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L∞-algebras governing simultaneous deformations

via derived brackets

Yaël Frégier∗† Marco Zambon‡

Abstract

We consider the problem of deforming simultaneously a pair of given structures.
We show that such deformations are governed by an L∞-algebra, which we construct
explicitly. Our machinery is based on Th. Voronov’s derived bracket construction.

We consider algebraic and geometric applications including the deformations of mor-
phisms of various kinds of algebras, of coisotropic submanifolds in Poisson manifolds,
and of twisted Poisson structures.
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Introduction

Deformation theory was developed in the 50’s by Kuranishi-Kodaira (complex structures
in [25], [26], [27] and [30]) and by Gerstenhaber (associative algebras [16]). Nijenhuis-
Richardson then gave an interpretation of deformations in terms of graded Lie algebras
([36] and [37]) which was later promoted by Deligne: deformations of a given algebraic or
geometric structure ∆ are governed by a differential graded Lie algebra (DGLA) or, more
generally, by an L∞-algebra.

For example Gerstenhaber in [16] introduced a graded Lie algebra (L, [−,−]) such that
an associative algebra structure on a vector space V is given by ∆ ∈ L1 such that [∆,∆] = 0.
A deformation of ∆ is an element ∆ + ∆̃ such that ∆̃ ∈ L1 and

0 = [∆ + ∆̃,∆ + ∆̃] = 2[∆, ∆̃] + [∆̃, ∆̃] = 2(d∆∆̃ +
1
2

[∆̃, ∆̃]), (1)

i.e. the DGLA (L, d∆, [·, ·]) governs deformations of the associative algebra ∆.
It is usually a hard task to show that the deformations of a given structure are gov-

erned by an L∞-algebra, and even harder to construct explicitly the L∞-algebra. When
one succeeds in doing so, as a reward one gets the cohomology theory, analogues of Massey
products and a natural equivalence relation on the space of deformations. Moreover, quasi-
isomorphic L∞-algebras govern equivalent deformation problems, a result with non-trivial
applications to quantization (see [28]).

In this work we consider simultaneous deformations of two (interrelated) structures. A
typical example is given by the simultaneous deformations of (∆,Φ), where ∆ denotes a pair
of associative algebras and Φ is an algebra morphism between them. These deformations
are characterized by a cubic equation (unlike eq. (1) which is quadratic) and are therefore
governed by an L∞-algebra with non trivial l3-term.

Our main result, Thm. 3 in §1.3, constructs explicitly L∞-algebras governing such si-
multaneous deformation problems.
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Outline of the content of the paper. L∞-algebras, introduced by Lada and Stasheff
[32], consist of collections {li}i≥1 of “multi-brackets” satisfying higher Jacobi identities.
They can be built out of what we call V-data (L,P, a,∆) via derived bracket constructions
due to Th. Voronov [50] [51] (see Thm. 1 and 2).

Our main contribution is to determine L∞-algebras governing simultaneous deforma-
tion problems (Thm. 3), by recognizing that they arise as in Voronov’s Thm. 2. These
results are collected in §1. We apply them to algebraic problems in §2 and §3, to geometric
problems in §5, and we believe that the range of application of our tools is much broader
than the examples we have examined (see §4).

We give algebraic applications to the study of simultaneous deformations of algebras
and morphisms in the following categories: Lie, L∞, Lie bi- (see §2) and associative algebras
(see §3). Another application concerns Lie subalgebras of Lie algebras.

One could instead have used operadic methods, see for example [13], but our techniques
have the advantage of not assuming any knowledge of operadic machinery and of easily de-
livering explicit formulae. Note that the graded Lie algebras appearing in our V-data can
be seen as coderivations of certain coalgebras built from Koszul duality for operads (see §4).

The main novelty, concerning applications, is in geometry. In §5 we determine L∞-
algebras governing simultaneous deformations of: coisotropic submanifolds of Poisson man-
ifolds; Dirac structures in Courant algebroids, with twisted Poisson structures as a special
case. We also describe explicitly the equivalence relation on the spaces of twisted Poisson
structures.

None of these examples, to our knowledge, falls under the scope of the operadic meth-
ods, and one should have in mind that in this geometric setting, no tool such as Koszul
duality gives for free the graded Lie algebra L of the corresponding V-data.

In the appendix we give a proof of the fact (Prop. 2.17) that any L∞-algebra structure
on an arbitrary vector space can be recovered from Voronov’s derived bracket construction,
generalizing a well-known result valid for finite dimensional vector spaces (see for instance
[50, Ex. 4.1]). We also provide background material on graded and formal geometry.

Deformation quantization of symmetries. One knows from [3] that the quantization of
a mechanical system (Poisson manifold) can be understood as a deformation of the algebra
of smooth functions “in the direction” of the Poisson structure, the first order term of the
Taylor expansion of this deformation.

Kontsevich associates in [28] to any Poisson structure such a quantization: Poisson
structures and their quantizations are Maurer-Cartan elements for suitable L∞-algebras
(Schouten and Gerstenhaber algebras, respectively), so it suffices to build a L∞-morphism
between these two L∞-algebras (formality theorem). This morphism sends Maurer-Cartan
elements to Maurer-Cartan elements, i.e. associates a quantization to any Poisson structure.

One of our first motivations was to apply this approach to symmetries. The notion of
symmetry of a mechanical system (C∞(M), {−,−}) can be understood as a Lie algebra
map (g, [−,−])→ (C∞(M), {−,−}). This map can be extended, in the category of Poisson
algebras, to (Sg, {−,−}), the Poisson algebra of polynomial functions on g∗. Its graph can
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be regarded as a coisotropic submanifold of the Poisson manifold g∗ ×M . Therefore, in
§5.1 we construct an L∞-algebra governing simultaneous deformations of Poisson tensors
and their coisotropic submanifolds. This L∞-algebra plays the role of the Schouten alge-
bra in presence of symmetries. It generalizes the L∞-algebras governing deformations of
coisotropic submanifolds of Poisson manifolds considered by Oh and Park [38], and Catta-
neo and Felder [7], since in their settings, the Poisson structure was kept fixed.

Acknowledgements: We thank J. Stasheff for comments, and D. Iacono, M. Manetti, F.
Schätz, B. Shoiket, B. Vallette, T. Willwacher for useful conversations.
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warmest thanks. He benefited form the support of the UAM through grant MTM2008-
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1 L∞-algebras via derived brackets and Maurer-Cartan ele-
ments

The purpose of this section is to establish Thm. 3, which produces the L∞-algebras appear-
ing in the rest of the article. Therefore, we first give some basic material about L∞-algebras
in §1.1, then we recall in §1.2 Voronov’s constructions which will be the main tools used to
establish in §1.3 our Theorem 3. We conclude justifying in §1.4 why no convergence issues
arise in our machinery, and discussing equivalences in §1.5.

1.1 Background on L∞-algebras

We start defining (differential) graded Lie algebras, which are special cases of L∞-algebras.

Definition 1.1. A graded Lie algebra is a Z-graded vector space L =
⊕

n∈Z Ln equipped
with a degree-preserving bilinear bracket [·, ·] : L⊗ L −→ L which satisfies

1) graded antisymmetry: [a, b] = −(−1)|a||b|[b, a],

2) graded Leibniz rule: [a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]].

Here a, b, c are homogeneous elements of L and the degree |x| of an homogeneous element
x ∈ Ln is by definition n.

Definition 1.2. A differential graded Lie algebra (DGLA for short) is a graded Lie algebra
(L, [·, ·]) equipped with a homological derivation d : L→ L of degree 1. In other words:

1) |da| = |a|+ 1 (d of degree 1),

2) d[a, b] = [da, b] + (−1)|a|[a, db] (derivation),

3) d2 = 0 (homological).
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In order to formulate the definition of an L∞-algebra – a notion due to Lada and Stasheff
[32] – let us give two notations. Given two elements v1, v2 in a graded vector space V , let
us define the Koszul sign of the transposition τ1,2 of these two elements by

ε(τ1,2, v1, v2) := (−1)|v1||v2|.

We then extend multiplicatively this definition to an arbitrary permutation using a decom-
position into transpositions. We will often abuse the notation ε(σ, v1, . . . , vn) by writing
ε(σ), and we define χ(σ) := ε(σ)(−1)σ.

We will also need unshuffles: σ ∈ Sn is called an (i, n − i)-unshuffle if it satisfies
σ(1) < · · · < σ(i) and σ(i + 1) < · · · < σ(n). The set of (i, n − i)-unshuffles is denoted by
S(i,n−i). Following [31, Def. 2.1], we define

Definition 1.3. An L∞-algebra is a Z-graded vector space V equipped with a collection
(k ≥ 1) of linear maps lk : ⊗k V −→ V of degree 2 − k satisfying, for every collection of
homogeneous elements v1, . . . , vn ∈ V :

1) graded antisymmetry: for every σ ∈ Sn

lk(vσ(1), . . . , vσ(n)) = χ(σ)lk(v1, . . . , vn),

2) relations: for all n ≥ 1∑
i+j=n+1
i,j≥1

(−1)i(j−1)
∑

σ∈S(i,n−i)

χ(σ)lj(li(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)) = 0.

In a curved L∞-algebra one additionally allows for an element l0 ∈ V2, one allows i and j
to be zero in the relations 2), and one adds the relation corresponding to n = 0.

Notice that when all lk vanish except for k = 2, we obtain graded Lie algebras.
In Def. 1.3 the multibrackets are graded antisymmetric and lk has degree 2−k, whereas

in the next definition they are graded symmetric and all of degree 1.

Definition 1.4. An L∞[1]-algebra is a graded vector space W equipped with a collection
(k ≥ 1) of linear maps mk : ⊗k W −→ W of degree 1 satisfying, for every collection of
homogeneous elements v1, . . . , vn ∈W :

1) graded symmetry: for every σ ∈ Sn

mk(vσ(1), . . . , vσ(n)) = ε(σ)mk(v1, . . . , vn),

2) relations: for all n ≥ 1∑
i+j=n+1
i,j≥1

∑
σ∈S(i,n−i)

ε(σ)mj(mi(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)) = 0.

In a curved L∞[1]-algebra one additionally allows for an element m0 ∈ W1 (which can be
understood as a bracket with zero arguments), one allows i and j to be zero in the relations
2), and one adds the relation corresponding to n = 0.
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Remark 1.5. There is a bijection between L∞-algebra structures on a graded vector space
V and L∞[1]-algebra structures on V [1], the graded vector space defined by (V [1])i := Vi+1

[50, Rem. 2.1]. The multibrackets are related by applying the décalage isomorphisms

(⊗nV )[n] ∼= ⊗n(V [1]), v1 . . . vn 7→ v1 . . . vn · (−1)(n−1)|v1|+···+2|vn−2|+|vn−1|, (2)

where |vi| denotes the degree of vi ∈ V . The bijection extends to the curved case.

From now on, for any v ∈ V , we denote by v[1] the corresponding element in V [1]
(which has degree |v| − 1). Also, we denote the multibrackets in L∞[1]-algebras by {· · · },
we denote by d := m1 the unary bracket, and in the curved case we denote {∅} := m0 (the
bracket with zero arguments).

Definition 1.6. Given an L∞[1]-algebra W , a Maurer-Cartan element is a degree 0 element
Φ satisfying the Maurer-Cartan equation

∞∑
n=1

1
n!
{Φ, . . . ,Φ︸ ︷︷ ︸

n times

} = 0. (3)

One denotes by MC(W ) the set of its Maurer-Cartan elements.
If W is a curved L∞[1]-algebra, one defines Maurer-Cartan elements by adding m0 ∈W1

to the left hand side of eq. (3) (i.e. by letting the sum in (3) start at n = 0).

There is an issue with the above definition: the l.h.s. of eq. (3) is generally an infinite
sum. In this paper we solve this issue by considering filtered L∞[1]-algebras (see Def. 1.16),
for which the above infinite sum automatically converges.

1.2 Th. Voronov’s constructions of L∞-algebras as derived brackets

Here we introduce V-data and recall how Voronov associates L∞[1]-algebras to a V-data.

Definition 1.7. A V-data consists of a quadruple (L, a, P,∆) where

• L is a graded Lie algebra (we denote its bracket by [·, ·]),

• a an abelian Lie subalgebra,

• P : L→ a a projection whose kernel is a Lie subalgebra of L,

• ∆ ∈ Ker(P )1 an element such that [∆,∆] = 0.

When ∆ is an arbitrary element of L1 instead of Ker(P )1, we refer to (L, a, P,∆) as a
curved V-data.

Theorem 1 ([50, Thm. 1, Cor. 1]). Let (L, a, P,∆) be a curved V-data. Then a is a curved
L∞[1]-algebra for the multibrackets {∅} := P∆ and (n ≥ 1)

{a1, . . . , an} = P [. . . [[∆, a1], a2], . . . , an]. (4)

We obtain a L∞[1]-algebra exactly when ∆ ∈ Ker(P ) .

6



When ∆ ∈ Ker(P ) there is actually a larger L∞[1]-algebra, which contains a as in Thm.
1 as a L∞[1]-subalgebra.

Theorem 2 ([51, Thm. 2]). Let (L, a, P,∆) be a V-data, and denote D := [∆, ·] : L → L.
Then the space L[1]⊕ a is a L∞[1]-algebra for the differential

d(x[1], a) := (−(Dx)[1], P (x+Da)), (5)

the binary bracket
{x[1], y[1]} = [x, y][1](−1)|x| ∈ L[1],

and for n ≥ 1:

{x[1], a1, . . . , an} = P [. . . [x, a1], . . . , an] ∈ a, (6)
{a1, . . . , an} = P [. . . [Da1, a2], . . . , an] ∈ a. (7)

Here x, y ∈ L and a1, . . . , an ∈ a. Up to permutation of the entries, all the remaining
multibrackets vanish.

Notation 1.8. We will denote by
aP∆

and by
(L[1]⊕ a)P∆

the L∞[1]-algebras produced by Thm. 1 and 2.

Given a curved V -data, assume that Φ ∈ a0 is such that e[·,Φ] is a well-defined (see
Prop. 1.18 for a sufficient condition), giving an automorphisms of (L, [·, ·]). Consider

PΦ := P ◦ e[·,Φ] : L→ a. (8)

Notice that PΦ is a projection since e[·,Φ]|a = Ida by the abelianity of a.

Remark 1.9. Let (L, a, P,∆) be a curved V-data and Φ ∈ a0 as above. Then Φ is a Maurer-
Cartan element of aP∆ iff

PΦ∆ = 0, (9)

or equivalently ∆ ∈ ker(PΦ). This follows immediately from eq. (4) and will be used
repeatedly in the proof of Thm. 3.

Remark 1.10. Let L′ be a graded Lie subalgebra of L preserved by D (for example L′ =
Ker(P )). Then L′[1] ⊕ a is stable under the multibrackets of Thm. 2. We denote by
(L′[1]⊕ a)P∆ the induced L∞[1]-structure.

Remark 1.11. Voronov’s [51, Thm. 2] is actually formulated for any degree 1 derivation D
of L preserving Ker(P ) and satisfying D◦D = 0. We restrict ourselves to inner derivations
for the sake of simplicity, and since all the derivations that appear in our examples are of
this kind.

A “semidirect product” L∞[1]-algebra similar to the one in Thm. 2 appeared in [2] [11].
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1.3 Main theorem: an analogue of the Tangent complex within Voronov’s
theory.

It is well known [20, Prop.4.4] that one can twist an L∞[1]-algebra g by one of its Maurer-
Cartan elements Φ. One obtains a new L∞[1]-algebra gΦ, sometimes called the “tangent
complex at Φ”. Its n-th multibracket is

{. . . }Φn = {. . . }n + {Φ, . . . }n+1 +
1
2!
{Φ,Φ, . . . }n+2 + . . .

where {. . . }j denotes the j-th multibracket of g.
A property of the tangent complex gΦ is that its Maurer-Cartan elements are in one to

one correspondence with the deformations of Φ, i.e.

Φ + Φ̃ ∈MC(g) ⇔ Φ̃ ∈MC(gΦ).

Our goal in this section, Thm. 3, is to have this property for simultaneous deformations.
To this aim one needs to modify the notion of tangent complex in the setting of Voronov’s
theory.

We first reinterpret in Proposition 1.12 the tangent complex in terms of the twisted
V-data (L, a, PΦ,∆) and observe that “twisting commutes with derived brackets”. We then
establish in Thm. 3 that the construction given by Theorem 2 applied to the twisted V-
data gives an L∞[1]-algebra whose Maurer-Cartan elements correspond to simultaneous
deformations of Φ and ∆.

Proposition 1.12. Let (L, a, P,∆) be a filtered V-data and let Φ ∈MC(aP∆). Then

1) (L, a, PΦ,∆) is also a V-data. Moreover (aP∆)Φ = aPΦ
∆ , i.e. “twisting commutes with

derived brackets”.

2) For any Φ̃ ∈ a0:
Φ + Φ̃ ∈MC(aP∆) ⇔ Φ̃ ∈MC(aPΦ

∆ ).

The assumption filtered is there to ensure the convergences of the infinite sums ap-
pearing, and can be neglected on a first reading. We will address convergence issues in
§1.4.

Proof. 1) PΦ is well-defined by Prop. 1.18. Ker(PΦ) = e[·,−Φ](Ker(P )) is a Lie subalgebra
of L since e[·,−Φ] is a Lie algebra automorphism of L and ker(P ) is a Lie subalgebra. Further
∆ ∈ ker(PΦ) by Remark 1.9. Hence (L, a, PΦ,∆) is a V-data, and by Thm. 1 we obtain
the L∞[1]-algebra aPΦ

∆ .
The n-th multibracket (n ≥ 1) of aPΦ

∆ is given by

Pe[·,Φ][[[∆, ·], . . . ], ·]
=P [[[e[·,Φ]∆, ·], . . . ], ·]

={. . . }n + {Φ, . . . }n+1 +
1
2!
{Φ,Φ, . . . }n+2 + . . .
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which we recognize as the expression of {. . . }Φn . The first equality holds because e[·,Φ] is an
automorphism of L and e[·,Φ]|a = Ida.

2) We have

Φ̃ ∈MC(aPΦ
∆ )⇔ PΦ(e[·,Φ̃])∆ = 0

⇔ P (e[·,Φ+Φ̃])∆ = 0

⇔ Φ + Φ̃ ∈MC(aP∆).

Here the first and last equivalences hold by Remark 1.9. In the second equivalence we used
e[·,Φ+Φ̃] = e[·,Φ]e[·,Φ̃], which holds since Φ, Φ̃ lie in the abelian subalgebra a. Notice that the
sums appearing in the Maurer-Cartan equations converge both for aP∆ and aPΦ

∆ , by Prop.
1.18.

Thanks to this result, one can see the classical tangent complex of aP∆ at Φ as the
first derived bracket construction (Thm. 1) applied to the twisted V-data (L, a, PΦ,∆).
This suggests to consider, as a replacement of the notion of tangent complex at Φ, the
result of the second derived bracket construction (Thm. 2) applied to the twisted V-data
(L, a, PΦ,∆). The main result of this paper is:

Theorem 3. Let (L, a, P,∆) be a filtered V-data and let Φ ∈MC(aP∆). Then for all ∆̃ ∈ L1

and Φ̃ ∈ a0: {
[∆ + ∆̃,∆ + ∆̃] = 0
Φ + Φ̃ ∈MC(aP

∆+∆̃
)
⇔ (∆̃[1], Φ̃) ∈MC((L[1]⊕ a)PΦ

∆ ).

Moreover, aP
∆+∆̃

is a curved L∞[1]-algebra. It is a L∞[1]-algebra exactly when ∆̃ ∈ Ker(P ).

Proof. By Prop. 1.12 we can apply Thm. 2 to obtain the L∞[1]-algebra (L[1]⊕a)PΦ
∆ , whose

multibrackets we denote by {. . . }. We compute each summand appearing in the l.h.s of
the Maurer-Cartan equation for (∆̃[1], Φ̃) in (L[1]⊕ a)PΦ

∆ , which reads
∞∑
n=1

1
n!
{(∆̃[1], Φ̃), . . . , (∆̃[1], Φ̃)}. (10)

We have

{(∆̃[1], Φ̃)} = (−[∆, ∆̃][1], PΦ∆̃ + PΦ[∆, Φ̃] ),

{(∆̃[1], Φ̃), (∆̃[1], Φ̃)} = (−[∆̃, ∆̃][1], 2 · PΦ[∆̃, Φ̃] + PΦ[[∆, Φ̃], Φ̃] ),

{(∆̃[1], Φ̃), . . . , (∆̃[1], Φ̃)︸ ︷︷ ︸
n times

} = ( 0 , n · PΦ[[[∆̃, Φ̃], . . . ], Φ̃︸ ︷︷ ︸
n−1 times

] + PΦ[[[[∆, Φ̃], Φ̃], . . . ], Φ̃︸ ︷︷ ︸
n times

]).

The last line refers to the n-th term for n ≥ 3, and holds since the higher brackets with
two or more entries in L[1]⊕ {0} vanish.

The L[1]-component of (10) is just −1
2 [∆ + ∆̃,∆ + ∆̃][1]. The a-component of (10) is

PΦ

(
e[·,Φ̃]∆̃ + (e[·,Φ̃] − 1)∆

)
=PΦe

[·,Φ̃](∆ + ∆̃)

=Pe[·,Φ+Φ̃](∆ + ∆̃),
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which by Remark 1.9 is the l.h.s. of the Maurer-Cartan equation in aP
∆+∆̃

for Φ + Φ̃. Here
in the first equation we used Remark 1.9. The last two statements follow from Thm. 1.
Notice that the sums appearing in the Maurer-Cartan equations of aP

∆+∆̃
and (L[1]⊕ a)PΦ

∆

both converge, by Prop. 1.18.

We obtain the following corollary about the space of curved L∞[1]-algebra structures
arising as in Thm. 1 and Maurer-Cartan elements in there:

Corollary 1.13. Let L, a, P such that (L, a, P, 0) is a filtered V-data. The only non-
vanishing multibrackets of (L[1]⊕ a)P0 , up to permutations of the entries, are

d(x[1]) = Px,

{x[1], y[1]} = [x, y][1](−1)|x|,
{x[1], a1, . . . , an} = P [. . . [x, a1], . . . , an] for all n ≥ 1

where x, y ∈ L[1] and a1, . . . , an ∈ a.
Its Maurer-Cartan elements are characterized by: for all ∆̃ ∈ L1 and Φ̃ ∈ a0{

[∆̃, ∆̃] = 0
Φ̃ is a MC element of aP

∆̃

⇔ (∆̃[1], Φ̃) is a MC element of (L[1]⊕ a)P0 .

Proof. Applying Thm. 3 with ∆ = 0 and Φ = 0, we obtain the L∞[1]-algebra (L[1]⊕ a)P0 ,
whose multibrackets are given by setting D = 0 in Thm. 2 and are displayed above.

1.4 Convergence issues

The left hand side of the Maurer-Cartan equation (3) is generally an infinite sum. In this
subsection we review Getzler’s notion of filtered L∞-algebra [18], which guarantees that the
above infinite sum converges. We show that simple assumptions on V-data ensure that the
Maurer-Cartan equations of the (curved) L∞[1]-algebras we construct in Prop. 1.12 and
Thm. 3 do converge.

Definition 1.14. Let V be a graded vector space. A complete filtration is a descending
filtration by graded subspaces

V = F−1V ⊃ F0V ⊃ F1V ⊃ . . .

such that the canonical projection V → lim
←
V/FnV is an isomorphism. Here

lim
←
V/FnV :={→x ∈ Πn≥−1V/FnV : Pi,j(xj) = xi when i < j},

where Pi,j : V/F jV −→ V/F iV is the canonical projection induced by the inclusion F jV ⊂ F iV .

Remark 1.15. If V can be written as a direct product of subspaces V =
∏
k≥−1 V

k, then
{FnV }n≥−1 is a complete filtration of V , where FnV :=

∏
k≥n V

k.
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Definition 1.16. Let W be a curved L∞[1]-algebra. We say that W is filtered1 if there
exists a complete filtration on W such that all multibrackets {. . . } have filtration degree
−1.

Notice that for an element Φ ∈W of filtration degree 1, we have {Φ, . . . ,Φ}n ∈ Fn−1W
for all n, so the infinite sum

∞∑
n=0

1
n!
{Φ, . . . ,Φ}n (11)

converges inW by the completeness of the filtration. Indeed, setting wi :=
∑i

n=0
1
n!{Φ, . . . ,Φ}n

mod F iW for all i defines an element
→
w ∈ Πn≥−1W/FnW which turns out to belong to

lim
←
V/FnV ∼= W .

We define Maurer-Cartan elements to be Φ ∈ W0 ∩ F1W for which the infinite sum
(11) vanishes.

Definition 1.17. Let (L, a, P,∆) be a curved V-data (Def. 1.7). We say that this curved
V-data is filtered if there exists a complete filtration on L such that

a) The Lie bracket has filtration degree zero, i.e. [F iL,F jL] ⊂ F i+jL for all i, j ≥ −1,

b) a0 ⊂ F1L,

c) the projection P has filtration degree zero, i.e. P (F iL) ⊂ F iL for all i ≥ −1.

Proposition 1.18. Let (L, a, P,∆) be a filtered, curved V-data. Then for every Φ ∈
MC(aP∆) ⊂ a0:

1) the projection PΦ := P ◦ e[·,Φ] : L→ a is well-defined and has filtration degree zero.

2) the curved L∞[1]-algebra aPΦ
∆ given by Thm. 1 is filtered by Fna := FnL∩a. Further,

the sum (11) converges for any element of a0.

3) if ∆ ∈ ker(P ): the L∞[1]-algebra (L[1]⊕a)PΦ
∆ given by Thm. 2 is filtered by Fn(L[1]⊕

a) := (FnL)[1]⊕Fna. Further, the sum (11) converges for any element of (L[1]⊕a)0.

Proof. 1) For every x ∈ L, say x ∈ F iL, by Def. 1.17 a)b) we have

[[. . . [x,Φ], . . . ],Φ︸ ︷︷ ︸
n times

] ∈ F i+nL.

Hence the completeness of the filtration on L implies that e[·,Φ] is a well-defined endomor-
phism of L. The above also shows that e[·,Φ] has filtration degree zero, and since P does by
Def. 1.17 c), we conclude that the projection PΦ has filtration degree zero.

2) We first check that {Fna}n≥−1 is a complete filtration of the vector space a.
The map a→ lim

←
a/Fna is surjective. Indeed, take an element of lim

←
a/Fna, and consider

its image under the canonical embedding lim
←

a/Fna ↪→ lim
←
W/FnW . It is a sequence of

1Our definition differs from Getzler’s, which requires that W = F0W and that the multibrackets have
filtration degree zero except for the zero-th bracket which has filtration degree one.
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elements {ai mod F iW}i≥−1 where ai ∈ a. The surjectivity of W → lim
←
W/FnW implies

that there is an element w ∈ W such that ai mod F iW = w mod F iW for all i, which
implies w ∈ F iW + a for all i and hence w ∈ ∩i(F iW + a). Since ∩i(F iW ) = {0} (by the
injectivity of W → lim

←
W/FnW ), this means that w ∈ a.

The map a → lim
←

a/Fna is injective. Indeed, an element a ∈ a is sent to 0 if and only

if a ∈ ∩i(F ia). But ∩i(F ia) ⊂ ∩i(F iW ), which is {0} as seen above.
The multibracktets of aPΦ

∆ is given by PΦ[. . . [[∆, •], •], . . . , •] (see eq. (4)). Using 1) and
Def. 1.17 a), we see that this multibracket has filtration degree −1.

For the last statement, notice that a0 ⊂ F1a by Def. 1.17 b).
3) {(FnL)[1] ⊕ Fna}n≥−1 is a complete filtration of the vector space L[1] ⊕ a because

the two summands are complete filtrations of L[1] and a respectively (by assumption and
by 2) respectively). The multibracktets of (L[1] ⊕ a)PΦ

∆ are given in Thm. 2, and all have
filtration degree −1 by 1) and Def. 1.17 a).

For the last statement, notice that the non-vanishing multibrackets of (L[1]⊕a)PΦ
∆ accept

at most two entries from L[1], and use again a0 ⊂ F1a.

A common way to deal with convergence issues is to work formally (i.e. in terms of
power series in a formal variable ε). We make precise how this goes in the present context.

Lemma 1.19. Let (L, a, P,∆) be a curved V-data. Then the conclusions of Prop. 1.18
hold in the formal setting, provided one replaces a0 by a0 ⊗ ε · R[[ε]].

Proof. One checks easily that the following is a curved V-data:

• the graded Lie algebra L⊗ R[[ε]]

• its abelian subalgebra a⊗ R[[ε]]

• the natural projection Pε : L⊗ R[[ε]]→ a⊗ R[[ε]]

• ∆,

where the the first three structures are defined by R[[ε]]-linear extension. The natural
complete filtration {Fn}n≥0 by Fn := L ⊗ εnR[[ε]] satisfies conditions a),c) of Def. 1.17.
Hence one can apply Prop. 1.18 to the above listed curved V-data, taking care to replace
a0 by a0 ⊗ ε · R[[ε]].

Notice that the curved L∞[1]-algebra induced by the above listed curved V-data is
canonically isomorphic to (aP∆)⊗ R[[ε]].

1.5 Equivalences of Maurer-Cartan elements

Let W be an L∞[1]-algebra. On MC(W ), the set of Maurer-Cartan elements, there is
a canonical involutive (singular) distribution D which induces an equivalence relation on
MC(W ) known as gauge equivalence. More precisely, each z ∈ W−1 defines a vector field
Yz on W0, whose value at m ∈W0 is2

2Th infinite sum (12) is guaranteed to converge if W is filtered and W−1 ⊂ F1W , see §1.4. For both the
examples we consider in this paper, this sum is actually finite.
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Yz|m := dz + {z,m}+
1
2!
{z,m,m}+

1
3!
{z,m,m,m}+ . . . . (12)

This vector field is tangent to MC(W ). The distribution at the point m ∈ MC(W ) is
defined as D|m = {Yz|m : z ∈W−1}.
Remark 1.20. We give a justification of the above statements, see also [29, §3.4.2] [35,
§2.5][15, §2.2]. Suppose W is finite-dimensional, so that the L∞[1]-algebra structure is
encoded3 by a degree 1, self-commuting vector field Q on W [50, Ex. 4.1]. We recall the
following fact, that holds for any vector field X on W0 and any element m ∈ W0 (which
defines a constant vector field m on W0):

X|m = (e[m,·]X)|0. (13)

Indeed, both sides equal ((φ−1)∗X)|0, where φ denotes the time one flow of m (translation
by m). Eq. (13) applied to X = Q implies immediately that a point m ∈ W0 is a zero of
Q iff −m satisfies the Maurer-Cartan equation (3).

View z ∈ W−1 as a constant (degree −1) vector field on W . Then [Q, z] is a degree
zero vector field. As L[Q,z]Q = [[Q, z], Q] = 0, the flow of [Q, z] preserves the set of zeros
of Q, and hence [Q, z] is tangent to this set. Eq. (13) applied to X = [Q,Z] implies that
[Q, z]|W0 is the pushforward by −IdW0 of Yz, therefore Yz is tangent to MC(W ).

A computation shows that D can also be described in terms of all degree −1 vector
fields: D|m = {[Q,Z]|m : Z ∈ χ−1(W )} for all m ∈ MC(W ). Since [[Q,Z], [Q,Z ′]] =
[Q, [[Q,Z], Z ′]] it follows that D is involutive.

Remark 1.21. When the differential d vanishes, the Jacobiator of the binary bracket {·, ·}
is zero. Hence {·, ·} makes the vector space W−1 into an ordinary Lie algebra, and the
assignment W−1 → χ0(W0), z 7→ (Yz)lin := {z, ·} ∈ χ0(W0) to the linear part of Yz is a Lie
algebra morphism.

Consider in particular the L∞[1]-subalgebra ker(P )[1] ⊕ a of the L∞[1]-algebra of
Cor. 1.13. Notice that the differential vanishes, so Remark 1.21 applies. The vector
field associated to a degree −1 element z = (zL[1], za) ∈ ker(P )[1] ⊕ a, evaluated at
m = (mL[1],ma) ∈MC(ker(P )[1]⊕ a), reads

Yz|m = [zL,mL][1] +
∑
n≥1

1
n!
P [[zL,ma], . . . ,ma︸ ︷︷ ︸

n times

] +
∑
n≥1

1
(n− 1)!

P [[[mL, za],ma], . . . ,ma︸ ︷︷ ︸
n−1 times

]

(14)

where the square bracket is the graded Lie algebra structure on L.

We will display explicitly the equivalence relations induced on morphisms between Lie
algebras in §2.1 and on twisted Poisson structures in §5.3. In both cases it turns out that
the equivalence classes coincide with the orbits of a group action.

3The multibrackets on W are recovered from Q applying Thm. 1 to the V-data (L = χ(W ), a =
{constant vector fields on W}, P (X) = X|0, Q).
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2 Applications to Lie theory

In this section we apply the machinery developed in the previous section to instances in
Lie theory. The results of §2.1 recover a theorem in [13].

We refer the reader to Appendix A.1 for the background material needed in §2.1- 2.3.,
and to Appendix A.2 for that needed in §2.4 - 2.5.

2.1 Lie algebra morphisms.

Let (U, [·, ·]U ) and (V, [·, ·]V ) be finite dimensional Lie algebras. We show that the deforma-
tions of Lie algebra morphisms U → V are ruled by a DGLA, recovering classical results of
Nijenhuis and Richardson [37], and that more generally the simultaneous deformations of
the Lie algebra structures and Lie algebra morphisms are ruled by a L∞-algebra, recovering
a theorem in [13] by the first author, Markl and Yau. The set-up of this subsection is a
special case of the one of §2.5. We consider the simple instance of Lie algebras separately
for the sake of concreteness and clarity of exposition.

We consider the graded manifold (U ×V )[1], and encode the above data as vector fields
on this graded manifold. See Appendix A.1 for some basic notions on graded manifolds
and the notation; in particular χ(U [1]) denotes the space of vector fields on U [1], and
ι : U → χ−1(U [1]) identifies elements of U with constant vector fields. We adopt the
following conventions:

• The Lie bracket [·, ·]U is encoded by the homological vector field QU ∈ χ1(U [1])
defined by [[QU , ιX ], ιY ] = ι[X,Y ]U for all X,Y ∈ U

• A linear map φ : U → V is encoded by Φ ∈ χ0((U × V )[1]) defined by [Φ, ιX ] = ιφ(X)

for all X ∈ U .

Remark 2.1. We give coordinate expressions for the vector fields QU , QV ,Φ. Choose a
basis of U , giving rise to coordinates {ui} on U [1], and similarly choosing a basis of V get
coordinates {vα} on V [1]. Then

QU = −1
2
ckijuiuj

∂

∂uk
, QV = −1

2
dγαβvαvβ

∂

∂vγ
, Φ = −Alηul

∂

∂vη
(15)

where ckij and dγαβ are the structural constants of the Lie algebras U and V respectively
and Alη is the matrix respresenting φ in the chosen basis.

The map φ : U → V is a Lie algebra morphism exactly when

[QU ,Φ] +
1
2

[[QV ,Φ],Φ] = 0, (16)

see for example [37, p. 176].

Lemma 2.2. The following quadruple forms a V-data:

• the graded Lie algebra L := χ((U × V )[1])

• its abelian subalgebra a := C(U [1])⊗ V [1]
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• the natural projection P : L→ a with kernel

ker(P ) =
(
C(U [1])⊗ C≥1(V [1])⊗ V [1]

)
⊕
(
C(U [1]× V [1])⊗ U [1]

)
• ∆ := QU +QV ,

hence by Thm. 1 we obtain a L∞[1]-structure aP∆. For every linear map φ : U → V we
have: Φ ∈ a0 is a Maurer-Cartan element in aP∆ iff φ is a Lie algebra morphism.

Proof. Ker(P ) is a Lie subalgebra of L. This can be seen in coordinates, or noticing that
the kernel consists exactly of vector fields on (U × V )[1] which are tangent to (U ×{0})[1].
Hence the above quadruple forms a V-data.

The L∞[1]-structure induced on a by Thm. 1 is given by the multibrackets P [[[QU +
QV , ·], · · · ], ·]. One computes easily in coordinates using (15) that P [QV , ·], [[QU , ·], ·] and
[[[QV , ·], ·], ·] vanish when applied to elements of a. Hence only the unary and binary
brackets are non-zero, and they are given by

[QU , ·]
[[QV , ·], ·]

respectively. Therefore the Maurer-Cartan equation of aP∆ is given by (16).

Lemma 2.2 allows us to apply Prop. 1.12 and Thm. 3. Hence we deduce:

Corollary 2.3. Let U, V finite dimensional Lie algebras and φ : U → V a morphism. Let
(L, a, P,∆) as in Lemma 2.2.

1) Let φ̃ : U → V be a linear map. Then

φ+ φ̃ is a Lie algebra morphism ⇔ Φ̃ is a MC element of aPΦ
∆ .

2) For all quadratic vector fields Q̃U on U [1] and Q̃V on V [1] and for all linear maps
φ̃ : U → V :{

QU + Q̃U and QV + Q̃V define Lie algebra structures on U and V
φ+ φ̃ is a Lie algebra morphism between these new Lie algebra structures

⇔((Q̃U + Q̃V )[1], Φ̃) is a MC element of (L[1]⊕ a)PΦ
∆ .

Remark 2.4. We check that (L, a, P,∆) is filtered V-data (Def. 1.17), as this is a hypothesis
in Thm. 3. We have a direct sum decomposition L = ⊕k≥−1L

k where Lk := Ck+1(U [1])⊗
C(V [1])⊗U [1] ⊕ Ck(U [1])⊗C(V [1])⊗V [1]. In other words, Lk is spanned by monomials in
L whose total number of u’s and ∂

∂v ’s, in coordinates, is exactly k+1. Then FnL := ⊕k≥nLk
is a complete filtration of the vector space L. One checks easily that (L, a, P,∆) is filtered
V-data.

An alternative way to check that there are no convergence issues for e[·,Φ] and the
Maurer-Cartan equations appearing in Cor. 2.3 is to recall that U ×V is finite dimensional
and use a variant of Lemma 2.6 below.
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In the rest of this subsection we make more explicit the structures of aPΦ
∆ and (L′[1]⊕

a)PΦ
∆ , where L′ ⊂ L is specified just after Lemma 2.5.

Given a morphism of Lie algebras φ : U → V , the associated Richardson-Nijenhius
DGLA is given by ⊕i ∧i U∗ ⊗ V , the differential being the Chevalley-Eilenberg differential
of U with values in the module V (the module structure is given by e ∈ U 7→ [φ(e), ·]V )
and the bracket being the Lie bracket on V combined with the wedge product on ∧U∗ (see
[37, p. 175-6] or [12, §2.3]).

Lemma 2.5. aPΦ
∆ is the suspension of the Richardson-Nijenhius DGLA introduced in [37,

§1].

Proof. The n-ary bracket of aPΦ
∆ , evaluated on a1, . . . , an ∈ a is

PΦ[[[QU +QV , a1], · · · ], an]

One computes easily in coordinates that only unary and binary brackets are non-zero, and
they are given by

P [QU + [QV ,Φ], ·] =[QU + [QV ,Φ], ·] (17)
P [[QV , ·], ·] =[[QV , ·], ·]. (18)

respectively. The r.h.s. of (17) is exactly the Chevalley-Eilenberg differential of the Lie
algebra U with values in the module V . The r.h.s. of (18) is given by the Lie bracket on
V combined with the wedge product on ∧U∗. Hence we obtain the Nijenhuis-Richardson
DGLA.

Up to this point we only looked at deformations of the morphism φ : U → V . Now we
also deform the Lie algebra structures on the vector spaces U and V .

Define L′ := χ(U [1]) ⊕ χ(V [1]) ⊂ L. By Thm. 3 and Rem. 1.10 we obtain an L∞[1]-
algebra (L′[1]⊕a)PΦ

∆ , governing the simultaneous deformations of the Lie algebra structures
on U, V and of the morphisms.

Lemma 2.6. (L′[1]⊕a)PΦ
∆ has multibrackets of order up to dim(V )+1. Its Maurer-Cartan

equation is cubic, given by eq. (21) below.

Proof. We write down explicitly the multibrackets of (L′[1] ⊕ a)PΦ
∆ , as given in Thm. 2.

We denote by Q̃iU , Q̃
i
V and Φ̃i general (homogeneous) elements of χ(U [1]), χ(V [1]) and a

respectively (i = 1, 2, . . . ). The multibrackets involving only Φ̃ are given exactly by (17)
and (18) since aPΦ

∆ is a L∞-subalgebra of (L′[1]⊕ a)PΦ
∆ . Explicitly, they are

d(Φ̃) = [QU + [QV ,Φ], Φ̃] ∈ a

and

{Φ̃1, Φ̃2} = [[QV , Φ̃1], Φ̃2] ∈ a.

Now we compute the multibrackets involving at least one of Q̃U [1] or Q̃V [1]. For the
differential we have

d(Q̃U [1]) = −[QU +QV , Q̃U ][1] + PΦ(Q̃U ) = −[QU , Q̃U ][1] + [Q̃U ,Φ] ∈ L[1]⊕ a

d(Q̃V [1]) = −[QU +QV , Q̃V ][1] + PΦ(Q̃V ) = −[QV , Q̃V ][1] +
1
k!

[[. . . [Q̃V ,Φ], . . . ],Φ︸ ︷︷ ︸
k

] ∈ L[1]⊕ a
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where k = |Q̃V |+ 1. For the binary bracket we have

{(Q̃1
U + Q̃1

V )[1], (Q̃2
U + Q̃2

V )[1]} = (−1)|Q̃
1
U+Q̃1

V |([Q̃1
U , Q̃

2
U ] + [Q̃1

V , Q̃
2
V ])[1] ∈ L[1]

{Q̃U [1], Φ̃} = PΦ[Q̃U , Φ̃] = [Q̃U , Φ̃] ∈ a (19)

{Q̃V [1], Φ̃} = PΦ[Q̃V , Φ̃] ∈ a.

From (19) it follows that the only non-zero n-brackets with n ≥ 3 are

{Q̃V [1], Φ̃1, . . . , Φ̃n} = PΦ[[Q̃V , Φ̃1], . . . , Φ̃n] ∈ a. (20)

In coordinates it is clear that the operation [·, Φ̃] sends C(U [1]) ⊗ Ci(V [1]) ⊗ V [1] to
C(U [1])⊗ Ci−1(V [1])⊗ V [1]. As Q̃V ∈ χ(V [1]) ∼=

∑dim(V )
i=1 Ci(V [1])⊗ V [1], it is clear from

eq. (20) that all n-brackets vanish for n > dim(V ) + 1.

To write down the Maurer-Cartan elements , we can use eq. (3) and the formulae
for the multibrackets derived above. Alternatively, by virtue of Cor. 2.3, we know that
Maurer-Cartan elements Q̃ = Q̃U [1] + Q̃V [1] + Φ̃ are characterized by the equations [QU +
Q̃U , QU + Q̃U ] = 0, [QV + Q̃V , QV + Q̃V ] = 0 and by the equation obtained replacing QU
by QU + Q̃U (and similarly for QV ,Φ) in eq. (16) . The latter equation reads

0 =[Q̃U ,Φ] +
1
2

[[Q̃V ,Φ],Φ] + [QU + [QV ,Φ], Φ̃] (21)

+[Q̃U , Φ̃] + [[Q̃V , Φ̃],Φ] +
1
2

[[QV , Φ̃], Φ̃]

+
1
2

[[Q̃V , Φ̃], Φ̃].

2.1.1 Equivalences of Lie algebras morphisms

Consider the L∞[1]-algebra whose Maurer-Cartan elements are pairs of Lie algebra struc-
tures and morphisms between them, that is, the L∞[1]-algebra L := (L′[1] ⊕ a)P∆=0 as in
Cor. 1.13.

Elements of L−1 are of the form

z = (zU [1], zV [1], za) ∈ χ0(U [1])[1] ⊕ χ0(V [1])[1] ⊕ V [1].

Restricting the binary bracket {·, ·}2 to L−1 and using the identifications at the beginning
of §2.1 we obtain the ordinary Lie algebra

End(U)× (End(V ) n V )

where End(U) and End(V ) are endowed with the commutator bracket, V is abelian and
[A, f ] = Af ∈ V for A ∈ End(V ) and f ∈ V .

Maurer-Cartan elements lie in L0, so they are of the form

m = (mU [1],mV [1],ma) ∈ χ1(U [1])[1] ⊕ χ1(V [1])[1] ⊕ (U [1])∗ ⊗ V [1],
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and as described at the beginning of §2.1 its components correspond respectively to a Lie
bracket [·, ·]mU on U , a Lie bracket [·, ·]mV on V , and a Lie algebra morphism φ : U → V .
By degree reasons eq. (14) reads simply

Yz|m = [zU ,mU ][1] ⊕ [zV ,mV ][1] ⊕ [zU + zV ,ma] + [[mV , za],ma] (22)
∈Tz (χ1(U [1])[1] ⊕ χ1(V [1])[1] ⊕ (U [1])∗ ⊗ V [1]) .

The assignment z 7→ Yz vector field is not a Lie algebra action: z1 = (0, 0, z1
a) and

z2 = (0, 0, z2
a) commute, however the vector fields Yz1

and Yz2
do not commute. How-

ever restricting suitably we obtain an infinitesimal action, which integrates to the group
action of symmetries given in [12, §3]:

Proposition 2.7. The assignment End(U)×End(V )→ χ(MC), z 7→ Yz is a Lie algebra
morphism. It integrates to the group action

(GL(U)×GL(V ))×MC →MC

((g, h) , ([·, ·]mU , [·, ·]mU , φ) 7→ (g∗([·, ·]mU ), h∗([·, ·]mV ), h ◦ φ ◦ g−1).

Here the Lie bracket g∗([·, ·]mU ) is defined as g[g−1·, g−1·]mU , and similarly for h∗([·, ·]mV ).
The equivalence classes induced by the singular distribution D := {Yz : z ∈ L−1} on

MC agree with the orbits of the this action.

Proof. Notice that for z ∈ End(U)×End(V ) the vector field Yz is linear, hence z 7→ Yz is
a Lie algebra morphism by Remark 1.21. We compute the integral curve of Yz starting at
m = (mU [1],mV [1],ma) ∈MC.

The first component of Yz is [zU , ·][1]. Its integral curve starting at mU [1] is t 7→
et[zU ,·]mU [1], since the latter forms a 1-parameter group and differentiates to [zV , ·] at time
zero. The Lie bracket on U induced by e[zU ,·]mU [1] is (exp(zU ))∗([·, ·]mU ) where exp(zU )
is the usual matrix exponential of zU ∈ gl(U) (this follows from the fact that e[zU ,·] is an
automorphism of [·, ·]). The same argument applies to the second component of Yz.

For the third component, the integral curve of [zU + zV , ·] starting at ma is t 7→
et[zU+zV ,·]ma. The element e[zU+zV ,·]ma ∈ (U [1])∗ ⊗ V [1] corresponds to exp(zV ) ◦ φ ◦
exp(−zU ) : U → V . This shows that the group action in the statement of this proposition
integrates the given Lie algebra action.

For the last statement we fixm ∈MC and show thatDm = {Yz|m : z = (zU [1], zV [1], 0)}.
To this aim, just notice that Y(0,0,za)|m = Y(0,[mV ,za],0)|m for all za ∈ V [1], as a consequence
of [mV ,mV ] = 0.

2.2 Subalgebras of Lie algebras

Let g be a finite dimensonal Lie algebra, U ⊂ g a Lie subalgebra. We study deformations
of the Lie algebra structure on g and of the subspace U as a Lie subalgebra, similarly to
Richardson [41].

At first, let U ⊂ g be simply a subspace. We denote by Qg ∈ χ(g[1]) the ho-
mological vector field encoding the Lie algebra structure on g. Choose a subspace V
in g complementary to U . Given a linear map φ : U → V , we view it as an element
Φ ∈ C1(U [1])⊗ χ−1(V [1]) ⊂ χ0(g[1]) defined by [Φ, ιX ] = ιφ(X) for all X ∈ U .
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Lemma 2.8. The following quadruple forms a curved V-data:

• the graded Lie algebra L := χ(g[1])

• its abelian subalgebra a := C(U [1])⊗ V [1]

• the natural projection P : L→ a with kernel

ker(P ) =
(
C(U [1])⊗ C≥1(V [1])⊗ V [1]

)
⊕
(
C(g[1])⊗ U [1]

)
• ∆ := Qg,

hence by Thm. 1 we obtain a curved L∞[1]-structure aP∆.
Φ ∈ a0 is a MC element in aP∆ iff graph(φ) is a Lie subalgebra of g.
Further, the above quadruple forms a V-data iff U is a Lie subalgebra of g.

Proof. To show that the above quadruple forms a curved V-data proceed as in the proof of
Lemma 2.2.

Rem. 1.9 says that Φ is a Maurer-Cartan element in aP∆ iff e−[Φ,·]Qg ∈ ker(P ). This
condition is equivalent to asking that for all X,Y ∈ U :[[

e−[Φ,·]Qg, ιX

]
, ιY

]
∈ U [1]

Using the fact that e−[Φ,·] is a Lie algebra automorphism of L (to pull it out of the brackets)
and that e[Φ,·]ιX = ιX + [Φ, ιX ] = ιX+φ(X), we see that the above is equivalent to

[X + φ(X), Y + φ(Y )] ∈ {Z + φ(Z) : Z ∈ U} = graph(φ),

i.e. to graph(φ) being a Lie subalgebra of g.
The last statement can be proven as follows: Qg ∈ ker(P ) is equivalent to [[Qg, ιX ], ιY ] ∈

U [1] for all X,Y ∈ U , which in turn means that U is a Lie subalgebra of g. (Alternatively, it
follows from the above noticing that 0 is a Maurer-Cartan element of aP∆ iff PQg = 0.)

Lemma 2.8 allow us to apply Thm. 3 with Φ = 0.
We deduce:

Corollary 2.9. Let g be a Lie algebra, U ⊂ g a Lie subalgebra. Choose a subspace V ⊂ g

complementary to U , and let (L, a, P,∆) be the V-data as in Lemma 2.8.
For all Q̃g ∈ L1 and for all linear maps φ̃ : U → V :{

Qg + Q̃g defines a Lie algebra structure on g

graph(φ̃) is a Lie subalgebra of it

⇔(Q̃g[1], Φ̃) is a MC element of (L[1]⊕ a)P∆.

Remark 2.10. The proof that (L, a, P,∆) is a filtered V-data is given in Remark 2.4.
Remark 2.11. By Cor. 2.9, the Maurer-Cartan elements of (L[1]⊕a)P∆ are in bijection with
deformations of the Lie algebra structure on g and deformations of the subspace U as a Lie
subalgebra.

Applying Cor. 2.3 to the Lie algebra U , to the Lie algebra g and to the inclusion
i : U ↪→ g, we obtain an L∞[1]-algebra whose Maurer-Cartan elements are deformations of
the Lie algebra structure on g and deformations of i to linear maps i + ĩ : U → g whose
image is a Lie subalgebra of the new Lie algebra structure on g. Notice that the two
Maurer-Cartan sets are quite different, as different maps i+ ĩ can have the same image.
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2.3 Lie bialgebra morphisms.

Let U and V be Lie bialgebras. We show that the simultaneous deformations of the Lie
bialgebra structures and Lie bialgebra morphisms are ruled by some L∞-algebra.

Definition 2.12. A finite dimensional vector space U is a Lie bialgebra if U is endowed
with a Lie algebra structure, the dual U∗ is endowed with a Lie algebra structure [·, ·]U∗ ,
and the Chevalley-Eilenberg differential of U is a graded derivation of [·, ·]U∗ (extended to
∧U∗).

A morphism between from a Lie bialgebra U to a Lie bialgebra V is a Lie algebra
morphism φ : U → V such that its dual φ∗ : V ∗ → U∗ is also a Lie algebra morphism (see
for instance [4]).

In order to rephrase the above definitions, we recall few notions from graded geometry.
Let U be a vector space. The graded manifoldM := T ∗[2]U [1] = U [1]×U∗[1] is symplectic,
hence the space of functions is endowed with a degree −2 Poisson bracket4. Explicitly, the
degree k functions are5 Ck(M) = ∧k(U∗ × U). If we choose a basis for U , giving rise to
degree 1 coordinates ui on U [1] and degree 1 coordinates on U∗[1] which we denote by ∂

∂ui
,

the Poisson bracket is given by

{ui, uj} = 0, { ∂
∂ui

,
∂

∂uj
} = 0, {ui,

∂

∂uj
} = δij = { ∂

∂uj
, ui}.

Notice that C(M) is not only graded but actually bigraded, by C(i,j)(M) = ∧iU∗ ⊗ ∧jU .
Since the Poisson bracket on C(M) has degree −2, it follows that C(M)[2] is a graded

Lie algebra. There is a canonical (degree preserving) embedding

χ(U [1]) ↪→ C(M)[2],

whose image consists exactly of ⊕iC(i,1)(M) (the fiber-wise linear functions on M =
T ∗[2]U [1]). The embedding also preserves the brackets by [42, Lemma 3.3.1], i.e., it is
an embedding of graded Lie algebras. Notice that there is a canonical symplectomorphism
T ∗[2]U [1] = U [1] × U∗[1] ∼= U∗[1] × U [1] = T ∗[2]U∗[1], which provides a canonical embed-
ding of graded Lie algebras χ(U∗[1]) ↪→ C(M)[2].

We can now state, following [42, §3.1]: a Lie bialgebra structure on U is equivalent to an
element QU ∈ C(2,1)(M) and an element QU∗ ∈ C(1,2)(M) such that QU +QU∗ commutes
with itself w.r.t. {·, ·}, or equivalently so that QU −QU∗ self-commutes.

Further, if U and V are Lie bialgebras and given a linear map φ : U → V , consider the
corresponding element Φ ∈ χ((U × V )[1]) ⊂ C(T ∗[2](U × V )[1])[2] as at the beginning of
this section. Notice that the element of C(T ∗[2](U×V )[1])[2] associated to φ∗ is −Φ. Using
(16) we see that φ is a morphism of Lie bialgebras iff

{QU ,Φ}+
1
2
{{QV ,Φ},Φ} = 0, (23)

{QV ∗ ,−Φ}+
1
2
{{QU∗ ,−Φ},−Φ} = 0. (24)

4This bracket is sometimes called “big bracket”.
5Here we use ∧ to denote the ordinary exterior power, and regard elements of U and U∗ as having degree

one.
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Lemma 2.13. Let (U,QU , QU∗) and (V,QV , QV ∗) be finite dimensional Lie bialgebras. The
following quadruple forms a V-data:

• the graded Lie algebra L := C(≥1,≥1)

(
T ∗[2](U ×V )[1]

)
[2] = (∧≥1(U∗×V ∗)⊗∧≥1(U ×

V ))[2]

• its abelian subalgebra a := (∧≥1U∗ ⊗ ∧≥1V )[2]

• the natural projection P : L→ a with kernel

ker(P ) =
(
∧ U∗ ⊗ ∧≥1V ∗ ⊗ ∧≥1(U × V )

)
[2] +

(
∧≥1 (U∗ × V ∗)⊗ ∧≥1U ⊗ ∧V

)
[2]

• ∆ := QU +QU∗ +QV −QV ∗,

hence by Thm. 1 we obtain a L∞[1]-structure aP∆.
Φ ∈ a0 is a Maurer-Cartan element in aP∆ iff φ is a Lie bialgebra morphism.

Proof. Since T ∗[2](U × V )[1] is endowed with a Poisson bracket of bidegree (−1,−1), the
shifted space of functions C

(
T ∗[2](U × V )[1]

)
[2] is a graded Lie algebra and L is a graded

Lie subalgebra. Ker(P ) is a Lie subalgebra of L, as can be checked in coordinates. Clearly
∆ lies in ker(P ) , and

{∆,∆} = {QU +QU∗ , QU +QU∗}+ {QV −QV ∗ , QV −QV ∗} = 0.

Hence the above quadruple forms a V-data, and we can apply Thm. 1.
To compute the Maurer-Cartan elements of aP∆, take Φ ∈ a0 = U∗ ⊗ V . One computes

easily in coordinates that

P{∆,Φ} = {QU −QV ∗ ,Φ}
P{{∆,Φ},Φ} = {{QV +QU∗ ,Φ},Φ}

while all other terms of the Maurer-Cartan equation vanish. Separating the terms in ∧2U∗⊗
V from those in U∗ ⊗ ∧2V we conclude that Φ is a Maurer-Cartan element of aP∆ iff the
equations (23) and (24) are satisfied, which in turn is equivalent to φ being a a Lie bialgebra
morphism.

Lemma 2.13 allows us to apply Prop. 1.12 and Thm. 3. Hence we deduce:

Corollary 2.14. Let (U,QU , QU∗) and (V,QV , QV ∗) be finite dimensional Lie bialgebras
and φ : U → V a Lie bialgebra morphism. Let (L, a, P,∆) be as in Lemma 2.13.

1) Let φ̃ : U → V a linear map. Then

φ+ φ̃ is a Lie bialgebra morphism ⇔ Φ̃ is a MC element of aPΦ
∆ .

2) For all Q̃U ∈ C(2,1)(T ∗[2]U [1]) and Q̃U∗ ∈ C(1,2)(T ∗[2]U [1]), for all analogously defined
Q̃V , Q̃V ∗, and for all linear maps φ̃ : U → V :{

(U,QU + Q̃U , QU∗ + Q̃U∗) and (V,QV + Q̃V , QV ∗ + Q̃V ∗) are Lie bialgebras
φ+ φ̃ is a Lie bialgebra morphism between these new Lie bialgebra structures

⇔ ((Q̃U + Q̃U∗ + Q̃V − Q̃V ∗)[1], Φ̃) is a MC element of (L[1]⊕ a)PΦ
∆ .
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Remark 2.15. We check that the V-data appearing in Cor. 2.14 is filtered. We have a direct
sum decomposition L = ⊕k≥−1L

k where Lk := L∩⊕q+r=k+1(∧qU∗⊗∧V ∗⊗∧U ⊗∧rV
)
[2].

In other words, Lk is spanned by monomials in L whose total number of u’s and ∂
∂v ’s, in

coordinates, is exactly k + 1. Then FnL := ⊕k≥nLk is a complete filtration of the vector
space L. One checks easily that (L, a, P,∆) is a filtered V-data.

Remark 2.16. It seems that there is no way to recover Cor. 2.14 simply applying the results
of Cor. 2.3 twice (once to Lie algebra morphism φ : U → V and once to the Lie algebra
morphism φ∗ : V ∗ → U∗), since the latter procedure would deform φ and φ∗ to two Lie
algebra morphisms α : U → V and β : V ∗ → U∗ which are not necessarily duals of each
other.

2.4 Maurer-Cartan elements of L∞-algebra structures

Fix a (possibly infinite dimensional) graded vector space W . We show that the space of
pairs

(L∞[1]-algebra structures on W , Maurer-Cartan elements for this structure)

is governed by a Maurer-Cartan equation. We will ignore all convergence issues in this
subsection; they are automatically dealt with if one works formally, see Lemma 1.19.

We refer to §A.2 for the background material on coderivations. In §A.3 we recall that
L∞[1]-algebra structures on W are in bijection with degree 1 self-commuting coderivations
Θ on SW := ⊕∞k=1S

kW , we show that there is an embedding α : W ↪→ Coder(SW ), and
that there is a bracket-preserving embedding J : Coder(SW ) ↪→ Coder(SW ) whose image
annihilates 1 ∈ SW . In §A.3 we further prove that all L∞[1]-algebra structures are obtained
by the derived bracket construction:

Proposition 2.17. Let W be an L∞[1]-algebra, and Θ the corresponding coderivation of
SW . The following quadruple forms a V-data:

• the graded Lie algebra L := Coder(SW )

• its abelian subalgebra a := {αw : w ∈W}

• the projection P : L→ a , τ 7→ ατ(1)

• ∆ := JΘ.

The induced L∞[1]-structure on a given by Thm. 1 is exactly the original L∞[1]-structure
on W , under the canonical identification W ∼= a, w 7→ αw.

We apply Cor. 1.13, choosing Θ = 0 above and considering Ker(P ) ⊂ L. we obtain

Corollary 2.18. {τ ∈ Coder(SW ) : τ(1) = 0}[1] ⊕W , endowed with the L∞[1]-algebra
structure specified in Cor. 1.13, has the following property: for all Θ̃ ∈ Coder(SW )1 and
Φ̃ ∈W0: {

Θ̃ defines an L∞[1]-algebra structure on W

Φ̃ is a MC element of this L∞[1]-algebra structure on W

⇔ (J Θ̃[1], Φ̃) is a MC element of {τ ∈ Coder(SW ) : τ(1) = 0}[1]⊕W
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2.5 L∞-algebra morphisms

We consider deformations of a pair of arbitrary L∞[1]-algebras and of a L∞[1]-morphism
between them. We show that deformations of the morphism with fixed L∞[1]-algebra
structures are ruled by a L∞[1]-algebra (this follows also from Shoikhet [47, §3]), and then
show that there is an L∞[1]-algebra governing arbitrary deformations.

In the next sections we will use the following notations. When E and F are two
vector spaces, we will denote by L(E,F ) the set of linear maps from E to F and use
L(E) := L(E,F ) when E = F .

Let U and V be two graded vector spaces. Denote S(U ⊕ V ) := ⊕k≥1S
k(U ⊕ V ). Let

L := L
(
S(U ⊕ V ), U ⊕ V

)
=
∏
i≥1

⊕
q+r=i

Lq,rU ⊕ L
q,r
V , (25)

where
Lq,rU :=

{
ΠU ◦ l ◦Πq,r : l ∈ L(Sq+r(U ⊕ V ), U ⊕ V )

}
for Πq,r : Sq+r(U ⊕ V ) → SqU ⊗ SrV and ΠU : U ⊕ V → U the canonical projections.
Consider the subspace

a :=
∏
q≥1

Lq,0V
∼= L(SU, V ).

Thanks to the decomposition (25) one has a projection P : L → a. Notice that the vector
space L has a natural Z-grading: L = ⊕n∈ZLn, where a map l : S(U ⊕ V )→ U ⊕ V lies in
Ln if it raises the degree by n.

As remarked by Stasheff [48], L is a graded Lie algebra: the isomorphism of graded
vector spaces L ∼= Coder(S(U ⊕ V )) given in Proposition A.8 allows to define the Lie
bracket on L, the Gerstenhaber bracket, as the pullback of the graded commutator of
coderivations.

Proposition 2.19. Let U and V be two graded vector spaces equipped with L∞[1]-algebra
structures µ = (µi)i≥1 and ν = (νj)j≥1, where µi ∈ Li,0U and νj ∈ L0,j

V . The following
quadruple (with the previous notations) forms a V-data:

• the graded Lie algebra L,

• its abelian subalgebra a,

• the projection P : L→ a,

• ∆ := µ+ ν.

Proof. The proof, which uses Lemma A.9, is analogous to the proof of Lemma 3.1 and is
therefore left as an exercise to the reader.

Proposition 2.20. Φ ∈MC(aP∆)⇔ Φ is a morphism of L∞[1]-algebras.

Proof. Fix Φ ∈ a0. Our aim is to show that the condition for Φ to be a Maurer-Cartan
element for the L∞[1]-algebra aP∆ (see Remark 1.9),

Pe[−,Φ](µ+ ν) = 0,
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is equivalent to the condition for Φ to be a morphism of L∞[1]-algebras, i.e., for all s ≥ 1
and u1, . . . , us ∈ U :

∑
IqJ=[s]

Φ|J |+1(µ|I|(UI) · UJ) =
s∑

n=1

1
n!

∑
I1q···qIn=[s]

νn(Φ|I1|(UI1) · · · · · Φ|In|(UIn)), (26)

where [s] := {1, . . . , s}, qmeans disjoint union and UI = uα1 ·· · ··uαj when I = {α1, . . . , αj}.
Some of the Ii’s in the expression I1q· · ·qIn = [s] can be empty. One will use the convention
that Φ|∅|(U∅) = 0 and UI · U∅ = UI . Here we decompose Φ as a sum of its homogeneous
elements with respect to the polynomial degree, i.e. Φ =

∑
Φn where Φn ∈ Ln,0V .

It will be convenient to view the elements of L as coderivations, because in this case
the Lie bracket is the graded commutator. The coderivation corresponding, by Proposition
A.8, to Φ (resp. to µ, ν) will be denoted by Φ̄ (resp. µ̄, ν̄).

Φ is a Maurer-Cartan element of the L∞[1]-algebra aP∆ iff

Pe[−,Φ̄](µ̄+ ν̄) = 0.

But, with the notation adΦ := [−,Φ], one has

e[−,Φ̄] =
∑
n≥0

1
n!
adΦ̄

n,

and one can compute adΦ̄
n(µ̄) and adΦ̄

n(ν̄) with the expansion

adΦ̄
n(τ) =

∑
k+l=n

(−1)k
(
n

k

)
Φ̄kτ Φ̄l.

Therefore everything boils down to compute terms of the form

Φ̄kτ Φ̄l(u1 · · · · · us).

The results of these computations for τ = ν̄ and τ = µ̄ with n = k + l are claims 1 and 2
respectively, and give the two sides of the equation (26).

Claim 1. The term
prV (Φ̄k ◦ ν̄ ◦ Φ̄l(U[s]))

always vanishes except for l = n for which one has

prV (Φ̄0 ◦ ν̄ ◦ Φ̄n(U[s])) =
∑

I1q···qIn=[s]

ν̄n(Φ|I1|(UI1) · · · · · Φ|In|(UIn)).

Claim 2. The term
prV (Φ̄k ◦ µ̄ ◦ Φ̄l(U[s]))

always vanishes, except for k = n = 1 for which one has

prV (Φ̄1 ◦ µ̄(U[s])) =
∑

IqJ=[s]

Φ|J |+1(µ|I|(UI) · UJ).
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Combining the results of claims 1 and 2 finishes the proof of Proposition 2.20.

We now state a lemma and use it to prove claims 1 and 2. All along we fix s ≥ 1 and
u1, . . . , us ∈ U .

Lemma 2.21. For all t ≥ 0

Φ̄t(U[s]) =
∑

I1q···qIt+1=[s]

Φ|I1|(UI1) · · · · · Φ|It|(UIt) · UIt+1 . (27)

Proof. Apply formula (49) t times and remark that since Φ admits only elements in U ,
terms of the form Φ(Φ(UI) ·UI′) can not appear in the obtained expression. The case t = 0
is a convention.

Proof of claim 1. We apply the formula (49) to ν̄ evaluated on the right hand side of the
equation (27), with t = l to get∑
I1q···qIl+2=[s]

∑
JqK=[l]

ν|J |(Φ|Iα1 |(UIα1
) · · · · · Φ|Iαj |(UIαj ) · UIl+1

) · Φ|Iβ1
|(UIβ1

) · · · · · Φ|Iβk |(UIβk ) · UIl+2
,

where {α1, . . . , αj} = J and {β1, . . . , βk} = K.
Now, since ν admits only elements in U , the term UIl+1

must be absent in the previous
expression, i.e. one has

ν̄◦Φ̄l(U[s]) =
∑

I1q···qIl+1=[s]

∑
JqK=[l]

ν|J |(Φ|Iα1 |(UIα1
)·· · ··Φ|Iαj |(UIαj ))·Φ|Iβ1

|(UIβ1
)·· · ··Φ|Iβk |(UIβk )·UIl+1

.

We are interested in evaluating the expression Φ̄k ◦ ν̄ ◦ Φ̄l(U[s]), with k + l = n. By
applying Lemma 2.21 with t = k to the last expression, and by the fact that Φ admits only
terms in U , one gets

Φ̄k◦ν̄◦Φ̄l(U[s]) =
∑

I1q···qIn+1=[s]

∑
JqK=[n]

ν|J |(Φ|Iα1 |(UIα1
)·· · ··Φ|Iαj |(UIαj ))·Φ|Iβ1

|(UIβ1
)·· · ··Φ|Iβk |(UIβk )·UIn+1 .

Finally, if one considers the terms in the above formula which belong to V , one has

prV (Φ̄k ◦ ν̄ ◦ Φ̄l(U[s])) =
∑

I1q···qIn=[s]

νn(Φ|I1|(UI1) · · · · · Φ|In|(UIn)).

Proof of claim 2. We apply the formula (49) to µ̄ evaluated on the right hand side of the
equation (27), with t = l and remark that since µ admits only elements in U , terms of the
form µ(Φ(UI) · UI′) can not appear in the obtained expression. Therefore one has

µ̄ ◦ Φ̄l(U[s]) =
∑

I1q···qIl+2=[s]

Φ|I1|(UI1) · · · · · Φ|Il|(UIl) · µ|Il+1|(UIl+1
) · UIl+2

.
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We now evaluate Φ̄k ◦ µ̄ ◦ Φ̄l(U[s]) by applying Lemma 2.21 to the previous expression, with
t = k. Since Φ admits only elements in U , terms of the form Φ(Φ(UI) ·UI′) can not appear
in the obtained expression. Hence one gets (remember that n = k + l)∑

I1q···qIn+2=[s]

Φ|I1|(UI1) · · · · · Φ|In|(UIn) · µ|In+1|(UIn+1) · UIn+2

+
∑

I1q···qIn+2=[s]

Φ|I1|(UI1) · · · · · Φ|In|+1(UIn · µ|In+1|(UIn+1)) · UIn+2 .

In the previous expression, there are terms which belong to V only if n=k=1. In this case
one has

prV (Φ̄ ◦ µ̄(U[s])) =
∑

IqJ=[s]

Φ|J |+1(µ|I|(UI) · UJ).

Prop. 2.19 and Prop. 2.20 allow us to apply Prop. 1.12 and Thm. 3 and deduce:

Corollary 2.22. Let U, V be L∞[1]-algebras and Φ ∈ L(SU, V ) a L∞[1]-morphism from
U to V and let (L, a, P,∆) as in Prop. 2.19.

1) Let Φ̃ ∈ L0(SU, V ) = a0. Then

Φ + Φ̃ is an L∞[1]-morphism ⇔ Φ̃ ∈MC(aPΦ
∆ ).

2) For all degree one coderivations Q̃U on SU and Q̃V on SV and for all Φ̃ ∈ L0(SU, V ):{
QU + Q̃U and QV + Q̃V define L∞[1]-algebra structures on U, V

Φ + Φ̃ is a L∞[1]-morphism between these L∞[1]-algebra structures

⇔ ((Q̃U + Q̃V )[1], Φ̃) ∈MC((L[1]⊕ a)PΦ
∆ )

Remark 2.23. We have a direct product decomposition L =
∏
k≥−1 L

k where Lk :=
Lk+1,•
U ⊕ Lk,•V . Here we use the short-hand notation Lk,•V :=

∏
r≥0 L

k,r
V . By Remark 1.15,

FnL :=
∏
k≥n L

k is then a complete filtration of the vector space L. One checks easily that
(L, a, P,∆) is filtered V-data (Def. 1.17).

3 Applications to associative algebras

In this section we treat the case of a morphism between two associative algebras. The
cohomology theory governing simultaneous deformations of two associative algebras and a
morphism between them has been defined in the context of cohomology of diagrams by M.
Gerstenhaber and S.D. Schack in [17]. One of the problem remaining was the fact that
the deformation equation could not be written as a Maurer-Cartan equation for a DGLA.
The first author, Markl and Yau in [13] exhibited a L∞-algebra which enabled to write this
deformation equation as a Maurer-Cartan equation. This was based on operadic techniques.
We show in this section how we can recover these results by means of our Thm. 3, which
requires much less technology.

26



3.1 Morphisms of associative algebras

We will use some notations introduced in the previous section §2.5. Moreover, if E and F
are two vector spaces, for any n ≥ 1 and I q J = [n] := {1, . . . , n}, consider the notation

T I,J(E,F ) := {x1 ⊗ · · · ⊗ xn ∈ Tn(E ⊕ F ) : xk ∈ E when k ∈ I, xk ∈ F otherwise }.

One has the decomposition

Tn(E ⊕ F ) =
⊕

IqJ=[n]

T I,J(E,F ),

and therefore one can consider the projection ΠI,J onto T I,J(E,F ). One considers also the
canonical projection ΠE (resp ΠF ) from E ⊕ F onto E (resp F ).

One will denote the set of n-linear maps from E to F by Ln(E,F ) := L(TnE,F ) and
by Ln(E) := Ln(E,E) when E = F . One has the decomposition:

Ln(E ⊕ F ) =
⊕

IqJ=[n]

LI,JE ⊕ L
I,J
F , (28)

for LI,JE := {ΠE ◦ l ◦ΠI,J : l ∈ Ln(E ⊕ F )}. The decomposition (28) defines a projection

P :
∏

n≥1
Ln(E ⊕ F )→ ⊕n≥1L

[n],∅
F .

Consider a morphism Φ: U → V between two associative algebras (U, µ) and (V, ν),
apply the above notations to E := U [1] and F := V [1], and consider µ and ν as ele-
ments of L2(U [1]) and L2(V [1]). As noticed by Stasheff in [48], the canonical identification∏
n≥1L

n(E ⊕ F ) ∼= Coder(T (E × F )) of Prop. A.8 makes L :=
∏
n≥1L

n(E ⊕ F ) into a
graded Lie algebra.

Lemma 3.1. The following quadruple forms a V-data:

• the graded Lie algebra L :=
∏
n≥0Ln with Ln := Ln+1((U ⊕ V )[1]) with Gerstenhaber

bracket [·, ·]

• its abelian subalgebra a =
∏
n≥0an with an := L

[n+1],∅
V [1]

∼= L(Tn+1U [1], V [1])

• the natural projection P : L→ a given above

• ∆ := µ+ ν

hence by Thm. 1 we obtain a L∞[1]-structure aP∆.
Φ ∈ a0 is a Maurer-Cartan element in aP∆ iff Φ is a morphism of associative algebras

between µ and ν.

Proof. To see that a is an abelian graded Lie subalgebra of L, remark that elements of a are
maps which produce vectors in V and accept only terms in U . Therefore their composition
is zero.
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Next we show that KerP is a graded Lie subalgebra of L. To this aim use the decom-
position KerP = A⊕B where

An =
⊕

IqJ=[n],|J |>0

LI,JV [1],

Bn =
⊕

IqJ=[n]

LI,JU [1].

Let α, α′ ∈ A, β ∈ B and γ ∈ KerP . One has α ◦ β, α ◦α′ ∈ A and β ◦ γ ∈ B, showing that
KerP = A⊕B is closed under the Gerstenhaber bracket. Further since ν ∈ A and µ ∈ B,
one has ∆ ∈ KerP .

Last we show that [∆,∆] = 0. Indeed,

[∆,∆] = [µ, µ] + [ν, ν] + 2[µ, ν].

Since µ and ν are associative algebras, by Prop. A.11, [µ, µ] and [ν, ν] vanish. Now, by
definition of the bracket, [µ, ν] = µ ◦ (ν ⊗ Id − Id ⊗ ν) − ν ◦ (µ ⊗ Id − Id ⊗ µ) but µ
accepts only terms in V , whereas ν produces elements in U , hence the first summand of
the right hand side vanishes. Similarly for the second summand. This concludes the proof
that (L, a, P,∆) forms a V-data.

Fix Φ ∈ a0 = L(U [1], V [1]). It will be convenient to view the elements of L as coderiva-
tions, because in this case the Lie bracket is the graded commutator. The coderivation
corresponding to Φ (Proposition A.8) will be denoted by Φ̄. It is characterized by its only
non vanishing corestriction, which is Φ̄1

1(u+ v) = Φ(u) where u ∈ U and v ∈ V .
By Remark 1.9, Φ is a Maurer-Cartan element of the L∞[1]-algebra aP∆ iff

Pe[−,Φ̄](µ+ ν) = 0. (29)

Since
e[−,Φ̄] =

∑
n≥0

1
n!
adΦ̄

n,

writing adΦ := [−,Φ], we compute adΦ̄
n(µ) and adΦ̄

n(ν) with the expansion

adΦ̄
n(τ) =

n∑
k=0

(−1)kΦ̄kτ Φ̄n−k.

Let us first remark that the commutator of a linear coderivation and a quadratic coderiva-
tion gives a quadratic coderivation. In particular adΦ̄

n(ν) and adΦ̄
m(µ) are quadratic

coderivations and hence are only determined by their second Taylor coefficient, i.e. by
their restriction to elements of T 2(U ⊕ V ).

One observes that for elements x1, x2 in U (for elements in V, the expression would
vanish),

Φ̄2(x1 ⊗ x2) = Φ̄(Φ(x1)⊗ x2 + x1 ⊗ Φ(x2)) = 2Φ(x1)⊗ Φ(x2)

lies in T 2(V ). Therefore, Φ can not be applied anymore, meaning that Φ̄n(x1⊗ x2) = 0 for
all n > 2. For the same reason, if τ has only quadratic Taylor coefficients, one has necessary
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Φ̄nτ|T 2(U⊕V ) = 0 for n > 1, and even Φ̄τ|T 2(U⊕V ) = 0 when the quadratic Taylor coefficients
of τ have values in V . All these remark imply that the only non-vanishing adΦ̄

n(ν)|T 2(U⊕V )

occurs for n = 2:
adΦ̄

2(ν)(x1 ⊗ x2) = 2ν(Φ(x1)⊗ Φ(x2))

and the only non-vanishing adΦ̄
n(µ)|T 2(U⊕V ) occurs for n = 1:

adΦ̄(µ)(x1 ⊗ x2) = −Φ(µ(x1 ⊗ x2).

Since µ and ν commute, we obtain that the l.h.s. of eq. (29) is

Pe[µ+ν,Φ̄](x1 ⊗ x2) = ν(Φ(x1)⊗ Φ(x2))− Φ(µ(x1 ⊗ x2).

Hence Φ̄ satisfies eq. (29) iff Φ is a morphism of associative algebras.

To establish the connection with the problem of simultaneous deformations of mor-
phisms and associative algebras, one considers the graded Lie subalgebra L′ of L defined
by

L′i = Li+1(U [1]) ⊕ Li+1(V [1]).

Thm. 3 and Remark 1.10 (which applies to L′ since it contains ∆) imply:

Corollary 3.2. Let (U, µ) and (V, ν) be associative algebras and Φ: U → V a morphism
of associative algebras. Let (L, a, P,∆) as in Lemma 3.1 and L′ as above.

For all µ̃+ ν̃ ∈ L′1, and for all linear maps Φ̃ : U → V :{
µ+ µ̃ and ν + ν̃ define associative algebra structures on U and V
Φ + Φ̃ is an associative algebra morphism between these new associative algebra structures

⇔((µ̃+ ν̃)[1], Φ̃) ∈MC((L′[1]⊕ a)PΦ
∆ ).

Remark 3.3. Analogously to Remark 2.4, we have a direct product decomposition L =∏
k≥−1 Lk where Lk :=

⊕
|I|=k+1 L

I,•
U [1]⊕

⊕
|I|=k L

I,•
V [1]. Then FnL :=

∏
k≥n L

k is a complete
filtration of the vector space L by Remark 1.15. One checks easily that (L, a, P,∆) is filtered
V-data (Def. 1.17).

We now write out explicitly the multi-brackets of (L′[1]⊕ a)PΦ
∆ .

Let us denote by Pm[n] the set of ordered m-tuples of distinct points in {1, . . . , n+ 1}.
For any I ∈ Pm[n] we will denote by xV ◦I (a1, . . . , an), the element obtained by plugging
ai into the Ii-th input of xV , and by xV ◦I,Φ (a1, . . . , an) the element obtained by further
plugging Φ in the n + 1 − m remaining inputs of xV . Similarly, a ◦i µ will mean the
composition of a by µ at its iith input. We will also use the notations

da = ν(a⊗ Φ) + ν(Φ⊗ a)− (−1)n
n∑
i=1

a ◦i µ

and dµxU = [µ, xU ]. With these notations, explicit formulas are given by:
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Proposition 3.4. Let (U, µ) and (V, ν) be associative algebras and Φ: U → V a morphism
of associative algebras, and adopt the notation of Corollary 3.2. The L∞[1]-multi-brackets
of (L′[1]⊕ a)PΦ

∆ are given as follows:
Given (x[1], a) ∈ (L′[1] ⊕ a)n, i.e x = (xU , xV ) ∈ Ln+1(U [1]) ⊕ Ln+1(V [1]) and a ∈

Ln(U [1], V [1]), one has

d(x[1], a) = (−dµxU − dνxV ,−Φ ◦ xU + xV ◦ Φ⊗
n

+ da) (30)

and
{x, a} =

∑
i∈[n+1]

xV ◦i,Φ a− (−1)|x||a|
∑
j

a ◦j xU . (31)

If we moreover consider a1, . . . , am ∈ a (for m ≥ 2), then one has

{x, a1, . . . , am} =
∑

I∈Pm[n]

ε(I)xV ◦I,Φ (a1, . . . , am) (32)

{a1, a2} = µ(a1 ⊗ a2). (33)

Remark 3.5. In [13] formulas were given for an L∞-algebra governing simultaneous de-
formations of associative algebras and their morphisms. Those formulas agree with the
formulas of Prop. 3.4 modulo signs, which come from the fact that here we only give the
L∞[1]-algebra multibrackets. If one wants to recover the original formulas of [13], one needs
to desuspend this L∞[1]-algebra as indicated in Remark 1.5.

Proof. We first prove (30). It suffices to explicit the expression (5) of Theorem 2, therefore
we will determine (a) −D(x)[1] and (b) PΦ(x+Da), where D = [∆, ·].

(a) Since µ and xV can not be composed, [µ, xV ] = 0 and hence D(xV ) = [ν, xV ]. Since
the similar result for xU holds, one gets

−D(x)[1] = −dνxV − dµxU .

(b) Since a can not be composed on the right by ν and on the left by µ, one has
Da = ν(a⊗ id) + ν(id⊗ a)− (−1)|µ||a|

∑n
i=1 a ◦i µ. In particular Da has only outputs in V,

therefore Φ can only be right composed. Moreover it can only be right composed once since
each of the summands of Da has at most one V input. Therefore e[−,Φ]Da = Da+ [Da,Φ].
After a look at the terms surviving the projection P , one gets

PΦ(Da) = ν(a⊗ Φ) + ν(Φ⊗ a)− (−1)n
n∑
i=1

a ◦i µ.

One now remarks that in e[−,Φ]x, the only terms surviving the projection P are

PΦx = −Φ ◦ xU + xV ◦ Φ⊗
n
,

therefore, identifying the terms in (5) gives (30).
We now prove (31). By definition of the Gerstenhaber bracket, one has

[xU + xV , a] =
∑

i∈[n+1]

(xU ◦i a+ xV ◦i a)− (−1)|x||a|
∑
j

(a ◦j xU + a ◦j xV ).
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But in this expression xU ◦i a and a ◦i xV vanish by incompatibility of the compositions.
Now PΦ(a ◦j xU ) = a ◦j xU and PΦ(xV ◦i a) = xV ◦i,Φ a, so one has proven (31), i.e.

{x, a} =
∑

i∈[n+1]

xV ◦i,Φ a− (−1)|x||a|
∑
j

a ◦j xU .

We now prove (32) for m ≥ 2 by induction on m. Let us first start the induction by showing
that

[[x, a1], a2] =
∑
i,j

ε(i, j)xV ◦I (a1, a2). (34)

Let us remark that an element of L which has only U inputs and one V output can not be
composed to the right or to the left by an element in a. This in particular applies to the
element [xU , a1], therefore one has [[xU , a1], a2] = 0. Moreover, one has seen that

[xV , a1] =
∑

i∈[n+1]

xV ◦i a1.

But this term has one V output, therefore can not be left composed by a2. This means,
again by definition of the Gerstenhaber bracket, that one obtains eq. (34).

Let us now prove by induction that

[. . . [x, a1], . . . , am] =
∑

I∈Pm[n]

ε(I)xV ◦I (a1, . . . , am).

We make the following observation (Obs): this element has a V output and therefore can
not be composed to the left by an element in a. One has:

[[. . . [x, a1], . . . , am], am+1] = [
∑

I∈Pm[n]

ε(I)xV ◦I (a1, . . . , am) , am+1]

Obs=
∑

I∈Pm[n]

ε(I)
∑
i∈Ic

(xV ◦I (a1, . . . , am)) ◦i am+1

=
∑

I∈Pm+1[n]

ε(I)xV ◦I (a1, . . . , am+1), (35)

where in the first equality we used the induction step. It remains to apply the projection
PΦ. The above observation (Obs) applies in particular to the element Φ, therefore

e[−,Φ]xV ◦I (a1, . . . , am+1) =
∑
n≥0

1
n!
xV ◦I (a1, . . . , am+1) ◦ Φ̄n.

If one now compose this last equality with the projection P , one gets

PΦ(xV ◦I (a1, . . . , am+1)) = xV ◦I,Φ (a1, . . . , am+1).

Combining this last equality with (35) gives the result.
It remains to prove (33). But formula (7) is formally formula (6) with x replaced by

∆. Therefore one can compute the remaining brackets by replacing x by µ+ ν in formula
(32). The only possibility is for n = 2, for which one gets (33).
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4 Applications to algebras over Koszul operads

The objective of this short section is to indicate how the techniques used in §2.5 and §3
work for other types of algebras. The theory of Koszul duality for operads (see [21] or [34]),
provides for a type of algebra P, i.e. for an operad P (for example for the operad As,
encoding the type of associative algebras), a cooperad P ¡. In this setting, given a graded
vector space U , one can define (P ¡(U), δ), the cofree coalgebra of type P ¡ co-generated by
U . Since it is cofree, one has the identification, as vector spaces:

P ¡(U∗)⊗ U ' Coder(P ¡(U)).

By Remark A.5, Coder(P ¡(U)) carries naturally the structure of a graded Lie algebra [−,−],
which can be pulled-back to P ¡(U∗)⊗U . An algebra µ of type P∞, or homotopy P-algebra
on the vector space U can then be defined as an element µ ∈ P ¡(U [1]∗) ⊗ U [1] of internal
degree 1 satisfying [µ, µ]=0. One can recover P-algebras as the quadratic homogenous
P∞-algebras.

We are interested in deforming simultaneously two homotopy P-algebras (U, µ) and
(V, ν) and Φ: U → V a morphism between them. The vector space P ¡(V ) carries a poly-
nomial grading, and one considers

Li := P ¡i((U [1]⊕ V [1])∗)⊗ (U [1]⊕ V [1]).

The graded Lie algebra L := ⊕i≥1L
i admits an abelian subalgebra a = ⊕i≥1a

i with ai :=
P ¡i(U [1]∗)⊗V [1]. But one needs to work with the internal grading instead of the polynomial
grading, and one will denote by L := ⊕i≥1Li and a = ⊕i≥1ai their decompositions in
homogenous subspaces for the internal grading.

We believe that for any instance of Koszul operad P, and any homotopy P-algebras
(U, µ) and (V, ν), the following Ansatz holds true.

Ansatz 4.1. The following quadruple forms a filtered V-data (Def. 1.17):

• the graded Lie algebra L := P ¡((U ⊕ V )[1]∗)⊗ (U ⊕ V )[1] with bracket [·, ·]

• its abelian subalgebra a := P ¡(U [1]∗)⊗ V [1]

• the natural projection P : L→ a

• ∆ := µ+ ν.

Further, denoting by aP∆ the L∞[1]-algebra obtained by Thm. 1:
Φ ∈ a0 lies in MC(aP∆) iff Φ is a morphism of P∞-algebras between µ and ν.

Applying Thm. 3 we obtain:

Corollary 4.2. Let P be a Koszul operad, (U, µ) and (V, ν) be P∞-algebras and Φ: U → V
be a morphism of P∞-algebras. Assume that Ansatz 4.1 holds true for the corresponding
V-data (L, a, P,∆) and that Φ defines an element of L. Let L′ := P ¡(U [1]∗) ⊗ U [1] ⊕
P ¡(V [1]∗)⊗ V [1].
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Then for all µ̃+ ν̃ in L′1, and for all Φ̃ ∈ a0:{
µ+ µ̃ and ν + ν̃ define P∞-algebra structures on U and V
Φ + Φ̃ is an P∞-algebra morphism between these new P∞-algebra structures

⇔((µ̃+ ν̃)[1], Φ̃) is a MC element of (L′[1]⊕ a)PΦ
∆ .

Let us illustrate this in the case P = As. It is well known that As¡ = As and that the
free coassociative coalgebra on a vector space U is given by the tensor coalgebra, therefore

P ¡(U∗)⊗ U = T (U∗)⊗ U.

So in particular, Proposition 3.1 is nothing else than Ansatz 4.1 for P = As, with U and V
graded vector spaces concentrated in degree 0. In particular µ and ν must be associative
algebras and not arbitrary A∞-algebras.
Another illustration is given if we take P = Lie, the Lie operad. One has Lie¡ = Com (the
cooperad of cocommutative coalgebras) and the free cocommutative coalgebra on a vector
space U is given by the symmetric coalgebra, therefore

P ¡(U∗)⊗ U = S(U∗)⊗ U.

This fact enables to recognize Proposition 2.19 as Ansatz 4.1 in disguise.

5 Applications to Poisson geometry

In this section we apply the machinery developed in §1 to examples related to Poisson
geometry.

5.1 Coisotropic submanifolds of Poisson manifolds

In this subsection we consider deformations of Poisson structures on a fix manifold M
and deformations of coisotropic submanifolds. We build on work of Oh and Park [38],
who realized that deformations of a coisotropic submanifold of a symplectic manifold are
governed by a L∞[1]-algebra, and on work of Cattaneo and Felder [7] who associate an
L∞[1]-algebra to any coisotropic submanifold of a Poisson manifold.

Our main reference for this deformation problem is [45, §3.2], which is based on [38] and
[7]. Recall that a Poisson structure on M is a bivector field π on M such that [π, π] = 0,
where the bracket denotes the Schouten bracket, and that a submanifold C ⊂ (M,π) is
coisotropic if π]TC◦ ⊂ TC, where TC◦ := {ξ ∈ T ∗M |C : ξ|TC = 0} and π] : T ∗M → TM
is the contraction with π [6].

Let M be a manifold. Let C ⊂ M be a submanifold. Fix an embedding of the normal
bundle νC := TM |C/TC into a tubular neighborhood of C in M , such that the embedding
and its derivative are the identity on C. In the following we will identify νC with its image
in M .

We say that a vector field on νC is fiberwise polynomial if it preserves the fiberwise
polynomial functions on the vector bundle νC. Such a vector field X has polynomial degree
n (denoted |X|pol = n) if its action on fiberwise polynomial functions raises their degree (as
polynomials) at most by n. Locally, choose local coordinates on C and linear coordinates
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along the fibers of νC, which we denote collectively by x and p respectively. Then the fiber-
wise polynomial vector fields are exactly those which are sums of expressions f1(x)F1(p) ∂

∂x

and f2(x)F2(p) ∂∂p where fi ∈ C∞(C) and the Fi are polynomials. The polynomial degrees
of the two vector fields exhibited here are deg(F1) and deg(F2)− 1 respectively.

Consider χ•(νC), the space of multivector fields on the total space νC, and denote by
χ•fp(νC) the sums of products of fiberwise polynomial vector fields. χ•(νC))[1] is a graded
Lie algebra when endowed with the Schouten bracket [·, ·], and χ•fp(νC)[1] is a graded Lie
subalgebra. The notion of polynomial degrees carries on to fiberwise polynomial multivector
fields, by |X1 ∧ · · · ∧Xk|pol =

∑
i |Xi|pol. The Schouten bracket preserves the polynomial

degree (this is clear if we think of multivector fields as acting on tuples of functions).
Sections in Γ(∧νC) can be regarded as elements of χ•fp(νC) which are vertical (tangent

to the fibers) and fiberwise constant. A fiberwise polynomial Poisson bivector field on νC
is an element π ∈ χ2

fp(νC) such that [π, π] = 0. Notice that the associated Poisson bracket
raises the degree of fiberwise polynomial functions on νC by at most |π|pol.
Remark 5.1. The condition that a Poisson structure be fiberwise polynomial is quite strong.
For instance, if C is an arbitrary coisotropic submanifold of a symplectic manifold (M,ω),
it does not seem possible to find an embedding of νC in M for which the bivector field
ω−1 is fiberwise polynomial. This seems to fail even if one works locally (the coordinate
expression for ω in [38, eq. (6.8)], once inverted, is fiberwise analytic but not fiberwise
polynomial). We expect to be able to extend the results of this subsection to fiberwise
analytic Poisson structures.

Lemma 5.2. Let π be a fiberwise polynomial Poisson structure on νC. The following
quadruple forms a curved V-data:

• the graded Lie algebra L := χ•fp(νC)[1]

• its abelian subalgebra a := Γ(∧νC)[1]

• the natural projection P : L → a given by restriction to C and projection along
∧T (νC)|C → ∧νC

• ∆ := π,

hence by Thm. 1 we obtain a curved L∞[1]-structure aP∆.
Its Maurer-Cartan equation reads

P

|π|pol+2∑
n=0

1
n!

[[. . . [π,Φ], . . . ],Φ︸ ︷︷ ︸
n times

] = 0, (36)

where Φ ∈ Γ(νC)[1] is seen as a vertical vector field. Φ ∈ Γ(νC)[1] is a Maurer-Cartan
element in aP∆ iff graph(−Φ) is a coisotropic submanifold of (νC, π).

Further, the above quadruple forms a V-data iff C is a coisotropic submanifold of
(νC, π).

Proof. The fact that the above quadruple forms a curved V-data is essentially the content
of [7, §2.6]. For a more detailed proof we refer to [45, Lemma 3.3 in §3.3], use that χ•fp(νC)
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is a graded Lie subalgebra of χ•(νC), and notice the [π, π] = 0 by definition of Poisson
structure.

To prove eq. (36) we argue as follows. Elements ai ∈ a0 = Γ(νC)[1], seen as vertical
vector fields on νC, have polynomial degree −1 (in coordinates they read f(x) ∂∂p). Since
the Schouten bracket preserves the polynomial degree, [[. . . [π, a1], . . . ], an] has polynomial
degree |π|pol−n. Since the polynomial degree of a non-vanishing bivector field is ≥ −2, we
conclude that the above iterated brackets vanish for n > |π|pol + 2.

The equivalence6 between Φ ∈ Γ(νC)[1] being a Maurer-Cartan element and graph(−Φ)
being a coisotropic submanifold of (νC, π) is proven in a separate note [14]. The idea is
that the bivector field e[·,Φ]π is the pushforward of π by the flow of the vector field Φ, that
this flow maps graph(−Φ) to C, and to interpret eq. (36) as saying that C is coisotropic
w.r.t. e[·,Φ]π. Notice that the curved L∞[1]-structure on Γ(∧νC)[1] depends only on the
jets in fiber-directions of π along C; this is clear by [7, Prop. 2.1] or eq. (36) above.

For the last statement, use Thm. 1 and notice that C is coisotropic iff we can write
π =

∑
j Xj ∧ Yj with Xj tangent to C, i.e. iff π ∈ ker(P ).

Hence we can apply Cor. 1.13 (choosing π = 0 above):

Corollary 5.3. Let C be a submanifold of a manifold, and consider a tubular neighborhood
νC. For all π̃ ∈ χ2

fp(νC) and Φ̃ ∈ Γ(νC):{
π̃ is a Poisson structure
graph(−Φ̃) is a coisotropic submanifold of (νC, π̃)

⇔(π̃[2], Φ̃[1]) is a MC element of the L∞[1]-algebra χ•fp(νC)[2]⊕ Γ(∧νC)[1].

The above L∞[1]-algebra structure is given by the multibrackets7 (all other vanish)

d(X[1]) = PX,

{X[1], Y [1]} = [X,Y ][1](−1)|X|,
{X[1], a1, . . . , an} = P [. . . [X, a1], . . . , an] for all n ≥ 1

where X,Y ∈ χ•fp(νC)[1], a1, . . . , an ∈ Γ(∧νC)[1], and [·, ·] denotes the Schouten bracket
on χ•fp(νC)[1].

5.2 Dirac structures and Courant algebroids

In this subsection we consider a Courant algebroid structure on a fixed vector bundle and
a Dirac subbundle A. We study deformations of the Courant algebroid structure (with the
constraint that A remains Dirac for the new Courant algebroid), and of the Dirac subbundle
A. Deformations of Dirac subbundles within a fixed Courant algebroid were studied by Liu,
Weinstein, Xu [33] and by Bursztyn, Crainic, Ševera [5]. We will make use of facts from [5,
§3] and Roytenberg’s [44, §3] [42, §3][43]. We refer to §A.1 and to [45, §1.4] or [8] for some
basic facts on graded geometry.

6See [45, Ex. 3.2 in §4.3] for an example where π is not fiberwise polynomial and the correspondence
fails.

7The formulas for the multibrackets show that the Maurer-Cartan equation for (π̃[2], Φ̃[1]) has at most
|π̃|pol + 2 terms, by the same argument as in Lemma 5.2.
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Recall that a Courant algebroid consists of a vector bundle E → M with a non-
degenerate symmetric pairing on the fibers, a bilinear operation [[·, ·]] on Γ(E), and a bundle
map ρ : E → TM satisfying compatibility conditions, see for instance [43, Def. 4.2]. An
example is TM ⊕ T ∗M with the natural pairing, [[X + ξ, Y + η]] := [X,Y ] + LXη − ιY dξ,
and ρ(X + ξ) = X (this is sometimes called the standard Courant algebroid). A Dirac
structure is a subbundle L ⊂ E such that L equals its orthogonal w.r.t. the pairing, and
so that Γ(L) is closed under [[·, ·]], see [9]. Examples of Dirac structures for the standard
Courant algebroid are provided by graphs of closed 2-forms and Poisson bivector fields.

Fix a Courant algebroid E → M , a Dirac structure A, and a complementary isotropic
subbundle K (not necessarily involutive), so E = A ⊕ K as a vector bundle. Identify
K ∼= A∗ via the pairing on the fibers of E. Consider the map

Γ(∧2A∗)→ Γ(A) , η1 ∧ η2 7→ prA([[(0, η1), (0, η2)]],

and view it as an element ψ ∈ Γ(∧3A). Denote by dA the degree 1 derivation of Γ(∧A∗)
given by the Lie algebroid structure on A (the latter is given by [·, ·]A := [[·, ·]]|A and anchor
ρ|A : A → TM). Similarly denote by dA∗ the degree 1 derivation8 of Γ(∧A) given by the
bracket [η1, η2]A∗ := prA∗([[(0, η1), (0, η2)]] on Γ(A∗) and the bundle map ρ|A∗ : A∗ → TM .
The data given ψ, by the Lie algebroid (A, [·, ·]A, ρ|A), and by (A∗, [·, ·]A∗ , ρ|A∗) form a Lie
quasi-bialgebroid ([5, §3], see also [42, §3.8]). From them one can reconstruct the Courant
algebroid structure on E: the bilinear operation is recovered as

[[(a1, η1), (a2, η2)]] = ([a1, a2]A + Lη1a2 − ιη2dA∗a1 + ψ(η1, η2, ·) , [η1, η2]A∗ + La1η2 − ιa2dAη1)
(37)

and the anchor as ρA + ρA∗ : A⊕A∗ → TM [5, §3].
Recall that Courant algebroids are in bijective correspondence with degree 2 symplectic

graded manifolds M together with a degree 3 function ∆ ∈ C(M) satisfying {∆,∆} = 0
[43, Thm. 4.5]. (Here {·, ·} denotes the degree −2 Poisson bracket on C(M) induced by
the symplectic structure). The Courant algebroid E corresponds to(

M := T ∗[2]A[1] , ∆ = hdA + F ∗(hdA∗ )− ψ
)

with the canonical symplectic structure, by [42, Thm. 3.8.2]. Here we view ψ ∈ Γ(∧3A) as
an element of C3(M). Further hdA ∈ C3(M) is the fiber-wise linear function induced by dA,
the function hdA∗ ∈ C3(T ∗[2]A∗[1]) is defined similarly, and F : T ∗[2]A[1] → T ∗[2]A∗[1] is
the canonical symplectomorphism known as Legendre transformation [42, §3.4]. We denote
by π the contangent projection M→ A[1].

Lemma 5.4. Fix a Courant algebroid E →M , a Dirac structure A, and a complementary
isotropic subbundle K. The following quadruple forms a V-data:

• the graded Lie algebra L := C(M)[2] with Lie bracket9 {·, ·}

• its abelian subalgebra a := π∗(C(A[1]))[2] ∼= Γ(∧A∗)[2]

• the natural projection P : L→ a given by evaluation on the base A[1]
8 dA squares to zero because A is a Lie algebroid, but dA∗ generally does not.
9{·, ·}, as a bracket on L, has degree zero. Hence (L,{·, ·}) is a graded Lie algebra.
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• ∆ = hdA + F ∗(hdA∗ )− ψ,

hence by Thm. 1 we obtain a L∞[1]-structure aP∆. For every Φ ∈ Γ(∧2A∗) we have: Φ[2] is
a MC element of aP∆ iff

graph(−Φ) := {(X − ιXΦ) : X ∈ A} ⊂ A⊕A∗ = E

is a Dirac structure.

Proof. Since {·, ·} is the canonical Poisson bracket on the cotangent bundle, the cotangent
fibers and the base A[1] are Lagrangian submanifolds. Hence a is an abelian Lie subalgebra
of L and ker(P ), which consists of function on T ∗[2]A[1] vanishing on the base, is a Lie
subalgebra. We have {∆,∆} = 0 since ∆ induces a Courant algebroid structure on A⊕A∗.
Finally, ∆ ∈ ker(P ) follows from the expression in coordinates for hdA , F ∗(hdA∗ ) and ψ
[42, eq. 3.11, eq. 3.15]. Hence the the above quadruple is a V-data, and by Thm. 1 we
obtain an L∞[1]-algebra structure aP∆.

We compute the Maurer-Cartan equation of aP∆. Let Φ ∈ a0 = Γ(∧2A∗)[2]. From the
expression in coordinates for F ∗(hdA∗ ) it follows that {F ∗(hdA∗ ),Φ} and {− ψ,Φ} vanish
on the base A[1]. So

P{∆,Φ} = {hdA ,Φ} = dAΦ ∈ Γ(∧3A∗)

where we used [42, Lemma 3.3.1 1)]. Further {{hdA ,Φ},Φ} = 0 since both {hdA ,Φ}
and Φ lie in the abelian Lie subalgebra π∗(C(A[1])), and in coordinates it is clear that
{{− ψ,Φ},Φ} vanishes on the base A[1]. So

P{{∆,Φ},Φ} = {{F ∗(hdA∗ ),Φ},Φ} = −[Φ,Φ]A∗

where we used [42, Lemma 3.6.2]. Further,

P{{{∆,Φ},Φ},Φ} = {{{− ψ,Φ},Φ},Φ} = −(Φ] ∧ Φ] ∧ Φ])ψ ∈ Γ(∧3A∗),

where Φ] : A→ A∗, v 7→ ιvΦ is the contraction in the first component. All the other terms of
the Maurer-Cartan equation vanish. Hence we conclude that the Maurer-Cartan equation
is

dAΦ− 1
2

[Φ,Φ]A∗ − ∧3Φ̃(ψ) = 0 (38)

where ∧3Φ̃ is defined as in §5.3. This equation is equivalent to graph(−Φ) being a Dirac
structure by [5, Prop. 3.5].

Remark 5.5. Given a vector bundle E →M with a non-degenerate symmetric pairing on the
fibers and a direct sum decomposition into maximal isotropic subbundles E = A⊕K, [42,
Thm. 3.8.2] shows: the Courant algebroid structures on E for which A is a Dirac subbundle
are given exactly by self-commuting degree 3 functions onM := T ∗[2]A[1] which vanish on
the base A[1].

Corollary 5.6. Fix a Courant algebroid E →M , a Dirac structure A, and a complemen-
tary isotropic subbundle K. Let (L, a, P,∆) as in Lemma 5.4 For all ∆̃ ∈ C(M)3 with
∆̃[2] ∈ Ker(P ) and Φ̃ ∈ Γ(∧2A∗):

∆ + ∆̃ defines a new Courant algebroid
structure on the vector bundle E,
graph(−Φ̃) is a Dirac structure there

⇔ (∆̃[3], Φ̃[2]) is a MC element of (ker(P )[1]⊕ a)P∆.
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Proof. Apply Thm. 3 with Φ = 0 and use Remark 5.5 to ensure that A is a Dirac subbundle
for the new Courant algebroid structures. Notice that ker(P )[1]⊕ a is a L∞[1]-subalgebra
of (L[1]⊕ a)P∆, by Remark 1.10.

Remark 5.7. The new Courant algebroid structures that appear in Cor. 5.6 are exactly
those for which A is a Dirac subbundle, by Remark 5.5.

Remark 5.8. We check that the V-data (L, a, P,∆) is filtered (Def. 1.17). T ∗[2]A∗[1] is
a vector bundle over A∗[1], so we can denote by Ck(T ∗[2]A∗[1]) the functions which are
polynomials of degree k on each fiber. Using the Legendre transformation F to identify
M = T ∗[2]A[1] with T ∗[2]A∗[1] we obtain a direct product decomposition L =

∏
k≥−1 L

k

where Lk := Ck+1(T ∗[2]A∗[1]). Notice that an element of π∗(Ck+1(A[1]))[2] ∼= Γ(∧k+1A∗)[2]
lies in Lk. By Remark 1.15, FnL :=

∏
k≥n L

k is a complete filtration of the vector space
L. One checks easily that (L, a, P,∆) is a filtered V-data.

5.3 Twisted Poisson structures

In this subsection we present a special case of the situation studied in §5.2. We apply
Cor. 5.6 to the standard Courant algebroid over a manifold M and A = T ∗M . We obtain a
L∞[1]-algebra whose Maurer-Cartan elements consist of closed 3-forms and twisted Poisson
structures [46], recovering the L∞[1]-algebra recently displayed by Getzler [19]. Twisted
Poisson structures appeared in relation to deformations also in [39, §3].

We will need the following notation: for π ∈ ∧aTM and a ≥ 1 we define

π] : T ∗M → ∧a−1TM , ξ → ιξπ,

and we define π] ≡ 0 if a = 0. We also need an extension of the above to several multivectors:
for π1 ∈ ∧a1TM, . . . , πn ∈ ∧anTM (n ≥ 1, ai ≥ 0), we define

π]1 ∧ · · · ∧ π
]
n : ∧n T ∗M → ∧a1+···+an−nTM,

ξ1 ∧ · · · ∧ ξn 7→
∑
σ∈Sn

(−1)σπ]1(ξσ(1)) ∧ · · · ∧ π]n(ξσ(n))

where ξi ∈ T ∗M and (−1)σ is the sign of the permutation σ.
Recall that, given a bivector field π and a closed 3-form H, one says that π is a H-twisted

Poisson structure [46, eq. (1)] iff

[π, π]Sch = 2 ∧3 π̃(H),

where ∧3π̃ = 1
6(π] ∧ π] ∧ π]).

Corollary 5.9. Let M be a manifold. There is an L∞[1]-algebra structure on

L := Ω•≥1(M)[3]⊕ χ•(M)[2]

whose only non-vanishing multibrackets are

a) minus the de Rham differential on differential forms,

b) {π1, π2} = [π1, π2]Sch(−1)a1+1, where πi ∈ χai(M) and [·, ·]Sch denotes the Schouten
bracket,
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c) {H,π1, . . . , πn} = (−1)
Pn
i=1 ai(n−i)(π]1 ∧ · · · ∧ π

]
n)H

for all n ≥ 1, where H ∈ Ωn(M) and π1 ∈ χa1(M), . . . , πn ∈ χan(M).

Its Maurer-Cartan elements are exactly pairs (H[3], π[2]) where H ∈ Ω3(M) and π ∈ χ2(M)
are such that dH = 0 and π is a H-twisted Poisson structure.

Remark 5.10. The graded vector space L = Ω•≥1(M)[3] ⊕ χ•(M)[2] is concentrated in
degrees {−2, . . . , dim(M)− 2}, and its degree i component is Ωi+3(M)⊕ χi+2(M).

Proof. We apply Cor. 5.6 to the standard Courant algebroid TM ⊕ T ∗M (defined at the
beginning of §5.2), to A = T ∗M and K = TM . Notice that it corresponds to the Lie
bialgebroid (A,K), where A has the zero structure and K = TM has its canonical Lie
algebroid structure.

We use the following notation for the canonical local coordinates onM := T ∗[2]T ∗[1]M :
we denote by xj arbitrary local coordinates on M , by pj the canonical coordinates on
the fibers of T ∗[1]M (so the degrees are |xj | = 0, |pj | = 1, for j = 1, . . . , dim(M)). By
Pj , vj we denote the conjugate coordinates on the fibres of M → T ∗[1]M , with degrees
|Pj | = 2, |vj | = 1. One has {Pj , xk} = δjk and {pj , vk} = δjk. The element of C3(M)
corresponding to the standard Courant algebroid is S :=

∑
i Pivi.

The quadruple appearing in Lemma 5.4 reads

• L := C(T ∗[2]T ∗[1]M)[2], whose Lie bracket we denote by {·, ·}

• a := C(T ∗[1]M))[2] ∼= χ•(M)[2]

• the natural projection P : L→ a given by evaluation on the base T ∗[1]M , i.e. setting
Pj = 0, vj = 0 for all j

• ∆ =
∑

i Pivi.

The multibrackets of the L∞[1]-algebra (L[1]⊕ a)P∆ are given in Thm. 2. Notice that using
the Legendre transformation F we have

Ω(M)[2] = C(T [1]M)[2] ⊂ C(T ∗[2]T [1]M)[2]∼=L,

and Ω•≥1(M)[2] ⊂ ker(P ) is a Lie subalgebra preserved by {∆, ·}. So by Remark 1.10 it
follows that L = Ω•≥1(M)[3] ⊕ χ•(M)[2] is a L∞[1]-subalgebra of (L[1] ⊕ a)P∆. We justify
why the restriction of the multibrackets to L is the one described in the statement of this
corollary. a) follows from eq. (5) and

{
∑
i

Pivi, F (x)vε(1) . . . vε(k)} =
∑
i

∂F

∂xi
vivε(1) . . . vε(k),

where ε(i) = 1, . . . , dim(M). b) follows from eq. (7) and [42, Lemma 3.6.2]. c) follow from
eq. (6) and a lengthy but straightforward computation in coordinates.

For the statement on Maurer-Cartan elements we proceed as follows. GivenH ∈ Ω3(M),
the degree 3 function

∑
i Pivi + H on M defines a Courant algebroid structure (i.e., is

self-commuting) iff H is closed, and in this case it induces the (−H)-twisted10 Courant
10Recall that the K-twisted Courant algebroid is TM ⊕ T ∗M with bilinear operation [[X + ξ, Y + η]]K :=

[X,Y ] + LXη − ιY dξ + ιY ιXK.
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algebroid (TM ⊕ T ∗M)−H [43, §4][52, §8] . Hence, by Cor. 5.6, (H[3], π[2]) is a Maurer-
Cartan element of L iff H is closed and graph(−π) is a Dirac structure in (TM ⊕T ∗M)−H .
The latter condition is equivalent to −π being a (−H)-twisted Poisson structure [46, §3],
that is, to π being a H-twisted Poisson structure.

5.3.1 Equivalences of twisted Poisson structures

Consider the L∞[1]-algebra L of Cor. 5.9. Its degree −1 component is L−1 = Ω2(M) ⊕
χ(M), and the binary bracket there reduces to the Lie bracket of vector fields on χ(M),
making L−1 into a Lie algebra. Fix (B,X) ∈ L−1 = Ω2(M) ⊕ χ(M). It defines a vector
field Y(B,X) on L0 = Ω3(M) ⊕ χ2(M). By eq. (12) and Cor. 5.9 at the point (H,π) the
vector field reads

Y(B,X)|(H,π) =
(
− dB , [X,π] + ∧2π̃(B − ιXH)

)
(39)

where ∧2π̃ := 1
2(π] ∧ π]).

For any diffeomorphism φ of M , we consider the vector bundle automorphism

TM ⊕ T ∗M, Y + η 7→ φ∗Y + (φ−1)∗η,

which by abuse of notation we denote by φ∗. For any B ∈ Ω2(M), we consider

eB : TM ⊕ T ∗M, Y + η 7→ Y + (η + ιYB).

Recall that the vector bundle TM ⊕T ∗M is endowed with a canonical pairing on the fibers
given by 〈X1 + ξ1, X2 + ξ2〉 = 1

2(ιX1ξ2 + ιX2ξ1).

Remark 5.11. The group of vector bundle automorphisms of TM ⊕ T ∗M preserving the
canonical pairing and preserving11 the canonical projection TM ⊕ T ∗M → TM is given
exactly by {φ∗eB : φ ∈ Diff(M), B ∈ Ω2(M)}. This follows by the same argument as for
[23, Prop. 2.5]. Further notice that eBφ∗ = φ∗e

φ∗B.

Abusing notation, for any bivector field π such that 1+B[π] : T ∗M → T ∗M is invertible,
we denote by eBπ the unique bivector field whose graph is eB(graph(π)). (Here B[ is the
contraction in the first component of B.) In order to compute the flow of Y(B,X) we need
a lemma:

Lemma 5.12. Let X be a vector field on a manifold M with flow φt defined for t ∈ I ⊂ R,
let {Ct}t∈I be a smooth family of 2-forms and let π be a bivector field. Denote πt :=
(φt)∗(eCtπ). Then

d

dt
πt = [X,πt] + ∧2π̃t

(
(φ−t)∗(

d

dt
Ct)
)
. (40)

Proof. We have
d

dt
(eCtπ) = ∧2(̃eCtπ)(

d

dt
Ct). (41)

11In the sense that the projection TM⊕T ∗M → TM is equivariant w.r.t. the vector bundle automorphism
and the derivative of its base map.
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This follows from (eCtπ)] = π](1+C[tπ
])−1 [46, §4], and from d

dt(e
Ctπ)] = −(eCtπ)]( ddtCt)

[(eCtπ)].
Using eq. (41) in the first equality we obtain

d

dt
πt = (φt)∗

(
d

dt
(eCtπ) + [X, eCtπ]

)
= (φt)∗

(
∧2(̃eCtπ)(

d

dt
Ct)
)

+ (φt)∗[X, eCtπ]

which equals the r.h.s. of eq. (40).

Proposition 5.13. Let (B,X) ∈ Ω2(M)⊕χ(M). The integral curve of Y(B,X) starting at
the point (H,π) ∈ L0 reads

t 7→ (H − tdB, (φt)∗eC
H
t π) (42)

where φ denotes the flow of X and

CHt := Dt +
∫ t

0
(φ∗s)(B − ιXH)ds

for Dt the unique solution with D0 = 0 of

d

dt
Dt = t(φ∗t )ιXdB.

(The above curve is defined as long as φt is defined and 1 + (CHt )[π] is invertible.)

Proof. Fix (H,π) ∈ L0 and consider the curve defined in eq. (42). The curve is tangent to
the vector field Y(B,X) at all times t, by virtue of Lemma 5.12 and since

(φ−t)∗(
d

dt
CHt ) = (φ−t)∗[t(φ∗t )ιXdB + (φ∗t )(B − ιXH)] = B − ιX(H − tdB).

Since at time t = 0 the curve is located at the point (H,π), we are done.

Remark 5.14. Let (B,X) ∈ Ω2(M) ⊕ χ(M) where B is closed, and let (H,π) ∈ L0. Then
Dt = 0, and consequently (φt)∗eC

H
t is a one parameter group of orthogonal vector bundle

automorphisms of TM⊕T ∗M (see [23, Prop. 2.6]). Hence the second component of integral
curve of Y(B,X) starting at (H,π) is the image of (the graph of) π under a one parameter
group of orthogonal vector bundle automorphisms of TM ⊕ T ∗M .

Consider the group Ω2(M) o Diff(M), with multiplication

(B1, φ1) · (B2, φ2) = (B1 + (φ−1
1 )∗B2 , φ1 ◦ φ2).

We consider two natural left actions of Ω2(M) o Diff(M):

• on TM ⊕ T ∗M by (B,φ) 7→ eBφ∗ (preserving the canonical pairing)

• on Ω3
closed(M) by (B,φ) ·H = (φ−1)∗H − dB.
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Remark 5.15. The partial12 action of Ω2(M) o Diff(M) on χ2(M)⊕ Ω3(M) by

(B,φ) · (H,π) = ((φ−1)∗(H)− dB , eBφ∗π)

preserves

MC(L) = {(H,π) ∈ Ω3
closed(M)⊕ χ2(M) : π is a H-twisted Poisson structure}.

This follows from Prop. 5.16 below, but can also easily be checked directly as follows. For
every H ∈ H3

closed(M), the automorphism eBφ∗ maps the H-twisted Courant bracket into
the (φ−1)∗(H) − dB-twisted Courant bracket [23, §2.2]. Now use that π is a H-twisted
Poisson structure iff graph(π) is involutive w.r.t. the H-twisted Courant bracket.

Proposition 5.16. The leaves of the involutive singular distribution

span{Y(B,X) : (B,X) ∈ L−1 = Ω2(M)⊕ χ(M)} (43)

on MC(L) coincide with the orbits of the partial action of Ω2(M) o Diff(M) on MC(L).

Proof. It suffices to show that (43) coincides with the singular distribution given by the
infinitesimal action associated to the group action of Ω2(M)oDiff(M). Notice that the Lie
algebra of this group is Ω2(M)⊕ χ(M), so take an element (B,X) ∈ Ω2(M)⊕ χ(M). We
compute the corresponding generator of the action Z(B,X) at a point (H,π) ∈MC(L): we
have

Z(B,X)|(H,π) :=
d

dt
|t=0(tB, φt) · (H,π) =

(
− d(ιXH +B) , [X,π] + ∧2π̃(B)

)
(44)

where φt is the flow of X and using Lemma 5.12 to compute d
dt |t=0(φt)∗e(φt)∗(tB)(π). Com-

paring this with eq. (39) we see that

Z(B−ιXH,X)|(H,π) = Y(B,X)|(H,π).

This shows that the two singular distributions agree at the point (H,π), and repeating at
every point of MC(L) we conclude that the two singular distributions agree on MC(L).

5.4 Generalized complex structures and Courant algebroids

In this subsection we consider deformations of Courant algebroid structures on a fixed
vector bundle and of their generalized complex structures. Deformations of generalized
complex structures within a fixed Courant algebroid were studied by Gualtieri in [22, §5].

Fix a Courant algebroid E → M and a generalized complex structure J , i.e. a vector
bundle map J : E → E with J2 = −Id, preserving the fiberwise pairing and satisfying an
integrability condition [24][22, Def. 4.18]. J can be equivalently encoded by a complex
Dirac structure A ⊂ E ⊗ C transverse to the complex conjugate Ā. The correspondence is
as follows: given J , define A to be the +i-eigenbundle of the complexification of J . Given
A, consider the complex endomorphism of E⊗C with +i-eigenbundle A and −i-eigenbundle
Ā, and define J to be the restriction to E.

12The action is defined whenever 1 +B[(φ∗π)] is invertible.
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Hence we are in the situation of §5.2, except that we consider complex Dirac structures
in the complexification E⊗C of a (real) Courant algebroid. Notice that E does not have a
preferred splitting into Dirac subbundles. On the other hand, E ⊗C is a complex Courant
algebroid with a splitting E⊗C = A⊕Ā into complex Dirac subbundles. The construction of
[43, Thm. 4.5] leads to a complex graded manifold13 with a degree 2 symplectic structure
{·, ·}, namely N = T ∗[2]A[1]. We denote its “global functions”, a graded commutative
algebra over C, by CC(N ).

Lemma 5.17. Fix a Courant algebroid E → M and a generalized complex structure J ,
encoded by a complex Dirac structure A transverse to Ā. The following quadruple forms a
V-data:

• the complex graded Lie algebra L := CC(N )[2] with Lie bracket {·, ·}

• its complex abelian subalgebra a := π∗(CC(A[1]))[2] ∼= Γ(∧A∗)[2]

• the natural projection P : L→ a given by evaluation on the base A[1]

• ∆ := hdA + F ∗(hdA∗ ), where hdA, F and hdA∗ are defined analogously to §5.2,

hence by Thm. 1 we obtain a complex14 L∞[1]-structure aP∆.
For all Φ ∈ Γ(∧2A∗) we have: Φ[2] is a Maurer-Cartan element in aP∆ iff

graph(−Φ) := {(X − ιXΦ) : X ∈ A} ⊂ A⊕ Ā = E ⊗ C

is a complex Dirac structure in E ⊗ C.

Proof. Exactly as the proof of Lemma 5.4, but working over C and taking K := Ā.

As earlier, let M be the (real) degree 2 symplectic manifold with self-commuting func-
tion ∆ corresponding to the Courant algebroid E. We have CC(N ) = C(M)⊗C. Since ∆
defines a complex Courant algebroid structure on E ⊗C which is the complexification of a
(real) Courant algebroid structure on E, it follows that ∆ ∈ C(M) ⊂ CC(N ). We are inter-
ested only in complex Courant algebroid structures on E ⊗ C which are complexifications
of Courant algebroid structures on E, so we deform ∆ only within C(M).

Corollary 5.18. Fix a Courant algebroid E → M and a generalized complex structure
J , encoded by a complex Dirac structure A. Let M, N , and the V-data (L, a, P,∆) be as
above. Then there exists a (real) L∞[1]-algebra structure on (ker(P ) ∩ C(M))[1] ⊕ a with
the property that for all ∆̃ ∈ C(M)3 with ∆̃[2] ∈ Ker(P ) and small enough Φ̃ ∈ Γ(∧2A∗):{

∆ + ∆̃ defines a Courant algebroid structure on E

graph(−Φ̃) is the + i-eigenbundle of a generalized complex structure there

⇔(∆̃[3], Φ̃[2]) is a MC element of (ker(P ) ∩ C(M))[1]⊕ a.

Proof. Apply Thm. 3 (which holds over C as well) with Φ = 0 to obtain the complex L∞[1]-
structure (ker(P )[1]⊕ a)P∆. View the latter as a real L∞[1]-structure. Since ∆ ∈ C(M), it
follows that (ker(P ) ∩ C(M))[1]⊕ a is a L∞[1]-subalgebra.

Remark 5.19. To see that the above V-data is filtered, proceed exactly as in Remark 5.8.
13It is given by a sheaf of graded commutative algebras over C satisfying the usual locally triviality

condition.
14Hence the underlying graded vector space is complex and the multibrackets are C-linear.
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A Appendix

This appendix collects some background material on graded and formal geometry needed
in the main text. Further, it presents the proof of Prop. 2.17.

Recall that a graded vector space is just a vector space W with a direct sum decom-
position into subspaces W = ⊕i∈ZWi. We refer to elements of Wi as “elements of degree
i” and |x| denotes the degree of x. The dual of W is naturally a graded vector space
with (W ∗)i = (W−i)∗. For any integer k, W [k] denotes the graded vector space with
(W [k])i = Wi+k. The set

L(E,E′):= {linear maps from E to E′}

is a graded vector space, with grading inherited from those of E and E′: an element
φ ∈ L(E,E′) is said to be of degree k if it raises degrees by k, i.e. if |φ(x)| = |x| + k for
all homogeneous x ∈ E. One denotes by L(E,E′)k the set of linear maps of degree k, and
L(E,E′) = ⊕k∈ZL(E,E′)k. One easily checks that

L(E) := L(E,E)

is a graded Lie algebra when endowed with the graded commutator

[φ, ψ] := φ ◦ ψ − (−1)|φ||ψ|ψ ◦ φ.

A.1 A primer on graded geometry: graded spaces and homological vector
fields

We recall the notions of graded geometry needed in §2.1 - 2.3. An extension of these notions
is used in §5.2 and §5.4. See [45, §1.4] or [8] for more details.

Let W be a Z-graded vector space. We introduce the symmetric algebra of W and its
derivations.

• Let TW := R⊕W⊕W⊗2⊕ . . . be the tensor algebra of W . It is a graded algebra, i.e.,
it is a graded vector space endowed with an associative morphism TW ⊗TW → TW .
Let SW be the quotient of TW by the ideal generated by x ⊗ y − (−1)|x||y|y ⊗ x,
where x and y range over homogeneous elements of W . SW is a graded commutative
algebra (see [45, §2, Def. 4.1], called the graded symmetric algebra of W .

• For any integer k, Der(SW )k denotes the space of degree k derivations of SW , i.e.
Q ∈ L(SW )k which satisfy

Q(x · y) = Q(x) · y + (−1)k|x|x ·Q(y).

Der(SW ) := ⊕k∈ZDer(SW )k is closed under the graded commutator of linear endo-
morphisms, i.e. Der(SW ) is a Lie subalgebra of (L(SW ), [−,−]).

Now let U be an n-dimensional, real vector space. Then U [1] (resp. (U [1])∗) is a graded
vector space concentrated in degree −1 (resp. 1). Exactly as ordinary vector spaces are
instances of smooth manifolds, graded vector spaces are instances of graded manifolds.
We do not give the definition of graded manifold here (see [8, §2.1]). Rather, we describe
explicitly the two algebraic structures associated to the graded manifold U [1] that will be
used in this article:

44



• The space of “functions on U [1]”

C(U [1]) := S((U [1])∗).

It is a graded commutative algebra concentrated in degrees 0, . . . , n. It is isomorphic
to the ordinary exterior algebra ∧U∗ of U∗ (graded so that elements of ∧kU∗ have
degree k).

• The space of “vector fields on U [1]”

χ(U [1]) := Der(C(U [1])).

It is a graded Lie algebra, concentrated in degrees ≥ −1. As a graded vector space it
is just S((U [1])∗)⊗ U [1].

We give “coordinate expressions” for the above functions and vector fields. Notice that
there is a canonical identification ι : U → χ−1(U [1]). An element X ∈ U is identified with
the vector field ιX that satisfies ιX(u) = 〈X,u〉 for all u ∈ (U [1])∗ = C1(U [1]), where the
pointy brackets denote the pairing of a vector space with its dual. (It is enough to specify
how ιX acts on (U [1])∗, since the latter generates the graded commutative algebra C(U [1]).)

• Choose a basis X1, . . . , Xn of U . The dual basis, viewed as a basis of (U∗)[−1] =
(U [1])∗, will be denoted by

u1, . . . , un.

We refer to the ui as coordinates on U [1]. Notice that |ui| = 1. The graded com-
mutative algebra C(U [1]) is generated by the ui, and a generic degree k element of
C(U [1]) is a degree k polynomial expression in the ui.

• X1, . . . , Xn, under the identification of U with χ−1(U [1]), becomes a basis of χ−1(U [1])
which we denote by

∂

∂u1
, . . . ,

∂

∂un
.

Notice that | ∂∂ui | = −1. We have ∂
∂ui

(uj) = δij . A general degree k element of χ(U [1])
is of the form

∑n
i=1 Pi

∂
∂ui

, where Pi is a degree k + 1 polynomial expression on the
uj ’s.

Finally, by homological vector field on U [1] we mean a degree 1 element Q ∈ χ(U [1])
with the property that [Q,Q] = 0. Notice that a homological vector field is necessarily of
the form

∑
ckijuiuj

∂
∂uk

for some constants ckij .

A.2 A primer on formal geometry: coalgebras and homological coderiva-
tions

The notion of formal geometry is used in §2.4-2.5 and §3, and is dual to the notion of
graded geometry. It is of use when one has to deal with infinite dimensional algebras. In
this section we introduce the main objects of interest, homological coderivations. They
are compact ways to handle algebras, or algebras up to homotopy: the brackets of these
algebras are given by the Taylor coefficients of the corresponding coderivation. References
for proofs can be found for example in [1], [10] or the appendix of [40].
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Definition A.1. A coalgebra structure on a (possibly graded) vector space W consists of
a (degree 0) linear map ∆ : W → W ⊗W, called coproduct, satisfying the coassociativity
condition

(∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆.

The only examples which will be of use here are:

Example A.2. If V is a (graded) vector space over the field K, let us consider TV =
⊕∞k=0V

⊗k and SV = ⊕∞k=0S
kV . They are coalgebras for the (degree-preserving) coproducts

given respectively by

∆(x1 ⊗ · · · ⊗ xn) :=
n∑
i=0

(x1 ⊗ · · · ⊗ xi−1)
⊗

(xi ⊗ · · · ⊗ xn) (45)

and

∆(x1 . . . xn) :=
n∑
i=0

∑
σ∈Sh(i,n−i)

ε(σ;x1, . . . , xn) · (xσ(1) . . . xσ(i))
⊗

(xσ(i+1) . . . xσ(n)). (46)

We used the notation ε(σ;x1, . . . , xn), the Koszul sign given by the permutation σ of the
elements xi and the convention that x1 ⊗ · · · ⊗ xn = xσ(1) . . . xσ(n) = 1K when n = 1. In
particular, ∆(1K) = 1K ⊗ 1K.

Most people rather work with the reduced tensor/symmetric coalgebras:

Example A.3. One defines TV = ⊕∞k=1V
⊗k and SV = ⊕∞k=1S

kV . They are coalgebras for
the coproducts (both denoted by ∆̄) given by replacing the element 1K ∈ V ⊗

0
= S0V = K

by 0 in eq. (45) and (46). In other words:

∆(x) = ∆̄(x) + 1K ⊗ x+ x⊗ 1K.

Definition A.4. A coderivation of a coalgebra (W,∆) consists of a linear endomorphism
Q of W satisfying the following (co) Leibniz condition:

(Q⊗ Id+ Id⊗Q) ◦∆ = ∆ ◦Q. (47)

One denotes by Coder(W ) the set of coderivations of (W,∆). It is a graded Lie subalgebra
of (L(W ), [−,−]).

Remark A.5. If both Q and Q′ are odd, then [Q,Q′] = Q ◦Q′+Q′ ◦Q. This means that if
Q is odd, then Q ◦Q is a coderivation.

Definition A.6. A homological coderivation consists in a degree one coderivation Q satis-
fying

Q ◦Q = 0. (48)

From now on we work with non-negatively graded coalgebras, i.e. such that W =
⊕i≥0Wi. Let Q be a linear endomorphism of W . As a linear map, it is uniquely defined by
its restrictions to the subspaces Wk: if one denotes Qk := Q|Wk

, one has Q =
∏∞
k=0Qk. Let

us consider the natural projection ΠWl
: W →Wl, for every l. One denotes Ql := ΠWl

◦Q.
Clearly:

Q =
∏∞

k,l=0
Qlk.
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Definition A.7. The collection Q1 := {Q1
0, . . . , Q

1
i , . . . } is called the set of Taylor coeffi-

cients of Q. The coderivation Q is said to be quadratic if its only non zero Taylor coefficient
is Q1

2.

Coderivations are most of the time encountered through their Taylor coefficients. Propo-
sition A.8 shows how to reconstruct a coderivation from its Taylor coefficients, and formula
(50) expresses the condition of being homological in these terms:

Proposition A.8. A coderivation Q of TV (resp. SV ) is uniquely determined by the
collection {Q1

1, . . . , Q
1
i , . . . } of its Taylor coefficients by the formula

Qin =
i∑

s=1

Ids−1 ⊗Q1
n−i+1 ⊗ Idi−s,

resp.
Q = mSV ◦ (Q1 ⊗ Id) ◦ ∆̄, (49)

where mSV denotes the multiplication of SV .

Prop. A.8, whose proof can be found in [1], [10] or the appendix of [40], enables to
reformulate the condition (48) for a coderivation to be homological:

Lemma A.9. A coderivation Q of TV is homological if and only if its Taylor coefficients
satisfy the set of equations (n ≥ 1)

n∑
i=1

i∑
s=1

Q1
i ◦ (Ids−1 ⊗Q1

n−i+1 ⊗ Idi−s) = 0. (50)

In particular, a quadratic homological coderivation of TV is equivalent to the equation

Q1
2 ◦ (Q1

2 ⊗ Id) +Q1
2 ◦ (Id⊗Q1

2) = 0. (51)

In the same way, a coderivation Q of SV is homological if and only if its Taylor coefficients
form a L∞[1]-algebra on V (see Def. 1.4).

Proof. Let Q be a homological coderivation of TV . By Remark A.5, Q◦Q is a coderivation,
and we can apply Proposition A.8. Therefore we will get a series of equations, namely, the
annihilation of all its Taylor coefficients (Q ◦Q)1

i . But one has, by use of Proposition A.8,
the following expression for the these coefficients:

(Q ◦Q)1
n =

n∑
i=1

Q1
i ◦Qin

Prop A.8
=

n∑
i=1

Q1
i ◦ (

i∑
s=1

Ids−1 ⊗Q1
n−i+1 ⊗ Idi−s).

The proof of the statement for SV goes along the same lines and can be found in [1].
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Lemma A.9 is important, since it is the link between homological coderivations and
algebras. But to have this link explicit, one still needs to “desuspend” the relation. First,
let us recall the shift operator [1] : V → V [1], which maps an element of v ∈ Vi to itself
seen as an element of (V [1])i−1. (In other words, [1] shifts the degree of an element by 1.)
Sometimes we write v[1] for [1]v.

Definition A.10. Let Q be a coderivation of T (V [1]). We define the desuspension operator
d by

dQ1
n := [1]Q1

n[−1]⊗
n

: TV → V, (52)

and similarly for S(V [1]).

This desuspension operator constitutes the link between homological coderivations and
homotopy algebras. This is the content of the following proposition, whose proof can be
found in [1] and [10].

Proposition A.11. The operator d defined by equation (52) gives a bijection between the
sets of quadratic homological coderivations of T (V [1]) and of associative algebra structures
on V .

Similarly, it also gives a bijection between the sets of homological coderivations of
S(V [1]) and of L∞-algebra structures on V . The latter restricts to a bijection between
the quadratic homological coderivations of S(V [1]) and the graded Lie algebras structures
on V .

This last result suggests the definition of an A∞-algebra, introduced by Stasheff in [49].

Definition A.12. An associative algebra up to homotopy (or A∞-algebra) is a graded vector
space V equipped with a collection of maps {m1, . . . ,ml, . . . }, obtained by desuspension of
the Taylor coefficients of a homological coderivation Q of T (V [1]).

A.3 The proof of Prop. 2.17: infinite dimensional L∞-algebras via de-
rived brackets

It is well-known that an L∞-algebra structure on a finite dimensional graded vector space V
is equivalent to a homological vector field on V [1]. The L∞-multibrackets can be recovered
with a derived bracket construction [50, Ex. 4.1]. If V is an infinite dimensional, the
above procedure does not apply (it involves considering the dual of V [1]). Instead, as
stated in Lemma A.9, a L∞-structure on V can be encoded by a suitable coderivation on
a reduced symmetric coalgebra. In this section we show that the L∞-structure can also be
recovered from a coderivation on a (unreduced) symmetric coalgebra by a derived bracket
construction, proving Prop. 2.17.

Let W be a (possibly infinite dimensional) graded vector space. We will apply Voronov’s
derived bracket construction (Thm. 1) to the graded Lie algebra (Coder(SW ), [−,−]) of
Def. A.4. Let us introduce the abelian subalgebra a which we will need.

Lemma A.13. For every homogeneous w ∈W ,

αw : SW → SW,

x1 . . . xn 7→ w · x1 . . . xn
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is a coderivation of SW of degree |w|. Further, a := {αw : w ∈ W} is an abelian Lie
subalgebra of Coder(SW ).

Proof. We show that αw is a coderivation, i.e., that is satisfies eq. (A.4). With the notations
x∅ := 1 and xI := xi1 · · · · · xin for I = {i1, . . . , in}, one can abbreviate

∆xI =
∑

I′qI′′=I
±xI′ ⊗ xI′′ ,

where ± are the signs which appear in formula (46). On the one hand one has

(αw ⊗ Id+ Id⊗ αw)∆(xI) =
∑

I′qI′′=I
±w · xI′ ⊗ xI′′ + (−1)|w||xI′ | ± xI′ ⊗ w · xI′′ .

On the other hand, if one denotes w · xI = x{?qI}, one gets

∆(αw(xI)) =
∑

J ′qJ ′′=?qI
±xJ ′ ⊗ xJ ′′ =

∑
I′qI′′=I

±w · xI′ ⊗ xI′′ + (−1)|w||xI′ | ± xI′ ⊗ w · xI′′ .

Hence αw is a coderivation.
To show that a is abelian we compute for all homogeneous v, w ∈W and x ∈ SW that

[αv, αw]x = v · w · x− (−1)|v||w|w · v · x = 0.

Lemma A.14. For every τ ∈ Coder(SW ) one has τ(1) ∈W .

Proof. For any element w ∈ SW the following holds: ∆w = w ⊗ 1 + 1⊗ w iff w ∈W .
Applying eq. (47) to 1 ∈ SW we see that τ(1) satisfies the above relation, so it must

lie in W .

There is an embedding of the coderivations on SW into those on SW :

Lemma A.15. Consider the map

J : Coder(SW )→ Coder(SW )

defined by (JΘ)(1) = 0 and, for all n ≥ 1, by

(JΘ)(w1 . . . wn) = Θ(w1 . . . wn).

J is well defined, injective, and bracket-preserving.

Proof. We check that JΘ lies in Coder(SW ). The relation (47) is trivially satisfied on the
element 1. Let now x be an element of SW . We have

(JΘ⊗ Id+ Id⊗ JΘ)(∆(x)) = Θ(x)⊗ 1 + 1⊗Θ(x) + (Θ⊗ Id+ Id⊗Θ)(∆̄(x))
= Θ(x)⊗ 1 + 1⊗Θ(x) + ∆̄(Θ(x))
= ∆(JΘ(x)),

where in the first equality we used (JΘ)(1) = 0 and in the second that Θ ∈ Coder(SW ).
Hence JΘ is a coderivation.
J is bracket-preserving since, for any Θi ∈ Coder(SW ), the graded commutator [JΘ1,JΘ2]

vanishes on 1 ∈ SW and agrees with [Θ1,Θ2] on ⊕∞k=1S
kW .
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Now we are ready to prove Prop. 2.17, which recovers L∞[1]-algebra structures on W
via derived brackets. We repeat the proposition for the reader’s convenience:

Proposition. Let W be an L∞[1]-algebra, and Θ the corresponding coderivation of SW
given by Lem. A.9. The following quadruple forms a V-data:

• the graded Lie algebra L := Coder(SW )

• its abelian subalgebra a := {αw : w ∈W}

• the projection P : L→ a , τ 7→ ατ(1)

• ∆ := JΘ.

The induced L∞[1]-structure on a given by Thm. 1 is exactly the original L∞[1]-structure
on W , under the canonical identification W ∼= a, w 7→ αw.

Proof. a is an abelian Lie subalgebra of Coder(SW ) by Lemma A.13. The map P is well-
defined by Lemma A.14, and is clearly a projection (that is, P 2 = P ). Its kernel ker(P )
agrees with the subspace of coderivations vanishing on 1 ∈ SW . Hence ker(P ) is a Lie
subalgebra of Coder(SW ) and it contains JΘ. Further [JΘ,JΘ] = 0 by Lemma A.15.

We conclude that (L, a, P,∆) is a V-data and the assumptions of Thm. 1 are satisfied.
To compute the induced multibrackets on a, notice that for every n ≥ 1

[· · · [JΘ, αw1 ], · · · , αwn ](1) = JΘ ◦ αw1 ◦ · · · ◦ αwn(1) +
n∑
i=1

αviMi (53)

for certain elements Mi ∈ ⊕∞k=1S
kW . In particular the sum on the r.h.s. lies in ⊕∞k=2S

kW .
Hence

[· · · [JΘ, αw1 ], · · · , αwn ](1) = prW
(
[· · · [JΘ, αw1 ], · · · , αwn ](1)

)
= prW

(
JΘ ◦ αw1 ◦ · · · ◦ αwn(1)

)
= prW

(
JΘ(w1 · · ·wn)

)
= {w1, · · · , wn}

where in the first equality we used Lemma A.14, in the second we used eq. (53), and in the
fourth Lemma A.9. Hence

P [· · · [JΘ, αw1 ], · · · , αwn ] = α[···[JΘ,αw1 ],··· ,αwn ](1) = α{w1,··· ,wn}.

A.3.1 Application: L∞ algebras associated to A∞ algebras

It is well known ([32] or [34, Prop. 13.2.16]) that, in the same way that one can associate
a Lie algebra to an associative algebra (by taking the commutator), one can associate a
L∞-algebra to an A∞-algebra. In this subsection, which is not used in the rest of the paper,
we show that it is indeed possible to understand this in terms of derived brackets.
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Let W be a (possibly infinite dimensional) graded vector space and w ∈ W . Let us
define the map

αw : TW 7−→ TW, αw(w1 ⊗ · · · ⊗ wn) =
n∑
i=0

w1 ⊗ · · · ⊗ wi ⊗ w ⊗ wi+1 ⊗ · · · ⊗ wn.

In the following we use the notations of the previous section, modulo the replacement of
the symmetric product by the tensor product.

Proposition A.16. Let W [−1] be an A∞-algebra, and Θ the corresponding coderivation
of TW given by Def. A.12. The following quadruple forms a V-data:

• the graded Lie algebra L := Coder(TW )

• its abelian subalgebra a := {αw : w ∈W}

• the projection P : L→ a , τ 7→ ατ(1)

• ∆ := JΘ.

The induced L∞[1]-structure on a given by Thm. 1 is exactly the L∞[1]-structure on W
obtained by symmetrization of the A∞[1]-algebra structure on W.

Proof. One can easily check by mimicking §A.3 that the map αw is a coderivation of TW ,
a is an abelian subalgebra of L, and Ker(P ) is a subalgebra of L. To show that (L, a, P,∆)
forms a V-data, it remains to show that [∆,∆] = 0. But by definition A.12, an A∞-algebra
on W := V [−1] is equivalent to a Maurer-Cartan element of Coder(TW ), i.e. a coderivation
Θ of degree 1 such that [Θ,Θ] = 0. Now use the fact that the map J is bracket preserving.

Therefore the derived bracket construction of Thm. 1 can be applied to the V-data
(L, a, P,∆) above, associating a L∞[1]-algebra to the given A∞-algebra.

It remains to check that the obtained L∞[1]-structure on W can alternatively be ob-
tained by symmetrization: The computation following eq. (53) gives in particular

prW
(
JΘ ◦ αw1 ◦ · · · ◦ αwn(1)

)
= {w1, · · · , wn}. (54)

One remarks (proof by induction) that αw1 ◦ · · · ◦ αwn(1) =
∑

σ∈Sn wσ(1) ⊗ · · · ⊗ wσ(n). So
(54) rewrites as

{w1, · · · , wn} =
∑
σ∈Sn

Θ1
n(wσ(1) ⊗ · · · ⊗ wσ(n)),

i.e. the n-th bracket of the L∞[1]-structure on a given by Thm. 1 is obtained by sym-
metrization of the n-th bracket of the original A∞[1]-structure.
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