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L.-algebras governing simultaneous deformations
via derived brackets

Yaél Frégier*! Marco Zambon?

Abstract

We consider the problem of deforming simultaneously a pair of given structures.
We show that such deformations are governed by an L..-algebra, which we construct
explicitly. Our machinery is based on Th. Voronov’s derived bracket construction.

We consider algebraic and geometric applications including the deformations of mor-
phisms of various kinds of algebras, of coisotropic submanifolds in Poisson manifolds,
and of twisted Poisson structures.

Contents

Introduction| 2

[1 L.-algebras via derived brackets and Maurer-Cartan elements| 4
1.1 Background on Lo-algebras|. . . . . . ... ... ... ... ... ..., 4

6

8

(1.2 Th. Voronov’s constructions of L..-algebras as derived brackets|. . . . . . .
(1.3 Main theorem: an analogue of the Tangent complex within Voronov’s theory.|

1.4 Convergence 1SSUES| . . . . . . . . o v o v v e e e e 10
[1.5  Equivalences of Maurer-Cartan elements| . . . . . . .. ... ... ...... 12

|2 Applications to Lie theory| 14
2.1 Lie algebra morphisms.|. . . . . . .. ... ... o o000 14
[2.1.1 Equivalences ot Lie algebras morphisms| . . . . ... ... ... ... 17

[2.2  Subalgebras of Lie algebras| . . . . . . .. ... ... ... .. 18
[2.3  Lie bialgebra morphisms.| . . . . .. .. ... o oo Lo 20
2.4  Maurer-Cartan elements of L,.-algebra structures|. . . . . .. .. ... ... 22
2.5  L..-algebra morphisms|. . . . . . . . . . ... 23

|13  Applications to associative algebras| 26
[3.1 Morphisms of associative algebras|. . . . . . .. ... ... 0000, 27

* Univ. Lille Nord de France F-59 000 Lille, France. UArtois, Laboratoire de Mathématiques de Lens
EA 2462, Fédération CNRS Nord-Pas-de-Calais FR 2956, F-62 300, Lens, France.

tInstitut fiir Mathematik, Universitit Ziirich-Irchel, Winterthurerstr. 190, CH-8057 Ziirich, Switzerland.
Email: yael.fregier@gmail.com

! Universidad Auténoma de Madrid — (Departamento de Matemadticas) and ICMAT (CSIC-UAM-
UC3M-UCM), Campus de Cantoblanco, 28049 Madrid, Spain. Email: marco.zambon®@uam.es,
marco.zambon@icmat.es



|4  Applications to algebras over Koszul operads| 32

5 Applications to Poisson geometry| 33
[>.1 Coisotropic submanifolds of Poisson manifolds|. . . . . . .. ... ... ... 33
[.2  Dirac structures and Courant algebroids| . . . . . ... ... ... ...... 35
[b.3  Twisted Poisson structures] . . . . . . . ... . Lo oL 38

[5.3.1  Equivalences ot twisted Poisson structures|. . . . . . ... ... ... 40
[5.4  Generalized complex structures and Courant algebroids| . . . . .. ... .. 42

|IA Appendix]| 44
[A.1 A primer on graded geometry: graded spaces and homological vector fields| 44
[A.2 A primer on formal geometry: coalgebras and homological coderivations| . . 45
[A.3 The proof of Prop. [2.17} infinite dimensional L.-algebras via derived brackets| 48

[A.3.1 Application: L., algebras associated to A, algebras| . . . . . .. .. 50

Introduction

Deformation theory was developed in the 50’s by Kuranishi-Kodaira (complex structures
in [25], [26], [27] and [30]) and by Gerstenhaber (associative algebras [16]). Nijenhuis-
Richardson then gave an interpretation of deformations in terms of graded Lie algebras
([36] and [37]) which was later promoted by Deligne: deformations of a given algebraic or
geometric structure A are governed by a differential graded Lie algebra (DGLA) or, more
generally, by an Loo-algebra.

For example Gerstenhaber in [16] introduced a graded Lie algebra (L, [—, —]) such that
an associative algebra structure on a vector space V' is given by A € L; such that [A, A] = 0.
A deformation of A is an element A + A such that A € L; and

~ 1

0=[A+AA+A]=2[AA] +[A,A] = 2(daA + Z[AA)]), (1)

O |

i.e. the DGLA (L,da,[,]) governs deformations of the associative algebra A.

It is usually a hard task to show that the deformations of a given structure are gov-
erned by an L..-algebra, and even harder to construct explicitly the L,-algebra. When
one succeeds in doing so, as a reward one gets the cohomology theory, analogues of Massey
products and a natural equivalence relation on the space of deformations. Moreover, quasi-
isomorphic L.-algebras govern equivalent deformation problems, a result with non-trivial
applications to quantization (see [28§]).

In this work we consider simultaneous deformations of two (interrelated) structures. A
typical example is given by the simultaneous deformations of (A, ®), where A denotes a pair
of associative algebras and ® is an algebra morphism between them. These deformations
are characterized by a cubic equation (unlike eq. which is quadratic) and are therefore
governed by an L.-algebra with non trivial {3-term.

Our main result, Thm. [3]in constructs explicitly Lo,-algebras governing such si-
multaneous deformation problems.



Outline of the content of the paper. L -algebras, introduced by Lada and Stasheff
[32], consist of collections {/;};>1 of “multi-brackets” satisfying higher Jacobi identities.
They can be built out of what we call V-data (L, P,a, A) via derived bracket constructions
due to Th. Voronov [50] [51] (see Thm. [1] and [2).

Our main contribution is to determine L.-algebras governing simultaneous deforma-
tion problems (Thm. , by recognizing that they arise as in Voronov’s Thm. These
results are collected in We apply them to algebraic problems in §2| and to geometric
problems in and we believe that the range of application of our tools is much broader
than the examples we have examined (see §4).

We give algebraic applications to the study of simultaneous deformations of algebras
and morphisms in the following categories: Lie, L, Lie bi- (see §2) and associative algebras
(see . Another application concerns Lie subalgebras of Lie algebras.

One could instead have used operadic methods, see for example [I3], but our techniques
have the advantage of not assuming any knowledge of operadic machinery and of easily de-
livering explicit formulae. Note that the graded Lie algebras appearing in our V-data can
be seen as coderivations of certain coalgebras built from Koszul duality for operads (see .

The main novelty, concerning applications, is in geometry. In we determine Lgo-
algebras governing simultaneous deformations of: coisotropic submanifolds of Poisson man-
ifolds; Dirac structures in Courant algebroids, with twisted Poisson structures as a special
case. We also describe explicitly the equivalence relation on the spaces of twisted Poisson
structures.

None of these examples, to our knowledge, falls under the scope of the operadic meth-
ods, and one should have in mind that in this geometric setting, no tool such as Koszul
duality gives for free the graded Lie algebra L of the corresponding V-data.

In the appendix we give a proof of the fact (Prop. that any Lso-algebra structure
on an arbitrary vector space can be recovered from Voronov’s derived bracket construction,
generalizing a well-known result valid for finite dimensional vector spaces (see for instance
[50, Ex. 4.1]). We also provide background material on graded and formal geometry.

Deformation quantization of symmetries. One knows from [3] that the quantization of
a mechanical system (Poisson manifold) can be understood as a deformation of the algebra
of smooth functions “in the direction” of the Poisson structure, the first order term of the
Taylor expansion of this deformation.

Kontsevich associates in [28] to any Poisson structure such a quantization: Poisson
structures and their quantizations are Maurer-Cartan elements for suitable Lso-algebras
(Schouten and Gerstenhaber algebras, respectively), so it suffices to build a L.,-morphism
between these two Loo-algebras (formality theorem). This morphism sends Maurer-Cartan
elements to Maurer-Cartan elements, i.e. associates a quantization to any Poisson structure.

One of our first motivations was to apply this approach to symmetries. The notion of
symmetry of a mechanical system (C*°(M),{—,—}) can be understood as a Lie algebra
map (g, [—, —]) = (C*°(M),{—, —}). This map can be extended, in the category of Poisson
algebras, to (Sg,{—, —}), the Poisson algebra of polynomial functions on g*. Its graph can



be regarded as a coisotropic submanifold of the Poisson manifold g* x M. Therefore, in
we construct an Lso-algebra governing simultaneous deformations of Poisson tensors
and their coisotropic submanifolds. This Ly.-algebra plays the role of the Schouten alge-
bra in presence of symmetries. It generalizes the L..-algebras governing deformations of
coisotropic submanifolds of Poisson manifolds considered by Oh and Park [38], and Catta-
neo and Felder [7], since in their settings, the Poisson structure was kept fixed.
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1 L-algebras via derived brackets and Maurer-Cartan ele-
ments

The purpose of this section is to establish Thm. [3| which produces the L..,-algebras appear-
ing in the rest of the article. Therefore, we first give some basic material about L,-algebras
in then we recall in Voronov’s constructions which will be the main tools used to
establish in our Theorem [3] We conclude justifying in why no convergence issues
arise in our machinery, and discussing equivalences in

1.1 Background on L,-algebras

We start defining (differential) graded Lie algebras, which are special cases of Lo,-algebras.

Definition 1.1. A graded Lie algebra is a Z-graded vector space L = P, o5,
with a degree-preserving bilinear bracket [-,:]: L ® L — L which satisfies

L,, equipped

1) graded antisymmetry: [a,b] = —(—=1)1*l[p, q],
2) graded Leibniz rule: [a, [b,c]] = [[a, D], ] + (—=1)1#ll[b, [a, ]].

Here a, b, c are homogeneous elements of L and the degree |z| of an homogeneous element
x € Ly, is by definition n.

Definition 1.2. A differential graded Lie algebra (DGLA for short) is a graded Lie algebra
(L, [,"]) equipped with a homological derivation d: L — L of degree 1. In other words:

1) |da| = |a| + 1 (d of degree 1),
[a,b] = [da,b] + (—1)*/[a, db] (derivation),

2 = 0 (homological).



In order to formulate the definition of an L,-algebra — a notion due to Lada and Stasheff
[32] — let us give two notations. Given two elements vy, v2 in a graded vector space V, let
us define the Koszul sign of the transposition 712 of these two elements by

6(7’1,2, U1, 1)2) = (_1)\Ul|\v2|'

We then extend multiplicatively this definition to an arbitrary permutation using a decom-
position into transpositions. We will often abuse the notation €(o,vy,...,v,) by writing
(o), and we define x (o) := €(o)(—1)7.

We will also need unshuffles: o € S, is called an (i,n — i)-unshuffle if it satisfies
o(l)y<---<o(i) and o(i +1) < --- < g(n). The set of (i,n — i)-unshuffles is denoted by
S(in—i)- Following [31], Def. 2.1], we define

Definition 1.3. An L. -algebra is a Z-graded vector space V equipped with a collection
(k > 1) of linear maps I: @V — V of degree 2 — k satisfying, for every collection of
homogeneous elements vy, ...,v, € V:

1) graded antisymmetry: for every o € S,
lk(va(l)v s ’Ua(n)) = X(U)lk(vla oo ,’Un),
2) relations: for all n > 1

S DTN (@) Gi(Va1)s - Va()s V(i) - - Vainy) = 0.

1,521

In a curved Lo-algebra one additionally allows for an element [y € V5, one allows ¢ and j
to be zero in the relations 2), and one adds the relation corresponding to n = 0.

Notice that when all I, vanish except for k = 2, we obtain graded Lie algebras.
In Def. the multibrackets are graded antisymmetric and [ has degree 2 — k, whereas
in the next definition they are graded symmetric and all of degree 1.

Definition 1.4. An Ly[1]-algebra is a graded vector space W equipped with a collection
(k > 1) of linear maps my: ®@F W — W of degree 1 satisfying, for every collection of
homogeneous elements vy, ...,v, € W:

1) graded symmetry: for every o € S,
M (Vo (1)s - - 5 Vo)) = €(@)Mp(V1, - ., V),
2) relations: for all n > 1

z z E(U)mj (mi(va(l)y cee 7U0(i))a Vo(i41)s -+ Ua(n)) = 0.
1+j=n+1 €S n—s)
i,j>1
In a curved Loo[1]-algebra one additionally allows for an element mg € W; (which can be
understood as a bracket with zero arguments), one allows 7 and j to be zero in the relations
2), and one adds the relation corresponding to n = 0.



Remark 1.5. There is a bijection between L.-algebra structures on a graded vector space
V and Lo [1]-algebra structures on V[1], the graded vector space defined by (V[1]); := Viq1
[50, Rem. 2.1]. The multibrackets are related by applying the décalage isomorphisms

(@"V)[n] 2 @"(V[1]), v1...0n > v1...0 - (1)@ DIkt 2onslona] (2)
where |v;| denotes the degree of v; € V. The bijection extends to the curved case.

From now on, for any v € V, we denote by v[l] the corresponding element in V1]
(which has degree |v| — 1). Also, we denote the multibrackets in Ly [1]-algebras by {-- -},
we denote by d := m; the unary bracket, and in the curved case we denote {{} := myq (the
bracket with zero arguments).

Definition 1.6. Given an Lo [1]-algebra W, a Maurer-Cartan element is a degree 0 element
® satisfying the Maurer-Cartan equation

One denotes by MC (W) the set of its Maurer-Cartan elements.
If W is a curved Lo [1]-algebra, one defines Maurer-Cartan elements by adding mg € W
to the left hand side of eq. (i.e. by letting the sum in start at n = 0).

...} =0. (3)

n tlmes

:‘H

There is an issue with the above definition: the l.h.s. of eq. is generally an infinite
sum. In this paper we solve this issue by considering filtered Lo,[1]-algebras (see Def. ,
for which the above infinite sum automatically converges.

1.2 Th. Voronov’s constructions of L.-algebras as derived brackets

Here we introduce V-data and recall how Voronov associates L [1]-algebras to a V-data.
Definition 1.7. A V-data consists of a quadruple (L, a, P, A) where

e [ is a graded Lie algebra (we denote its bracket by [-,-]),

e a an abelian Lie subalgebra,

e P: L — aa projection whose kernel is a Lie subalgebra of L,

o A € Ker(P); an element such that [A, A] = 0.

When A is an arbitrary element of L; instead of Ker(P);, we refer to (L,a, P,A) as a
curved V-data.

Theorem 1 ([50, Thm. 1, Cor. 1}). Let (L,a, P,A) be a curved V-data. Then a is a curved
Lo [1]-algebra for the multibrackets {0} := PA and (n >1)

{ai,...;an} = P[...[[A,a1],a2],...,an]. (4)

We obtain a Loo[1]-algebra exactly when A € Ker(P) .



When A € Ker(P) there is actually a larger Loo[1]-algebra, which contains a as in Thm.
as a Loo[1]-subalgebra.

Theorem 2 ([51, Thm. 2]). Let (L,a, P,A) be a V-data, and denote D := [A,-]: L — L.
Then the space L[1] @ a is a Loo[1]-algebra for the differential

d(z[1],a) := (=(Dz)[1], P(z + Da)), (5)

the binary bracket
{«[1],y[1]} = [z, y)[1](-1)" € L[1],
and forn > 1:

{z[1],a1,...,an} = P[...[z,a1],...,a,] € q, (6)
{ai,...,an} = P[...[Dai,az],...,a,] € a. (7)
Here x,y € L and ai,...,a, € a. Up to permutation of the entries, all the remaining

multibrackets vanish.

Notation 1.8. We will denote by
and by

the Lo [1]-algebras produced by Thm. |1} and

Given a curved V-data, assume that ® € ag is such that el»® is a well-defined (see
Prop. for a sufficient condition), giving an automorphisms of (L, [-,-]). Consider

Py :=Poe®: L —a. (8)

Notice that Py is a projection since el ® |a = Idy by the abelianity of a.

Remark 1.9. Let (L,a, P, A) be a curved V-data and ® € ay as above. Then & is a Maurer-
Cartan element of ai iff
PsA =0, (9)

or equivalently A € ker(Pg). This follows immediately from eq. and will be used
repeatedly in the proof of Thm.

Remark 1.10. Let L' be a graded Lie subalgebra of L preserved by D (for example L' =
Ker(P)). Then L'[1] @ a is stable under the multibrackets of Thm. We denote by
(L'[1] ® )X the induced Loo[1]-structure.

Remark 1.11. Voronov’s [51, Thm. 2] is actually formulated for any degree 1 derivation D
of L preserving Ker(P) and satisfying Do D = 0. We restrict ourselves to inner derivations
for the sake of simplicity, and since all the derivations that appear in our examples are of
this kind.

A “semidirect product” L [1]-algebra similar to the one in Thm. [2|appeared in [2] [11].



1.3 Main theorem: an analogue of the Tangent complex within Voronov’s
theory.

It is well known [20, Prop.4.4] that one can twist an Ly [1]-algebra g by one of its Maurer-
Cartan elements ®. One obtains a new L. [1]-algebra gg, sometimes called the “tangent
complex at ®”. Its n-th multibracket is

{...};‘;:{...}n+{¢>,...}n+1+%{q>,q>,...}n+2+...

where {...}; denotes the j-th multibracket of g.
A property of the tangent complex gg is that its Maurer-Cartan elements are in one to
one correspondence with the deformations of @, i.e.

P4+ decMC(g) < &ecMC(gs)

Our goal in this section, Thm. is to have this property for simultaneous deformations.
To this aim one needs to modify the notion of tangent complex in the setting of Voronov’s
theory.

We first reinterpret in Proposition the tangent complex in terms of the twisted
V-data (L, a, P, A) and observe that “twisting commutes with derived brackets’. We then
establish in Thm. [3| that the construction given by Theorem [2[ applied to the twisted V-
data gives an Loo[1]-algebra whose Maurer-Cartan elements correspond to simultaneous
deformations of ® and A.

Proposition 1.12. Let (L,a, P, A) be a filtered V-data and let ® € MC(ak). Then

1) (L,a, Py, A) is also a V-data. Moreover (aZ)Q = ai@, i.e. ‘“‘twisting commutes with
derived brackets”.

2) For any ® € ay: ) .
d+decMCOl) o deMO@D).

The assumption filtered is there to ensure the convergences of the infinite sums ap-
pearing, and can be neglected on a first reading. We will address convergence issues in

!

Proof. 1) Py is well-defined by Prop. Ker(Pp) = el""®(Ker(P)) is a Lie subalgebra
of L since el"~®! is a Lie algebra automorphism of L and ker(P) is a Lie subalgebra. Further
A € ker(Pgp) by Remark Hence (L,a, Pp,A) is a V-data, and by Thm. (1| we obtain
the Loo[1]-algebra ai‘l’.

The n-th multibracket (n > 1) of ai‘l’ is given by

Pel (A, ...,
=P[[[el®IA, ],...],]

1
:{...}n+{<I>,...}n+1+§{<I>,<I>,...}n+2+...



which we recognize as the expression of {...}2. The first equality holds because el® is an
automorphism of L and el-®|, = Id,.

2) We have
b e MC(ake) & Pp(elh ™A =0
& P(eh®Hh)A =
&0+ d e MC(ak).
Here the first and last equivalences hold by Remark [I[.9] In the second equivalence we used

el ®+®] = el @l ‘I’] which holds since ®, ® lie in the abelian subalgebra a. Notlce that the
sums appearing in the Maurer-Cartan equations converge both for aX A and a ?_ by Prop.

I8 O

Thanks to this result, one can see the classical tangent complex of ai at ® as the
first derived bracket construction (Thm. (1)) applied to the twisted V-data (L,a, Pp,A).
This suggests to consider, as a replacement of the notion of tangent complex at ®, the
result of the second derived bracket construction (Thm. applied to the twisted V-data
(L,a, Pp,A). The main result of this paper is:

Theorem 3. Let (L, a, P,A) be a filtered V-data and let ® € MC(ak). Then for all Ael,
and ® € ag:

{[A+A A+A] =0 & (A1), ®) € MO((L[1] @ a)k®).

®+de MC(af Gy, i)

Moreover, a is a curved Log[1]-algebra. It is a Loo[1]-algebra exactly when A € Ker(P).

P
A+A
Proof. By Prop. |1 We can apply Thm. [2 Ito obtain the Ly[1]-algebra (L[1]® a)P whose

multibrackets we denote by {.. } We compute each summand appearing in the Lh.s of
the Maurer-Cartan equation for (A[1],®) in (L[1] ® a )A , which reads

S° AN @), ., (A, @), (10)
n=1
We have
(AL, 8)) = (~[a,AJ1], Pk NN )
(AN} @), (A1, &)} = (14, A]l1), 2. Po[A, 8] FRA,8] ).
(AN@). . AELEY =( 0 . n-Pyl[AB]...J.8] + Pa[[[A,B.8]...]. 9)).
n times n—1 times n times

The last line refers to the n-th term for n > 3, and holds since the higher brackets with
two or more entries in L[1] & {0} vanish. ) .
The L[1]-component of is just —3[A + A, A + A][1]. The a-component of is

Pg (e["é]ﬁ + (e["é] — 1)A)
:P¢e['7&>](A +A)
—Pel-*T(A 4+ A),



which by Remark is the 1.h.s. of the Maurer-Cartan equation in ai+ A for ® + ®. Here
in the first equation we used Remark The last two statements follow from Thm.
Notice that the sums appearing in the Maurer-Cartan equations of ai+ & and (L[1] & a)<1>
both converge, by Prop. [[.18

O

We obtain the following corollary about the space of curved Loo[1]-algebra structures
arising as in Thm. [I] and Maurer-Cartan elements in there:

Corollary 1.13. Let L,a, P such that (L,a, P,0) is a filtered V-data. The only non-
vanishing multibrackets of (L[1] @ a)l’, up to permutations of the entries, are

d(x[1]) = P,
{21}, y[1]} = [ y][1]) (-,
{z[1],a1,...,an} = P[...[z,a1],...,a,]  foralln >1
where z,y € L[1] and a4, ...,a, € a.

Its Maurer-Cartan elements are characterized by: for all Ac L1 and o c ao

{[A,A]:o

~ & (A1, ®) is a MC el t of (L[1] @ a)?.
@isaMCelementofag (AQL], @) is a element of (L[1] )o

Proof. Applying Thm. [3| with A = 0 and ® = 0, we obtain the L.[1]-algebra (L[1] @ a)F,
whose multibrackets are given by setting D = 0 in Thm. [2] and are displayed above. O

1.4 Convergence issues

The left hand side of the Maurer-Cartan equation is generally an infinite sum. In this
subsection we review Getzler’s notion of filtered Loo-algebra [I8], which guarantees that the
above infinite sum converges. We show that simple assumptions on V-data ensure that the
Maurer-Cartan equations of the (curved) Lo[1]-algebras we construct in Prop. and
Thm. [3]do converge.

Definition 1.14. Let V be a graded vector space. A complete filtration is a descending
filtration by graded subspaces

V=rFWVoFVoOFV>..
such that the canonical projection V' — limV/F"V is an isomorphism. Here
LmV/F"V:={z € > V/F'V : P, ;(x;) = z; when i < j},

where P, j: V/FIV — V/F'V is the canonical projection induced by the inclusion F/V C F'V.

Remark 1.15. If V' can be written as a direct product of subspaces V = sz_l VE, then
{F"V}n>—1 is a complete filtration of V', where 7"V := ], vk,

10



Definition 1.16. Let W be a curved Ly[1]-algebra. We say that W is ﬁlteredﬂ if there
exists a complete filtration on W such that all multibrackets {...} have filtration degree
—1.

Notice that for an element ® € W of filtration degree 1, we have {®,..., ®}, € F* W
for all n, so the infinite sum

Z%{cp,...,q)}n (11)
n=0

converges in W by the completeness of the filtration. Indeed, setting w; := 22:0 %{ o,..., D},
mod F'W for all i defines an element w € TI,>_1W/F"W which turns out to belong to
HmV/F"V = W.

We define Maurer-Cartan elements to be ® € Wy N F'W for which the infinite sum
(11) vanishes.

Definition 1.17. Let (L,a, P, A) be a curved V-data (Def. [.7). We say that this curved
V-data is filtered if there exists a complete filtration on L such that

a) The Lie bracket has filtration degree zero, i.e. [F'L, F/L] C F"*IL for all 4,7 > —1,
b) apg C .’FlL,
c) the projection P has filtration degree zero, i.e. P(F'L) C F'L for all i > —1.

Proposition 1.18. Let (L,a, P,A) be a filtered, curved V-data. Then for every ® €
M C(aZ) C ag:

1) the projection Py := P o el ®: L — a is well-defined and has filtration degree zero.

2) the curved Loo[1]-algebra ai‘b given by Thm. is filtered by F™a := F*LNa. Further,
the sum converges for any element of ag.

3) if A € ker(P): the Loo[1]-algebra (L[l]@a)]‘zI> given by Thm. @is filtered by F™(L[1]®
a) := (F"L)[1|@F"a. Further, the sum converges for any element of (L[1]®a)o.

Proof. 1) For every x € L, say x € F'L, by Def. a)b) we have

I[...[z,®],...],® € FL.
N———

n times

Hence the completeness of the filtration on L implies that e[>®! is a well-defined endomor-
phism of L. The above also shows that el>® has filtration degree zero, and since P does by
Def. ¢), we conclude that the projection Py has filtration degree zero.

2) We first check that {F"a},>_1 is a complete filtration of the vector space a.

The map a — 1Ena /F™ais surjective. Indeed, take an element of lgna/ Fa, and consider

its image under the canonical embedding lima/F"a — LmW/F"W. It is a sequence of

1Our definition differs from Getzler’s, which requires that W = F°W and that the multibrackets have
filtration degree zero except for the zero-th bracket which has filtration degree one.

11



elements {a; mod F'W};>_; where a; € a. The surjectivity of W — limW/F"W implies
that there is an element w € W such that a; mod F'W = w mod F'W for all i, which
implies w € F'W + a for all i and hence w € N;(F'W + a). Since N;(FW) = {0} (by the
injectivity of W — limW/F"W), this means that w € a.

The map a — lima/F"a is injective. Indeed, an element a € a is sent to 0 if and only
if a € N;(Fa). But N;(Fla) C N;(F'W), which is {0} as seen above.

The multibracktets of ai“’ is given by Pg|...[[A,e],e],... o] (see eq. (d)). Using 1) and
Def. a), we see that this multibracket has filtration degree —1.

For the last statement, notice that ag C F'a by Def. b).

3) {(F"L)[1] ® F"a},>—_1 is a complete filtration of the vector space L[1] & a because
the two summands are complete filtrations of L[1] and a respectively (by assumption and
by 2) respectively). The multibracktets of (L[1] ® a)iq) are given in Thm. [2) and all have
filtration degree —1 by 1) and Def. a).

For the last statement, notice that the non-vanishing multibrackets of (L[1] @a)iq’ accept
at most two entries from L[1], and use again ap C Fa. O

A common way to deal with convergence issues is to work formally (i.e. in terms of
power series in a formal variable £). We make precise how this goes in the present context.

Lemma 1.19. Let (L,a,P,A) be a curved V-data. Then the conclusions of Prop.
hold in the formal setting, provided one replaces ag by ag ® € - R[[¢]].

Proof. One checks easily that the following is a curved V-data:
o the graded Lie algebra L ® R][¢]]
e its abelian subalgebra a ® R[[¢]]
e the natural projection P.: L ® R[[¢]] — a ® R[[¢]]
o A

where the the first three structures are defined by R[[¢]]-linear extension. The natural
complete filtration {F"},>0 by F" := L ® e"R][¢]] satisfies conditions a),c) of Def.
Hence one can apply Prop. to the above listed curved V-data, taking care to replace
ap by ag®e - R[[EH

Notice that the curved Loo[l]-algebra induced by the above listed curved V-data is
canonically isomorphic to (aX) @ R[[¢]]. O

1.5 Equivalences of Maurer-Cartan elements

Let W be an Ly[l]-algebra. On MC(W), the set of Maurer-Cartan elements, there is
a canonical involutive (singular) distribution D which induces an equivalence relation on
MC(W) known as gauge equivalence. More precisely, each z € W_; defines a vector field
Y?# on Wy, whose value at m € Wy isﬂ

2Th infinite sum is guaranteed to converge if W is filtered and W_; C F'W, see For both the
examples we consider in this paper, this sum is actually finite.
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yzm::der{z,m}Jr {zmm}+ {zmmm}+ (12)

This vector field is tangent to M C(W) The distribution at the point m € MC(W) is
defined as D|,, = {V?*|m : 2 € W_1}.

Remark 1.20. We give a justification of the above statements, see also [29, §3.4.2] [35]
§2.5][15), §2.2]. Suppose W is finite-dimensional, so that the L.[1]-algebra structure is
encodedE| by a degree 1, self-commuting vector field @ on W [50, Ex. 4.1]. We recall the
following fact, that holds for any vector field X on Wj and any element m € W, (which
defines a constant vector field m on Wy):

X = (™1 X))o (13)

Indeed both sides equal ((¢—1)«X)|o, where ¢ denotes the time one flow of m (translation
by m). Eq. (13)) applied to X = @ implies 1mmed1ately that a point m € Wy is a zero of
Q iff —m satlsﬁes the Maurer-Cartan equation (3

View z € W_; as a constant (degree —1) vector field on W. Then [Q,z] is a degree
zero vector field. As Lo 1Q = [[Q, 2], Q] = 0, the flow of [Q, 2] preserves the set of zeros
of @, and hence [Q, 2] is tangent to this set. Eq. applied to X = [Q, Z] implies that
(@, z]|w, is the pushforward by —Idy, of Y7, therefore }* is tangent to MC(W).

A computation shows that D can also be described in terms of all degree —1 vector
fields: D, = {[Q, Z]|m : Z € x—1(W)} for all m € MC(W). Since [[Q, Z],[Q,Z']] =
(@, [[Q, Z], Z"] it follows that D is involutive.

Remark 1.21. When the differential d vanishes, the Jacobiator of the binary bracket {-,-}
is zero. Hence {-, -} makes the vector space W_; into an ordinary Lie algebra, and the
assignment W_q1 — xo(Wo), z — (V*)iin := {2, -} € xo(Wp) to the linear part of Y* is a Lie
algebra morphism.

Consider in particular the Loo[1]-subalgebra ker(P)[1] @& a of the Ly[1]-algebra of
Cor. Notice that the differential vanishes, so Remark applies. The vector
field associated to a degree —1 element z = (zp[l],24) € ker(P)[1] @ a, evaluated at
m = (mp[l],mq) € MC(ker(P)[1] © a), reads

y ’m— ZLamL +Z 1 ZLama +Z n—l mL7Za]>ma]>---7ma]
n>1 v,
n times n—1 times
(14)

where the square bracket is the graded Lie algebra structure on L.

We will display explicitly the equivalence relations induced on morphisms between Lie
algebras in and on twisted Poisson structures in In both cases it turns out that
the equivalence classes coincide with the orbits of a group action.

3The multibrackets on W are recovered from @ applying Thm. to the V-data (L = x(W),a =
{constant vector fields on W}, P(X) = X|o, Q).
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2 Applications to Lie theory

In this section we apply the machinery developed in the previous section to instances in
Lie theory. The results of recover a theorem in [13].
We refer the reader to Appendix for the background material needed in 2.3,

and to Appendix for that needed in -

2.1 Lie algebra morphisms.

Let (U, [-,-]u) and (V, [-,-]y) be finite dimensional Lie algebras. We show that the deforma-
tions of Lie algebra morphisms U — V' are ruled by a DGLA, recovering classical results of
Nijenhuis and Richardson [37], and that more generally the simultaneous deformations of
the Lie algebra structures and Lie algebra morphisms are ruled by a L,-algebra, recovering
a theorem in [I3] by the first author, Markl and Yau. The set-up of this subsection is a
special case of the one of We consider the simple instance of Lie algebras separately
for the sake of concreteness and clarity of exposition.

We consider the graded manifold (U x V')[1], and encode the above data as vector fields
on this graded manifold. See Appendix [A] for some basic notions on graded manifolds
and the notation; in particular x(U[1l]) denotes the space of vector fields on UJl], and
t: U — x—1(U[1]) identifies elements of U with constant vector fields. We adopt the
following conventions:

e The Lie bracket [,]y is encoded by the homological vector field Qu € x1(U]1])
defined by [[Qu, tx],ty] = txy], forall X, Y € U

e A linear map ¢: U — V is encoded by ® € xo((U x V)[1]) defined by [®,1x] = t4(x)
forall X € U.

Remark 2.1. We give coordinate expressions for the vector fields Qu, Qy,®. Choose a
basis of U, giving rise to coordinates {u;} on U[1], and similarly choosing a basis of V' get
coordinates {vy} on V[1]. Then

1, ) )

1 0
= a2 = avs e, ® = — A 15
Qu 5 it g Qv g dasbats g, i g, (15)

where cfj and dlﬁ are the structural constants of the Lie algebras U and V respectively
and Ay, is the matrix respresenting ¢ in the chosen basis.

The map ¢: U — V is a Lie algebra morphism exactly when

Qu. @] + 5[Qv, 9], %] =0, (16)

see for example [37, p. 176].
Lemma 2.2. The following quadruple forms a V-data:
e the graded Lie algebra L := x((U x V)[1])

o its abelian subalgebra a := C(U[1]) ® V[1]
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e the natural projection P: L — a with kernel

ker(P) = (C(UN]) @ C>1(V[1)) @ V[1]) @ (C(U[1] x V[1]) @ U[1])

e A:=Qu+Qv,

hence by Thm. |1l we obtain a Loo[1]-structure ak. For every linear map ¢: U — V we
have: ® € ag is a Maurer-Cartan element in ai iff ¢ is a Lie algebra morphism.

Proof. Ker(P) is a Lie subalgebra of L. This can be seen in coordinates, or noticing that
the kernel consists exactly of vector fields on (U x V')[1] which are tangent to (U x {0})[1].
Hence the above quadruple forms a V-data.

The Loo[1]-structure induced on a by Thm. [I|is given by the multibrackets P[[[Qu +

Qv,-], - ],:]. One computes easily in coordinates using that P[Qv,], [[Qu,], ] and
[[[Qv,-],],:] vanish when applied to elements of a. Hence only the unary and binary
brackets are non-zero, and they are given by

[QU7 ]

HQVa '], ]
respectively. Therefore the Maurer-Cartan equation of aZ is given by . O

Lemma [2.2] allows us to apply Prop. and Thm. [3] Hence we deduce:

Corollary 2.3. Let U,V finite dimensional Lie algebras and ¢: U — V' a morphism. Let
(L,a,P,A) as in Lemma .

1) Let ¢: U — V be a linear map. Then

é+ & is a Lie algebra morphism < & is a MC element of ai@.
2) For all quadratic vector fields Qu on U[1] and Qv on V(1] and for all linear maps
o:U—-V:

Qu + Qu and Qv + Qv define Lie algebra structures on U and V
&+ ¢ is a Lie algebra morphism between these new Lie algebra structures

S(Qu + Qv)[1], @) is a MC element of (L[1] ® a)g‘b.

Remark 2.4. We check that (L, a, P, A) is filtered V-data (Def. [1.17), as this is a hypothesis
in Thm. |3 We have a direct sum decomposition L = @y>_1L*F where L¥ := Cy11(U[1]) ®
C(V1)eU1] @ C(U[1]))@C(V[1])®@V]1]. In other words, L* is spanned by monomials in
L whose total number of u’s and %’s, in coordinates, is exactly k+1. Then F"L := @anLk
is a complete filtration of the vector space L. One checks easily that (L, a, P,A) is filtered
V-data.

An alternative way to check that there are no convergence issues for el"®l and the
Maurer-Cartan equations appearing in Cor. is to recall that U x V is finite dimensional
and use a variant of Lemma [2.6] below.
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In the rest of this subsection we make more explicit the structures of ah® and (L'[1] &
a)i‘b, where L' C L is specified just after Lemma [2.5

Given a morphism of Lie algebras ¢: U — V, the associated Richardson-Nijenhius
DGLA is given by @; A’ U* ® V, the differential being the Chevalley-Eilenberg differential
of U with values in the module V' (the module structure is given by e € U — [¢(e), ]v)
and the bracket being the Lie bracket on V' combined with the wedge product on AU* (see
[37, p. 175-6] or [12, §2.3]).

Lemma 2.5. ai‘b is the suspension of the Richardson-Nijenhius DGLA introduced in [37,
§1].

Proof. The n-ary bracket of aiq’, evaluated on aq,...,a, € ais

Po[[[Qu + Qv, a1, -], an]

One computes easily in coordinates that only unary and binary brackets are non-zero, and
they are given by

PlQu + Qv ?],"] =[Qu + [Qv, D], ] (17)

PlQv, -] =[Qv, ], ] (18)

respectively. The r.h.s. of is exactly the Chevalley-FEilenberg differential of the Lie
algebra U with values in the module V. The r.h.s. of is given by the Lie bracket on

V' combined with the wedge product on AU*. Hence we obtain the Nijenhuis-Richardson
DGLA. O

Up to this point we only looked at deformations of the morphism ¢: U — V. Now we
also deform the Lie algebra structures on the vector spaces U and V.

Define L' := x(U[1]) ® x(V[1]) € L. By Thm. 3] and Rem. we obtain an Lu[1]-
algebra (L'[1]® a)i“’, governing the simultaneous deformations of the Lie algebra structures
on U,V and of the morphisms.

Lemma 2.6. (L'[1] @a)i“’ has multibrackets of order up to dim(V)+1. Its Maurer-Cartan
equation is cubic, given by eq. below.

Proof. We write down explicitly the multibrackets of (L'[1] ® a)i‘b, as given in Thm.
We denote by Qf, @}, and &' general (homogeneous) elements of x(U[1]), x(V[1]) and a
respectively (i = 1,2,...). The multibrackets involving only ® are given exactly by
and since ai‘p is a Loo-subalgebra of (L'[1] @ a)i‘p. Explicitly, they are

d(®) = [Qu + [Qv, 9], 9] € a
and
{¢', &%} = [[Qv, ®'], ®°] € a.

Now we compute the multibrackets involving at least one of Qy[1] or Qv /[1]. For the
differential we have

d(Qu(1])) = —[Qu + Qv. Qul[l] + Po(Qu) = —[Qu, Qul[1] + [Qu,®] € L[] & a
d(Qv[1])) = —[Qu + Qv, Qv[1] + Pe(Qv) = —[Qv, Qv][1] + %H- Qv ®),...], ] e L[l]@a
! ————

k
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where k = |Qy| + 1. For the binary bracket we have

{(QF + QYL (QF + Q)1 = (—1)RU+QV([QL, Q3 + [QY, Q3 D)11] € L]
{Qu[1],®} = Po[Qu,®] = [Qu,®] € a (19)
{Qv[l], @} = Ps[Qv, ] € a.

From it follows that the only non-zero n-brackets with n > 3 are

{Qv[1],®,...,8"} = Py[[Qy,®],...,d"] € a. (20)

In coordinates it is clear that the operation [-,®] sends C(U[1]) ® C;(V[1]) ® V[1] to
CUN) @ Ci1(VI1]) ® V[1). As Qy € x(V[1]) = %Y ¢y (V{a]) ® V1], it is clear from
eq. that all n-brackets vanish for n > dim(V) + 1.

To write down the Maurer-Cartan elements , we can use eq. (3) and the formulae
for the multibrackets derived above. Alternatively, by virtue of Cor. we know that
Maurer-Cartan elements Q) = Qu[l] + Qv [l] + ® are characterized by the equations [Qu +

Qu,Qu +~C~2U] =0, [Qv + Qv,Qv + Qvy] = 0 and by the equation obtained replacing Qs
by Qu + Qu (and similarly for Qv ,®) in eq. . The latter equation reads

0=(Qu, ]+ 5(1Qv, 2], 8] +[Qu + [Qv, 2], &) e
+Qu, 8]+ [[Qv, 9], 9] + [[Qv, 9], )
+5l(Gv. 9], 8]
O

2.1.1 Equivalences of Lie algebras morphisms

Consider the Lo, [1]-algebra whose Maurer-Cartan elements are pairs of Lie algebra struc-
tures and morphisms between them, that is, the Ly[1]-algebra £ := (L'[1] & a)k_, as in
Cor.

Elements of £_; are of the form

z=(zv(l], 2v[l], 20) € xo(UID[] ® xo(V[ID[] & V[1].

Restricting the binary bracket {-,-}2 to £_; and using the identifications at the beginning
of we obtain the ordinary Lie algebra

End(U) x (End(V) x V)

where End(U) and End(V') are endowed with the commutator bracket, V' is abelian and
[A, fl]=Af eV for Ac End(V) and f € V.
Maurer-Cartan elements lie in Ly, so they are of the form

m = (my[1], my (1], me) € xa(UY[A] @ xa(VAD[] @ (UI)" @ V],
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and as described at the beginning of §2.1]its components correspond respectively to a Lie
bracket [, -], on U, a Lie bracket [-,-],,, on V, and a Lie algebra morphism ¢: U — V.
By degree reasons eq. ((14]) reads simply

Vm = 2o, mul[l] @ [zv, myv][1] © [2v + 2v, md] + [[mv, zd], mal (22)
€T: a(UDA] & xa(VAD[] & (U])* @ V]1]).

The assignment z — )? vector field is not a Lie algebra action: z' = (0,0,2!) and

2?2 = (0,0, 22) commute, however the vector fields yzl and yz2 do not commute. How-
ever restricting suitably we obtain an infinitesimal action, which integrates to the group
action of symmetries given in [12], §3]:

Proposition 2.7. The assignment End(U) x End(V) — x(MC), z — Y? is a Lie algebra
morphism. It integrates to the group action

(GL(U) x GL(V)) x MC — MC
((g> h) ) ([v ']m(m ['7 ']mU’¢) = (g*(['a ']mU)?h*(['> ']mv)7ho ¢og_1).

Here the Lie bracket g*([-, |my,) is defined as g[g™t, g~ |my, and similarly for h*([-, |my)-
The equivalence classes induced by the singular distribution D := {Y* : z € L_1} on
MC agree with the orbits of the this action.

Proof. Notice that for z € End(U) x End(V') the vector field )? is linear, hence z — Y? is
a Lie algebra morphism by Remark We compute the integral curve of J? starting at
m = (my[1],my[1],mq) € MC.

The first component of Y* is [zy,-|[1]. Its integral curve starting at my[l] is ¢ +—
etlzu-lmy[1], since the latter forms a 1-parameter group and differentiates to [z, -] at time
zero. The Lie bracket on U induced by el?v-lmy[1] is (exp(2))* ([, ]my,) Where exp(zy)
is the usual matrix exponential of z;y € gl(U) (this follows from the fact that el*v] is an
automorphism of [-,-]). The same argument applies to the second component of )*.

For the third component, the integral curve of [zy + zy,:] starting at mg is t —
ettutavlim,. The element elvt2v-Im, € (U[1])* @ V[1] corresponds to exp(zy) o ¢ o
exp(—zy): U — V. This shows that the group action in the statement of this proposition
integrates the given Lie algebra action.

For the last statement we fix m € M C and show that D,,, = {V?|,, : z = (2v][1], 2v[1],0)}.
To this aim, just notice that Y(©:02a)|, = YO.[mv.2al.0)| - for all z, € V[1], as a consequence
of [my, my] = 0. O

2.2 Subalgebras of Lie algebras

Let g be a finite dimensonal Lie algebra, U C g a Lie subalgebra. We study deformations
of the Lie algebra structure on g and of the subspace U as a Lie subalgebra, similarly to
Richardson [41].

At first, let U C g be simply a subspace. We denote by Qg4 € x(g[l]) the ho-
mological vector field encoding the Lie algebra structure on g. Choose a subspace V
in g complementary to U. Given a linear map ¢: U — V, we view it as an element
@ € C1(U1]) ® x-1(V[1]) € xo(g[1]) defined by [®,1x] = t4(x) for all X € U.
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Lemma 2.8. The following quadruple forms a curved V-data:

e the graded Lie algebra L := x(g[1])
o its abelian subalgebra a := C(U[1]) ® V1]

e the natural projection P: L — a with kernel

ker(P) = (C(U1]) ® Cx1(V[1]) @ V[1]) & (C(g[1]) @ U1])

o A:=(Qy,

hence by Thm. |1j we obtain a curved Lo[1]-structure ak.
® € ag is a MC element in aX iff graph(¢) is a Lie subalgebra of g.
Further, the above quadruple forms a V-data iff U is a Lie subalgebra of g.

Proof. To show that the above quadruple forms a curved V-data proceed as in the proof of
Lemma

Rem. says that @ is a Maurer-Cartan element in af iff e*[q’"}Qg € ker(P). This
condition is equivalent to asking that for all X,Y € U:

He_[q)"}Qg,LX} ,Ly] e U[1]

Using the fact that e~[®7 is a Lie algebra automorphism of L (to pull it out of the brackets)
and that el®lix = 1x +[®,1x] = Lx+¢(X), We see that the above is equivalent to

(X +0(X),Y +¢(Y)] € {Z+¢(2): Z €U} = graph(¢),

i.e. to graph(¢) being a Lie subalgebra of g.

The last statement can be proven as follows: Q4 € ker(P) is equivalent to [[Qq, tx], ty] €
U[1] for all X,Y € U, which in turn means that U is a Lie subalgebra of g. (Alternatively, it
follows from the above noticing that 0 is a Maurer-Cartan element of ai iff PQg=0.) O

Lemma [2.8| allow us to apply Thm. [3] with ® = 0.
We deduce:

Corollary 2.9. Let g be a Lie algebra, U C g a Lie subalgebra. Choose a subspace V C g
complementary to U, and let (L,a, P,A) be the V-data as in Lemma .
For all Q4 € L1 and for all linear maps ¢: U — V:

Qg+ Qg defines a Lie algebra structure on g
graph(¢) is a Lie subalgebra of it

&(Qq[1],®) is a MC element of (L[1] @ a)k.

Remark 2.10. The proof that (L,a, P,A) is a filtered V-data is given in Remark

Remark 2.11. By Cor. the Maurer-Cartan elements of (L[1]@®a)X are in bijection with
deformations of the Lie algebra structure on g and deformations of the subspace U as a Lie
subalgebra.

Applying Cor. to the Lie algebra U, to the Lie algebra g and to the inclusion
i: U < g, we obtain an Ly[1]-algebra whose Maurer-Cartan elements are deformations of
the Lie algebra structure on g and deformations of i to linear maps i +i: U — g whose
image is a Lie subalgebra of the new Lie algebra structure on g. Notice that the two
Maurer-Cartan sets are quite different, as different maps i + 4 can have the same image.
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2.3 Lie bialgebra morphisms.

Let U and V be Lie bialgebras. We show that the simultaneous deformations of the Lie
bialgebra structures and Lie bialgebra morphisms are ruled by some L.,-algebra.

Definition 2.12. A finite dimensional vector space U is a Lie bialgebra if U is endowed

with a Lie algebra structure, the dual U* is endowed with a Lie algebra structure [-, -Jg+,
and the Chevalley-Eilenberg differential of U is a graded derivation of [+, -]y= (extended to
AU*).

A morphism between from a Lie bialgebra U to a Lie bialgebra V is a Lie algebra
morphism ¢: U — V such that its dual ¢*: V* — U* is also a Lie algebra morphism (see
for instance [4]).

In order to rephrase the above definitions, we recall few notions from graded geometry.
Let U be a vector space. The graded manifold M := T*[2]U[1] = U[1] x U*[1] is symplectic,
hence the space of functions is endowed with a degree —2 Poisson bracketﬂ Explicitly, the
degree k functions areﬁ Cr(M) = NF(U* x U). If we choose a basis for U, giving rise to
degree 1 coordinates u; on U[1] and degree 1 coordinates on U*[1] which we denote by B%i’
the Poisson bracket is given by

0 0 0 0
{ui,u;} =0, {BTM’ ach} =0, {u, aTLj} =0ij = {%’ui}'

Notice that C(M) is not only graded but actually bigraded, by C(; (M) = ANU* @ NU.
Since the Poisson bracket on C(M) has degree —2, it follows that C'(M)[2] is a graded
Lie algebra. There is a canonical (degree preserving) embedding

X(U1]) = C¢(M)[2],

whose image consists exactly of ®;C; 1)(M) (the fiber-wise linear functions on M =
T*[2]U[1]). The embedding also preserves the brackets by [42, Lemma 3.3.1], i.e., it is
an embedding of graded Lie algebras. Notice that there is a canonical symplectomorphism
T*21U[1] = U[1] x U*[1] = U*[1] x U[1] = T*[2]U*[1], which provides a canonical embed-
ding of graded Lie algebras x(U*[1]) — C(M)]2].

We can now state, following [42], §3.1]: a Lie bialgebra structure on U is equivalent to an
element Qu € C(21)(M) and an element Qu+ € C(y 2)(M) such that Qu + Qu+ commutes
with itself w.r.t. {-,-}, or equivalently so that Quy — Qu~ self-commutes.

Further, if U and V are Lie bialgebras and given a linear map ¢: U — V, consider the
corresponding element ® € x((U x V)[1]) € C(T*[2](U x V)[1])[2] as at the beginning of
this section. Notice that the element of C'(T*[2](U x V')[1])[2] associated to ¢* is —®. Using
we see that ¢ is a morphism of Lie bialgebras iff

{Qu.®} + S {{Qv. 8}, 2} =0, (23)

{Que,~@) + SH{Que, ~),~8} =0 (24)

4This bracket is sometimes called “big bracket”.
5Here we use A to denote the ordinary exterior power, and regard elements of U and U* as having degree
one.
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Lemma 2.13. Let (U, Qu,Qu~) and (V,Qv,Qv+) be finite dimensional Lie bialgebras. The
following quadruple forms a V-data:

e the graded Lie algebra L := C(Zl,zl)(T*m(U X V)[l]) [2] = (A2 (U* x V)@ AZH(U x
V)2l

e its abelian subalgebra a := (AN=1U* @ AZ1V)[2]
e the natural projection P: L — a with kernel

ker(P) = (AU* @ A2V @ AZHU x V))[2] + (AZH (U x VF) @ AZ1U @ AV)[2]

* A:=Qu + Qu-+ Qv — Qv~,

hence by Thm. |1j we obtain a Loo[1]-structure ak.
® € ay is a Maurer-Cartan element in aZ iff & is a Lie bialgebra morphism.

Proof. Since T*[2](U x V)[1] is endowed with a Poisson bracket of bidegree (—1,—1), the
shifted space of functions C(T*[2](U x V)[1])[2] is a graded Lie algebra and L is a graded
Lie subalgebra. Ker(P) is a Lie subalgebra of L, as can be checked in coordinates. Clearly
A lies in ker(P) , and

{A,A} - {QU +QU*7QU +QU*} + {QV - Qv*,Qv — QV*} =0.

Hence the above quadruple forms a V-data, and we can apply Thm.
To compute the Maurer-Cartan elements of ai, take ® € aqg = U* ® V. One computes
easily in coordinates that

P{A, @} ={Qu — Qv+, ¢}
P{{A7(I)}7CI)} = {{QV + QU*’(I)},(I)}

while all other terms of the Maurer-Cartan equation vanish. Separating the terms in A2U*®
V from those in U* ® A2V we conclude that ® is a Maurer-Cartan element of ai iff the
equations and are satisfied, which in turn is equivalent to ¢ being a a Lie bialgebra
morphism. O

Lemma allows us to apply Prop. and Thm. [3| Hence we deduce:

Corollary 2.14. Let (U,Qu,Qu+) and (V,Qv,Qy~+) be finite dimensional Lie bialgebras
and ¢: U — V a Lie bialgebra morphism. Let (L,a, P,A) be as in Lemma .

1) Let ¢: U — V a linear map. Then

¢+ & is a Lie bialgebra morphism < ® is a MC element of ai‘l’.

2) For all Qu € Clo(T*[2]U[1]) and Qu- € C(1,2)(T*[2]U[1]), for all analogously defined
QV?QV*; and for all linear maps (;3; U—7V-

(U,Qu + Qu., Qu- + Qu+) and (V,Qv + Qv, Qv+ + Qv+) are Lie bialgebras
&+ ¢ is a Lie bialgebra morphism between these new Lie bialgebra structures

<~ ((QU +Qu- + Qv — QV*)[l], i)) is a MC element of (L[1] & a)i“’.
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Remark 2.15. We check that the V-data appearing in Cor. [2.14]is filtered. We have a direct
sum decomposition L = @>_1L* where L¥ := LN Bgtr=k+1(NU*QAV* QAU ® /\’"V) [2].
In other words, L* is spanned by monomials in L whose total number of u’s and %’s, in
coordinates, is exactly k + 1. Then F"L := @anLk is a complete filtration of the vector
space L. One checks easily that (L,a, P,A) is a filtered V-data.

Remark 2.16. It seems that there is no way to recover Cor. [2.14]simply applying the results
of Cor. twice (once to Lie algebra morphism ¢: U — V and once to the Lie algebra
morphism ¢*: V* — U*), since the latter procedure would deform ¢ and ¢* to two Lie
algebra morphisms a: U — V and §: V* — U* which are not necessarily duals of each
other.

2.4 Maurer-Cartan elements of L.-algebra structures

Fix a (possibly infinite dimensional) graded vector space W. We show that the space of
pairs

(Loo[1]-algebra structures on W, Maurer-Cartan elements for this structure)

is governed by a Maurer-Cartan equation. We will ignore all convergence issues in this
subsection; they are automatically dealt with if one works formally, see Lemma [T.19]

We refer to for the background material on coderivations. In we recall that
Loo[1]-algebra structures on W are in bijection with degree 1 self-commuting coderivations
O on SW := &, S*W, we show that there is an embedding a: W < Coder(SW), and
that there is a bracket-preserving embedding 7 : Coder(SW) < Coder(SW) whose image
annihilates 1 € SW. In §A.3|we further prove that all L. [1]-algebra structures are obtained
by the derived bracket construction:

Proposition 2.17. Let W be an L [1]-algebra, and © the corresponding coderivation of
SW . The following quadruple forms a V-data:

e the graded Lie algebra L := Coder(SW)
o its abelian subalgebra a := {a,, : w € W}
e the projection P: L — a, T a;)

e A:=7JO.

The induced Loo[1]-structure on a given by Thm. |1| is exactly the original Lo [1]-structure
on W, under the canonical identification W = a,w — ay,.

We apply Cor. choosing © = 0 above and considering Ker(P) C L. we obtain

Corollary 2.18. {7 € Coder(SW) : 7(1) = 0}[1] & W, endowed with the Lo[1]-algebra
structure specified in Cor. has the following property: for all © € Coder(SW)1 and
d c Wy:

® is a MC element of this Loo[1]-algebra structure on W
& (JO[1],®) is a MC element of {7 € Coder(SW) :7(1) =0}[1] @ W

{(:) defines an Loo[1]-algebra structure on W
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2.5 L-algebra morphisms

We consider deformations of a pair of arbitrary Lo[1]-algebras and of a Lu[1]-morphism
between them. We show that deformations of the morphism with fixed Lo [1]-algebra
structures are ruled by a Ly[1]-algebra (this follows also from Shoikhet [47, §3]), and then
show that there is an L. [1]-algebra governing arbitrary deformations.

In the next sections we will use the following notations. When E and F are two
vector spaces, we will denote by L(E,F') the set of linear maps from E to F and use
L(E) := L(E, F) when E = F.

Let U and V be two graded vector spaces. Denote S(U @ V) 1= @;>1%(U @ V). Let

L::L(S(UEDV U@V) [P Ly oLy, (25)
i>1 q+r=i

where

LI :={llyolo?" : e LIS (U V),UaV)}

for II%": ST (U @ V) — S @ S"V and Ily: U @ V — U the canonical projections.
Consider the subspace
a:=[[L8° = L(ST,V).
q=1
Thanks to the decomposition one has a projection P: L. — a. Notice that the vector
space L has a natural Z-grading: L = ®,czL,, where amap [: S(U® V) — U @V lies in
L, if it raises the degree by n.

As remarked by Stasheff [48], L is a graded Lie algebra: the isomorphism of graded
vector spaces L = Coder(S(U @ V)) given in Proposition allows to define the Lie
bracket on L, the Gerstenhaber bracket, as the pullback of the graded commutator of
coderivations.

Proposition 2.19. Let U and V' be two graded vector spaces equipped with Loo[1]-algebra
structures 1 = (wi)i>1 and v = (v;)j>1, where p; € L and vj € L ’j. The following
quadruple (with the previous notations) forms a V-data:

e the graded Lie algebra L,
o its abelian subalgebra a,
e the projection P: L — a,
o A= p+vr.

Proof. The proof, which uses Lemma [A.9] is analogous to the proof of Lemma [3.1] and is
therefore left as an exercise to the reader. O

Proposition 2.20. ® € MC(ak) & ® is a morphism of Loo[1]-algebras.

Proof. Fix ® € ag. Our aim is to show that the condition for ® to be a Maurer-Cartan
element for the Lo [1]-algebra ak (see Remark [1.9)),

Pel=®(u+v) =0,
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is equivalent to the condition for ® to be a morphism of Ly[1]-algebras, i.e., for all s > 1
and uy,...,us € U:

> ‘I’|J\+1(uu|(U1)'UJ):Z% > vl @y (UL) - ®7,1(Ur,)),  (26)

I1J=[s] n=1 """ [II.-11I,=[s]
where [s] := {1,...,s}, [l means disjoint union and Uy = uq, ‘- - --tla; when I = {a1, ..., a;}.
Some of the I;’s in the expression I111- - -111,, = [s] can be empty. One will use the convention

that @9 (Up) = 0 and U - Uy = Us. Here we decompose ® as a sum of its homogeneous

elements with respect to the polynomial degree, i.e. ® =Y ®,, where ®,, € L(L/’O.

It will be convenient to view the elements of L as coderivations, because in this case
the Lie bracket is the graded commutator. The coderivation corresponding, by Proposition
m, to ® (resp. to yu, v) will be denoted by ® (resp. ji, 7).

® is a Maurer-Cartan element of the Lo[1]-algebra aX iff

Pel=® (i + p) = 0.

But, with the notation adg := [—, @], one has
5 1
[_7¢’] — R _n
e = Z n!adq) ,
n>0

and one can compute adg" (1) and adg"(7) with the expansion
adg"(t) = > (-1)F (Z) F TPl
k+l=n

Therefore everything boils down to compute terms of the form

The results of these computations for 7 = 7 and 7 = i with n = k + [ are claims [1] and
respectively, and give the two sides of the equation (26)).

Claim 1. The term B B
pry(®F oo @l(U[s}))

always vanishes except for I = n for which one has

pry(@oro @ (Uy)) = > Pu(®y(Up) - Py, (UL,))-
NI, =]s]

Claim 2. The term B B
prv(®F o fio & (Uy))

always vanishes, except for k =n =1 for which one has

prv(@ o (U)) = > @ (i (Ur) - Uy).
IT1J=(s]
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Combining the results of claims [I] and [2] finishes the proof of Proposition [2:20] O

We now state a lemma and use it to prove claims [If and [2 All along we fix s > 1 and
Uly...,us € U.

Lemma 2.21. Forallt >0

U= D O (U)o Ry (UL) - Uy, (27)
11H-~~H1t+1:[8]

Proof. Apply formula t times and remark that since ® admits only elements in U,
terms of the form ®(®(Uy)-Up) can not appear in the obtained expression. The case t = 0
is a convention. O

Proof of claim[1. We apply the formula to v evaluated on the right hand side of the
equation , with £t = to get

Z Z V|J\ (I)|Ia1| UI%) """ (I>|[aj‘(UI°‘j) Ul ) (I)\IBH(UIM) """ (I)lfﬁk|(UIﬁk) Uty
ML o=]s] JUK=

where {on,..., 0} = J and {f1,...,0k} = K.
Now, since v admits only elements in U, the term Uy, , must be absent in the previous
expression, i.e. one has

podl(Ug) = ) Z V|J| (P10, |(Uray )= @11y | (Ut )@, (U, )@y (Uny )- Uy
Iy 10 T1T 41 =[s] JIK =

We are interested in evaluating the expression ®* o 7 o ®! (Upg), with k+1 = n. By
applying Lemma with ¢t = k to the last expression, and by the fact that ® admits only
terms in U, one gets

Tk _ — Fl
Pkorod! (Uyy)) = > Z V1 (®p1y | (Un) @1y | (Ura) ) @41 | (Ut )@y ((Ury, ) Ul
L1110, 41 =[s] JIIK=[n]

Finally, if one considers the terms in the above formula which belong to V', one has

prv(@ ovod(Uy) = > (@ (UL) - @1, (Ur,))-
L1, =[s]

O

Proof of claim[4 We apply the formula to i evaluated on the right hand side of the
equation , with ¢ = [ and remark that since p admits only elements in U, terms of the
form p(®(Ur) - Up) can not appear in the obtained expression. Therefore one has

Go®(Uy) = > O (Un) 5 UL) iy Uny) - Unyo
LIL-11 5 =]s]
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We now evaluate ®* o i o @(U[S]) by applying Lemma to the previous expression, with
t = k. Since ® admits only elements in U, terms of the form ®(®(U;) - Up) can not appear
in the obtained expression. Hence one gets (remember that n =k + )

Z (I)\Il|(UI1> """ q)|1n\(UIn) ) :u|1n+1\(UIn+1) ’ UIn+2
Ly 0=]s]

+ ) Q1 (Un) - @41 U, 1, 0| (Un41)) - Ul .-
L1110 =[s]

In the previous expression, there are terms which belong to V only if n=k=1. In this case
one has

prv(@oi(U) = > ®ypa (uin (U) - U).
11=[s]

Prop. [2.19 and Prop. [2.20] allow us to apply Prop. and Thm. [3] and deduce:

Corollary 2.22. Let U,V be Loo[1]-algebras and ® € L(SU,V) a Loo[1]-morphism from
U toV and let (L,a, P,A) as in Prop. .

1) Let ® € Lo(SU,V) = ag. Then

® + ® is an Loo[l]-morphism < @€ MC(aiq)).
2) For all degree one coderivations Qu on SU and Qv on SV and for all ® € Lo(SU,V):

Qu + Qu and Qy + Qv define Loo[1]-algebra structures on U,V
® + & is a Loo[1]-morphism between these Loo[1]-algebra structures

< (Qu+Qv)[1],®) € MO((L[1] ® a)5*)

Remark 2.23. We have a direct product decomposition L = szz—l LF where LF :=
LI;}H" ® Lf,". Here we use the short-hand notation L’f}' = [[,>0 L’y. By Remark

FrL = szn L* is then a complete filtration of the vector space L. One checks easily that
(L,a, P,A) is filtered V-data (Def. [1.17)).

3 Applications to associative algebras

In this section we treat the case of a morphism between two associative algebras. The
cohomology theory governing simultaneous deformations of two associative algebras and a
morphism between them has been defined in the context of cohomology of diagrams by M.
Gerstenhaber and S.D. Schack in [I7]. One of the problem remaining was the fact that
the deformation equation could not be written as a Maurer-Cartan equation for a DGLA.
The first author, Markl and Yau in [I3] exhibited a Lo-algebra which enabled to write this
deformation equation as a Maurer-Cartan equation. This was based on operadic techniques.
We show in this section how we can recover these results by means of our Thm. [3] which
requires much less technology.
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3.1 Morphisms of associative algebras

We will use some notations introduced in the previous section Moreover, if E and F
are two vector spaces, for any n > 1 and I I1 J = [n] := {1,...,n}, consider the notation

T(EF)={11® - Qz, cTYE®F) : x; € E when k € I, z;, € F otherwise }.
One has the decomposition

TEeF)= @ TV(E,F),
I1J=[n]

and therefore one can consider the projection II/>/ onto T/ (E, F'). One considers also the
canonical projection Il (resp ) from E @ F onto E (resp F).

One will denote the set of n-linear maps from E to F' by L™(E,F) := L(T"E, F) and
by L™(FE) := L™(E,FE) when E = F. One has the decomposition:

MEeF) = @ Ly eLy (28)
IMJ=[n]

for Lg"] = {llgololl’’ :1 € L"(E @ F)}. The decomposition defines a projection

0
P, LEeF) ~ D1 L]

Consider a morphism ®: U — V between two associative algebras (U, u) and (V,v),
apply the above notations to E := UJ[1l] and F' := V1], and consider p and v as ele-
ments of L2(U[1]) and L?(V[1]). As noticed by Stasheff in [48], the canonical identification
[1,51L"(E & F) = Coder(T(E x F)) of Prop. [A.§ makes L = [],5,L"(E & F) into a
graded Lie algebra.

Lemma 3.1. The following quadruple forms a V-data:

e the graded Lie algebra L := ], ~oLn with L, := LT ((U & V)[1]) with Gerstenhaber
bracket [-, ] -

e its abelian subalgebra a =[], sqan with a, := LBT{]I] 0~ ~ (T U], V1))
e the natural projection P: L — a given above
e Ai=pu+v

hence by Thm. |1j we obtain a Le[1]-structure aX.
® € ag is a Maurer-Cartan element in ai iff ® is a morphism of associative algebras
between 1 and v.

Proof. To see that a is an abelian graded Lie subalgebra of L, remark that elements of a are
maps which produce vectors in V' and accept only terms in U. Therefore their composition
is zero.
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Next we show that KerP is a graded Lie subalgebra of L. To this aim use the decom-
position KerP = A ® B where

1,7
A= B Ly
TLJ=[n],|J|>0

. 1,J
B,= @ Ly
I1J=[n)

Let a,o’ € A, € Band v € KerP. One has ao8,a0a’ € A and o~ € B, showing that
KerP = A@® B is closed under the Gerstenhaber bracket. Further since v € A and p € B,
one has A € KerP.

Last we show that [A, A] = 0. Indeed,

(A, Al = [i, p] + [v,v] + 2], v].

Since p and v are associative algebras, by Prop. [A.11] [u, p] and [v,v] vanish. Now, by
definition of the bracket, [u,v] = po (v ® Id — Id®v) —vo (u® Id — Id ® p) but p
accepts only terms in V, whereas v produces elements in U, hence the first summand of
the right hand side vanishes. Similarly for the second summand. This concludes the proof
that (L,a, P,A) forms a V-data.

Fix ® € ap = L(U[1], V[1]). It will be convenient to view the elements of L as coderiva-
tions, because in this case the Lie bracket is the graded commutator. The coderivation
corresponding to ® (Proposition will be denoted by ®. It is characterized by its only
non vanishing corestriction, which is ®}(u + v) = ®(u) where u € U and v € V.

By Remark ® is a Maurer-Cartan element of the Ly [1]-algebra aX iff

Pel=® (p+v)=0. (29)
Since 1

[77&)] — p— -

e = Z . adg",

n>0
writing adg := [—, ®], we compute adgz" (1) and adg"”(v) with the expansion
n
adg™ (1) =Y (—1)koFronF,
k=0

Let us first remark that the commutator of a linear coderivation and a quadratic coderiva-
tion gives a quadratic coderivation. In particular adg"™(v) and adg™(u) are quadratic
coderivations and hence are only determined by their second Taylor coefficient, i.e. by
their restriction to elements of T2(U @ V).

One observes that for elements x1,x2 in U (for elements in V, the expression would
vanish),

(11 @ 12) = (P(71) ®@ 29 + 71 @ D(22)) = 20(1) @ D(2)

lies in T%(V'). Therefore, ® can not be applied anymore, meaning that ®"(x; ® x3) = 0 for
all n > 2. For the same reason, if 7 has only quadratic Taylor coefficients, one has necessary
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<I>”7'|T2(U@V) =0 for n > 1, and even <I>T|T2(U@V) = 0 when the quadratic Taylor coefficients
of 7 have values in V. All these remark imply that the only non-vanishing adg" (v)r2(wev)
occurs for n = 2:

adg®(v)(z1 @ 22) = 2v(P(x1) @ B(29))

and the only non-vanishing adg" (1) 72 (evy occurs for n = 1:

adg () (21 ® 12) = =P (pu(z1 ® 2).
Since p and v commute, we obtain that the l.h.s. of eq. is
Pelr ) (41 @ 29) = v(®(21) @ B(9)) — (w1 © 22).
Hence ® satisfies eq. iff ® is a morphism of associative algebras. O

To establish the connection with the problem of simultaneous deformations of mor-
phisms and associative algebras, one considers the graded Lie subalgebra L’ of L defined
by

L';=L"YUn) @ LYV)).

Thm. |3| and Remark (which applies to L’ since it contains A) imply:

Corollary 3.2. Let (U, u) and (V,v) be associative algebras and ®: U — V a morphism
of associative algebras. Let (L,a, P,A) as in Leanma and L' as above.
For all i +v € L'y, and for all linear maps ®: U — V:

w4+ it and v+ U define associative algebra structures on U and V
® + @ is an associative algebra morphism between these new associative algebra structures

s((a+0)1],®) € MO(L'[1] @ a)k?).

Remark 3.3. Analogously to Remark we have a direct product decomposition L =
[Tis 1 LF where £F := D r=k1 L{j['” DD 1=k E{/’['l]. Then "L := [[;>, L is a complete
filtration of the vector space L by Remark One checks easily that (L, a, P, A) is filtered
V-data (Def. [L.17).

We now write out explicitly the multi-brackets of (L'[1] & a)Z‘I’.

Let us denote by Pp,[n] the set of ordered m-tuples of distinct points in {1,...,n+ 1}.
For any I € Py,[n] we will denote by zy oy (ai,...,ay), the element obtained by plugging
a; into the I;-th input of zy, and by xy or s (a1,...,a,) the element obtained by further
plugging ® in the n + 1 — m remaining inputs of xy. Similarly, a o; p will mean the
composition of a by p at its ¢ith input. We will also use the notations

n

dazy(a®<l>)+y(<l>®a)—(—1)"Zaoiu

i=1

and d'zy = [u, zy]. With these notations, explicit formulas are given by:

29



Proposition 3.4. Let (U, ) and (V,v) be associative algebras and ®: U — V' a morphism
of associative algebras, and adopt the notation of Corollary . The Loo[1]-multi-brackets
of (L'[1] ® a)i‘l’ are given as follows:

Given (z[1],a) € (L'[1] ® a),, i.e x = (zvy,xy) € L"THU[1]) @ L"TY(V[1]) and a €
L™(U[1],V[1]), one has

d(z[1],a) = (—d"zy — dzy, —® oz + zy 0 " + da) (30)
and
{z,a} = Z Ty 0 p 4 — (—1)|I‘|“|Zaoj Ty. (31)
i€[n+1] J

If we moreover consider ay,...,an € a (for m > 2), then one has

{z,a1,...,an} = Z el)zy ore (a1,...,am) (32)
[EP‘"L[n]

{a1,a2} = p(a1 ® az). (33)

Remark 3.5. In [13] formulas were given for an L..-algebra governing simultaneous de-
formations of associative algebras and their morphisms. Those formulas agree with the
formulas of Prop. modulo signs, which come from the fact that here we only give the
Lo [1]-algebra multibrackets. If one wants to recover the original formulas of [13], one needs
to desuspend this Lo [1]-algebra as indicated in Remark [L.5]

Proof. We first prove . It suffices to explicit the expression of Theorem [2, therefore
we will determine (a) —D(z)[1] and (b) Pg(z + Da), where D = [A,-].

(a) Since p and zy can not be composed, [, zy] = 0 and hence D(zy) = [v, zy]. Since
the similar result for xy holds, one gets

—D(z)[1] = —d"zy — d xy.

(b) Since a can not be composed on the right by v and on the left by pu, one has
Da = v(a®id) +v(id®a) — (=1)#1 S g0, . Tn particular Da has only outputs in V,
therefore ® can only be right composed. Moreover it can only be right composed once since
cach of the summands of Da has at most one V input. Therefore el=® Da = Da + [Da, ®].
After a look at the terms surviving the projection P, one gets

Py(Da) = v(a® ®) + v(®®a) — (~1)" > _ao; .
=1

One now remarks that in el=®z, the only terms surviving the projection P are
Pyx = —Poxy +xy o d¥",

therefore, identifying the terms in gives .
We now prove (31)). By definition of the Gerstenhaber bracket, one has

[z + xv,a] = Z (zy o a+ xy o5 a) — (—1)l=llal Z(a oj xy +aojxy).
1€[n+1] J
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But in this expression xy o; a and a o; xy vanish by incompatibility of the compositions.
Now Pg(aojxy) = aojxy and Po(xy o; a) = xy 0; ¢ a, so one has proven (31)), i.e.

{z,a} = Z xy oz-,@a—(—l)l”"H“'Zaoj xy.
J

icn+1]

We now prove for m > 2 by induction on m. Let us first start the induction by showing
that
[z, a1], a2 =Y €(i, j)ay of (a1, a). (34)
0.
Let us remark that an element of L which has only U inputs and one V output can not be
composed to the right or to the left by an element in a. This in particular applies to the
element [z, a1], therefore one has [[xy7, a1], a2] = 0. Moreover, one has seen that

[ev, a1l = Y wvoiar
i€n+1]

But this term has one V output, therefore can not be left composed by as. This means,
again by definition of the Gerstenhaber bracket, that one obtains eq. .
Let us now prove by induction that

[..[x,a1],...,am] = Z e(l)xy or (aty...,am).
I€Pm[n]

We make the following observation (Obs): this element has a V' output and therefore can
not be composed to the left by an element in a. One has:

[ (201, aml ama] = [ Y ey or(ar,...,am) , ami]
I€Pm[n]
O:bs Z G(I)Z(xv or (a1,~-->am>) Oj Am+1
I€Pm[n] ST
= Z e(I)zy oy (a1,...,amy1), (35)
1€Pm1[n]

where in the first equality we used the induction step. It remains to apply the projection
Pg. The above observation (Obs) applies in particular to the element ®, therefore

1 _
S _
el ]$V01(a1,---7am+1)—g ﬁxvol(aly--'aam—i—l)o(bn-
n>0

If one now compose this last equality with the projection P, one gets

P@(.’L‘V or (CLl, .. .,am+1)) =Xy O]7¢, (al, e ,am+1).

Combining this last equality with gives the result.

It remains to prove . But formula is formally formula @ with = replaced by
A. Therefore one can compute the remaining brackets by replacing = by p + v in formula
. The only possibility is for n = 2, for which one gets . O
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4 Applications to algebras over Koszul operads

The objective of this short section is to indicate how the techniques used in §2.5| and
work for other types of algebras. The theory of Koszul duality for operads (see [21] or [34]),
provides for a type of algebra P, i.e. for an operad P (for example for the operad As,
encoding the type of associative algebras), a cooperad Pi. In this setting, given a graded
vector space U, one can define (Pi(U), ), the cofree coalgebra of type Pi co-generated by
U. Since it is cofree, one has the identification, as vector spaces:

PHU*) @ U ~ Coder(Pi(U)).

By Remark[A.5| Coder(Pi(U)) carries naturally the structure of a graded Lie algebra [—, —],
which can be pulled-back to PI(U*) @ U. An algebra i of type P, or homotopy P-algebra
on the vector space U can then be defined as an element p € Pi(U[1]*) ® U[1] of internal
degree 1 satisfying [u, u]=0. Omne can recover P-algebras as the quadratic homogenous
Pso-algebras.

We are interested in deforming simultaneously two homotopy P-algebras (U, u) and
(V,v) and ®: U — V a morphism between them. The vector space Pi(V') carries a poly-
nomial grading, and one considers

L' =P (U] ® V1)) ® (U] @ V1]).

The graded Lie algebra L := @;>1 L' admits an abelian subalgebra a = @;>1a’ with o’ :=
P (U[1]*)®V[1]. But one needs to work with the internal grading instead of the polynomial
grading, and one will denote by L := @®;>1L; and a = @;>1a; their decompositions in
homogenous subspaces for the internal grading.

We believe that for any instance of Koszul operad P, and any homotopy P-algebras
(U, ) and (V,v), the following Ansatz holds true.

Ansatz 4.1. The following quadruple forms a filtered V-data (Def. .'
e the graded Lie algebra L :=Pi((U @ V)[1]") ® (U @ V)[1] with bracket |-, -]
e its abelian subalgebra a := PI(U[1]") @ V1]
e the natural projection P: L — a
o A=y +v.

Further, denoting by aX the Loo[1]-algebra obtained by Thm. .'
® € ag lies in MC(ak) iff @ is a morphism of Peo-algebras between p and v.

Applying Thm. [3] we obtain:

Corollary 4.2. Let P be a Koszul operad, (U, ) and (V,v) be Po-algebras and ®: U — V
be a morphism of Poo-algebras. Assume that Ansatz[{.1] holds true for the corresponding
V-data (L,a,P,A) and that ® defines an element of L. Let L' := PI(U[1]*) @ U[1] &
PIV[1]*) @ V[1].
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Then for all fi + v in L'y, and for all ® € ay:

{,u + [t and v + U define Poo-algebra structures on U and V

®+ D is an Poo-algebra morphism between these new Poo-algebra structures

(i + p)[1],®) is a MC element of (L'[1] ® a)k?.

Let us illustrate this in the case P = As. It is well known that Asl = As and that the
free coassociative coalgebra on a vector space U is given by the tensor coalgebra, therefore

PU*)@U =T(U*) @ U.

So in particular, Proposition is nothing else than Ansatz for P = As, with U and V
graded vector spaces concentrated in degree 0. In particular ;1 and v must be associative
algebras and not arbitrary A..-algebras.

Another illustration is given if we take P = Lie, the Lie operad. One has Liel = Com (the
cooperad of cocommutative coalgebras) and the free cocommutative coalgebra on a vector
space U is given by the symmetric coalgebra, therefore

PUY@U=SU")aU.

This fact enables to recognize Proposition [2.19) as Ansatz [4.1] in disguise.

5 Applications to Poisson geometry

In this section we apply the machinery developed in to examples related to Poisson
geometry.

5.1 Coisotropic submanifolds of Poisson manifolds

In this subsection we consider deformations of Poisson structures on a fix manifold M
and deformations of coisotropic submanifolds. We build on work of Oh and Park [38],
who realized that deformations of a coisotropic submanifold of a symplectic manifold are
governed by a Ls[l]-algebra, and on work of Cattaneo and Felder [7] who associate an
L [1]-algebra to any coisotropic submanifold of a Poisson manifold.

Our main reference for this deformation problem is [45, §3.2], which is based on [3§] and
[7]. Recall that a Poisson structure on M is a bivector field 7 on M such that |7, 7] =0,
where the bracket denotes the Schouten bracket, and that a submanifold C' C (M, ) is
coisotropic if T#TC° C TC, where TC® := {¢ € T*M|¢ : €|7c = 0} and ©t: T*M — TM
is the contraction with 7 [6].

Let M be a manifold. Let C' C M be a submanifold. Fix an embedding of the normal
bundle vC := TM|¢/TC into a tubular neighborhood of C' in M, such that the embedding
and its derivative are the identity on C. In the following we will identify vC' with its image
in M.

We say that a vector field on vC is fiberwise polynomial if it preserves the fiberwise
polynomial functions on the vector bundle vC'. Such a vector field X has polynomial degree
n (denoted | X |, = n) if its action on fiberwise polynomial functions raises their degree (as
polynomials) at most by n. Locally, choose local coordinates on C' and linear coordinates
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along the fibers of vC', which we denote collectively by x and p respectively. Then the fiber-
wise polynomial vector fields are exactly those which are sums of expressions f(z)Fy (p)a%
and fo(z)Fy (p)a% where f; € C°°(C') and the F; are polynomials. The polynomial degrees
of the two vector fields exhibited here are deg(F;) and deg(F3) — 1 respectively.

Consider x*(vC), the space of multivector fields on the total space vC, and denote by
X7,(vC) the sums of products of fiberwise polynomial vector fields. x*(vC))[1] is a graded
Lie algebra when endowed with the Schouten bracket [-,-], and x%,(vC)[1] is a graded Lie
subalgebra. The notion of polynomial degrees carries on to fiberwise polynomial multivector
fields, by | X1 A -+ A Xilpot = D_; | Xilpoi- The Schouten bracket preserves the polynomial
degree (this is clear if we think of multivector fields as acting on tuples of functions).

Sections in I'(AvC) can be regarded as elements of x%,(vC) which are vertical (tangent
to the fibers) and fiberwise constant. A fiberwise polynomial Poisson bivector field on vC
is an element 7 € Xfcp(uC) such that [, 7] = 0. Notice that the associated Poisson bracket
raises the degree of fiberwise polynomial functions on vC by at most |7 |,

Remark 5.1. The condition that a Poisson structure be fiberwise polynomial is quite strong.
For instance, if C' is an arbitrary coisotropic submanifold of a symplectic manifold (M, w),
it does not seem possible to find an embedding of vC' in M for which the bivector field
w~t is fiberwise polynomial. This seems to fail even if one works locally (the coordinate
expression for w in [38, eq. (6.8)], once inverted, is fiberwise analytic but not fiberwise
polynomial). We expect to be able to extend the results of this subsection to fiberwise
analytic Poisson structures.

Lemma 5.2. Let w be a fiberwise polynomial Poisson structure on vC. The following
quadruple forms a curved V-data:

e the graded Lie algebra L := x§,(vC)[1]
o its abelian subalgebra a := I'(AvC)[1]

e the natural projection P: L — a given by restriction to C and projection along
AT (vC)|c — NvC

e A:=m,

hence by Thm. |1j we obtain a curved Loo[1]-structure ak .
Its Maurer-Cartan equation reads

|7r|pol+2
1
P n; - @), ], 2] =0, (36)

n times

where ® € T'(vC)[1] is seen as a vertical vector field. ® € I'(vC)[1] is a Maurer-Cartan
element in af iff graph(—®) is a coisotropic submanifold of (vC, ).
Further, the above quadruple forms a V-data iff C' is a coisotropic submanifold of

(vC, ).

Proof. The fact that the above quadruple forms a curved V-data is essentially the content
of [7, §2.6]. For a more detailed proof we refer to [45, Lemma 3.3 in §3.3], use that x},(vC)
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is a graded Lie subalgebra of x*(vC), and notice the [, 7] = 0 by definition of Poisson
structure.

To prove eq. we argue as follows. Elements a; € ap = I'(vC)[1], seen as vertical
vector fields on vC, have polynomial degree —1 (in coordinates they read f (m)a%). Since
the Schouten bracket preserves the polynomial degree, |[... [, a1],...], a,] has polynomial
degree |7|po — n. Since the polynomial degree of a non-vanishing bivector field is > —2, we
conclude that the above iterated brackets vanish for n > ||, + 2.

The equivalencd’|between ® € T'(vC)[1] being a Maurer-Cartan element and graph(—®)
being a coisotropic submanifold of (vC,7) is proven in a separate note [14]. The idea is
that the bivector field el*®l7 is the pushforward of = by the flow of the vector field ®, that
this flow maps graph(—®) to C, and to interpret eq. as saying that C' is coisotropic
w.r.t. el"®lr. Notice that the curved Loo[1]-structure on I'(AvC)[1] depends only on the
jets in fiber-directions of m along C; this is clear by [7, Prop. 2.1] or eq. (36]) above.

For the last statement, use Thm. [I] and notice that C is coisotropic iff we can write
=), X; NY; with X; tangent to C, i.e. iff € ker(P). O

Hence we can apply Cor. (choosing m = 0 above):

Corollary 5.3. Let C' be a submanifold of a manifold, and consider a tubular neighborhood
vC. For all T € Xffp(z/C) and ® € T'(vC):

7 48 a Poisson structure
graph(—®) is a coisotropic submanifold of (vC,7)

&(7[2], ®[1]) is a MC element of the Lo [1]-algebra X7p(vC)[2] ® T (AvC)[1].
The above Loo[1]-algebra structure is given by the multibmcketaﬂ (all other vanish)

d(X[1]) = PX,
(X[, Y[} = X, Y] (=)™,
{X[1],a1,...,an} = P[...[X,a1],...,ay]  foralln>1

where X,Y € x%,(vC)[1], a1,...,an € D(AvC)[1], and [-,-] denotes the Schouten bracket
on X%,(vO)[1].

5.2 Dirac structures and Courant algebroids

In this subsection we consider a Courant algebroid structure on a fixed vector bundle and
a Dirac subbundle A. We study deformations of the Courant algebroid structure (with the
constraint that A remains Dirac for the new Courant algebroid), and of the Dirac subbundle
A. Deformations of Dirac subbundles within a fixed Courant algebroid were studied by Liu,
Weinstein, Xu [33] and by Bursztyn, Crainic, Severa [5]. We will make use of facts from [5,
§3] and Roytenberg’s [44] §3] [42] §3][43]. We refer to and to [45], §1.4] or [§] for some
basic facts on graded geometry.

5See [45, Ex. 3.2 in §4.3] for an example where 7 is not fiberwise polynomial and the correspondence
fails.

"The formulas for the multibrackets show that the Maurer-Cartan equation for (7[2], ®[1]) has at most
|7 |pot + 2 terms, by the same argument as in Lemma
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Recall that a Courant algebroid consists of a vector bundle £ — M with a non-
degenerate symmetric pairing on the fibers, a bilinear operation [-,-] on I'(E'), and a bundle
map p: E — TM satisfying compatibility conditions, see for instance [43, Def. 4.2]. An
example is TM & T*M with the natural pairing, [X +&,Y + 7] := [X, Y] + Lxn — vy dE,
and p(X + &) = X (this is sometimes called the standard Courant algebroid). A Dirac
structure is a subbundle L C E such that L equals its orthogonal w.r.t. the pairing, and
so that T'(L) is closed under [-,-], see [9]. Examples of Dirac structures for the standard
Courant algebroid are provided by graphs of closed 2-forms and Poisson bivector fields.

Fix a Courant algebroid £ — M, a Dirac structure A, and a complementary isotropic
subbundle K (not necessarily involutive), so E = A @ K as a vector bundle. Identify
K = A* via the pairing on the fibers of E. Consider the map

F(/\gA*> - F(A) ;M AN2 = pTA([[(07771)7 (Oa 772)ﬂ7

and view it as an element ¢ € I'(A3A). Denote by d the degree 1 derivation of I'(AA*)
given by the Lie algebroid structure on A (the latter is given by [-,:]4 := [+, -]|4 and anchor
pla: A — TM). Similarly denote by d4- the degree 1 derivationlﬂ of T'(AA) given by the
bracket [n1,1m2]a* := pra=([(0,71),(0,7m2)] on I'(A*) and the bundle map p|a«: A* — T'M.
The data given v, by the Lie algebroid (A, [-, |4, pla), and by (A*, [, -]+, p|a) form a Lie
quasi-bialgebroid ([, §3], see also [42], §3.8]). From them one can reconstruct the Courant
algebroid structure on E: the bilinear operation is recovered as

[(a1,m), (a2, m2)] = ([a1,a2]a + Ly a2 — tnydaxar +Y(01,m2,+) 5 [0, m2]ax + Lay N2 — tasdam)
(37)
and the anchor as pg + pa-: A® A* — TM [5], §3].

Recall that Courant algebroids are in bijective correspondence with degree 2 symplectic
graded manifolds M together with a degree 3 function A € C(M) satisfying {A, A} =0
[43, Thm. 4.5]. (Here {-,-} denotes the degree —2 Poisson bracket on C'(M) induced by
the symplectic structure). The Courant algebroid E corresponds to

(M:=T2JA1] , A = ha, + F*(ha,.) — )

with the canonical symplectic structure, by [42, Thm. 3.8.2]. Here we view 1 € ['(A3A) as
an element of C3(M). Further hq, € C3(M) is the fiber-wise linear function induced by d 4,
the function hq,. € C3(T*[2]A*[1]) is defined similarly, and F': T*[2]A[1] — T*[2]A*[1] is
the canonical symplectomorphism known as Legendre transformation [42, §3.4]. We denote
by 7 the contangent projection M — A[l].

Lemma 5.4. Fiz a Courant algebroid E — M, a Dirac structure A, and a complementary
isotropic subbundle K. The following quadruple forms a V-data:

e the graded Lie algebra L := C(M)[2] with Lie brackef)] {-, }
e its abelian subalgebra a := 7m*(C(A[1]))[2] = T'(AA*)[2]

e the natural projection P: L — a given by evaluation on the base A[l]

8 da squares to zero because A is a Lie algebroid, but d4+= generally does not.
9{-,-}, as a bracket on L, has degree zero. Hence (L, {-,-}) is a graded Lie algebra.
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o A=hg, +F*(hq,.)— 1,

hence by Thm. |1| we obtain a Loo[1]-structure ak. For every ® € T'(A2A*) we have: ®[2] is
a MC' element of aZ iff

graph(—®) ={(X —x®): X € A} CA® A" =FE
1s a Dirac structure.

Proof. Since {-,-} is the canonical Poisson bracket on the cotangent bundle, the cotangent
fibers and the base A[1] are Lagrangian submanifolds. Hence a is an abelian Lie subalgebra
of L and ker(P), which consists of function on T*[2]A[1] vanishing on the base, is a Lie
subalgebra. We have {A, A} = 0 since A induces a Courant algebroid structure on A@® A*.
Finally, A € ker(P) follows from the expression in coordinates for hq,, F*(hq,.) and v
[42, eq. 3.11, eq. 3.15]. Hence the the above quadruple is a V-data, and by Thm. (1| we
obtain an Lo[1]-algebra structure ak.

We compute the Maurer-Cartan equation of ak. Let ® € ag = I'(A24*)[2]. From the
expression in coordinates for F*(hg,. ) it follows that {F*(hg,.),®} and { — ¢, @} vanish
on the base A[l]. So

P{A,®} = {hq,,®} = da® € T(A3A%)
where we used [42, Lemma 3.3.1 1)]. Further {{hq4,,®}, &} = 0 since both {hg4,, P}
and @ lie in the abelian Lie subalgebra 7*(C(A[1])), and in coordinates it is clear that
{{— 1, ®}, P} vanishes on the base A[l]. So

P{{A7 (I)}v (I)} = {{F*(hdA*>7 (I)}v (I)} = _[(I)7 (I)]A*
where we used [42] Lemma 3.6.2]. Further,
PL{{A,0},8},8} = {{ - &, B}, B}, B} = — (B A F A DF) € T(AAY),

where ®f: A — A* v — 1,® is the contraction in the first component. All the other terms of
the Maurer-Cartan equation vanish. Hence we conclude that the Maurer-Cartan equation
is

ds® — %[cp, B g — N3B() =0 (38)

where A3® is defined as in §5.30 This equation is equivalent to graph(—®) being a Dirac
structure by [5, Prop. 3.5]. O

Remark 5.5. Given a vector bundle £ — M with a non-degenerate symmetric pairing on the
fibers and a direct sum decomposition into maximal isotropic subbundles £ = A @ K, [42]
Thm. 3.8.2] shows: the Courant algebroid structures on E for which A is a Dirac subbundle
are given exactly by self-commuting degree 3 functions on M := T*[2] A[1] which vanish on
the base A[l].

Corollary 5.6. Fix a Courant algebroid E — M, a Dirac structure A, and a complemen-
tary isotropic subbundle K. Let (L,a,P,A) as in Lemma For all A € C(M)s3 with
Al2] € Ker(P) and ® € T'(A2A*):

A+ A defines a new Courant algebroid

structure on the vector bundle E, & (A[3],®[2]) is a MC element of (ker(P)[1] @ a)

graph(—®) is a Dirac structure there
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Proof. Apply Thm. 3|with ® = 0 and use Remark [5.5]to ensure that A is a Dirac subbundle
for the new Courant algebroid structures. Notice that ker(P)[1] ® a is a Loo[1]-subalgebra

of (L[1] ® a)X, by Remark O

Remark 5.7. The new Courant algebroid structures that appear in Cor. are exactly
those for which A is a Dirac subbundle, by Remark

Remark 5.8. We check that the V-data (L,a, P,A) is filtered (Def. [L.17). T*[2]A*[1] is
a vector bundle over A*[1], so we can denote by C*(T*[2]A*[1]) the functions which are
polynomials of degree k on each fiber. Using the Legendre transformation F' to identify
M = T*[2]A[1] with T*[2]A*[1] we obtain a direct product decomposition L = [~ L*
where L* := C*+1(T*[2] A*[1]). Notice that an element of 7*(Cj 1 (A[1]))[2] = T(A*1A4%)[2]
lies in L*. By Remark g F'L = [lpon LF is a complete filtration of the vector space
L. One checks easily that (L, a, P,A) is a filtered V-data.

5.3 Twisted Poisson structures

In this subsection we present a special case of the situation studied in §5.2l We apply
Cor. to the standard Courant algebroid over a manifold M and A = T*M. We obtain a
L [1]-algebra whose Maurer-Cartan elements consist of closed 3-forms and twisted Poisson
structures [40], recovering the Lo[1]-algebra recently displayed by Getzler [19]. Twisted
Poisson structures appeared in relation to deformations also in [39) §3].

We will need the following notation: for m € AT M and a > 1 we define

e T*M — ATITM L € — LeT,

and we define 7 = 0if a = 0. We also need an extension of the above to several multivectors:
for mp € NUTM, ..., 7 € N*"TM (n>1,a; > 0), we define

GA N Y (1) (o) A AT (Egm)

gES)

where & € T*M and (—1)7 is the sign of the permutation o.
Recall that, given a bivector field 7 and a closed 3-form H, one says that 7 is a H -twisted
Poisson structure [46, eq. (1)] iff

(7, T sen = 2 A3 7(H),
where A% = L(xf A mf A TF).
Corollary 5.9. Let M be a manifold. There is an Loo[1]-algebra structure on
€= Q=N (M)[3] @ x*(M)[2]
whose only non-vanishing multibrackets are
a) minus the de Rham differential on differential forms,
b) {m1,m} = [r1,m2)sen (=)L, where m; € x% (M) and [-,"]sen denotes the Schouten

bracket,
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¢) {H,m,...,m} = (—1)Zimst=d(z A Axh)H
for alln > 1, where H € Q"(M) and m € x**(M),...,m, € x*(M).

Its Maurer-Cartan elements are exvactly pairs (H[3],7[2]) where H € Q3(M) and « € x*(M)
are such that dH = 0 and 7 is a H-twisted Poisson structure.

Remark 5.10. The graded vector space £ = Q*Z1(M)[3] @ x*(M)[2] is concentrated in
degrees {—2,...,dim(M) — 2}, and its degree i component is Q3 (M) @ x*T2(M).

Proof. We apply Cor. to the standard Courant algebroid TM & T*M (defined at the
beginning of , to A =T*M and K = T M. Notice that it corresponds to the Lie
bialgebroid (A, K), where A has the zero structure and K = T'M has its canonical Lie
algebroid structure.

We use the following notation for the canonical local coordinates on M := T™*[2]T*[1] M
we denote by x; arbitrary local coordinates on M, by p; the canonical coordinates on
the fibers of T*[1]M (so the degrees are |zj| = 0,|p;| = 1, for j = 1,...,dim(M)). By
P;,v; we denote the conjugate coordinates on the fibres of M — T*[1]M, with degrees
|P;| = 2,|v;| = 1. One has {Pj,z1} = 6, and {p;,vr} = 0j5. The element of C3(M)
corresponding to the standard Courant algebroid is S := ), Pv;.

The quadruple appearing in Lemma reads

o L :=C(T*[2]T*[1]M)[2], whose Lie bracket we denote by {-,-}
o a:= C(T*[1]M))[2] = x*(M)[2]

e the natural projection P: L — a given by evaluation on the base T*[1]M, i.e. setting
P; =0,v; =0 for all j

o A= Z'LP”LU%

The multibrackets of the Lo[1]-algebra (L[1] @ a)X are given in Thm. [2| Notice that using
the Legendre transformation F' we have

QM)[2l = C(TAIM)[2] C C(T* 2T M)[2=L,

and Q*21(M)[2] C ker(P) is a Lie subalgebra preserved by {A,-}. So by Remark it
follows that £ = Q*2Y(M)[3] ® x*(M)[2] is a Leo[1]-subalgebra of (L[1] ® a)k. We justify
why the restriction of the multibrackets to £ is the one described in the statement of this
corollary. a) follows from eq. and

oF
{Z Pyi, F(2)0c(1) - - Ver) } = Z B, ViVet) -+ Ve()s

where €(i) = 1,...,dim(M). b) follows from eq. and 42, Lemma 3.6.2]. c) follow from
eq. @ and a lengthy but straightforward computation in coordinates.

For the statement on Maurer-Cartan elements we proceed as follows. Given H € Q3(M),
the degree 3 function ), Pv; + H on M defines a Courant algebroid structure (i.e., is
self-commuting) iff H is closed, and in this case it induces the (—H )—twistedlﬂ Courant

10Recall that the K-twisted Courant algebroid is TM @ T*M with bilinear operation [X+&Y +1]x =
(X, Y]+ Lxn—tydé +yvex K.
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algebroid (TM @ T*M)_p [43, §4][52, §8] . Hence, by Cor. (H[3],7[2]) is a Maurer-
Cartan element of £ iff H is closed and graph(—m) is a Dirac structure in (TM & T*M)_p.
The latter condition is equivalent to —m being a (—H)-twisted Poisson structure [46], §3],
that is, to m being a H-twisted Poisson structure. O

5.3.1 Equivalences of twisted Poisson structures

Consider the Ly[1]-algebra £ of Cor. Its degree —1 component is £ 1 = Q*(M) @
X (M), and the binary bracket there reduces to the Lie bracket of vector fields on x (M),
making £_; into a Lie algebra. Fix (B, X) € £_1 = Q?(M) ® x(M). It defines a vector
field Y(BX) on €9 = Q3(M) @ x*(M). By eq. and Cor. at the point (H,7) the
vector field reads

y(B’X)|(H,7r) = ( —dB, [X’ 7T] + A27~T(B - LXH)) (39)

where A%7 1= 1 (7% A 7F).
For any diffeomorphism ¢ of M, we consider the vector bundle automorphism

TM@®&TM, Y +n— Y + (¢~ )*n,
which by abuse of notation we denote by ¢.. For any B € Q%(M), we consider
B TM@TM, Y +n— Y + (n+1yB).

Recall that the vector bundle T'M @ T* M is endowed with a canonical pairing on the fibers
given by (X1 + &, X + &) = 3(tx, & + tx,&1).

Remark 5.11. The group of vector bundle automorphisms of TM @ T*M preserving the
canonical pairing and preservinﬂ the canonical projection TM & T*M — TM is given
exactly by {¢.e? : ¢ € Diff(M), B € Q%(M)}. This follows by the same argument as for
[23, Prop. 2.5]. Further notice that eBo, = ¢.e?"B.

Abusing notation, for any bivector field 7 such that 1+B°x#: T*M — T*M is invertible,
we denote by ePr the unique bivector field whose graph is e (graph(r)). (Here B’ is the
contraction in the first component of B.) In order to compute the flow of YBEX) we need
a lemma:

Lemma 5.12. Let X be a vector field on a manifold M with flow ¢' defined fort € I C R,
let {Cilier be a smooth family of 2-forms and let w be a bivector field. Denote m :=
(¢¢)«(eCtm). Then

%7& = [X, 7Tt] + /\277(15 <(¢_t)*<cclltCt)> . (40)
Proof. We have J J
g(ecfw) = /\2(ecf7r)(act). (41)

111 the sense that the projection TM @®T* M — TM is equivariant w.r.t. the vector bundle automorphism
and the derivative of its base map.
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This follows from (e“m)* = 7#(1+Cyn*)~! [46, §4], and from & (e“tm)? = —(ectﬂ)ﬁ(%Ct)b(ectw)ﬁ.
Using eq. in the first equality we obtain

d

S = (90 (jt«a%) +[X, e%)

= (60 (PEERGED) + (@0.1x.

which equals the r.h.s. of eq. . O

Proposition 5.13. Let (B, X) € Q*(M) @ x(M). The integral curve of YBX) starting at
the point (H, ) € £y reads
t i (H —tdB, (¢1).e" ) (42)

where ¢ denotes the flow of X and

t
CH . D, +/0 (65)(B — 1x H)ds

for Dy the unique solution with Do = 0 of

d .
aDt = t(¢t )LXdB

(The above curve is defined as long as ¢y is defined and 1+ (CH)’xt is invertible.)

Proof. Fix (H,m) € £p and consider the curve defined in eq. (42]). The curve is tangent to
the vector field YBX) at all times ¢, by virtue of Lemma and since

(¢_t)*(%OtH) = (¢_¢)*[t(¢])exdB + (¢7)(B — 1xH)| = B — 1x(H — tdB).

Since at time t = 0 the curve is located at the point (H,7), we are done. O

Remark 5.14. Let (B, X) € Q*(M) @ x(M) where B is closed, and let (H,7) € £9. Then

D; = 0, and consequently (qﬁt)*ectH is a one parameter group of orthogonal vector bundle

automorphisms of TM &T*M (see [23, Prop. 2.6]). Hence the second component of integral
curve of YBX) starting at (H,n) is the image of (the graph of) 7 under a one parameter
group of orthogonal vector bundle automorphisms of TM & T*M.

Consider the group Q2(M) x Diff(M), with multiplication
(B1,¢1) - (B2, ¢2) = (B1+ (¢7 ') B2, 610 o).
We consider two natural left actions of Q2(M) x Diff(M):

e on TM @ T*M by (B, ¢) — eBp. (preserving the canonical pairing)

3
¢ on chosed

(M) by (B,¢)-H = (¢~")*H — dB.
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Remark 5.15. The partial'] action of Q2(M) x Diff(M) on x*(M) @ Q*(M) by
(B,¢) - (H,m) = ((¢"")"(H) — dB, " ¢p.m)
preserves

MC(L) = {(H,7) € Q3 .0q(M) ®x*(M) : 7 is a H-twisted Poisson structure}.

closed

This follows from Prop. below, but can also easily be checked directly as follows. For
every H e H S‘l osed(M), the automorphism eB ¢, maps the H-twisted Courant bracket into

the (¢~1)*(H) — dB-twisted Courant bracket [23, §2.2]. Now use that 7 is a H-twisted
Poisson structure iff graph(m) is involutive w.r.t. the H-twisted Courant bracket.

Proposition 5.16. The leaves of the involutive singular distribution
span{YPX) 1 (B, X) € £.1 = Q*(M) & x(M)} (43)
on MC(£) coincide with the orbits of the partial action of Q2(M) x Diff(M) on MC(L).

Proof. 1t suffices to show that coincides with the singular distribution given by the
infinitesimal action associated to the group action of Q%(M) x Diff(M). Notice that the Lie
algebra of this group is Q2(M) @ x(M), so take an element (B, X) € Q*(M) @ x(M). We
compute the corresponding generator of the action Z(5X) at a point (H,7) € MC(£): we
have

2By = %hzo(m, o) - (H,m) = (—duxH + B), [X,] + A%2(B))  (44)

where ¢, is the flow of X and using Lemma to compute % |;—o(d¢).e(?) ¢B) (7). Com-
paring this with eq. we see that

Z(BiLXH“X) ‘(H m) = y(37X)‘(H ).

This shows that the two singular distributions agree at the point (H,7), and repeating at
every point of M C(£) we conclude that the two singular distributions agree on MC(£). O

5.4 Generalized complex structures and Courant algebroids

In this subsection we consider deformations of Courant algebroid structures on a fixed
vector bundle and of their generalized complex structures. Deformations of generalized
complex structures within a fixed Courant algebroid were studied by Gualtieri in [22] §5].

Fix a Courant algebroid £ — M and a generalized complex structure J, i.e. a vector
bundle map J: E — E with J? = —Id, preserving the fiberwise pairing and satisfying an
integrability condition [24][22 Def. 4.18]. J can be equivalently encoded by a complex
Dirac structure A C E ® C transverse to the complex conjugate A. The correspondence is
as follows: given J, define A to be the +i-eigenbundle of the complexification of J. Given
A, consider the complex endomorphism of £®C with +i-eigenbundle A and —i-eigenbundle
A, and define J to be the restriction to E.

2The action is defined whenever 1+ B”(¢.7)* is invertible.
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Hence we are in the situation of §5.2] except that we consider complex Dirac structures
in the complexification £ ® C of a (real) Courant algebroid. Notice that E does not have a
preferred splitting into Dirac subbundles. On the other hand, £ ® C is a complex Courant
algebroid with a splitting F@C = A®A into complex Dirac subbundles. The construction of
[43, Thm. 4.5] leads to a complex graded manifoldE with a degree 2 symplectic structure
{-,-}, namely N' = T*[2]A[1]. We denote its “global functions”, a graded commutative
algebra over C, by C¢(N).

Lemma 5.17. Fiz a Courant algebroid E — M and a generalized complex structure .J,
encoded by a complex Dirac structure A transverse to A. The following quadruple forms a
V-data:

e the complex graded Lie algebra L := C¢c(N)[2] with Lie bracket {-,-}
e its complex abelian subalgebra a := 7*(Cc(A[1]))[2] = T'(ANA*)[2]
e the natural projection P: L — a given by evaluation on the base A[l]

o A:=hg, + F*(ha,.), where hq,, F and hq,. are defined analogously to
hence by Thm. (1f we obtain a comple Leo[1]-structure aX.
For all ® € T(A2A*) we have: ®[2] is a Maurer-Cartan element in ak iff
graph(=®) = {(X —1x®): X € A} CcAe A=E®C
is a complex Dirac structure in E® C.

Proof. Exactly as the proof of Lemma but working over C and taking K := A. O

As earlier, let M be the (real) degree 2 symplectic manifold with self-commuting func-
tion A corresponding to the Courant algebroid E. We have Cc(N) = C(M) @ C. Since A
defines a complex Courant algebroid structure on E ® C which is the complexification of a
(real) Courant algebroid structure on E, it follows that A € C'(M) C Cc(N). We are inter-
ested only in complex Courant algebroid structures on £ ® C which are complexifications
of Courant algebroid structures on E, so we deform A only within C'(M).

Corollary 5.18. Fix a Courant algebroid E — M and a generalized complex structure

J, encoded by a complex Dirac structure A. Let M, N, and the V-data (L,a, P,A) be as

above. Then there exists a (real) Loo[1]-algebra structure on (ker(P) N C(M))[1] @ a with

the property that for all A € C(M)s with A[2] € Ker(P) and small enough ® € T'(A2A*):
{A + A defines a Courant algebroid structure on E

graph(—@) is the + i-eigenbundle of a generalized complex structure there
& (A[3],®[2)) is a MC element of (ker(P) N C(M))[1] @ a.

Proof. Apply Thm. 3| (which holds over C as well) with ® = 0 to obtain the complex Lo[1]-
structure (ker(P)[1] @ a)X. View the latter as a real Loo[1]-structure. Since A € C'(M), it
follows that (ker(P) N C(M))[1] @ a is a Loo[1]-subalgebra. O

Remark 5.19. To see that the above V-data is filtered, proceed exactly as in Remark [5.8]

131t is given by a sheaf of graded commutative algebras over C satisfying the usual locally triviality
condition.
“Hence the underlying graded vector space is complex and the multibrackets are C-linear.
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A Appendix

This appendix collects some background material on graded and formal geometry needed
in the main text. Further, it presents the proof of Prop.

Recall that a graded vector space is just a vector space W with a direct sum decom-
position into subspaces W = @®;czW;. We refer to elements of W; as “elements of degree
i” and |z| denotes the degree of x. The dual of W is naturally a graded vector space
with (W*); = (W_;)*. For any integer k, Wk] denotes the graded vector space with
(Wk])i = Witk. The set

L(E, E'):= {linear maps from E to E'}

is a graded vector space, with grading inherited from those of F and E’: an element
¢ € L(E,E') is said to be of degree k if it raises degrees by k, i.e. if |¢(x)| = |z| + k for
all homogeneous x € E. One denotes by L(E, E'); the set of linear maps of degree k, and
L(E,E") = ®rezL(E, E")j. One easily checks that

L(E):=L(E,FE)
is a graded Lie algebra when endowed with the graded commutator

[6,9] == potp — (~1)1IWIy 0 g,

A.1 A primer on graded geometry: graded spaces and homological vector
fields

We recall the notions of graded geometry needed in §2.1]- An extension of these notions
is used in and See [45], §1.4] or [§] for more details.

Let W be a Z-graded vector space. We introduce the symmetric algebra of W and its
derivations.

o Let TW :=ROWBW®?@. .. be the tensor algebra of W. It is a graded algebra, i.e.,
it is a graded vector space endowed with an associative morphism TW  TW — TW.
Let SW be the quotient of TW by the ideal generated by = ® y — (—1)I"l¥ly @ z,
where x and y range over homogeneous elements of W. SW is a graded commutative
algebra (see [45], §2, Def. 4.1], called the graded symmetric algebra of W.

e For any integer k, Der(SW); denotes the space of degree k derivations of SW, i.e.
Q € L(SW);, which satisfy

Qlz-y) =Q(z) - y+ (-1l Q(y).

Der(SW) := @rezDer(SW)y is closed under the graded commutator of linear endo-
morphisms, i.e. Der(SW) is a Lie subalgebra of (L(SW),[—,—]).

Now let U be an n-dimensional, real vector space. Then U[1] (resp. (U[1])*) is a graded
vector space concentrated in degree —1 (resp. 1). Exactly as ordinary vector spaces are
instances of smooth manifolds, graded vector spaces are instances of graded manifolds.
We do not give the definition of graded manifold here (see [8, §2.1]). Rather, we describe
explicitly the two algebraic structures associated to the graded manifold U[1] that will be
used in this article:
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e The space of “functions on U[1]”

C(UN]) = S(UA)")-

It is a graded commutative algebra concentrated in degrees 0, ...,n. It is isomorphic
to the ordinary exterior algebra AU* of U* (graded so that elements of A*U* have
degree k).

e The space of “vector fields on U[1]”
X(U[1]) := Der(C(U[1])).

It is a graded Lie algebra, concentrated in degrees > —1. As a graded vector space it
is just S((U[1])*) @ U[1].

We give “coordinate expressions” for the above functions and vector fields. Notice that
there is a canonical identification ¢: U — x_1(U[1]). An element X € U is identified with
the vector field tx that satisfies tx(u) = (X, u) for all u € (U[1])* = C1(U[1]), where the
pointy brackets denote the pairing of a vector space with its dual. (It is enough to specify
how ¢x acts on (U[1])*, since the latter generates the graded commutative algebra C(U[1]).)

e Choose a basis Xi,...,X,, of U. The dual basis, viewed as a basis of (U*)[—1] =
(U[1])*, will be denoted by
Ulye ooy Up.
We refer to the u; as coordinates on U[l]. Notice that |u;| = 1. The graded com-
mutative algebra C(U[1]) is generated by the u;, and a generic degree k element of
C(U]1]) is a degree k polynomial expression in the u;.

e Xi,..., Xy, under the identification of U with x_1 (U[1]), becomes a basis of x_1(U[1])
which we denote by

0 0
du T B
Notice that ]%J = —1. We have %(uj) = 0;;. A general degree k element of x(U[1])
is of the form > , Pia%i’ where P; is a degree k + 1 polynomial expression on the

Bl
Uj's.

Finally, by homological vector field on U[l] we mean a degree 1 element @ € x(U[1])
with the property that [Q, Q] = 0. Notice that a homological vector field is necessarily of
the form ) cfjuiuj% for some constants CZ
A.2 A primer on formal geometry: coalgebras and homological coderiva-

tions

The notion of formal geometry is used in and and is dual to the notion of
graded geometry. It is of use when one has to deal with infinite dimensional algebras. In
this section we introduce the main objects of interest, homological coderivations. They
are compact ways to handle algebras, or algebras up to homotopy: the brackets of these
algebras are given by the Taylor coefficients of the corresponding coderivation. References
for proofs can be found for example in [1], [L0] or the appendix of [40].
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Definition A.1. A coalgebra structure on a (possibly graded) vector space W consists of
a (degree 0) linear map A : W — W ® W, called coproduct, satisfying the coassociativity
condition

(A®Id)oA=(Id®A)oA.

The only examples which will be of use here are:

Example A.2. If V is a (graded) vector space over the field K, let us consider TV =
EB?:OV@IC and SV = EBEOZOS’“V. They are coalgebras for the (degree-preserving) coproducts
given respectively by

n

Alx) @ @) 1= Z(ml R Q@xi 1) ®(mZ ® - ® xy) (45)
=0

and

A(l’l l’n) = Z Z e(a;:pl,...,xn) : (xa(l) ""xa(i))@(wa(i—i—l) xU(n)) (46)

=0 UGSh(i,n_i)

We used the notation €(o;x1,...,2,), the Koszul sign given by the permutation o of the
elements z; and the convention that 71 ® -+ ® xp, = T5(1) ... Ty(n) = lxk when n = 1. In
particular, A(1lg) = 1g ® 1k.

Most people rather work with the reduced tensor/symmetric coalgebras:

Example A.3. One defines TV = EBZOZIV®k and SV = GazozlSkV. They are coalgebras for
the coproducts (both denoted by A) given by replacing the element 1y € Ve =50y =K
by 0 in eq. and . In other words:

Alx)=Az)+1lg @z + 2 ® 1.

Definition A.4. A coderivation of a coalgebra (W, A) consists of a linear endomorphism
Q of W satisfying the following (co) Leibniz condition:

Q®Id+Id®Q)oA=AoQ. (47)
One denotes by Coder(W) the set of coderivations of (W, A). It is a graded Lie subalgebra
of (L(W)7 [_7 _])

Remark A.5. If both @ and Q' are odd, then [@Q,Q'] = Qo Q'+ Q' o Q. This means that if
Q is odd, then Q) o Q) is a coderivation.

Definition A.6. A homological coderivation consists in a degree one coderivation () satis-
fying

QoQ=0. (48)

From now on we work with non-negatively graded coalgebras, i.e. such that W =

@i>0W;. Let Q be a linear endomorphism of W. As a linear map, it is uniquely defined by

its restrictions to the subspaces Wy: if one denotes Qy, := Q|w,, one has @ = [[;2, Q. Let

us consider the natural projection Iy, : W — W, for every [. One denotes Q' = Iy, 0 Q.

Clearly:
o0
@= Hk,l:OQZ'
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Definition A.7. The collection Q* := {Q},...,Q}L,...} is called the set of Taylor coeffi-
cients of (). The coderivation @ is said to be quadratic if its only non zero Taylor coefficient

is Q3.

Coderivations are most of the time encountered through their Taylor coefficients. Propo-
sition shows how to reconstruct a coderivation from its Taylor coefficients, and formula
expresses the condition of being homological in these terms:

Proposition A.8. A coderivation Q of TV (resp. SV) is uniquely determined by the
collection {Q3,...,Q%,...} of its Taylor coefficients by the formula

Q= Z [ ® Qg ® 1,
s=1
resp. )
Q=mgyo (Q'®Id)oA, (49)
where mgy; denotes the multiplication of SV.

Prop. whose proof can be found in [I], [I0] or the appendix of [40], enables to
reformulate the condition for a coderivation to be homological:

Lemma A.9. A coderivation Q of TV is homological if and only if its Taylor coefficients
satisfy the set of equations (n > 1)

n %
YD Qe @@y i ©Id %) =0. (50)
i=1 s=1
In particular, a quadratic homological coderivation of TV is equivalent to the equation
Qb0 (Qa®Id)+Qjo (Id@ Qh) =0. (51)

In the same way, a coderivation Q of SV is homological if and only if its Taylor coefficients

form a Le[1]-algebra on V' (see Def. [1.]).

Proof. Let Q be a homological coderivation of TV . By Remark QoQ is a coderivation,
and we can apply Proposition Therefore we will get a series of equations, namely, the
annihilation of all its Taylor coefficients (Q o Q)l1 But one has, by use of Proposition
the following expression for the these coefficients:

QoQ), = > QioqQ,
=1
Prov 11 QoD I ®Q) iy, ®Id).
s=1

=1

The proof of the statement for SV goes along the same lines and can be found in [I]. O

47



Lemma [A29] is important, since it is the link between homological coderivations and
algebras. But to have this link explicit, one still needs to “desuspend” the relation. First,
let us recall the shift operator [1]: V' — V1], which maps an element of v € V; to itself
seen as an element of (V[1]);—1. (In other words, [1] shifts the degree of an element by 1.)
Sometimes we write v[1] for [1]v.

Definition A.10. Let Q be a coderivation of T'(V'[1]). We define the desuspension operator
d by
dQy = [Qu[-1]"": TV =V, (52)

n

and similarly for S(V[1]).

This desuspension operator constitutes the link between homological coderivations and
homotopy algebras. This is the content of the following proposition, whose proof can be
found in [I] and [10].

Proposition A.11. The operator d defined by equation (@ gives a bijection between the
sets of quadratic homological coderivations of T(V[1]) and of associative algebra structures
on V.

Similarly, it also gives a bijection between the sets of homological coderivations of
S(V[1]) and of Loo-algebra structures on V. The latter restricts to a bijection between
the quadratic homological coderivations of S(V[1]) and the graded Lie algebras structures

onV.

This last result suggests the definition of an A.-algebra, introduced by Stasheff in [49].

Definition A.12. An associative algebra up to homotopy (or Ass-algebra) is a graded vector
space V equipped with a collection of maps {mi,...,my, ...}, obtained by desuspension of
the Taylor coefficients of a homological coderivation @ of T'(V[1]).

A.3 The proof of Prop. [2.17: infinite dimensional L.-algebras via de-
rived brackets

It is well-known that an L..-algebra structure on a finite dimensional graded vector space V'
is equivalent to a homological vector field on V[1]. The Lo-multibrackets can be recovered
with a derived bracket construction [50, Ex. 4.1]. If V is an infinite dimensional, the
above procedure does not apply (it involves considering the dual of V[1]). Instead, as
stated in Lemma a Loo-structure on V' can be encoded by a suitable coderivation on
a reduced symmetric coalgebra. In this section we show that the L.-structure can also be
recovered from a coderivation on a (unreduced) symmetric coalgebra by a derived bracket
construction, proving Prop. 2.17]

Let W be a (possibly infinite dimensional) graded vector space. We will apply Voronov’s
derived bracket construction (Thm. [I)) to the graded Lie algebra (Coder(SW),[—,—]) of
Def. [A:4] Let us introduce the abelian subalgebra a which we will need.

Lemma A.13. For every homogeneous w € W,

Qs SW — SW,

T1...Tpt— W -T1...Tp
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is a coderiwation of SW of degree |w|. Further, a := {ay, : w € W} is an abelian Lie
subalgebra of Coder(SW).

Proof. We show that «,, is a coderivation, i.e., that is satisfies eq. (A.4]). With the notations

xg:=1and xy:=wx; ---- - ax;, for I ={i1,...,i,}, one can abbreviate

Azy = Z trp ® xp,
=i
where £ are the signs which appear in formula . On the one hand one has
(o @ Id + Id ® auy)A(xp) = Z tw- rp @+ (—1)'“’”"31’| Ty Qw- -z
I =I

On the other hand, if one denotes w - x; = @17}, one gets
A(O{w(l’[)): Z :I:LI}J/@[L‘J// = Z iw'%]’@ﬂ:[”_}‘(_l)‘w“mﬂ'j::l:[/@w'x]”.

JALT =111 =1

Hence «,, is a coderivation.
To show that a is abelian we compute for all homogeneous v, w € W and x € SW that
[, )z =v-w-z — (=)W vz =0. O

Lemma A.14. For every 7 € Coder(SW') one has 7(1) € W.

Proof. For any element w € SW the following holds: Aw =w® 1+ 1@ w iff w € W.
Applying eq. to 1 € SW we see that 7(1) satisfies the above relation, so it must
lie in W. O

There is an embedding of the coderivations on SW into those on SW:
Lemma A.15. Consider the map
J: Coder(SW) — Coder(SW)
defined by (JO)(1) =0 and, for alln > 1, by
(JO)(wy ... wp) =O(wy ... wy).
J is well defined, injective, and bracket-preserving.

Proof. We check that J© lies in Coder(SW). The relation is trivially satisfied on the
element 1. Let now x be an element of SW. We have

(JORId+1d® JO)(A(z) =0(2) ® 1 +1®06(x) + (0 ® Id + Id ® ©)(A(x))
O(r) @1+ 1®6(z) + A(O(z))

A(TO(x)),

where in the first equality we used (J©)(1) = 0 and in the second that © € Coder(SW).
Hence JO© is a coderivation.

J is bracket-preserving since, for any ©; € Coder(SW), the graded commutator [7©1, JOs]
vanishes on 1 € SW and agrees with [©1, 03] on &, SkW. O

49



Now we are ready to prove Prop. which recovers Lo[1]-algebra structures on W
via derived brackets. We repeat the proposition for the reader’s convenience:

Proposition. Let W be an Lo [1]-algebra, and © the corresponding coderivation of SW
given by Lem. [A29. The following quadruple forms a V-data:

e the graded Lie algebra L := Coder(SW)
o its abelian subalgebra a := {a,, : w € W}
e the projection P: L — a, T a;)

e A:=7J0O.

The induced Loo[1]-structure on a given by Thm. |1| is exactly the original Lo [1]-structure
on W, under the canonical identification W = a,w — Q.

Proof. a is an abelian Lie subalgebra of Coder(SW) by Lemma @ The map P is well-

defined by Lemma and is clearly a projection (that is, P? = P). Its kernel ker(P)

agrees with the subspace of coderivations vanishing on 1 € SW. Hence ker(P) is a Lie

subalgebra of Coder(SW) and it contains J©. Further [J©, 0] = 0 by Lemma
We conclude that (L,a, P,A) is a V-data and the assumptions of Thm. |I| are satisfied.
To compute the induced multibrackets on a, notice that for every n > 1

[ [T, auy ], 5w, (1) = TO 0y 0+ 0 v, (1) + 3 0, M; (53)
=1

for certain elements M; € ea,;“;lskw. In particular the sum on the r.h.s. lies in @i"zgSkW.
Hence

[ [TO ] aw,J(1) = prv ([ [T O, aw, ], -+ aw, ] (1))
:er(jG)oawlo--'oawn(l))
= prw (T O (w1 -+ - wy))

:{wla"' ﬂUn}

where in the first equality we used Lemma in the second we used eq. (53)), and in the
fourth Lemma [A.9 Hence

Pl [T0, 0], w,] = 70,00, ] s ](1) = Cuwn e i}

A.3.1 Application: L., algebras associated to A., algebras

It is well known ([32] or [34, Prop. 13.2.16]) that, in the same way that one can associate
a Lie algebra to an associative algebra (by taking the commutator), one can associate a
Lo-algebra to an Ay.-algebra. In this subsection, which is not used in the rest of the paper,
we show that it is indeed possible to understand this in terms of derived brackets.
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Let W be a (possibly infinite dimensional) graded vector space and w € W. Let us
define the map

n
Q: TW — TW, aw(w1®---®wn):Zw1®~-®wi®w®wi+1®--~®wn.
i=0

In the following we use the notations of the previous section, modulo the replacement of
the symmetric product by the tensor product.

Proposition A.16. Let W[—1] be an A -algebra, and © the corresponding coderivation
of TW given by Def. . The following quadruple forms a V-data:

o the graded Lie algebra L := Coder(TW)
o its abelian subalgebra a := {ay, : w € W}
e the projection P: L — a, T a;)

e A:=J0O.

The induced Loo[1]-structure on a given by Thm. 1| is exactly the Lo [1]-structure on W
obtained by symmetrization of the As[1]-algebra structure on W.

Proof. One can easily check by mimicking §A-3| that the map «,, is a coderivation of TW,
a is an abelian subalgebra of L, and Ker(P) is a subalgebra of L. To show that (L, a, P, A)
forms a V-data, it remains to show that [A, A] = 0. But by definition an A-algebra
on W := V[—1] is equivalent to a Maurer-Cartan element of Coder(TW), i.e. a coderivation
O of degree 1 such that [©, 0] = 0. Now use the fact that the map J is bracket preserving.

Therefore the derived bracket construction of Thm. [I| can be applied to the V-data
(L,a, P,A) above, associating a Ls[1]-algebra to the given A-algebra.

It remains to check that the obtained Lo [1]-structure on W can alternatively be ob-
tained by symmetrization: The computation following eq. gives in particular

er(j@Oauno"'oawn(l)) :{wlv"' ’wn}' (54)

One remarks (proof by induction) that v, o0 auw, (1) = > ,cq We1) @+ @ We(n). SO
(54) rewrites as

{wi, - we} = ) O (We1) @+ ® Wo(n)),
ocE€Sh

i.e. the n-th bracket of the Ly[1]-structure on a given by Thm. |[1]is obtained by sym-
metrization of the n-th bracket of the original A.[1]-structure. O
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