(A),6(C)] By = 3,{6(C)ov (A) — 8(A)bv ()} -+
+[By, 6(C)v (A) = 8(A)sbv ()] + [6(C) By, v (A)] — [6(A) By, v (O], (48)
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and similarly for B.. Using (47), (48) and

S(()v(A) =

S VO ) + B ) (O = e e = ()

( )

we obtain the commutator

B 1 2X(

when we consider the action on 5 or on any component of B,.
Let us define

S{AN0(A) + CFO(0)} - {60 - 6(0)) (49)

! dA
"= —-5*‘ =5 f A ;
5 AT, (50)

Now, using (49) and (50), it is not ha.rd to show that we obtain half of the Witt algebra:
(L™, L] = (m —=n)L™™, m,n > 0. (51)

We shall obtain the full centerless Virasoro algebra, i.e. the Witt algebra, if we consider
7(¢) with ¢ € C_ and extend all the calculations appropriately.

Finally, we write out the formula for the commutator between the generators L™ of
the Virasoro algebra and the generators 6% of the Kac-Moody algebra §o(5,1):

[5(0), 63()] = ﬁacé‘v(g) = & 0)?

(L™, 8] = —ndT+. (520)

Az (A - (O} = (52a)

Thus we have defined the off-shell action of the Kac-Moody algebra 56(5,1) and of the
Virasoro algebra on the space of YM potentials and on the group-valued functions 5(A).
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