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DIRICHLET’S ENERGY AND THE
NIELSEN REALIZATION PROBLEM

A.J. Tromba

Abstract

Dirichlet’'s energy function on Teichmiller space 1s used to give a
solution to the Nielsen realization problem. In particular we show that
Dirichlet's energy 1s convex along Well-Petersson geodesics,

We shall prove the following result originally due to Kerckoff [7].

.Theorem (Main) Let % be any finite subgroup of a group 9/90, the
surface modular group of Teichmiller space J(M). Then the action of ¥ on
J(M) has a fixed point.

The author wishes to thank Hans Duistermaat who flrst suggested that
the geodesic convexity of Dirichlet’'s energy could give a proof of Nielsen

realization problem.

Let M be an orlented compact surface without boundary and with genus
greater than one. Let # be the space of almost complex structures on M
compatible with its orientation and let EO be the space of all
diffeomorpisms of M homotopic to the identity. Then [3}, [4], (5]

Telichmiller space is defined to be the quotient d/@o, where %2, acts on

0
#d by pull back. In [3] it is shown that J(M) has the structure of a

6(genus M) - 6 ¢” smooth manifold. If H . denotes the infinite

1
dimensional Fréchet manifold of Rlemannian metrics of conatant curvature
-1, then 90 acts naturally on ﬂ-l and J(M) 1is diffeomorphic to
ﬂ_l/EO.

This diffeomorphism is described as follows (for details see [3], [8]:

There is a natural 9-invariant diffeomorphism & : ‘-1 -+ o given by

-1
& - -
(8) 8 Ky



where ﬂg is the volume element of g. ® then passes to a diffeomorphism

$ from ﬂ_l/@ to d/%o. Let 6 : 4> M be the inverse of &. For

0 -1
Jed, (J) 1is the unique Poincaré metric assoclated to J. Denote by f

the induced diffeomorphism from d/@o to #-1/E We also have a natural

0"
EO invariant metric on A given by

<<H,K>> = ; Itr(HK)d
M Pe(a)

and a natural L, splitting [8] of TJd, namely each H € TJd can be

uniquely decomposed as

(1) H=HT 4 LJ

where LXJ is the Lie derivative of J w.r.t. the vector field X on M,

and HTT denotes a (1,1) tensor‘which is trace free and divergence free
w.r.t. .8(J). The decomposition (1.1l) is L2-orthogonal. Since ﬁo acts as -
a group of isometries <<,>> passes to a metriec <,> on T(M) = d/ﬁo
described as follows. The term LXJ is always tangent to the orbit of @0
through J. We say that LXJ 1s the wvextical part of H € TJA in the

decomposition (1.1). Similarly we say that HTT represents the horizontal
part of H. Let = : o - nﬂ/D0 be the natural projection map. Given

H,K € T[J]d/@o there are unique horizontal vectors H,K € TJd such that
Dx(J)K = K. Then

(2) <H,K>[J] - <<H,K>>J.
Let us now consider the model ﬂ_l/ﬁo of J(M). The tangent space of ﬂ-l
at a metric, g € Tgﬂ-l consists of those (0,2) tensors h on M

satisfying the equation

1
3 -A(tr h) + 6§ § h + =(tr h) = 0
(3 ( g ) e 2( g )



where trgh - gijhiJ is the trace of h w.r.t. the metric tensor
gij’sgsgh is the double covariant divergence of h w.r.t. g and A s

the Laplace-Beltraml operator on functions. For example see [8] for

details. The L, -metric on ﬂ‘

2 is given by the inner product

1

I trace (HK)du

(4) <<h,k>> =
g M g

& =

where H = g-lh, K= g.lk are the (1,1) tensors on M obtained from h

‘and k via the metric g, or "by raising an index", i.e.

“Ji - gik“kj

and similarly for K.
The inner product (1.4) is ﬁo invariant. Thus %0 acts smoothly on
M as a group of isometries with respect to this metric, and consequently

welhave an induced metric on J(M) 1in such a way that the projection map
n o ﬂ_l -+ ﬂ;l/ﬁo becomes a Riemannian submersion [3]. In [4] 1t 1s shown
that this induced metric is precisely the metric originally introduced by
Well, now called the Weil-Petersson metric.

Let <,> be the induced metric on J(M). We can characterize <,> as

follows. From [3] we can show that given g € A-l every
(5) h=h'"+Lg

where Lxg is the Lie derivative of g w.r.t. some (unique X) and hTT
is a trace free, divergence free, symmetric tensor. Moreover the
decomposition (1.5) is L2-orthogona1. Recall that a conformal coordinate
system (where gij - Asij’ A some smooth positive function) is also a

complex holomorphic coordinate system. In this system

hIT - Re(£(z)dz?)



where Re 1s "real part” and {(z)dz2 is a holomorphic quadratic
differential. In fact, trace free, divergence free symmetric two tensors
are precisely the real parts of holomorphic quadratic differentials.

Now Lxg is always tangent to the orbit of %0 through g. We say

that Lyg is the vextical part of h 1in decomposition 1.4. Similarly we
say that hTT represents the horizontal part of h. Given h,k € T[glg(M)

there are unique horizontal vectors h,k e Tgﬂ-l such that Dw(g)ﬁ = h

and Dw(g)E = k. Then

Suppose now that £o € ﬂ-l is fixed and that s : (M,g) - (H,go) is a

smooth Cl map homotoplc to the identity and is viewed as a map from M

with some aribtrary metric g e A to M with its &g metric,

-1
Define the Dirichlet energy of s by the formula

1 2
6 - -~
(6) Eg(s) 3 i |ds | dpg

where quqz = trace ds ® ds depends on both g and 8y

By the embedding theorem of Nash-Moser we may assume that (M,go) is
isometrically embedded in some Euclidean RK . Thus we can think of

s : (M,g) ~ (M,go) as a map into RK and Dirichlet’'s functional takes the

equivalent form

k
§ jg(X) < Vgsi(X).Vgsi(X) > dug
i=1

o1

(7 Eg(S) -

There is another, equivalent, and useful way to express (1.5) and (1.8)

Aé and

using local conformal cordinate systems gij = Ay (go)ij - p&ij

on

(M,g) and (M,go) respectively, namely



(8) Eg(S) - 2 £ [p(S(z))!szl2 + p(S(Z))ISélzldzd2

~

For fixed g, the critical points of Eg are then said to be harmonic
maps. The following result is due to Eells-Sampson, Hartman and Schoen-Yau
(2], [10].

Theorem 10 Given metrics g and &g with By € A-l there exlists a
ungiue harmonic map s(g) : (M,g) - (H,go) which 1s homotopic to the

identity, and is the absolute minimum for Eg' Moreover s(g) depends

differentialy on g 1in any H* topology, r > 2, and 1is a c”
diffeomorphism.

Consider now the function

g~ Eg(S(g)).

This function on ﬂ-l is @P-invariant and thus can be viewed as a

function on Teichmiller space. To see this one must show that

Erng(S(E (8))) = E_(s(8)).

Let c(g) be the complex structure associated to g, and induced by a

conformal coordinate system for g. For f € 90, f (M,f*c(g)) - (M,c(g))
is holomorphic and consequently since the composition of harmonic maps and

holomorphic maps 1s still harmonic we may conclude, by uniqueness that
s(f*g) = s(g) o £ .

Since Dirichlet’s functional is Invariant under complex holomorphic changes

of coordinates it follows immediately that
Ef*(g)(s(g) o f) = Eg(S(g)).

Conseqﬁently for [g] € ﬂ_l/wo define the C smooth function



E[g] - E,(s(g)).

In [9] we prove the following

Theorem 11 If s : (M,g) = (M,go) is harmonic the form E(z)dz2 is a
holomorphic quadratic differential on the complex curve (M,c(go)), and

thus Re E(z)dz2 represents a trace free, divergence free symmetric two

tensor on (M,g). Hence Re {-‘(z)dz2 is a horlzontal tangent vector to A-l

at g. In addition

(12) DE[glh = - %<<Re e(z)dzz,ﬁ»g - -% Z J g(x)(ﬁvgsz,vgs£)dpg
M

where h 1is the horizontal 1ift of h = T(g)ﬁ(M) and H = (E)# is

obtained from h by raising an index via g.
Finally [go] is the only critical point of E . The Hessian of E
at {go] is given by

(13) DZE[gO](h,k) - <h,k>

h,k e T J(M). That is, the second variation of Dirichlet's energy

(gq]
function is the Weil-Petersson metric.

Suppose we look at the first derivative 1.12 in conformal coordinates

(g)ij - Asij' Then if h 1is horizontal



#Vsz,Vs£> 2

dE =~
2 —(g,s)h = -|<h
5g(8 B = -f .

dxdy

2 2 2 2
l~ 388" .2 ~ 88, 3s ~ ,ds .2
= ) R Gy ¥ G GGy )+ g Gy ) Yoy

1 ~ -
where h = i{h }. Since h11 - -h22 this is equal to

2 2 £ 2

1l = ds” .2 ds” . 2 = ds ds
111G - (g;—) + 2hy 5 (57) (5;—)}dxdy.

Now

2

(Qg_ .1 as£ 2
dy

2 2
5;—) (dx + dy)” = £(z)dz
is a quadratic differential. But

2 2 2 £

Re(¢(2)ez”) = (G - G ax” 2. (g2

ds 2
PGy Gy

£
2 ds ds
] dy”~ + 4 (K) (F) dxdy

If s 1s harmonic Re(s(z)dzz) is a trace free divergence free tensor. In

general the second derivative of E at an arbitrary [g] will not be

intrinsic. However we can ask for the second derivative of the function

g Eg(s(g)) - ﬁ(g). (For g € M, the space of all Riemannian metrics it
still follows from [2], [1l] that Eg has a unique minimum s(g) which
depends differentiably on g)}. This was computed in [9]. Thus we have

-

Theorem 14 For arbitrary k

2 1 £ 2
p“B(g)k - -52 | B() (R, ™,V ") dn
M

where K = (k)# and KT is the trace free parts of K. For h and k

trace free we have



ST B N Rt
LM

i } I ecom® - Vgsz,sz(k))d#g
2 M

where

ab ¢
(3 h-k=gg ackbd

=~ tr(HK)

H - h#, K = k# the (1.1) tensors obtained from h and k by railsing an

index and

wz(k) - Dsz(g)k, the derivative of s(g) 1In the direction k.

The following lemma whose proof can be found in [10] will be of

importance to us..

Lemma 15

For h trace free, D°£(g)(h,h) > 0.



§2 VWell-Peterss Geod d t else ealizaition Proble

Let o(t) be a geodesic on Teichmiller space J(M). We can lift o(t)

be a smooth path o(t) in A . with the property that o' (t) is

1
horizontal for each t.

We know that M . c M4 the space of all metrics which itself is an

1
open subset of the space of all symmetric tensors 32. Thus every second
derivative o¢"(t) can be thought of as an element of 82. Let SgT(a) be

the space of trace free divergence free symmetric two tensors and let

TT ~
H; : 32 - 82 (o)

be the L2-orthogona1 projection.

Then as usual we see that o¢ 1Is a geodesic 1ff H;E"(t) = (.,

We are now ready to prove:

Theorem 17 (Geodesic convexity of E) Let E : (M) + R be Dirichlet's
energy, and o(t) be a geodesic with respect to the Weil-Petersson metric.
Then

2.
9—% (o(t)) > 0
dt

Proof, It clearly suffices to show that

2A
9—% (5(t)) > 0.
dt
But
dZE ~ - - 22
— (o(t)) = DEa(t)a"(t) + D Ea(t)(a',a').

dt



10

By formula (14) and lemma (15) the second term is strictly positive.
By (12), it follows that the first term is equal to

(18) - % <<Re e(z)dzz,{3"<t)}T>>

- - % <<Re €(z)dzz,;"(t)>>

+ % <<Re E(z)dz2,pg>>

g - o(t), p = % trg{;“(t)], [3“(t)}T is the trace free part of {o"(t)},
and E(z)dz2 1s the holomorphic quadratic differentlal assoclated to

a'(t). Since Io" =0,
2 -~
<<Re £(z)dz",o"(t)>> = 0.

Furthermore since Re E(z)dz2 is trace free i1t is pointwise orthogonal to

pg which implies that

<<Re $(z)dz2,pg>> =0
This concludes 17.
We are now ready to prove our main

Theorem (Main), Let % be any finite subgroup of the surface modular
group 9/%0. Then the action of ¥ on J(M) has a fixed point.

Proof Since % acts on ﬂ_l as a group of isometries with respect to the
L2-metric it follows that % acts on J(M) as a group of isometries with

respect to the Well-Petersson metric.



11

% also acts on Dirichlet’s functional in the obvious way, namely if
fey

*E(g) - E(t¥p) - B, (s(£¥)).
f'g

Since the action of %0 leaves E Invariant we may view this action

as an action of a finite subset of 9. Define a new functional

F . 9(M) - R

F(g) = TéT } £E(g)
feu

where [%¥] 1is the order of ¥. ¥ 1is clearly % invariant. Since

E:gm ~ RV s proper it follows that & : J(M) - RY is also proper.

Thus % has a minimum point. The action of ¥ clearly permutes the minima

of %. By the geodesic convexity of E it follows that ¥ 1s geodesically

convex, i.e.

2
€2 (ot > 0.
dt

Thus any critical point of ¥ must be a non-degenerate minimum. Since
Teichmiller space is a cell this implies that there is a unique minimum for

% which must therefore be fixed by ¥.

Q.E.D
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