DIRICHLET'S ENERGY AND THE NIELSEN REALIZATION PROBLEM

A.J. Tromba

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3

.

·· · ··

.

Dept. of Mathematics Univ. of California Santa Cruz CA 95064 USA

MPI/87 - 38

DIRICHLET'S ENERGY AND THE NIELSEN REALIZATION PROBLEM

A.J. Tromba

Abstract

Dirichlet's energy function on Teichmüller space is used to give a solution to the Nielsen realization problem. In particular we show that Dirichlet's energy is convex along Weil-Petersson geodesics.

We shall prove the following result originally due to Kerckoff [7].

<u>Theorem (Main)</u> Let \mathcal{Y} be any finite subgroup of a group $\mathfrak{D}/\mathfrak{D}_0$, the surface modular group of Teichmüller space $\mathfrak{T}(M)$. Then the action of \mathcal{Y} on $\mathfrak{T}(M)$ has a fixed point.

The author wishes to thank Hans Duistermaat who first suggested that the geodesic convexity of Dirichlet's energy could give a proof of Nielsen realization problem.

Let M be an oriented compact surface without boundary and with genus greater than one. Let \mathscr{A} be the space of almost complex structures on M compatible with its orientation and let \mathfrak{D}_0 be the space of all diffeomorpisms of M homotopic to the identity. Then [3], [4], [5] Teichmüller space is defined to be the quotient $\mathscr{A}/\mathfrak{D}_0$, where \mathfrak{D}_0 acts on \mathscr{A} by pull back. In [3] it is shown that $\mathcal{T}(M)$ has the structure of a 6(genus M) - 6 C^{∞} smooth manifold. If \mathscr{A}_{-1} denotes the infinite dimensional Fréchet manifold of Riemannian metrics of constant curvature -1, then \mathfrak{D}_0 acts naturally on \mathscr{A}_{-1} and $\mathcal{T}(M)$ is diffeomorphic to $\mathscr{A}_{-1}/\mathfrak{D}_0$.

This diffeomorphism is described as follows (for details see [3], [8]: There is a natural \mathfrak{D} -invariant diffeomorphism $\Phi : \mathcal{A}_{-1} \to \mathfrak{A}$ given by

$$\Phi(g) = -g^{-1}\mu_g$$

where \mathcal{M}_{g} is the volume element of g. Φ then passes to a diffeomorphism $\bar{\Phi}$ from $\mathcal{M}_{-1}/\mathfrak{D}_{0}$ to $\mathfrak{A}/\mathfrak{D}_{0}$. Let $\theta : \mathfrak{A} \to M_{-1}$ be the inverse of Φ . For $J \in \mathfrak{A}, \theta(J)$ is the unique Poincaré metric associated to J. Denote by $\bar{\theta}$ the induced diffeomorphism from $\mathfrak{A}/\mathfrak{D}_{0}$ to $\mathcal{M}_{-1}/\mathfrak{D}_{0}$. We also have a natural \mathfrak{D}_{0} invariant metric on A given by

$$<<$$
H,K>> - $\frac{1}{2} \int_{M} tr(HK) d_{\mu_{\Phi(J)}}$

and a natural L_2 splitting [8] of $T_J A$, namely each $H \in T_J A$ can be uniquely decomposed as

$$H = H^{TT} + L_{X}J$$

where L_XJ is the Lie derivative of J w.r.t. the vector field X on M, and H^{TT} denotes a (1,1) tensor which is trace free and divergence free w.r.t. $\theta(J)$. The decomposition (1.1) is L_2 -orthogonal. Since \mathcal{D}_0 acts as a group of isometries $\langle \rangle \rangle$ passes to a metric $\langle \rangle \rangle$ on $\mathcal{T}(M) - \mathscr{A}/\mathcal{D}_0$ described as follows. The term L_XJ is always tangent to the orbit of \mathcal{D}_0 through J. We say that L_XJ is the <u>vertical</u> part of $H \in T_JA$ in the decomposition (1.1). Similarly we say that H^{TT} represents the <u>horizontal</u> part of H. Let $\pi : \mathscr{A} \to \mathscr{A}/\mathcal{D}_0$ be the natural projection map. Given $H, K \in T_{[J]} \mathscr{A}/\mathfrak{D}_0$ there are unique horizontal vectors $\tilde{H}, \tilde{K} \in T_J \mathscr{A}$ such that $D\pi(J)K - K$. Then

(2)
$$\langle H, K \rangle_{[J]} = \langle \langle \tilde{H}, \tilde{K} \rangle \rangle_{J}$$

Let us now consider the model $\mathcal{M}_{-1}/\mathcal{D}_0$ of $\mathcal{T}(M)$. The tangent space of \mathcal{M}_{-1} at a metric, $g \in T_g \mathcal{M}_{-1}$ consists of those (0,2) tensors h on M satisfying the equation

(3)
$$-\Delta(\operatorname{tr}_{g}h) + \delta_{g}\delta_{g}h + \frac{1}{2}(\operatorname{tr}_{g}h) = 0$$

where $\operatorname{tr}_{g} = g^{ij}h_{ij}$ is the trace of h w.r.t. the metric tensor $g_{ij}, \delta_{g}\delta_{g}h$ is the double covariant divergence of h w.r.t. g and Δ is the Laplace-Beltrami operator on functions. For example see [8] for details. The L₂-metric on $\#_{-1}$ is given by the inner product

(4)
$$\langle \langle h, k \rangle \rangle_{g} = \frac{1}{2} \int_{M} \text{trace } (HK) d\mu_{g}$$

where $H = g^{-1}h$, $K = g^{-1}k$ are the (1,1) tensors on M obtained from h and k via the metric g, or "by raising an index", i.e.

$$H_j^i - g^{ik}h_{kj}$$

and similarly for K.

The inner product (1.4) is \mathfrak{D}_0 invariant. Thus \mathfrak{D}_0 acts smoothly on \mathcal{M}_{-1} as a group of isometries with respect to this metric, and consequently we have an induced metric on $\mathfrak{T}(M)$ in such a way that the projection map $\pi : \mathcal{M}_{-1} \to \mathcal{M}_{-1}/\mathfrak{D}_0$ becomes a Riemannian submersion [3]. In [4] it is shown that this induced metric is precisely the metric originally introduced by Weil, now called the Weil-Petersson metric.

Let \langle , \rangle be the induced metric on $\mathcal{T}(M)$. We can characterize \langle , \rangle as follows. From [3] we can show that given $g \in \mathcal{M}_{-1}$ every

$$h = h^{TT} + L_{\chi g}$$

where $L_X g$ is the Lie derivative of g w.r.t. some (unique X) and h^{TT} is a trace free, divergence free, symmetric tensor. Moreover the decomposition (1.5) is L_2 -orthogonal. Recall that a conformal coordinate system (where $g_{ij} = \lambda \delta_{ij}$, λ some smooth positive function) is also a complex holomorphic coordinate system. In this system

$$h^{TT} - Re(\xi(z)dz^2)$$

where Re is "real part" and $\xi(z)dz^2$ is a holomorphic quadratic differential. In fact, trace free, divergence free symmetric two tensors are precisely the real parts of holomorphic quadratic differentials.

Now L_X^g is always tangent to the orbit of \mathfrak{D}_0 through g. We say that L_X^g is the <u>vertical</u> part of h in decomposition 1.4. Similarly we say that h^{TT} represents the <u>horizontal</u> part of h. Given $h, k \in T_{[g]}^{\mathcal{J}}(M)$ there are unique horizontal vectors $\tilde{h}, \tilde{k} \in T_g \mathscr{A}_{-1}$ such that $D\pi(g)\tilde{h} - h$ and $D\pi(g)\tilde{k} - k$. Then

$$_{[g]} = <<\tilde{h}, \tilde{k}>>_{g}$$
.

Suppose now that $g_0 \in \mathcal{M}_{-1}$ is fixed and that $s : (M,g) \to (M,g_0)$ is a smooth C^1 map homotopic to the identity and is viewed as a map from M with some aribtrary metric $g \in \mathcal{M}_{-1}$ to M with its g_0 metric.

Define the Dirichlet energy of s by the formula

(6)
$$E_{g}(s) - \frac{1}{2} \int_{M} |ds|^{2} d\mu_{g}$$

where $\rightarrow ds \rightarrow^2$ - trace ds \otimes ds depends on both g and g₀.

By the embedding theorem of Nash-Moser we may assume that (M,g_0) is isometrically embedded in some Euclidean \mathbf{R}^K . Thus we can think of $s : (M,g) \rightarrow (M,g_0)$ as a map into \mathbf{R}^K and Dirichlet's functional takes the equivalent form

(7)
$$E_{g}(s) = \frac{1}{2} \sum_{i=1}^{k} \int g(x) < \nabla_{g} s^{i}(x), \nabla_{g} s^{i}(x) > d\mu_{g}.$$

There is another, equivalent, and useful way to express (1.5) and (1.8) using local conformal cordinate systems $g_{ij} = \lambda \delta_{ij}$ and $(g_0)_{ij} = \rho \delta_{ij}$ on (M,g) and (M,g₀) respectively, namely

(8)
$$E_{g}(s) - \frac{1}{4} \int_{M} \left[\rho(s(z)) |s_{z}|^{2} + \rho(s(z)) |s_{z}|^{2} \right] dz dz$$

For fixed g, the critical points of E are then said to be <u>harmonic</u> <u>g</u> <u>maps</u>. The following result is due to Eells-Sampson, Hartman and Schoen-Yau [2], [10].

<u>Theorem 10</u> Given metrics g and g_0 , with $g_0 \in \mathcal{M}_{-1}$ there exists a unqiue harmonic map $s(g) : (M,g) \rightarrow (M,g_0)$ which is homotopic to the identity, and is the absolute minimum for E_g . Moreover s(g) depends differentialy on g in any H^r topology, r > 2, and is a C^{∞} diffeomorphism.

Consider now the function

$$g \rightarrow E_g(s(g)).$$

This function on \mathcal{M}_{-1} is \mathfrak{D} -invariant and thus can be viewed as a function on Teichmüller space. To see this one must show that

$$E_{f*g}(s(f^*(g))) - E_g(s(g))$$

Let c(g) be the complex structure associated to g, and induced by a conformal coordinate system for g. For $f \in \mathcal{D}_0$, $f : (M, f^*c(g)) \rightarrow (M, c(g))$ is holomorphic and consequently since the composition of harmonic maps and holomorphic maps is still harmonic we may conclude, by uniqueness that

$$s(f*g) = s(g) \circ f$$
.

Since Dirichlet's functional is invariant under complex holomorphic changes of coordinates it follows immediately that

$$E_{f^{\star}(g)}(s(g) \circ f) - E_{g}(s(g))$$

Consequently for $[g] \in \mathcal{A}_{-1}/\mathcal{D}_0$ define the C^{∞} smooth function

$$\tilde{E} : \mathcal{M}_{-1}/\mathcal{D}_0 \to \mathbb{R}$$

Ъy

$$\tilde{E}[g] - E_g(s(g))$$

In [9] we prove the following

<u>Theorem 11</u> If $s : (M,g) \to (M,g_0)$ is <u>harmonic</u> the form $\xi(z)dz^2$ is a holomorphic quadratic differential on the complex curve $(M,c(g_0))$, and thus Re $\xi(z)dz^2$ represents a trace free, divergence free symmetric two tensor on (M,g). Hence Re $\xi(z)dz^2$ is a horizontal tangent vector to \mathcal{A}_{-1} at g. In addition

(12)
$$D\widetilde{E}[g]h = -\frac{1}{2} \langle Re \xi(z)dz^2, \tilde{h} \rangle_g = -\frac{1}{2} \sum_{\ell M} \int_{M} g(x) (\widetilde{H}\nabla_g s^\ell, \nabla_g s^\ell) d\mu_g$$

where \tilde{h} is the horizontal lift of $h = T_{(g)}^{\mathcal{J}}(M)$ and $\tilde{H} = (\tilde{h})^{\#}$ is obtained from h by raising an index via g.

Finally $[\rm g_0^{}]$ is the only critical point of \tilde{E} . The Hessian of \tilde{E} at $[\rm g_0^{}]$ is given by

(13)
$$D^2 \tilde{E}[g_0](h,k) - \langle h,k \rangle$$

 $h, k \in T_{[g_0]} \mathcal{I}(M)$. That is, the second variation of Dirichlet's energy function is the Weil-Petersson metric.

Suppose we look at the first derivative 1.12 in conformal coordinates (g)_{ij} = $\lambda \delta_{ij}$. Then if \tilde{h} is horizontal

6

$$2 \frac{\partial E}{\partial g}(g,s)\tilde{h} = -\int \langle h^{\#} \nabla s^{\ell}, \nabla s^{\ell} \rangle_{R}^{2} dxdy$$
$$= -\int \frac{1}{\lambda} \{\tilde{h}_{11}(\frac{\partial s^{\ell}}{\partial x})^{2} + 2\tilde{h}_{12}(\frac{\partial s^{\ell}}{\partial x})(\frac{\partial s^{\ell}}{\partial y}) + \tilde{h}_{22}(\frac{\partial s^{\ell}}{\partial x})^{2}\} dxdy$$

where $h^{\#} - \frac{1}{\lambda}(h_{ij})$. Since $\tilde{h}_{11} - \tilde{h}_{22}$ this is equal to

$$-\int \frac{1}{\lambda} (\tilde{h}_{11} [(\frac{\partial s^{\ell}}{\partial x})^{2} - (\frac{\partial s^{\ell}}{\partial y})^{2} + 2\tilde{h}_{12} (\frac{\partial s^{\ell}}{\partial x}) (\frac{\partial s^{\ell}}{\partial y})] dx dy.$$

Now

$$\left(\frac{\partial s^{\ell}}{\partial y} - i \frac{\partial s^{\ell}}{\partial y}\right)^{2} (dx + dy)^{2} - \xi(z) dz^{2}$$

is a quadratic differential. But

$$\operatorname{Re}(\xi(z)dz^{2}) = \left[\left(\frac{\partial s^{\ell}}{\partial x}\right)^{2} - \left(\frac{\partial s^{\ell}}{\partial y}\right)^{2}\right]dx^{2} + \left[\left(\frac{\partial s^{\ell}}{\partial y}\right)^{2} - \left(\frac{\partial s^{\ell}}{\partial y}\right)^{2}\right]dy^{2} + 4\left(\frac{\partial s^{\ell}}{\partial x}\right)\left(\frac{\partial s^{\ell}}{\partial y}\right)dxdy$$

If s is harmonic $\operatorname{Re}(s(z)dz^2)$ is a trace free divergence free tensor. In general the second derivative of \tilde{E} at an arbitrary [g] will not be intrinsic. However we can ask for the second derivative of the function $g \mapsto \operatorname{E}_{g}(s(g)) = \hat{\operatorname{E}}(g)$. (For $g \in \mathcal{A}$, the space of all Riemannian metrics it still follows from [2], [11] that E_{g} has a unique minimum s(g) which depends differentiably on g}. This was computed in [9]. Thus we have

Theorem 14 For arbitrary k

$$D^{2}\hat{E}(g)k - \frac{1}{2}\sum_{\ell}\int_{M}g(x)(K_{T}\nabla_{g}s^{\ell},\nabla_{g}s^{\ell})d\mu_{g}$$

where $K = (k)^{\#}$ and K_{T} is the trace free parts of K. For h and k trace free we have

$$D^{2} \dot{E}(g)(h,k) = \frac{1}{2} \sum_{\ell \in M} \int \{h + k\} g(x) (\nabla_{g} s^{\ell}, \nabla_{g} s^{\ell}) d\mu_{g}$$
$$- \sum_{\ell \in M} \int g(x) (h^{\#} + \nabla_{g} s^{\ell}, \nabla w^{\ell}(k)) d\mu_{g}$$

where

(5)
$$h \cdot k = g^{ab}g^{cd}h_{ac}k_{bd}$$

= tr(HK)

 $H = h^{\#}$, $K = k^{\#}$ the (1.1) tensors obtained from h and k by raising an index and

 $w^{\ell}(k) = Ds^{\ell}(g)k$, the derivative of s(g) in the direction k.

The following lemma whose proof can be found in [10] will be of importance to us..

Lemma 15

For h trace free, $D^{2A}E(g)(h,h) > 0$.

.

§2 Weil-Petersson Geodesics and the Nielsen Realization Problem

Let $\sigma(t)$ be a geodesic on Teichmüller space $\mathcal{T}(M)$. We can lift $\sigma(t)$ be a smooth path $\tilde{\sigma}(t)$ in \mathcal{H}_{-1} with the property that $\tilde{\sigma}'(t)$ is horizontal for each t.

We know that $\mathcal{M}_{-1} \subset \mathcal{M}$ the space of all metrics which itself is an open subset of the space of all symmetric tensors S_2 . Thus every second derivative $\sigma''(t)$ can be thought of as an element of S_2 . Let $S_2^{TT}(\sigma)$ be the space of trace free divergence free symmetric two tensors and let

$$\Pi_{\widetilde{\sigma}} \ : \ \mathbf{S}_2 \ \rightarrow \ \mathbf{S}_2^{\mathsf{TT}}(\widetilde{\sigma})$$

be the L₂-orthogonal projection.

Then as usual we see that σ is a geodesic iff $\Pi_{\sigma} \tilde{\sigma}^{"}(t) = 0$. We are now ready to prove:

<u>Theorem 17</u> (Geodesic convexity of \tilde{E}) Let $\tilde{E} : \mathcal{T}(M) \to R$ be Dirichlet's energy, and $\sigma(t)$ be a geodesic with respect to the Weil-Petersson metric. Then

$$\frac{\mathrm{d}^2 \widetilde{\mathrm{E}}}{\mathrm{d} \mathrm{t}^2} \left(\sigma(\mathrm{t}) \right) > 0$$

Proof. It clearly suffices to show that

$$\frac{\mathrm{d}^2 \hat{\mathbf{E}}}{\mathrm{d} t^2} \quad (\tilde{\sigma}(t)) > 0.$$

But

$$\frac{d^{2}\hat{E}}{dt^{2}}(\tilde{\sigma}(t)) - D\hat{E}_{\sigma(t)}\tilde{\sigma}''(t) + D^{2}\hat{E}_{\sigma(t)}(\sigma',\sigma')$$

9

By formula (14) and lemma (15) the second term is strictly positive. By (12), it follows that the first term is equal to

(18)

$$-\frac{1}{2} << \operatorname{Re} \xi(z) dz^{2}, \{\tilde{\sigma}^{"}(t)\}_{T} >>$$

$$-\frac{1}{2} << \operatorname{Re} \xi(z) dz^{2}, \tilde{\sigma}^{"}(t) >>$$

$$+\frac{1}{2} << \operatorname{Re} \xi(z) dz^{2}, \mu g >>$$

 $g = \tilde{\sigma}(t), \ \mu = \frac{1}{2} \operatorname{tr}_{g} \{ \tilde{\sigma}^{"}(t) \}, \ \{ \tilde{\sigma}^{"}(t) \}_{T} \text{ is the trace free part of } \{ \tilde{\sigma}^{"}(t) \},$ and $\xi(z) dz^{2}$ is the holomorphic quadratic differential associated to $\tilde{\sigma}'(t)$. Since $\prod_{\sigma} \sigma^{"} = 0$,

$$<< {
m Re} \xi(z) dz^2, \tilde{\sigma}''(t) >> - 0$$

Furthermore since Re $\xi(z)dz^2$ is trace free it is pointwise orthogonal to μg which implies that

$$<<\!\!\mathrm{Re} \ \xi(z) dz^2, \mu g>> - 0$$

This concludes 17.

We are now ready to prove our main

<u>Theorem (Main).</u> Let \mathfrak{V} be any finite subgroup of the surface modular group $\mathfrak{D}/\mathfrak{D}_0$. Then the action of \mathfrak{V} on $\mathfrak{T}(M)$ has a fixed point.

<u>Proof</u> Since \mathfrak{D} acts on \mathscr{M}_{-1} as a group of isometries with respect to the L_2 -metric it follows that \mathfrak{Y} acts on $\mathcal{T}(M)$ as a group of isometries with respect to the Weil-Petersson metric.

 $\boldsymbol{\mathscr{Y}}$ also acts on Dirichlet's functional in the obvious way, namely if $f\in\boldsymbol{\mathscr{Y}}$

$$f^{\#}\tilde{E}(g) - \tilde{E}(f^{\#}g) - E_{f^{\#}g}(s(f^{\#}g)).$$

Since the action of \mathfrak{D}_0 leaves E invariant we may view this action as an action of a finite subset of \mathfrak{D} . Define a new functional

 \mathcal{F} : $\mathcal{T}(M) \rightarrow R$

Ъy

$$\mathcal{F}(g) = \frac{1}{|\mathcal{Y}|} \sum_{f \in \mathcal{Y}} f^{\#} \tilde{E}(g)$$

where $|\Psi|$ is the order of Ψ . \mathcal{F} is clearly Ψ invariant. Since $\tilde{E} : \mathcal{T}(M) \to R^+$ is proper it follows that $\mathcal{F} : \mathcal{T}(M) \to R^+$ is also proper. Thus \mathcal{F} has a minimum point. The action of Ψ clearly permutes the minima of \mathcal{F} . By the geodesic convexity of \tilde{E} it follows that \mathcal{F} is geodesically convex, i.e.

$$\frac{\mathrm{d}^2 \mathfrak{F}}{\mathrm{d} \mathfrak{r}^2} \ (\sigma(\mathfrak{t})) > 0.$$

Thus any critical point of $\mathcal F$ must be a non-degenerate minimum. Since Teichmüller space is a cell this implies that there is a unique minimum for $\mathcal F$ which must therefore be fixed by $\mathcal Y$.

Q.E.D

REFERENCES

- BERS, L. and EHRRENPREIS L, Holomorphic convexity of Teichmüller spaces. Bull AMS (1970) 1964 pp. 761-764.
- [2] EELLS, J. and SAMPSON, J.H., Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109-160.
- [3] FISCHER, A.E. and TROMBA, A.J., On a purely Riemannian proof of the structure and dimension of the unramified moduli space of a compact Riemann surface. Math. Ann. 267 (1984) 311-345.
- [4] FISCHER, A.E. and TROMBA, A.J., On the Weil-Petersson metric on Teichmüller space, Trans. AMS 284 (1984), 319-335.
- [5] FISCHER, A.E. and TROMBA, A.J., Almost complex principle bundles and the complex structure on Teichmüller space, Crelles J. Band 252, pp. 151-160 (1984).
- [6] FISCHER, A.E. and TROMBA, A.J., A new proof that Teichmüller space is a cell, Trans. AMS (to appear).
- [7] KERCKOFF, S.P., The Nielsen realization problem Annals of Math. 117 (1983), 235-265.
- [8] TROMBA, A.J., On a natural algebraic affine connection on the space of almost complex structures and the curvature of Teichmüller space with respect to its Weil-Petersson metric, Manuscripta Math. vol. 56, Fas. 4, 475-497 (1986).
- [9] TROMBA, A.J., On an enery function for the Weil-Petersson metric; Manuscripta Math. (to appear).
- [10] TROMBA, A.J., A new proof that Teichmüller space is a complex Stein manifold, preprint.
- [11] SHOEN, R. and YAU, S.T., On univalent harmonic maps between surfaces, Inventiones mathematics 44, 265-278 (1978).