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Abstract. In the present investigation we link noncommutative geometry over non-
commutative tori with Gabor analysis, where the �rst has its roots in operator alge-
bras and the second in time-frequency analysis. We are therefore in the position to
invoke modern methods of operator algebras, e.g. topological stable rank of Banach
algebras, to exploit the deeper properties of Gabor frames. Furthermore, we are able
to extend results due to Connes and Rie�el on projective modules over noncommu-
tative tori to Banach algebras, which arise in a natural manner in Gabor analysis.
The main goal of this investigation is twofold: (i) an interpretation of projective
modules over noncommutative tori in terms of Gabor analysis and (ii) to show that
the Morita-Rie�el equivalence between noncommutative tori is the natural framework
for the duality theory of Gabor frames. More concretely, we interpret generators of
projective modules over noncommutative tori as the atoms of multi-window Gabor
frames for modulation spaces. Moreover, we show that this implies the existence
of good multi-window Gabor frames for modulation spaces with atoms in e.g. Fe-
ichtinger's algebra or in Schwartz space. A result that has been out of reach with
traditional methods of Gabor analysis.

1. Introduction

We start with a short review of the �rst theme of our study: projective modules
over C�-algebras and the relevance of Rie�el's work on Morita equivalence of operator
algebras.
Rie�el introduced (strong) Morita equivalence for C�-algebras in [42, 43], which we

call Rie�el{Morita equivalence. The seminal work of Rie�el was motivated by his for-
mulation of Mackey's imprimitivity theorem in terms of C�-algebras. Rie�el{Morita
equivalence allows a classi�cation of C�-algebras which is weaker than a classi�cation up
to isomorphisms. The classi�cation of unital C�-algebras with respect to Rie�el{Morita
equivalence requires the construction of projective modules over C�-algebras. During
the 1980's, the research of many operator algebraists concerned projective modules
and K-theory for C*-algebras. Another reason for the relevance of projective modules
has its origins in Connes' theory of noncommutative geometry [6]. In noncommutative
geometry projective modules over noncommutative C�-algebras appear as noncommu-
tative analogue of vector bundles over manifolds, and projective modules over smooth
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subalgebras of a C�-algebra are viewed as noncommutative analogue of smooth vec-
tor bundles over manifolds,[5]. Recall that Connes calls a subalgebra of a C�-algebra
smooth if it is stable under the holomorphic function calculus.
As a demonstration of the power of noncommutative geometry Connes has con-

structed projective modules over smooth noncommutative tori in [4]. Rie�el extended
Connes' projective modules over noncommutative tori to higher-dimensional noncom-
mutative tori in [45]. After these groundbreaking results of Connes and Rie�el, pro-
jective modules over noncommutative tori found many applications in mathematics
and physics, e.g. Bellissard's interpretation of the integer quantum Hall e�ect [3], the
work of Marcolli and Mathai on the fractional quantum Hall e�ect, or the relevance of
Rie�el{Morita equivalence of operator algebras in mathematical physics [32].
The classi�cation of noncommutative tori up to Rie�el-Morita equivalence relies on

the construction of projective modules over noncommutative tori. Rie�el found a gen-
eral method to construct such in [45]. In [34, 36] we have shown that Rie�el's construc-
tion of projective modules over noncommutative tori [45] has a natural formulation in
terms of Gabor analysis and we were able to extend his construction to the setting
of twisted group algebras. The present work is a continuation of this line of research.
We especially want to stress that Connes' theorem [5] on the correspondence between
projective modules over a C�-algebra and projective modules over smooth subalgebras
of a C�-algebra for noncommutative tori appears naturally in the research about good
window classes in Gabor analysis.
Before we are in the position to describe the main theorems of our investigation we

want to give a brief exposition of Gabor analysis, the other theme of our investigation.
Gabor analysis arose out of Gabor's seminal work in [24] on the foundation of infor-
mation theory. After the groundbreaking work of Daubechies, Grossmann and Meyer,
frames for Hilbert spaces have become central objects in signal analysis [9], especially
wavelets and Gabor frames. In the last years various other classes of frames have been
introduced by workers in signal analysis, e.g. curvelets, ridgelets and shearlets. The
relevance of Hilbert C�-modules for signal analysis was pointed out out by Packer and
Rie�el [38, 39] and Woods in [49] for wavelets.
A Gabor system G(g;�) = f�(�)g : � 2 �g consists of a Gabor atom g 2 L2(Rd) and

a lattice � in Rd� bRd, where �(�) denotes the time-frequency shift �(�) = e2�i�! �tf(t�
�x) for a point � = (�x; �!) in �. If there exist �nite constants A;B > 0 such that

(1) Akfk22 �
X
�2�

jhf; �(�)gij2 � Bkfk22

holds for all f 2 L2(Rd), then G(g;�) is called a Gabor frame for L2(Rd). There is
a natural operator associated with a Gabor system G(g;�), namely the Gabor frame
operator Sg;� de�ned as follows:

(2) Sg;�f =
X
�2�

hf; �(�)gi�(�)g; for f 2 L2(Rd):

The Gabor frame operator Sg;� is a self-adjoint operator on L2(Rd). If G(g;�) is a
Gabor frame for L2(Rd), then an element f 2 L2(Rd) has a decomposition with respect
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to the Gabor system G(g;�). More precisely,

f =
X
�2�

hf; �(�)(Sg;�)
�1gi�(�)g

=
X
�2�

hf; �(�)gi�(�)(Sg;�)
�1g

=
X
�2�

hf; �(�)(Sg;�)
�1=2gi�(�)(Sg;�)

�1=2g

for all f 2 L2(Rd). We call g0 := (Sg;�)
�1g the canonical dual Gabor atom and

~g := (Sg;�)
�1=2g the canonical tight Gabor atom of a Gabor frame G(g;�). There-

fore the invertibility of the Gabor frame operator is essential for the decomposition
of a function in terms of Gabor frames. Janssen proved that Gabor frames G(g;�)
for L2(Rd) with g 2 S (Rd) the canonical dual and tight Gabor atoms g0; ~g are in
S (Rd). In other words he demonstrated that Gabor frames with good Gabor atoms
have dual atoms of the same quality, i.e. all ingredients of the reconstruction formulas
are elements of S (Rd). The key ingredient in the proof of this deep theorem is the
so-called Janssen representation of the Gabor frame operator [31], which relies on the
fact that a Gabor frame operator Sg;� commutes with time-frequency shifts �(�) for �
in �, i.e. �(�)Sg;� = Sg;��(�), for all � 2 �. These commutation relations for Gabor
frame operators are the very reason for the rich structure of Gabor systems and the
di�erences between Gabor frames and wavelets, see e.g. [26] for further information on
this topic.
The Janssen representation of a Gabor frame operator allows one to express the

Gabor frame operator Sg;� with respect to the adjoint lattice ��. The adjoint lattice
�� consists of all time-frequency shifts of R2d that commute with all time-frequency
shifts of �, see Section 3 for an extensive discussion. Now, the Janssen representation
of the Gabor frame operator Sg;� of G(g;�) with g 2 S (Rd) is the following

(3) Sg;�f = vol(�)�1
X
��2��

hg; �(��)gi�(��)f

where vol(�) denotes the volume of a fundamental domain of �. The Janssen repre-
sentation links the original Gabor system G(g;�) with a dual system with respect to
the adjoint lattice in such a way that the original Gabor frame operator becomes a
superposition of time-frequency shifts over the adjoint lattice �� acting on the function
f . Therefore Janssen introduced the following Banach algebras [31] for s � 0, the
so-called noncommutative Wiener algebras:

(4) A1
s(�; c) = f

X
�2�

a(�)�(�) :
X
�2�

ja(�)j(1 + j�j2)s=2 <1g;

and the smooth noncommutative torus

(5) A1
s (�; c) =

\
s�0

A1
s(�; c);
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where c refers to the cocycle arising in the composition of time-frequency shifts, see
Section 2 for the explicit expression. Actually Janssen's original approach just worked
for lattices � = �Zd��Zd with �� a rational number. Gr�ochenig and Leinert were able
to settle the general case in [28] by interpreting the result of Janssen as the spectral
invariance of A1

s (�; c) in the noncommutative torus C�(�; c), the twisted group C�-
algebra of �. Moreover Gr�ochenig and Leinert were able to show that A1

s(�; c) is a
spectral invariant subalgebra of C�(�; c). Note that the spectral invariance of a Banach
algebra in a C�-algebra implies its stability under the holomorphic function calculus.
Therefore A1

s(�; c) and A1
s (�; c) are smooth subalgebras of C�(�; c) in the sense of

Connes.
Later we observed in [35] that Janssen's result about the spectral invariance of

A1
s (�Z

d � �Zd; c) in C�(�; c) for irrational �� had been proved by Connes in his
seminal work on noncommutative geometry [4]. Connes called A1

s (�Z
d � �Zd; c) a

smooth noncommutative torus and he considered it the noncommutative analogue of
smooth functions on the torus.
Feichtinger and Gr�ochenig demonstrated in [16, 17] that Gabor frames G(g;�) with

atoms g in Feichtinger's algebraM1(Rd) or in Schwartz's space of test functions S (Rd)
are Banach frames for the class of modulation spaces. In other words M1

s (R
d) and

S (Rd) are good classes of Gabor atoms. The crucial tool for these results is the spectral
invariance of the noncommutative Wiener algebras and of the smooth noncommutative
torus. In a more general setting Gr�ochenig introduced in [27, 22] the localization theory
for families of Banach spaces, see also [2] for an approach to localization theory not
based on the spectral invariance of Banach algebras.
The good classes of Gabor atoms M1

s (R
d) and S (Rd) turned out to be the natural

building blocks in the construction of projective modules over the noncommutative
torus C�(�; c). More precisely, in [45] Rie�el demonstrated that S (Rd) becomes an
inner product A1

s (�; c)-module for the left action of A1
s (�; c) on Ss(R

d) de�ned by

��a =
hX
�2�

a(�)�(�)
i
� g; for a =

�
a(�)

�
2 S (�); g 2 S (Rd);

and the A1
s (�; c)-valued inner product

�hf; gi =
X
�2�

hf; �(�)gi�(�) for f; g 2 S (Rd):

Furthermore, for f 2 S (Rd) the norm �kfk = k�hf; fik
1=2
op yields a left Hilbert

C�(�; c)-module. In [34, 36] we have shown that Rie�el' construction holds for the
modulation spaces M1

s (R
d) and the noncommutative Wiener algebras A1

s(�; c) for all
s � 0.
Projective modules over C�-algebra have a natural description in terms of module

frames, which was �rst noted by Rie�el for �nitely generated projective modules and
in the general case by Frank and Larson in [23]. In [45] Rie�el formulated Connes'
theorem about projective modules over smooth noncommutative tori in terms of module
frames with elements in S (Rd). One of our main theorems is the interpretation of
Rie�el's result about module frames for projective modules over noncommutative tori
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as multi-window Gabor frames for L2(Rd) with Gabor atoms in M1
s (R

d) and S (Rd).
Consequently the classi�cation of Rie�el-Morita equivalence for noncommutative tori
has as most important consequence the existence of multi-window Gabor frames with
atoms in M1

s (R
d) and S (Rd).

In [29] a general class of noncommutative Wiener algebras A1
v(�; c) was studied and

the main theorem about A1
v(�; c) is that A

1
v(�; c) is spectrally invariant in C�(�; c) if

and only if v is a GRS-weight, see Section 2. The main reason for these investigations
of Gr�ochenig was to classify the class of good Gabor atoms. In the present investiga-
tion we want to stress that this provides the natural framework for the construction of
projective modules over the subalgebras A1

v(�; c) and the generalized smooth nonco-
mutative tori A1

v (�; c) =
T

s�0A
1
vs(�; c) of noncommutative tori for v a GRS-weight.

If v is a weight of polynomial growth, we recover the classical theorems of Connes and
Rie�el as special case of our main results.
The paper is organized as follows: in Section 2 we discuss the realization of noncom-

mutative tori as the twisted group C�-algebra C�(�; c) of a lattice � and its subalgbras:
the noncommutative Wiener algebras A1

v(�; c) and the generalized smooth noncommu-
tative tori A1

v (�; c). These results are strongly inuenced by the work of Gr�ochenig
and Leinert on the spectral invariance of noncommutative Wiener algebras A1

v(�; c) in
C�(�; c) in [28, 29]. We determine the topological stable rank of these subalgebras of
C�(�; c), which is based on the seminal work of Rie�el in [44] and the results of Badea
on the topological stable rank of spectrally invariant algebras in [1]. Furthermore, we
recall some basic facts about time-frequency analysis and weights on the time-frequency
plane. In Section 3 we construct projective modules over noncommutative Wiener al-
gebras A1

v(�; c) and smooth noncommutative tori A1
v (�; c), and we use modulation

spaces and projective limits of weighted modulation spaces as basic building blocks for
the equivalence bimodules over these subalgebras of C�(�; c). The main result is clas-
si�cation of A1

v(�; c) and A
1
v (�; c) up to Rie�el-Morita equivalence. In Section 4 we

point out that projective modules over A1
v(�; c) and A

1
v (�; c) have a natural descrip-

tion in terms of multi-window Gabor frames for L2(Rd). Consequently Connes' work
about projective modules over smooth subalgebras yields in particular the existence of
multi-window Gabor frames with atoms in Feichtinger's algebra or Schwartz space for
modulation spaces, which is an interesting consequence of our investigations with great
potential for applications in Gabor analysis. Furthermore we invoke a result of Putnam
on the topological stable rank of irrational rotation algebras [40] to demonstrate that
the set of Gabor frames for product lattices with irrational volumes and good windows
is dense in C�(��; c).

2. Noncommutative Wiener algebras and noncommutative tori

The principal objects of our interest are twisted group algebras for lattices in the
time-frequency plane and its enveloping C�-algebras, the twisted group C�-algebras
aka noncommutative tori. Let � be a lattice in R2d and c a continuous 2-cocycle with
values in T. Then the twisted group algebra `1(�; c) is `1(�) with twisted convolution \
as multiplication and � as involution. More precisely, let a = (a(�))� and b = (b(�))�
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be in `1(�). Then the twisted convolution of a and b is de�ned by

(6) a\b(�) =
X
�2�

a(�)b(�� �)c(�; �� �) for �; � 2 �;

and involution a� =
�
a�(�)

�
of a given by

(7) a�(�) = c(�; �)a(��) for � 2 �:

More generally, we want to deal with twisted weighted group algebras `1v(�; c) for a
suitable weight. A weight v on R

2d is a non-negative function, which satis�es the
following properties

(1) v is submultiplicative, i.e. v(x+ y; ! + �) � v(x; !)v(y; �) for all (x; !); (y; �) 2
R
2d.

(2) v(x; !) � 1 and v(�x;�!) = v(x; !) for all (x; !) 2 R2d.

For the rest of the paper we only consider weights v satisfying the conditions (1) and
(2), because under these conditions `1v(�) = faj

P
ja(�)jv(�) =: kak`1v < 1g has nice

properties.

Lemma 2.1. Let v be a weight satisfying the properties (1) and (2). Then (`1v(�); c)
is a Banach algebra with continuous involution.

Proof. Let a and b in `1v(�). Then by the submultiplicativity of v we have that:

ka\bk`1v =
X
�

j
X
�

a(�)b(�� �)c(�; �� �)jv(�)

=
X
�

X
�

ja(�)jv(�)jb(�� �)jv(�� �) = kak`1vkbk`1v :

Consequently `1v(�; c) is a Banach algebra with respect to twisted convolution. Note
that `1v(�; c) has a continuous involution if and only if ka�k`1v � Ckak`1v for C > 0.
Furthermore, we have that ka��k`1v � Cka�k`1v � C2kak`1v , but ka

��k`1v = kak`1v implies
C = 1 and v(��) = v(�). This completes our proof. �

We refer the interested reader to the survey article [29] of Gr�ochenig for a thorough
treatment of weights in time-frequency analysis.
Now, we want to represent `1v(�; c) as superposition of time-frequency shifts on

L2(Rd). For (x; !) 2 R2d we de�ne the time-frequency shift �(x; !)f(t) of f by

�(x; !)f(t) = M!Txf(t);

where Txf(t) is the translation by x 2 Rd and M!f(t) = e2�it�!f(t) is the modulation
by ! 2 Rd.
Observe, that (x; !) 7! �(x; !) is a projective representation of R2d on L2(Rd). The

main reason is the following commutation relation between translation and modulation
operators:

(8) M!Tx = e2�ix!TxM! for (x; !) 2 R2d:
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The commutation relation (8) yields a composition law for time-frequency shifts �(x; !)
and �(y; �):

�(x; !)�(y; �) = c
�
(x; !); (y; �)

�
c
�
(y; �); (x; !)

�
�(y; �)�(x; !)(9)

= cs
�
(x; !); (y; �)

�
�(y; �)�(x; !);(10)

where c denotes the continuous 2-cocycle c on R2d de�ned by c
�
(x; !); (y; �)

�
= e2�iy�!

for (x; !); (y; �) 2 R2d and cs is an anti-symmetric bicharacter or symplectic bicharacter
on R2d. More explicitly, cs is given by

(11) cs
�
(x; !); (y; �)

�
= e2�i(y�!�x��) = e2�i


�
(x;!);(y;�)

�
;

where 

�
(x; !); (y; �)

�
= y � ! � x � � is the standard symplectic form on R2d.

For a lattice � in Rd�bRd the mapping of � 7! �(�) is a projective representation of �
on `2(�). Now, a projective representations of a lattice � in R2d gives a non-degenerate
involutive representations of `1v(�; c) by

��(a) :=
X
�2�

a(�)�(�) for a = (a(�)) 2 `1v(�):

In other words, ��(a\b) = ��(a)��(b) and ��(a
�) = ��(a)

�. Moreover, this involutive
representation of `1v(�; c) is faithful, i.e. ��(a) = 0 implies a = 0. We refer the reader
to [45] for a proof of the last assertion, which relies on deep results about operator
algebras. In [30] we present an elementary argument for this important fact, which is
based on the covariance relation for time-frequency shifts. We denote the image of the
map a 7! ��(a) by A

1
v(�; c). More explicitly,

A1
v(�; c) = fA 2 B(L2(Rd)) : A =

X
�

a(�)�(�); kak`1v <1g

is an involutive Banach algebra with respect to the norm kAkA1
v(�) =

P
� ja(�)jv(�).

We call A1
v(�; c) the noncommutative Wiener algebra because it is the noncommuta-

tive analogue of Wiener's algebra of Fourier series with absolutely convergent Fourier
coe�cients.
The involutive Banach algebra `1v(�; c) is not a C

�-algebra. There exists a canonical
construction, which associates to an involutive Banach algebra A a C�-algebra C�(A),
the universal enveloping C�-algebra of A. If a 2 `1v(�; c), then one de�nes a C�-algebra
norm kakC�(�;c) as the supremum over the norms of all involutive representations of
`1v(�; c) and the twisted group C�-algebra C�(�; c) as the completion of `1v(�; c) by
k:kC�(�;c). In the literature C�(�; c) is also known as noncommutative torus or quantum
torus. If we represent C�(�; c) as a subalgebra of bounded operators on L2(Rd), then
A1

v(�; c) is a dense subalgebra of C�(�; c).
Now we use the noncommutative Wiener algebras A1

v(�; c) as building blocks for a
class of subalgebras of A1

v (�; c) that are noncommutative analogues of smooth func-
tions on a compact manifold. More concretely, we want to deal with smooth noncommu-
tative tori with respect to a general submultiplicative weight. If v is a submultiplicative
weight, then we call A1

v (�; c) =
T

s�0A
1
vs(�; c) a generalized smooth noncommutative
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torus. The subalgebra A1
v (�; c) of C

�(�; c) is a complete locally convex algebra whose
topology is de�ned by a family of submultiplicative seminorms fk:kA1

vs
js � 0g with

kAkA1
vs
=
X
�2�

ja(�)jvs(�) for A 2 A1
v (�; c):

In the literature a complete locally convex algebra A equipped with a family of submul-
tiplicative seminorms is called a locally convex m-algebra or m-algebra. It is well-known
that m-algebras are precisely the projective limits of Banach algebras. An important
class of m-algebras are Frechet algebras with submultiplicative seminorms.
By construction the properties of A1

v (�; c) are consequences of the structure of
A1

vs(�; c), e.g. the spectral invariance in C�(�; c).
Recall that a unital Banach algebra A is spectrally invariant in a unital Banach

algebra B with common unit, if for A 2 A with A�1 2 B implies A�1 2 A. The
spectral invariance of A1

v(�; c) in C�(�; c) was investigated by Gr�ochenig and Leinert
in [28]. Their main result shows that this problem only depends on properties of the
weight v, see [29] for the following formulation:

Theorem 2.2 (Gr�ochenig-Leinert). Let � be a lattice in R2d. Then the noncommu-
tative Wiener algebra A1

v(�; c) is spectrally invariant in C�(�; c) if and only if v is a
GRS-weight, i.e. lim v(n�)1=n = 1 for all � 2 �.

Corollary 2.3. Let � be a lattice in R
2d. Then the smooth noncommutative torus

A1
v (�; c) is spectrally invariant in C�(�; c) if and only if v is a GRS-weight.

Proof. Let A = (As) be an operator in A1
v

�
�; c) with As 2 A1

vs

�
�; c). Then A is

invertible in A1
v

�
�; c) if and only if As is invertible in A

1
vs

�
�; c), which is a special case

of the well-known theorem due to Michael in [37] for m-convex algebras. Consequently,
the spectral invariance ofA1

v

�
�; c) follows from the spectral invariance ofA1

vs

�
�; c). �

Remark, that a submultiplicative weight grows at most exponentially and that a
submultiplicative weight satisfying a GRS-condition grows at most sub-exponentially.
In other words the spectral invariance of A1

v(�; c) and A
1
v (�; c) in C�(�; c) forces v to

be sub-exponential.
The last theorem has various applications in Gabor analysis, see [28, 20], most

notably that the Gabor frame operator has the same spectrum on all modulation
spaces for good Gabor atoms and that the canonical dual and tight Gabor window
for good Gabor systems have the same quality as the Gabor atom. These results are
based on two observations about spectrally invariant Banach algebras and m-convex
algebras A in C�(�; c): (1) The spectrum �A(A) = �C�(�;c)(A) for A 2 A, where
�A(A) = fz 2 C : (z�A)�1 does not exist in Ag is the spectrum of A 2 A. (2) If A is
spectrally invariant in C�(�; c), then A is stable under holomorphic function calculus
of C�(�; c).
Now, we want explore the consequences of Gr�ochenig-Leinert's Theorem 2.2 for an

understanding of the deeper properties of A1
v(�; c) and A

1
v (�; c), e.g. its topological

stable rank. These results will allow us to draw some important conclusions about the
deeper structure of Gabor frames in Section 4.
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In [44] the topological stable rank of a Banach algebra was introduced as a non-
commutative analogue of the notion of covering dimension of a compact space. In the
remaining part of this section we derive some upper bounds for the topological stable
rank of the noncommutative Wiener algebras and smooth noncommutative tori.
The left(right) topological stable rank of a unital topological algebra A, denoted by

ltsr(A)
�
rtsr(A)

�
, is the smallest number n such that the set of n-tuples of elements

of A, which generate A as a left(right) ideal is dense in An. We denote the set of
n-tuples of elements of A which generate A as a left(right) ideal by Lgn(A)

�
Rgn(A)

�
.

If ltsr(A) = rtsr(A), then we call it the topological stable rank of A, and we denote it
by tsr(A).

Proposition 2.4. Let � be a lattice in R2d and let v be a GRS-weight. Then

tsr(A1
v

�
�; c)

�
= tsr(A1

v

�
�; c)

�
= tsr

�
C�(�; c)

�
:

Furthermore, tsr(A1
v

�
�; c)

�
= tsr(A1

v

�
�; c)

�
� 2d+ 1.

Proof. Recall that our assumptions on v, i.e. v(��) = v(�) for all � 2 �, implies
that A1

v(�; c) has a continuous involution. If A is a unital Banach algebra or m-convex
algebra with a continuous involution, then Rie�el proved in [44] that ltsr(A) = rtsr(A).
Now, we invoke a result of Badea that tsr(A) = tsr(B) if A is spectrally invariant in B,
[1]. Since A1

v(�) is spectrally invariant in C
�(�; c) if v satis�es the GRS-condition, [29].

Finally, the upper bound for the topological stable rank of C�(�; c) is due to Rie�el,
see [44, 45]. This completes the proof. �

A well-known fact about topological stable rank is that for topological algebra A
with topological stable rank one the invertible elements are dense in A. By the pre-
ceding theorem tsr(C�

�
�; c)

�
= 1 implies tsr(A1

v

�
�; c)

�
= tsr(A1

v

�
�; c)

�
. It is quite a

challenge to determine the topological stable rank of a speci�c C�-algebra. In the case
of noncommutative tori Putnam has shown that the irrational noncommutative 2-torus
has topological stable rank one.

Theorem 2.5. Let � = aZd� bZd with ab an irrational number. If v is a GRS-weight,
then tsr(A1

v

�
�; c)

�
= tsr

�
A1

v(�)
�
= 1.

Proof. The condition (i) is equivalent to the spectral invariance of A1
v(�; c) in C�(�; c)

and therefore to tsr (A1
v

�
�; c)

�
= tsr

�
A1

v(�; c)
�
= tsr

�
C�(�; c)

�
= 1. In [40] Putnam

has proved that tsr C�(�; c) = 1 for � = aZd � bZd with ab an irrational number, that
completes the argument. �

In Section 3 our main theorems deal with the construction of smooth projective
modules over A1

v(�; c) and A
1
v (�; c) in the sense of Connes, [5]. In other words, we

have to construct projections in the algebraMn

�
A1

v(�; c)
�
andMn

�
A1

v (�; c)
�
of n�n

matrices with entries in A1
v(�; c) or A

1
v (�; c), respectively.

In [33] Leptin has proved that Mn(A) = Mn 
 A is spectrally invariant in B, if A
is a spectrally invariant Banach subalgebra of B. Note that it is elementary to extend
Leptin's result to m-convex algebras. Connes obtained this result for Frechet algebras
independently, see [5], see [48] for a discussion of this theorem for m-convex algebras.
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These observations and the characterization of the spectral invariance of A1
v(�; c) and

A1
v (�; c) in C�(�; c), see Theorem 2.2 and our Proposition 2.4, yields the following

result.

Theorem 2.6. Let � be a lattice in R2d. Then Mn

�
A1

v(�; c)
�
and Mn

�
A1

v (�; c)
�
are

spectrally invariant in Mn

�
C�(�; c)

�
if and only if v is a GRS-weight.

Following Connes we deduce from the previous theorem the density result for K-
groups, see [6].

Corollary 2.7. Let � be a lattice in R2d and v a GRS-weight. Then the inclusion i
of A1

v(�; c) and A
1
v (�; c) into C�(�; c), respectively, is an isomorphism of K0-groups

i� : K0

�
A1

v(�; c)
�
! K0

�
C�(�; c)

�
and i� : K0

�
A1

v (�; c)
�
! K0

�
C�(�; c)

�
for � = 0; 1.

In the case of the noncommutative torus C�(�; c) Connes introduced the smooth
noncommutative torus A1

vs(�; c) in [4], where vs denotes the polynomial weight vs(�) =

(1 + j�j2)s=2. We denote for short A1
vs(�; c) by A

1
s (�; c) More explicitly, let S (�; c)

be the space of sequences of rapid decay with seminorms kaks =
P
ja(�)j(1 + j�j2)s=2

for s � 0. Then

A1
s (�; c) := fA 2 B(L2(Rd))jA =

X
ja(�)j�(�) a 2 S (�)g:

In other words A1
s (�; c) is the projective limit of noncommutative Wiener algebras

A1
s(�; c) with norm kAkA1

s
=
P
ja(�)j(�)j(1 + j�j2)s=2. In other words A1

s (�; c) is
the projective limit of noncommutative Wiener algebras A1

s(�; c) with norm kAkA1
s
=P

ja(�)j(�)j(1+j�j2)s=2. The main goal of this section was to demonstrate that Connes'
results on smooth noncommutative tori are just the special case of a general class of
subalgebras of noncommutative tori.

3. Projective modules over noncommutative tori and noncommutative

Wiener algebras

In [36] we have shown that Feichtinger's algebra S0(R) provides a convenient class of
functions for the construction of Hilbert C�(�; c)-modules. In the present section we
extend the results in [36] to modulation spaces M1

v (R
d) for a submultiplicative weight

pre-inner product modules over A1
v(�; c).

Now, we make a short digression on an important class of function spaces introduced
by Feichtinger in [12]. Modulation spaces have found many applications in harmonic
analysis and time-frequency analysis, see the interesting survey article [15] for an ex-
tensive bibliography. If g is a window function in L2(Rd), then the short-time Fourier
transform (STFT) of a function or distribution f is de�ned by

(12) Vgf(x; !) = hf; �(x; !)gi =

Z
Rd

f(t)g(t� x)e�2�ix�!dt:

The STFT of f with respect to the window measures the time-frequency content of a
function f . Modulation spaces are classes of function spaces, where the norms are given
in terms of integrability or decay conditions of the STFT. In the present section we
restrict our interest to Feichtinger's algebra M1(Rd) and its weighted versions M1

v (R
d)



Projective modules over noncommutative tori are multi-window Gabor frames for modulation spaces 11

for a submultiplicative weight v. We introduce the full class of modulation spaces
in Section 4, where we interpret the projective modules over C�(�; c) of the present
section as multi-window Gabor frames over modulation spaces.
In time-frequency analysis the modulation spaceM1

v (R
d) has turned out to be a good

class of windows. If '(t) = e��t
2

is the Gaussian, then the modulation space M1
v (R

d)
is the space

M1
v (R

d) = ff 2 L2(Rd) : kfkM1
v
:=

Z
Rd

jV'f(x; !)jv(x; !)dxd! <1g:

The space M1(Rd) is the well-known Feichtinger algebra S0(R
d), which he introduced

in [11] as the minimal strongly character invariant Segal algebra.
Let v be a submultiplicative weight on R2d. Then natural generalization of Schwartz's

class of test functions is given by

Sv(R
d) :=

\
s�0

M1
vs(R

d)

with seminorms kfkM1
vs
for s � 0. If v is of at most polynomially growth, then Sv(R

d)

is the Schwartz class of test functions S (Rd). For a general submultiplicative weight v
the Gelfand-Shilov space S 1

2
; 1
2
(Rd) is contained in Sv(R

d), see [7]. In the main results

about projective modules over C�(�; c) the space Sv(R
d) serves as pre-equivalence

bimodule between A1
v (�; c) and A

1
v (�

�; c).
The spaces g 2 M1

v (R
d) and Sv(R

d) have many useful properties, see [12, 26]. In
the following proposition we collect those facts, which we need in the construction of
the projective modules over C�(�; c).

Proposition 3.1. Let v be a submultiplicative weight.

(1) For g 2M1
v (R

d) we have �(y; �)g 2M1
v (R

d) for (y; �) 2 R2d with

k�(y; �)gkM1
v
� v(y; �)k�(y; �)gkM1

v
:

(2) If f; g are in M1
v (R

d), then Vgf 2M1
v
v(R

2d).
(3) Let a =

�
a(�)

�
be in `1v(�) and g 2 M1

v (R
d). Then

P
�2� a(�)�(�)g is in

M1
v (R

d) with X
�2�

a(�)�(�)g

M1

v

� kak`1vkgkM1
v
:

(4) If f; g are in M1
v (R

d), then
�
Vgf(�)

�
2 `1v(�).

Corollary 3.2. Let v be a submultiplicative weight.

(1) For g 2 Sv(R
d) we have �(y; �)g 2 Sv(R

d) for (y; �) 2 R2d with

k�(y; �)gkM1
vs
� v(y; �)k�(y; �)gkM1

vs
for all s � 0:

(2) If f; g are in Sv(R
d), then Vgf 2 Sv
v(R

2d).
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(3) Let a =
�
a(�)

�
be inSv(�) =

T
s�0 `

1
vs(�) and g 2 Sv(R

d). Then
P

�2� a(�)�(�)g

is in Sv(R
d) withX

�2�

a(�)�(�)g

M1

vs

� kak`1vkgkM1
vs
; s � 0:

(4) If f; g are in Sv(R
d), then

�
Vgf(�)

�
2 Sv(�).

We refer the reader to [26] for a proof of these statements about g 2 M1
v (R

d) and
Sv(R

d).
We continue our presentation with a brief discussion of the Fundamental Identity of

Gabor analysis, which is an identity about the product of two STFTs. This identity is
the essential tool in Rie�el's construction of projective modules over noncommutative
tori in [45]. Later, Janssen, Tolimieri, Orr observed independently the relevance of
this identity in Gabor analysis, therefore Janssen called it the Fundamental Identity
of Gabor analysis. Feichtinger and Kozek generalized these results in [18] to Gabor
frames with lattices in elementary locally compact abelian groups, because they realized
that the Poisson summation formula for the symplectic Fourier transform is the main
ingredient in the proof of the FIGA. Actually, in the approach of Feichtinger and Kozek
to FIGA they have rediscovered the main arguments of Rie�el's discussion in [45]. In
[21] we have extended the results of Feichtinger, Kozek and Rie�el in a discussion
of dual pairs of Gabor windows. In the following we present a slightly more general
version of the main theorem in [21].
We already mentioned that the FIGA follows from an application of the Poisson

summation formula for the symplectic Fourier transform. In the symplectic version of
the Poisson summation formula the adjoint lattice of a lattice � is the substitute of
the dual lattice in the Euclidean Poisson summation formula. More precisely, if � is a
lattice in R2d, then Feichtinger and Kozek de�ned its adjoint lattice by

�� = f(x; !) 2 R2d : cs
�
(x; !); �

�
= 1 for all � 2 �g:

In [45] called �� the orthogonal lattice and Rie�el denoted it by �? and pointed out
its basic properties.

Theorem 3.3 (FIGA). Let � be lattice in R2d. Then for f1; f2; g1; g2 2M1
v (R

d) or in
Sv(R

d) the following identity holds:

(13)
X
�2�

hf1; �(�)g1ih�(�)g2; f2i = vol(�)�1
X
��2��

hf1; �(�
�)f2ih�(�

�)g2; g1i;

where vol(�) denotes the volume of a fundamental domain of �.

The case v(x; !) = (1+ jxj2+ j!j2)s=2 for Sv(R
d) was proved by Rie�el in Proposition

2:11 in [45].
In [36] we observed that Rie�el' construction holds for M1(Rd). In the present

investigation we want to emphasize that the method of Rie�el also works for M1
v (R

d)
and Sv(R

d) and provides new classes of Hilbert C�(�; c)-modules.
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We de�ne a left action of A1
v(�; c) on M1

v (R
d) by

��a � g =
�X
�2�

a(�)�(�)
�
g for a 2 `1v(�); g 2M1

v (R
d):

If f; g are in M1
v (R

d), then
�
Vgf(�)

�
is in `1v(�). Consequently, we have that

�hf; gi =
X
�2�

hf; �(�)gi�(�)

is an element of A1
v(�; c). The crucial observation is that �hf; gi is a A

1
v(�; c)-valued

inner product. In the following theorem we prove that M1
v (R

d) becomes a left Hilbert
C�(�; c)-module �V when completed with respect to the norm �kfk = k�hf; fik

1=2 for
f 2M1

v (R
d).

Theorem 3.4. Let � be a lattice in R2d. If v is a submultiplicative weight, thenM1
v (R

d)
is a left pre-inner product A1

v(�; c)-module �V0 for the left action of A1
v(�; c) onM

1
v (R

d)

��(a) � g =
X
�2�

a(�)�(�)g for a =
�
a(�)

�
2 `1v(�); g 2M1

v (R
d);

the A1
v(�; c)-inner product

�hf; gi =
X
�2�

hf; �(�)gi�(�) for f; g 2M1
v (R

d)

and the norm �kgk = k�hf; fik
1=2
op . Consequently, there exists a full Hilbert C�(�; c)-

module �V , the completion of �V0.

Proof. We briey sketch the main steps of the proof, since the discussion follows similar
lines as in [45] and [36].

(a) If a 2 `1v(�) and g 2 M1
v (R

d), then a 7! ��(a) is in M1
v (R

d), see Prop. 3.1.
Therefore, the left action ��(a)�g is a well-de�ned and bounded map onM1

v (R
d).

(b) The compatibility of the left action with the A1
v(�; c)-inner product amounts

to the following identity

�h��(a) � f; gi = ��(a)�hf; gi
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for all f; g 2 M1
v (R

d) and a 2 `1v(�), which follows from the following compu-
tation:

�h��(a) � f; gi =
X
�2�

h��(a) � f; �(�)gi�(�)

=
X
�2�

X
�2�

a(�)h�(�)f; �(�)gi�(�)

=
X
�;�

a(�)hf; �(�)��(�)gi�(�)

=
X
�;�

a(�)hf; �(�� �)gi�(�)c(�� �; �)

=
X
�

a\Vgf(�)�(�) = ��(a)�hf; gi:

Therefore, the compatibility condition is actually a statement about the twisted
convolution of

�
Vgf(�)

�
and a in `1v(�; c).

(d) �hf; gi
� =� hg; fi amounts to�X

�

hf; �(�)gi�(�)
��

=
X
�

hf; �(�)gi�(�)�

=
X
�

hf; �(�)gic(�; �)�(��)

=
X
�

hf; �(��)gic(�; �)�(�)

=
X
�

hf; �(�)gi
�
�(�)

=
X
�

hg; �(�)fi�(�) = �hg; fi:

The previous argument is equivalent to the fact that the involution of
�
Vgf(�)

�
is
�
Vfg(�)

�
in `1(�; c).

(e) The positivity of �hf; fi for f 2 M1
v (R

d) in C�(�; c) is a non-trivial fact. It
is a consequence of the Fundamental Identity of Gabor analysis, see [45, 36].
Recall, that the representation of A1

v(�; c) is faithful on L2(Rd). Therefore, it
su�ces to verify the positivity of �hf; fi in B

�
L2(Rd)

�
. Consequently, we have

to check the positivity just for the dense subspace M1
v (R

d):

h�hf; fi � g; gi =
X
�2�

hf; �(�)fih�(�)g; gi

= vol(�)�1hf; �(�)gih�(�)g; fi � 0:

In the previous statement we invoked FIGA as in [45]. The statements (a)-(e)
yield that M1

v (R
d) becomes a Hilbert C�(�; c)-module with respect to �kfk =
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k�hf; fik
1=2
op . Since the ideal spanf�hf; gi : f; g 2M1

v (R
d)g is dense in C�(�; c),

the Hilbert C�-module �V is full.

�

Let A and B be two unital C�-algebras. Let (AV;Ah:; :i) and (BV; Bh:; :i) be left
Hilbert C�-modules. Then a map T : AV ! BV is adjointable, if there is a map
T � : BV ! AV such that

AhTf; gi = Bhf; T
�gi for all f; g 2 AV:

We denote the set of all adjointable maps from AV to BV by L(AV; BV ).
If we view C�(�; c) as a full left Hilbert C�(�; c)-module, then the map C�g f := �hf; gi

is an adjointable operator from �V to C�(�; c) and its adjoint is the map D�
g (a) :=

��(a) � g. More precisely, A1
v(�; c) is a left inner product A

1
v(�; c)-module with respect

to A � B = ��(a)��(b) and C�(�;c)hA;Bi = ��(a)��(b)
� for a;b 2 `1v(�; c). If we

complete the inner product A1
v(�; c)-module with respect to the norm C�(�;c)kAk =

kC�(�;c)hA;Aik
1=2
op = kAA�k1=2 we obtain a full left Hilbert C�(�; c)-module C�(�;c)V .

Lemma 3.5. The map C�g is an element of L(�V;C�(�;c) V ) and D
�
g is in L(C�(�;c)V; �V ).

Furthermore, C�g and D�
g are adjoints of each other. p C�g is an element of L(�V;C�(�;c) V )

and D�
g is in L(C�(�;c)V; �V ). Furthermore, C�g and D�

g are adjoints of each other.

Proof. By the faithfulness of the representation of C�(�; c) it su�ces to check the
statement for the dense subalgebra A1

v(�; c). Let a 2 `1v(�; c) and f; g 2 M1
v (R

d).
Then we have, that

C�(�;c)hA; C
�
g fi = ��(a)�hg; fi = �h��(a) � g; fi = �hD

�
g (a); fi:

�

The preceding lemma is a Hilbert C�-module analog of the well-known fact that
the coe�cient mapping Cg and the synthesis mapping Dg are adjoint operators for a
Gabor system G(g;�), where Cg;�f :=

�
hf; �(�)gi

�
�
is a map from L2(Rd) to `2(�)

and the synthesis mapping is de�ned by Dg;�a =
P

�2� a(�)�(�)g for a 2 `2(�) and
maps a 2 `2(�) into L2(Rd). Therefore, the mappings C�g and D�

g are noncommutative
analogs of the coe�cient and synthesis operators of a Gabor system. In the Hilbert
space setting a central role is played by the Gabor frame operator Sg;� = Dg;� � Cg;�,
i.e.

Sg;�f =
X
�2�

hf; �(�)gi�(�)g for f 2 L2(Rd):

Analogously we de�ne the noncommutative frame operator S�
g as the composition

D�
g � C

�
g , which is by de�nition a selfadjoint �V -module map. If f; g 2M1

v (R
d), then

(14) S�
g f = �hf; gi � g = ��(Vgf) � g = Sg;�f:

In other words, the Gabor frame operator on M1
v (R

d) may be considered as a Hilbert
C�(�; c)-module map. Furthermore, the Gabor frame operator is a so-called rank one
Hilbert C�(�; c)-module operator. Recall, that on a left Hilbert C�-module (AV;Ah:; :i)
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a rank-one operator �A
g;h is de�ned by �A

g;hf := Ahf; gih. Consequently, Sg;�f is the

rank-one operator ��
g;gf . A general rank-one operator ��

g;h is given by

��
g;hf =

X
�2�

hf; �(�)gi�(�)h for f; g; h 2 �V;

which in Gabor analysis are called Gabor frame type operators. In the next section we
will have to deal with �nite sums of rank-one operators in our description of projective
modules over C�(�; c). At the moment we want to take a closer look at adjointable
operators on �V . By de�nition, a map T on �V is adjointable if there exists a map T �

on �V such that

�hTf; gi = �hf; T
�gi; f; g 2 �V:

More explicitly, the last equation amounts toX
�2�

hTf; �(�)gi =
X
�2�

hf; �(�)T �gi:

If we restrict our interest to elements of the inner product A1
v(�; c)-module, then an

adjointable �V -module map is bounded on `1v(�). Because, every adjointable module
map is bounded and the operator norm of the module map can be controlled by the
`1v-norm. Finally, we want to determine under which conditions an adjointable map on

�V is self-adjoint. If f; g are in M1
v (R

d), then a �V -module map satis�es T = T � if and
only if T is a �-invariant operator. In [18] Feichtinger and Kozek called an operator T
�-invariant, if the following holds

�(�)T = T�(�) for all � 2 �:

Rie�el made the following crucial observation in [45], that C�(�; c) and the opposite
algebra of C�(�; c) are closely related, namely they are Rie�el-Morita equivalent. We
recall the notion of Rie�el-Morita equivalence for C�-algebras after the discussion of
right Hilbert C�-modules over the opposite algebra of C�(�; c).

Lemma 3.6. The opposite algebra of C�(��; c) is C�(��; c).

Proof. Opposite time-frequency shifts �(x; !)op are given by TxM!, which satisfy TxM! =
e�2�ix�!M!Tx = e�2�ix�!M�!T�x �

The theorem 3.4 gives M1
v (R

d) the structure of a left Hilbert C�(��; c)-module ��V
with respect to the left action and C�(��; c)-valued inner product h:; :i�� de�ned above,
but we need a right module structure. There is a well-known procedure, which allows
a left module to be converted into a right module, which we describe in the following
paragraphs.
Let A be a C�-algebra and Aop its opposite C�-algebra. Furthermore, we denote by

V op the conjugate vector space structure on a Banach (Frechet) space V . We have a
one-one correspondence between A-left modules V and Aop-right modules V op.

Lemma 3.7. Let A be a C�-algebra and (AV ;Ah:; :i) a left Hilbert A-module. Then the
conjugate module V op is a right Hilbert module for the opposite algebra Aop with the
Aop-valued inner product h:; :iAop : V op � V op ! Aop given by (f op; gop) 7! Ahg; fi

op.
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Proof. Let f op; gop 2 V op and Aop 2 Aop. Then h:; :iAop is compatible with the right
action of V op:

hf op; gopAopiAop = Ahf
op; (Ag)opiop = AhAg; fi

= AAhg; fi = Ahg; fi
opAop = hf op; gopiAopAop:

Since the compact A-module operators are de�ned in terms of rank-one operators, we
have to demonstrate that �A

g;hf = �Aop

hop;gopf
op. By de�nition we have that

�A
g;hf = Ahf; hig = gopAhf; hi = gophhop; f opi = �Aop

hop;gopf
op:

�

Therefore, Lemma 3.7 gives the following right action of A1
v(�

�; c) on M1
v (R

d) by

(15) f � ���(b) =
1

vol(�)

X
��2��

�(��)fb(��):

and C�(�; c)-valued inner product h:; :i�� :

hf; gi�� =
1

vol(�)

X
��2��

�(��)�h�(��)g; fi

We summarize all these observations and statements in the following theorem:

Theorem 3.8. Let � be a lattice in R2d. If v is a submultiplicative weight, thenM1
v (R

d)
becomes a full right Hilbert C�(��; c)-module V�� for the right action of A1

v(�
�; c) on

M1
v (R

d)

g � ���(b) =
X
��2��

�(��)�gb(��) for b =
�
b(��)

�
2 `1v(�

�); g 2M1
v (R

d);

the C�(��; c)-inner product

hf; gi�� =
X
��2��

�(��)�hg; �(��)fi for f; g 2M1
v (R

d)

when completed with respect to the norm kfk�� = khf; fi��k
1=2
op .

Rie�el introduced in [43] the notion of Morita equivalence for C�-algebras, which we
state in the following de�nition.

De�nition 3.9. Let A and B be C�-algebras. Then an A-B-equivalence bimodule AV B

is an A-B-bimodule such that:

(a) AV B is a full left Hilbert A-module and a full right Hilbert B-module;
(b) for all f; g 2 AV B; A 2 A and B 2 B we have that

hA � f; giB = hf; A� � giB and Ahf �B; gi = Ahf; g �B
�i;

(c) for all f; g; h 2 AV B,

Ahf; gi � h = f � hg; hiB:

The C�-algebras A and B are called Rie�el-Morita equivalent if there exists an A� B
equivalence bimodule.
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In words, Condition (b) says that A acts by adjointable operators on VB and that
B acts by adjointable operators on AV , and Condition (c) is an associativity condition
between the A-inner product and the B-inner product.
The Theorems 3.4 and 3.8 give an C�(�; c)-C�(��; c) equivalence bimodule �V�� .

The associativity condition between �h:; :i and h:; :i�� is a statement about rank one
Hilbert C�-module operators for C�(�; c) and C�(��; c), which in Gabor analysis is
known as the Janssen representation of a Gabor frame-type operator.

Theorem 3.10. Let � be a lattice in R2d. Then for all f; g; h 2M1
v (R

d)

(16) �hf; gi � h = f � hg; hi�� ;

or in terms of Gabor frame-type operators:

(17) Sg;h;�f = vol(�)�1Sh;f;��g:

Proof. The identity (16) is equivalent to

�hf; gi � h; k

�
=


f � hg; hi�� ; k

�
for all k 2M1

v (R
d). More explicitly, the associativity condition reads as followsX

�2�

hf; �(�)gih�(�)h; ki = vol(�)�1
X
��2��

hf; �(��)kih�(��)h; gi:

In other words, the associativity condition is the Fundamental Identity of Gabor anal-
ysis. Therefore, Theorem 3.3 gives the desired result. �

The observation, that the associativity condition for �h:; :i and h:; :i�� is the Funda-
mental Identity of Gabor analysis, allows one to link projective modules over noncom-
mutative tori and Gabor frames for modulation spaces.
The last step in the construction of an equivalence bimodule between C�(�; c) and

C�(��; c) is to establish that C�(�; c) acts by adjointable maps on C�(��; c), which in
the present setting is a non-trivial task. The main di�culty lies in the fact, that we
actually have just a pre-equivalence bimodule. Therefore, the Condition (b) has to be
replaced by

h��(a) � g; �� � gi�� � k��(a)k
2
op kgk��

and

�hg � ��(b); g � ��(b)i � k��(b)k
2
op �kgk

for all a 2 `1v(�);b 2 `1v(�
�) and g 2M1

v (R
d). Rie�el's proof of these inequalities holds

also in the present context. Therefore, we have that the completion of M1
v (R

d) with

respect to �kfk = k�hf; fik
1=2
op or equivalently by kfk�� = khf; fi��k

1=2
op , becomes an

equivalence bimodule �V�� between C
�(�; c) and C�(��; c). We summarize the previous

discussion in the following theorem, which is one of the main results in [45].

Theorem 3.11. Let � be a lattice in R2d. Then the completion of M1
v (R

d) with respect

to �kfk = k�hf; fik
1=2
op becomes an equivalence bimodule �V�� between C�(�; c) and

C�(��; c).
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In the proof of the we actually constructed for any submultiplicative weight on R2d

a pre-equivalence bimodule �V
0
�� from the modulation space M1

v (R
d). Therefore, one

might wonder, under which conditions a pre-equivalence bimodule is actually equiv-
alent to the equivalence bimodule. Connes discussed this kind of problems in [4] for
noncommutative tori and in its full generality in [5]. For further motivation and results
we refer the interested reader to [6]. The crucial observation in Connes's approach to
the problem was to realize that equivalence bimodules for a spectrally invariant pair of
subalgebras are equivalent to projective modules over the C�-algebra. Therefore, we are
in the position to apply the characterization of spectral invariance of noncommutative
Wiener algebras to characterize those pre-equivalence bimodules between C�(�; c) and
C�(��; c) and the equivalence bimodule �V�� . We follow Rie�el's discussion around
Proposition 3:7 in his seminal paper [45].

Theorem 3.12. Let � be a lattice in R2d. Then the pre-equivalence bimodule M1
v (R

d)
is isomorphic to �V�� if and only if v is a GRS-weight. In other words, the noncom-
mutative Wiener algebra A1

v(�; c) is Morita equivalent to A1
v(�

�; c) if and only if v is
a GRS-weight.

Proof. We follow closely the discussion of Proposition 3:7 in [45]. Let A = C�(�; c) and
B = C�(��; c). Let �V be the projective left C�(�; c)-module M1

v (R
d) with C�(�; c)-

valued inner product

�hf; gi =
X
�2�

hf; �(�)gi�(�) f; g 2M1
v (R

d):

Furthermore, we have the C�(��; c)-valued inner product

hf; gi� =
1

vol(�)

X
��2��

��(��)h�(��)g; fi f; g 2M1
v (R

d):

Now, we consider the dense involutive unital subalgebras A0 = A1
v(�; c) and B0 =

A1
v(�

�; c) of C�(�; c) and C�(��; c), respectively. Then M1
v (R

d) is a dense subspace of

�V that is closed under the actions of A1
v(�; c) and A

1
v(�

�; c) given by

��(a) � f =
X
�2�

a(�)�(�)f b 2 `1v(�); f 2M1
v (R

d)

and

���(b) � f =
1

vol(�)

X
��2��

�(��)�fb(��) b 2 `1v(�
�); f 2M1

v (R
d):

Furthermore, the restrictions of the inner products �h:; :i and h:; :i�� to M1(Rd) have
values in A1

v(�; c) and A
1
v(�

�; c), respectively. The �nal ingredient in our proof is the
spectral invariance of A1

v(�
�; c) in C�(��; c), which is equivalent to v a GRS-weight by

Theorem 2.2. An application of Proposition 3.7 in [45] gives the desired assertion that
M1

v (R
d) is an equivalence bimodule between A1

v(�; c) and A
1
v(�

�; c). �

Finally, we want to point out that the preceding results allow us to generalize the
famous theorem of Connes and Rie�el on the Rie�el-Morita equivalence of the smooth
noncommutative torus to the generalized smooth noncommutative torus A1

v (�; c) and
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A1
v (�

�; c). By construction Sv(R
d) is an inductive limit of M1

v (R
d); consequently

statements for M1
v (R

d) translate into ones about Sv(R
d.

Theorem 3.13. Let � be a lattice in R2d. Then A1
v (�; c) and A

1
v (�

�; c) are Rie�el-
Morita equivalent if and only if v is a GRS-weight.

The case v(x; !) = 1 + jxj2 + j!j2 for (x; !) 2 R2 is the famous theorem of Connes
about the Morita equivalence of smooth noncommutative tori, which has found many
applications in mathematics and physics.

4. Applications to Gabor analysis

In the present section we link the results about projective modules over A1
v(�

�; c) and
A1

v (�
�; c) with multi-window Gabor frames for modulation spaces. Modulation spaces

[12] were introduced by Feichtinger in 1983. Later Feichtinger described modulation
spaces in terms of Gabor frames [13]. In collaboration with Gr�ochenig he developed
the coorbit theory [16], which associates to an integrable representation of a locally
compact group a class of function spaces. The coorbit space for the Schr�odinger rep-
resentation of the Heisenberg group is the class of modulation spaces. In the coorbit
theory [16] modulation spaces are introduced as subspaces of the space of conjugate
linear functionals (M1

v )
:(Rd). If m is a v-moderate weight on R2d and g a non-zero

window in M1
v (R

d), then the modulation spaces Mp;q
m (Rd) are de�ned as

Mp;q
m (Rd) = ff 2 S 0

v(R
d) : kfkMp;q

m
=
�Z

Rd

�Z
Rd

jVgf(x; !)j
pm(x; !)pdx

�q=p
d!
�1=q

<1g;

for p; q 2 [1;1]. The modulation space Mp;q
m (Rd) is a Banach space, which is invariant

under time-frequency shifts. The growth of the v-moderate weight m allows to draw
some conclusions about Mp;q

m (Rd): (i) if v grows at most polynomially, then Mp;q
m (Rd)

are subspaces of the class of tempered distributionsS (Rd); (ii) suppose v grows at most
sub exponentially, then Mp;q

m (Rd) are subspaces of the ultra distributions of Bj�orck and
Komatsu; (iii) if v grows exponentially, then Mp;q

m (Rd) are subspaces of the Gelfand-
Shilov space (S 1

2
; 1
2
)0(Rd). We refer the reader to Feichtinger's survey article [15] for a

discussion of the properties, applications of modulation spaces, and an extensive list of
references.
In the last two decades modulation spaces have found various applications in time-

frequency analysis and especially Gabor analysis. For example the existence of a
Janssen representation for Gabor frames G(g;�) with g 2 M1

v (R
d) is one of the most

important results in Gabor analysis [17]. The proof of this result relies on the restriction
property of functions in M1

v (R
d) to lattices in R2d, i.e. for g 2 M1

v (R
d) the sequence

(hg; �(��)gi)� is in `1v(�).

Proposition 4.1. Let � be a lattice in R2d and G(g;�) be a Gabor frame for L2(Rd)
with g 2M1

v (R
d). Then the Janssen representation of the Gabor frame operator

(18) Sg;� = vol(�)�1
X
��2��

hg; �(��)i�(��)

converges absolutely in the operator norm and it de�nes an element of A1
v(�

�; c).
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Note that G(g;�) is a Gabor frame for L2(Rd) if and only if the Janssen representation
of its Gabor frame operator is invertible on B(L2(Rd)). By the spectral invariance of
A1

v(�
�; c) in C�(�; c) for v a GRS-weight the inverse of Sg;� for g 2M1

v (R
d) is again an

element of A1
v(�

�; c) and the canonical tight Gabor atom S�1g;�g is inM
1
v (R

d). Therefore
the Janssen representation of the Gabor frame operator is of at most importance for the
discussion of Gabor frames with good Gabor atoms g 2M1

v (R
d) or g 2 Sv(R

d), because
it allows to construct reconstruction formulas with good synthesis windows [28, 29].
The preceding discussion and the results in Section 2 about the topological stable rank
of A1

v(�
�; c) and A1

v (�
�; c) enables a study of the deeper properties of the set of Gabor

frames with atoms in M1
v (R

d). In the seminal paper [44] on the topological stable rank
an interesting property of Banach algebras A with tsr(A) = 1 was noted, namely that
its group of invertible elements of A is dense in A. In [40] Putnam determined the
topological stable rank irrational noncommutative tori C�(aZd�bZd) with ab irrational
and showed that it is one. Therefore by the spectral invariance of A1

v(aZ
d� bZd; c) and

A1
v (aZ

d � bZd; c) for v a GRS-weight yields that tsr(A1
v(�

�; c)) = tsr(A1
v (�

�; c)) = 1
for ab irrational.

Theorem 4.2. Let � = aZd � bZd with ab an irrational number and v a GRS-weight
on R2d. Then the following holds:

(1) The set of Gabor frames G(g; aZd � bZd) for L2(Rd) with g 2 M1
v (R

d) is dense
in A1

v(
1
b
Z
d � 1

a
Z
d; c).

(2) The set of Gabor frames G(g; aZd � bZd) for L2(Rd) with g 2 Sv(R
d) is dense

in A1
v (

1
b
Z
d � 1

a
Z
d; c).

Proof. For g 2 M1
v (R

d) (or g 2 S (Rd)) the Gabor frame operator Sg;� has a Janssen
representation in A1

v(
1
b
Z
d � 1

a
Z
d; c) (or A1

v (
1
b
Z
d � 1

a
Z
d; c)), see Proposition (18). The

assumption that ab is an irrational number implies that tsr(A1
v(

1
b
Z
d � 1

a
Z
d; c)) =

tsr(A1
v (

1
b
Z
d � 1

a
Z
d; c)) = 1. Therefore the set of Gabor frames G(g; aZd � bZd) with

g 2M1
v (R

d) (or g 2 S (Rd)) is dense in A1
v(

1
b
Z
d � 1

a
Z
d; c) or (A1

v (
1
b
Z
d � 1

a
Z
d; c)). This

completes our argument. �

In [16] Feichtinger and Gr�ochenig established the existence of good Gabor frames
for irregular Gabor systems of su�ciently small density and consequentely for regular
Gabor systems. The main drawback of the original version of the coorbit theory is that
the dependence of the coorbit spaces on the growth of the weight is not at all clear.
Therefore our main result about the existence of good Gabor frames might be very
likely deduced from results in [16], but this approach to the problem does not clarify
the relevance of the growth of the weights in the de�nition of the modulation spaces.
We are not aware of any publications dealing with this kind of issue.
The main result of this section is to demonstrate that the statement of Theorem 3.12

and of Theorem 3.13 provides the existence of good multi-window Gabor frames for
lattices in R2d. The proof of this fact relies on the observation that a standard module
frame for the �nitely generated left module V� is actually a tight multi-window Gabor
frame for L2(Rd).
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Projective modules over Hilbert C�-algebras have a natural description in terms of
module frames as was originally observed by Rie�el. Later Frank and Larson intro-
duced module frames for arbitrary �nitely and countably generated Hilbert C�-modules
in [23]. In Theorem 5.9 in [23] they present a formulation of Rie�el's observation in
their framework. Namely, that any algebraically generating set of a �nitely generated
projective Hilbert C�-module is a standard module frame. In the following we ex-
plore this statement for the class of equivalence bimodules �V�� between C�(�; c) and
C�(��; c). We start with Rie�el's reconstruction formula for elements f of the �nitely
generated projective right �V -module.

Proposition 4.3 (Rie�el). Let � be a lattice in R2d. Then there exist g1; :::; gn 2 �V
such that

(19) f =
nX
i=1

�hf; gii � gi

for all f 2 �V .

Recently, Frank and Larson emphasized in [23] that the reconstruction formula (19)
is equivalent to the fact that fg1; :::; gng is a standard tight module frame for the �nitely
generated projective module �V , i.e. for all f 2 �V we have that

(20) �hf; fi =
nX
i=1

�hgi; fi�hf; gii:

By the associativity condition the preceding equation (20) is equivalent to the condition
that fg1; :::; gng is a standard tight module frame for V �� :

(21) hf; fi� = vol(�)�1
nX
i=1

hgi; fi��hf; gii�� :

By de�nition of the C�(�; c)-valued and C�(��; c)-valued inner products the conditions
(20),(21) take the following explicit form:

X
�2�

hf; �(�)fi�(�) =
nX
i=1

X
�2�

(Vgif\Vfgi)(�)�(�)

= vol(�)�1
nX
i=1

X
��2��

(Vgif\Vfgi)(�
�)�(��)

Note that taking the trace tr�, tr�(A) = a0 for A =
P

�2� a(�)�(�), of the module
frame condition (20) yields

(22) kfk22 =
nX
i=1

X
�2�

jhf; �(�)giij
2;

which are known in Gabor analysis as multi-window Gabor frames [50]. Therefore a
standard module frame fg1; :::; gng for �V is a multi-window Gabor frame G(g1; :::gn;�) =
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G(g1;�) [ � � � G(gn;�) for L
2(Rd). The multi-window Gabor frame operator S� associ-

ated to a multi-window Gabor system G(g1; :::gn;�) is given by

(23) S�f =
nX
i=1

Sgi;�f for f 2 L2(Rd):

We summarize these observations in the following theorem that links the abstract
notion of standard module frames over noncommutative tori with the notion of multi-
window Gabor frames due to the engineers Zibulski and Zeevi [50].

Theorem 4.4. Let � be a lattice in R2d. Then a standard module frame fg1; :::; gng
for �V is a tight multi-window Gabor frame G(g1; :::gn;�) for L

2(Rd).

Proof. It remains to check that the module frame condition (20) holds for f 2 L2(Rd).

We have shown in [21] that for f 2 L2(Rd) and gi 2 M1
v (R

d) then (Vgif � Vgif(�))� is
absolutely convergent for i = 1; :::; n. Consequently the module frame condition (20)
holds for all f 2 L2(Rd), which completes the proof. �

In [5] Connes demonstrated that the class of projective modules over a C�-algebra
A is in bijection with projective modules over spectrally invariant subalgebras of A. In
noncommutative geometry this result allows the construction of smooth noncommuta-
tive vector bundles. Later Rie�el treated the case of noncommutative tori C�(�; c) for
the smooth noncommutative torus A1

s (�; c) in [45] and showed that Connes's result
yields the existence of reconstruction formulas with elements g1; :::; gn 2 S (Rd). In
other words there exist standard module frames fg1; :::; gng for �V with g1; :::; gn 2
S (Rd). Consequently there exist tight multi-window Gabor frames G(g1; :::; gn;�) for
L2(Rd) with windows g1; :::; gn 2 S (Rd). According to the results in Section 3, the the-
orem of Rie�el remains valid for the �nitely generated projective left A1

v(�; c)-module
M1

v (R
d), if v is a GRS-weight on �. By a theorem of Feichtinger and Gr�ochenig in [17]

a multi-window Gabor frame G(g1; :::; gn;�) for L
2(Rd) with g1; ::; gn 2 M1

v (R
d) is a

Banach frame for the class of modulation spaces Mp;q
m (Rd) for a v-moderate weight m.

Note that m is a GRS-weight, too.

Theorem 4.5 (Main result). Let � be a lattice in R2d and v a GRS-weight. Then
M1

v (R
d) is a �nitely generated projective left A1

v(�; c)-module. Consequently, there
exist g1; :::; gn 2 M1

v (R
d) such that fgi : i = 1; :::; ng is a standard tight A1

v(�)-module
frame, i.e.

(24) f =
nX
i=1

�hf; gii � gi; for f 2M1
v (R

d):

Consequently, G(g1; :::; gn;�) is a multi-window Gabor frame for the class of modulation
spaces Mp;q

m (Rd) for any v-moderate weight m.

An interesting application of our main result is the exploration of the relation between
the vol(�) of the multi-window Gabor frame and the number of elements of the standard
module frame for M1

v (R
d) in [30]. Namely, if vol(�) 2 [n� 1; n), then fgiji = 1; :::; ng

is a standard tight A1
v(�)-module frame for M1

v (R
d).
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The preceding discussion and our results about the �nitely generated projective
left modules Sv(R

d) over smooth generalized noncommutative tori A1
v (�; c) for v a

GRS-weight implies the existence of multi-window Gabor frames G(g1; :::; gn;�) for
Mp;q

m (Rd) with g1; :::; gn 2 Sv(R
d). In the case that v grows like a polynomial we

recover the famous theorem of Connes and Rie�el on the Morita equivalence of smooth
noncommutative tori A1

s (�; c) and the corresponding module frames. We summarize
the consequence of these observations about the existence of good multi-window Gabor
frames for the class of modulation spaces in the following theorem.

Theorem 4.6. Let � be a lattice in R2d and v a GRS-weight. Then there exist g1; :::; gn
in S (Rd) such that G(g1; :::; gn;�) is a multi-window Gabor frame for the class of
modulation spaces Mp;q

m (Rd) for any v-moderate weight m.

Finally we note that the associativity condition between �h:; :i and h:; :i�� allows
one to transfer the above theorems to the �nitely generated projective right A1

v(�
�; c)-

moduleM1
v (R

d) and to the �nitely generated projective rightA1
v (�

�; c)-moduleSv(R
d)

for v a GRS-weight.

5. Conclusion

The most general framework for the present investigation is the time-frequency plane
G� bG for G a locally compact abelian group. All our methods and techniques work for a
lattice � in G� bG, because the twisted group C�-algebra C�(�; c) and the subalgebras
A1

v(�; c);A
1
v (�; c) for a GRS-weight v are de�ned only in terms of time-frequency

shifts. Furthermore the de�nition and properties of modulation spaces and Schwartz-
type spaces remain valid in this general setting [11]. Therefore our main results about
projective modules over C�(�; c) and the subalgebras A1

v(�; c);A
1
v (�; c) hold in this

very general setting. Finally these observations yield the existence of good multi-
window Gabor frames G(g1; :::; gn;�) for g1; :::; gn in M1

v (G) or in Sv(G) for a GRS-

weight v on G� bG. We will come back on this topic in forthcoming work.
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