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1 Introduction

Free vertex operators are defined as expressions of the following type:

( 00 ) (00 )- a-n an
V(/,Z) = exp 'L-zn

exp -, L-z-n
,

1~ 11
n=l n=l

where {an, a_ n : 11. E N} are elements of a Heisenberg algebra with relations [an, am ]

nDn,-m" E C and z is an indeterminate. Also formal expressions like

(1)

are usually considered. We introduce the following notations. Let w = (WI, W2 1 ••• ) be an

infinite sequence of functions all depending on the same set of variables ,1, ZI, ... , Ir, Zr for

some integer 1', i.e. Wi =Wi (,1, ZI, ... ,'1', Zr). Define

We want to study

( 00 ) (00 )- a_ n + an
V(w)=exp ~Wn..;n exp ~Wn..;n .

The two examples above are given by

(3)

(4)

Remark that we denote by V the formal object whereas V is reserved for the operators.

We omit the dependenee of V on a{) and Ti (see [1]) with relations [aa, an] = 0 and

[T...,., an] = Dn,a,T...,., whieh are unimportant from a functional analytic point of view. All
properties we prove here hold even in the ease when these dependeneies are included.

The objects we have introduced up to now could be understood as formal Laurent series

in Zi (or Wi) with coefficients in the Heisenberg algebra. In this paper we want to define

V as an operator aeting in the Hilbert space which is the Fock space F defined as the

irreducible vacuum vector representation of the Heisenberg algebra. Moreover we will show

the following properties:

(i) V(w) defines an operator in F which is at least defined on the finite elements of

:F (and hence densely defined). In seetion 5 prove that in fact D(1f (w)) contains a
much bigger domain.

(H) Any product of vertex operators is weIl defined in the operator sense on the finite
elements of :F.
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2 DEFINITIONS

(iii) V(w) eould be estimated by what is ealled a field or a "<p-Baund":
00

let JV = L: a_nan be the Number operator in F. Then we prove
n=l

II'f(w)fll :::; Cl I! exp (c2 JV)/11 far same eonstants Cl, C2 > 0 and for a11 f E

D(exp (C2N)). <I>-bounds were used in eonstruetive field theory [2] for proving

the self-adjointness of the (Minkowski) fields. In the present eontext they should be

of interest for looking at the Hamiltonian approach to two-dimensional conformal

quantum field theory.

(iv) We give an application of (üi) to screened vertex operators as introduced in [1].

We ean define screened vertex operators on D (ecN ) for some constant C > 0 if the

produets ri/j have positive real part for a11 i < j.

2 Definitions

Let {an, a-n : n E N} U I be the generators of the Heisenberg algebra with eommutation

relations [an, am] = On,-mnI and let F be the unique Hilbert space on which an, n > 0
aets as annihilation and a_ n 1 n > 0 aets as creation operator, the relation a~ = a-n holds

and whieh is generated by the vaeuum vector <I>o. We use the eanonical basis of F whieh

is given by c1lo and the vectors

(6)

where Cl' = (all Cl'2, ... ) is an infinite multiindex where a11 but a finite number of ai's are

zero, a! = rr ni! and 1° = rr iO i
. We set 110'11 = L: iÜi aud Fa = Lin{1>0 : Ilall < oo}. The

operators a±71 are uniquely detenninated by their action on the basis whieh is given by

(7)

where In is the multiindex which is one in the n-th entry and zero otherwise. The domain

of definition of an is given by

(8)

Let (ai ,j) be an infinite matrix, let H be a Hilbert space with basis {ej : i E N}. Then (see

for instance [3])

D(A) = {f EH: }2.:;;,t aiJ < Cj, f> exists f I f aiJ < Cj, f> 1
2 < oo} (9)

)=1 1=1 )=1

and

Af = f (f aiJ < Cj,! » ej for I E D(A) (10)
l=l )=1

defines a linear operator A in H with domain of definition D(A).
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3 Definition of vertex operators in :F

We want to define vertex operators via matrix elements, i.e. we assign to V(w) a set of
matrix elements, which defines a matrix operator in :F. The matrix elements with respect to

the basis {«I>Cl} can be calculated using the following weIl known commutation relations for
V(w) : For any k E N .

We only state the result.

Lemma 1

(11)

with

oomin(Cii,ßd(a')(ß') . ß'= 1 rr l: " ,'j!1O~i-J (wt) i-J
JCi!ß! i=l j=O J J

00

= j~!ß! i[Il fo;,ß. (Wi,wt) =: Vo,ß(W)

(12)

min(n,m)

!n,m(X,y) = ~ (;) (7 )j!Xn-iym-i

The infinite produet above is weil defined since only a finite number of (tj 's and ßi 's are
different from zero and hence only a finite number of faetors are different from one. Remark

that !n,m(x, y) = fm,n(Y, x) and fo,m(x, y) = ynl
,

We denote by V (w) the operator defined by these matrix elements in :F via (9) and (10).
As a first step we prove:

00

Theorem 1 Let L: IWi 1
2 < 00, Then we have:

i=l

:Fo C D(V(w)), hence, V(w) is a densely dejined operator.

To prove this, we make use of the following helpful identity, that encodes the properties of
products of vertex operators (which should be clearer later on).

Lemma 2 For all x, Y, Z, 10 E C, i,j E No thefollowing identity holds (in the sense that both

sides dejine the same entire function oJJour variables).

00

L ~! f;,k(x, y)fkJ( Z, w) = f;,j(x + Z, Y + w)ezY,
k=O

A proof of Lemma 2 will be given in the appendix.

Proof of Theorem 1: We have to show cI>ß E D(V(w)) for a11 IIßII < oo, Le.

L IVo ,ß(w)1 2 < 00 for all IIßI! < 00.

Q:lloll<oo

(13)
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4 PRODUCTS OF VERTEX OPERATORS

Now:

00

L IVo ,ß(w)1 2 = tr L ~ rr lfoi,ß; (W;,wt) 1
2

o 0:11011<00 i=1
00 00

~ k rr L: ~fß;,Oi (lwtl, IWil)foißi (IWil, Iwtl),
;=1 Clj=Ü

(14)

(15)

where we have used Ifn,m(x, y)1 ~ fn,m(lxl, ]yl) and the above mentioned symmetry of f·
The applieation of Lemma 2 gives

00

L: IVo ,ß(w)1 2 ~ mrr (fßi,ßi (lw;] + IwtL IWil + lwtl) exp (IW iI 2
))

Cl i=1

= -k i.gl (Jß"ß, (Iwil + Iwn Iwd + Iwtl)) exp (~lwd2) < 00.

In the last step onee again we have used the fact that for any ß with IIßII < 00 0n!Y finitely
many factors in the product are different from one, since fo,o(x, y) = 1. q.e.d.

The condition of Theorem 1 is fulfi11ed in our examples (5) if IZkl < 1 for a11 1 ~ k ~ T.

4 Products of vertex operators

The next question we ask ourself is about products of vertex operators, since in QFf we want

to take products of the field operators to build the n-point functions. We will show that any
product of vertex operators is wen defined on Fo.

On the formal side we know that for two sequences w1 = (wi, w~, ...) and w2 = (wr, wi, ... )

(16)

00

by the CBH-formula. Usua11y one claims that L: wJ+W[ < 00 whieh gives the time ordering
;=1

condition for produets of fields (but this is unnecessary in order to treat both sides as formal
Laurent series). Surely we also require this for giving both sides of (16) adefinite meaning.

We prove that (16) holds for the comesponding operators in the strong sense on Fa.

00 00

Theorem 2 Let L: Iw!1 2 < 00 for I = 1,2 and L: wl+W[ be convergent. Then the following
;=1 ;=1

holds:

(17)

alld

(18)



(19)
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4 PRODUCTS OF VERTEX OPERATORS

Proof: First we show that the matrix product of the matrices va,ß (w1 ) and vo,ß (w2) exists

if 2: wJ+wr is convergent. If we interchange the product and the infinite number of infinite

sums we can calculate

00 ( )= 1 1 w~ w~+ w~ w~+~ßt 2: n ö;rfo i ,5i( r' t )fO;,ßi( t' I )

Vo:p: 5:11611<00 ;==1

00(00 )= _1_ 1 w~ w~+ w~ w~+vo!ß! ,ll L Kr 10 i ,oi ( l' 1 ) 15;,ß; ( J' 1 )
1==1 5j ==0

= 1 llOO (I . c. (w~ + W~ w~+ + w?+)) CXp (~ w~+w~)
~ßl O"V, I l' r 1 L.J r 1
V o:p: ;=1 i=1

= vo,ß (w1 + w2
) exp (f w;+wr) 1

1;:;::1

where we have used Lemma 2 and the convergence of the sumo

Why can we interchange the summations and the product? Of course there exists a number

io = io(a, ß) such that for any -i ~ io we have fo.,6; (w}, wJ+) fO;,ßi (wr, w;+) = (w;+wT) Oi =
..Xfi. Because for a finite number of factofS we can interchange, it remains to show

(20)

00 00 00
Since L: ...Y; < 00 we have 11 .JYj = 0 and hence n --,Yfi /o;! = 0 for any multiindex 8

;=1 ;=1 ;=1
with 11811 = 00. Therefore we can forget about the restrietion 11811 < 00 on the l.h.s. of
(20). Hence

(21)

Now it is easy to see that

(22)

The proof is complere by the following observation: eq. (19) teIls us that we can multiply

the infinite matrices and get as result a matrix operator which is also defined on Fo, since

the matrix elements on the eh.s. of (19) and hence the r.h.s. of (18) fulfill the condition of
Theorem 1 too. By definition of a matrix operator tbis implies that also the l.h.s. of (18) is

weIl defined on :Fa (tbis could easily be proved using (9) and (10», wbich immediately gives

our assertions. q.e.d.

Theorem 2 shows, that any product of radial ordered vertex operators is weil defined on :Fo
as a product of operators in :F. Moreover, Theorem 2 gives information about the mapping

properties of the vertex operators if we consider tripie products of vertices which via Theorem

2 are weH defined.
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5 cI>-Bounds for vertex operators
00

The Hamilton operator in Fock space is given by the selfadjoint operator f\r = L: a-ka~~ on
k=l

the domain of definition D(N) = { iJi = ~ Co <l> 0 : ~ 11 er 111 Co 1
2 < 00 }. We want to prove

IIV(w)wll ~ clllec2N wll for some constants CI, C2 > O. To do so, we have to impose a further
condition on w :

IWi I ~ !(R i for some constants !( > 0,°< R < 1 and

Iwtl ~ R:il.i for some constants !(, R > O.

Surely (5) fulfills this condition if jZi I < 1, i.e. there is 00 additional cooditioo for the

standard vertex operators.

Theorem 3 Let w obey (23). Then there exists C E "+ such that

B(w) = V(w)cN (24)

is a Hilbert - Schmidt - operator. Hence V(w) can be defined on D(c-N ) using the equality

1!(w) = B(w)c- N (25)

whicll is valid apriori on Fo.

Theorem 3 gives trivially:

Corollary 1 Let w, c be as above. Then with Cl = IIB(w)l!, C2 = -ln c :

11 V (w) w11 ::; Cl I1 e02 N'lJ 1I for all 'lJ E D ( eCJ N) (26)

Theorem 3 has also an application to screened vertex operators. In [I] they were introduced

as follows:

Let Wi = w;(" z, ,+, Zl, ... ,l'+, Zrll-' Zr+l,·· . ,1-, Z,'+r l ) for a11 i where l± is giveo e.g.
by the Kac determinant formula. Let Z be fixed and denote by Cz the path, which starts in
z, encircles zero onee and ends in z. Then a screened vertex operators is defined by

Vr,r{Y, z) = J lI(w)dzl /\ ... /\ dzr+r'. (27)

c;+r'

We can give a meaning to (27) if Re (,il'j) ;::: 0 and jzj < 1. By Theorem 3 there exists°< c < lzl with B(w) defined by (24) is Hilbert - Schmidt. The constant c could be

chosen independent from (Zl, ... 1 zr+r') E c;+r'. Moreover, the Hilbert - Schmidt norm

of B(w) is unifonnly bounded if (Zl" .. zr+r') vary in C;+J". Hence we have a uniformly

bounded holomorphic function B(w) : c~+rl -7 B2(F) (with B2(F) the (Hilbert -) space

of Hilbert - Schmidt operators) which integrated gives again a Hilbert - Schmidt operator.

Consequently we have:

Corollary 2 Let w be as above and Izi < 1. Then Illere exists C > 0 such tllat Vr,r(" z) can
be dejined on D (c- N ) by

17r,,··(w) = JB(W)dzl /\ ... /\ dzr+,·, c-N . (28)

c;+rl
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5 <I>-BOUNDS FOR VERTEX OPERATORS

Proof of Theorem 3: we have to show

L IVOIß(W)cIIßII12 < 00 for an admissible c.
a,ß

(29)

(30)

First we evaluate the sum over Cl'. This is already done in the proof of Theorem 1 and with
a trivial modification we get (see (15))

L: IVa,ß(w)cIIßII12 = c211ßII L: jVo ,ß(w)12

Cl Cl

211ßII 00 (00 ):::; T iIIl (fßi,ßi (Iwd + Iwtl, lwd + IwtD) exp i~ Iwd2

= cZIIßII .TI k t (~i) Zj! (Iwd + Iw; I) Z(ßi-j) exp (f: IWi 1
2 )

l=1 }=o J 1=1

~ cZllßl1 igl j~O (ji ) (IWil + Iw(1) Z(ß;-j) cxp CE Iwdz)

= cZIIßII igl (1+ (Jwd + Iw;l)zt exp C~ lwdz)

Note that we have used that the condition (23) in Theorem 3 is stronger than the requirements

for Theorem 1. Tbe constant c is now fixed by the condition of convergence of the ßi-sums.
We have to sum

LCZiß;(1+ (Jwd + Iwt)zt ~ LJ!ißi (1+ (KRi +Rk)zt, (31)

ßi ßi

which is summable for all i if

Ic2 (1 + (](R + Kil)2) I< 1 or Icl2 < 1 , (32)
1 + (](R + ]{..R) 2

We choose a c which fulfills (32) aod set 4'"'( i = c2i ( 1 + (](Ri + k RJ) 2) and n =

cxp (~ IwdZ). We obtain

l: !va,ß(w)cllßllj2
a,ß

00 (00 ,( 2) ßi ) ( 00 )~.!1 ß'E.o J!'ßi 1 + (Iwd + Iwt I) cxp i~ IWi 12

00(00 ß) 00:::; n ,TI L: "-Yi i = n ,TI I l Xi < 00
1=1 ßi=O l=1

(33)

q.e.d.
00

since L: Xi < 00.
i=1

Remarks:

(i) If wi = -J;zi and Izl < 1, Theorem 3 shows that B(w) is Hilbert - Schmidt if

1

c< [1 + 1J'12(lzI2 + !z!-2 + 2)]-"],
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6 APPENDIX

A similar expression could be obtained in the second case of (5).

(H) Another question which naturally arises is if V (w) is a closed operator. Equiva

lently one ask if \/(wr is densely defined. Since formally V(w)'" = \1 (w+) we see,

that the problem is to define V (w) for 1z 1 > 1. In this case the basis 1> Cl: and hence :Fo
00

is not in the domain of definition of \/(w) because of the divergence of L Iwt 1
2 . This

. i=O
problem could be interesting for perturbation theory of CFf. A minimal requirement

for any kind of perturbation is it's closability.

6 Appendix

Here we give a proof of Lemma 2.

We expand both sides of the identity (13) in apower series in four variable in (0,0,0,0),
Le. we write (13) in the form

d f th (n.ln) d _(n TU) "dan PfOO at c' an c' COmCl e.a,ß",6 a,ß",6

(i) The l.h.s. of (13):

00

L -b. fn,k(X, Y)fk,m(Z, 7.0)
k=O

= 00 1 m.in(71,k}min(k
,
m} (n) (k)<I(k) (1n) "'L kY L:: L . "1.. "J.X

k=O ;=0 j=O 1 1 J J
xxn-iyk-iZk-jwm - j

with

Cn ,ß,-y,5 = (n-~+ß)! ( n : a ) ( n : : : ß) (n - a)! ( n :,~~ß) x

x (mn~ 8) (m - 8)!8-y,n-m-n+ß+5 (35)

- (:) ( ~' ) ßi n~',~~~~~+ r8-y,n-m-n+ß+5-

(il) The r.h.s. of (13):

fn,m(x + z, Y + w)ezy =
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A tedious calculation (eliminating ,) gives

_(n,m) _ -? (m+I-ß-fJ)! ( n ) ( rn )
c ß ~ - L...J I' X

0, ",U 1=0 . 111- +1- ß - 8 'ln + I - ß - 8

(
n - m - 1+ ß+ 0 ) ( -1 + ß+ 8 )

x n - rn -1- a + ß+ 8 -1 + ß D"ri-m-o+ß+ö

= ~ ( :) lt (~) (n - In _1~=:+ ß+ 8 ) 81,,,-m-a+ß+b

_ m! (11.) ( . n - a ) 8
- t3Tb1 a n - 1n - I - n + ß+ 8 "n-m-o+ß+ö

(n,m)
= CO,ß",Ö'

(37)

Since both sides are convergent power series for any X, y, Z, 7.V E C, rt , 1n E No the

equality of the functions follows from the equality of the coefficients.
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