
Coloured graphs, Burgers equation and

Jacobian conjecture.

I.V.Artamkin

Generating functions for modular graphs were considered in [1]. It was
proved there out that these generating functions satisfy the one-dimensional
Burgers equation. Here we present several multi-dimensional analogues of
these results obtained in similar way from consideration of coloured modular
graphs i.e. modular graphs whose edges and half-edges are coloured by r
colours, corresponding to r independent variables x1, . . . , xr. In the most
simple version the generating function for connected graphs satisfies the
r-dimensional Burgers equation and the generating function for all graphs
(not necessarily connected) satisfies the heat equation. Other versions pro-
vide some systems of partial differential equations generalizing respectively
Burgers or heat equations. The solution of the Burgers equation (or its gen-
eralizations) is obtained by the genus expansion of the generating function.
The initial term of this expansion is the corresponding generating function
for trees. The consequence of the Burgers equation for this term turns to
be equivalent to the inversion problem for the gradient mapping defined by
the initial condition. The connections between the inversion problem for a
formal mapping Cr → Cr and the Burgers and heat equations was recently
observed by Zhao, Meng and Wright (see [4], [2], [3]) in the study of the
Jacobian conjecture. The use of generating functions enables to explain the
results of [4] in rather short and natural way.

The equations for the higher terms of the genus expansion are linear.
The solutions of these equations can be expressed explicitly by substitution
of the initial conditions and the initial term (the tree expansion) into some
universal polynomials (for g > 1) which are generating functions for stable
closed graphs. (For g = 1 instead of polynomials appears logarithm.) The
stable graph polynomials satisfy certain recurrence. In [1] some of these
results were obtained for r = 1 by more or less direct solution of differential
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equations. Here we present purely combinatorial proofs.
I am grateful to Don Zagier for helpful discussions which inspired the

study of counting functions in section 5. I also wish to thank the Max
Planck Institute for Mathematics in Bonn whose hospitality I enjoyed while
I was preparing this paper.

1 Introduction.

Consider vectors X = (x1, . . . , xr) and S = (s1, . . . , sr), where xi and si are
independent commutative variables. In this section a diagonal r × r matrix
with diagonal elements si will be denoted Ŝ. In section 3 we discuss similar
constructions for arbitrary symmetric matrix Ŝ. This generalization enables
to give natural combinatorial proofs for all our formulas. For applications,
however, it is sufficient to consider diagonal (or even scalar) matrix Ŝ. So
now we shall explain all the results and applications for this special case
leaving most of the proofs to section 3.

For a multiindex N = (n1, . . . , nr) we shall use the notations XN =
xn1

1 · . . . · xnr
r , N ! = n1! . . . nr! and n =

∑
ni. N ≥ 0 will mean that all

ni ≥ 0. Let us denote the multiindex Li = (0, . . . , 0, 1, 0, . . . , 0) = {i} (all
the components are zero except li = 1). Multiindex Li + Lj will be also
denoted by {ij}; multiindex Li + Lj + Lk will be denoted by {ijk} and so
on.

We shall consider modular graphs whose edges and half-edges are coloured
by the variables x1, . . . , xr. To each vertex v of a modular graph we attach
a nonnegative integer g(v); we shall call a graph combinatorial if for all its
vertices g(v) = 0. Genus of a modular graph Γ is defined by

g(Γ) =
∑

g(v) + b1(Γ) − b0(Γ) + 1, (1.1)

where bm(Γ) is the m-th Betti number of the graph (considered as a 1-
dimensional simplicial complex). Thus for a connected graph Γ

g(Γ) =
∑

g(v) + b1(Γ)). (1.2)

For a graph Γ let us fix multiindices K(Γ) = (k1, . . . , kr) and N(Γ) =
(n1, . . . , nr) to denote the number of edges and, respectively, half-edges of
the graph. A graph without half-edges (i.e. N(Γ) = (0, . . . , 0)) will be
called closed. Valence of a vertex v of a coloured graph Γ is a multiindex
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N(v) = (ν1(v), . . . , νr(v)), where νi(v) is the number of outgoing edges and
half-edges coloured by i. Denote by G̃Kg,N the set of all coloured modular
graphs having ki edges of the colour i, ni half-edges of the colour i and
g(Γ) = g, and G̃kg,N =

⋃
P

ki=k
G̃Kg,N . The set of corresponding connected

graphs will be denoted by the same symbol without tilde.
We may also consider sets of coloured modular graphs with additional

structures: ordering of its edges, denoted by G
[K]
g,N ; or ordering of its half-

edges, denoted by GKg,[N ]; the set of graphs with both orderings, denoted by

G
[K]
g,[N ]. Let {ag,N}, g ≥ 0, N ≥ 0 be a set of (commutative) variables, Γ — a

modular graph. Consider the monomial:

µ(Γ) =
∏

v∈V (Γ)

ag(v),ν(v). (1.3)

It is not hard to prove that there are four different ways to define the same
generating series

Ψ(S,X, ~) =
∑

g≥0

∑

N≥0

∑

K≥0




∑

Γ∈GK
g,N

µ(Γ)

|AutΓ|



XNSK~
g−1 =

=
∑

g≥0

∑

N≥0

∑

K≥0






∑

Γ∈GK
g,[N]

µ(Γ)

|AutΓ|





XN

N !
SK~

g−1 =

=
∑

g≥0

∑

N≥0

∑

K≥0






∑

Γ∈G
[K]
g,[N]

µ(Γ)

|AutΓ|





XN

N !

SK

K!
~
g−1 =

=
∑

g≥0

∑

N≥0

∑

K≥0






∑

Γ∈G
[K]
g,N

µ(Γ)

|AutΓ|




XN S

K

K!
~
g−1. (1.4)

where AutΓ is the automorphism group of the modular graph Γ. (Note that
Aut Γ may be different in each of these four cases: an automorphism of a
graph with fixed ordering of edges or/and half-edges should preserve these
orderings.)

In fact, Ψ(S,X, ~) depends on the variables {ag,N}; so sometimes we shall
write it as Ψ({ag,N}, S,X, ~). Generating series for not necessarily connected
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graphs also may be defined in the same four ways:

Ψ̃(S,X, ~) =
∑

−∞<g<+∞

∑

N≥0

∑

K≥0






∑

Γ∈G̃K
g,N

µ(Γ)

|AutΓ|




XNSK~

g−1 =

=
∑

−∞<g<+∞

∑

N≥0

∑

K≥0






∑

Γ∈G̃K
g,[N]

µ(Γ)

|Aut Γ|





XN

N !
SK~

g−1 =

=
∑

−∞<g<+∞

∑

N≥0

∑

K≥0






∑

Γ∈G̃
[K]
g,[N]

µ(Γ)

|AutΓ|





XN

N !

SK

K!
~
g−1 =

=
∑

−∞<g<+∞

∑

N≥0

∑

K≥0






∑

Γ∈G̃
[K]
g,N

µ(Γ)

|AutΓ|




XN S

K

K!
~
g−1. (1.5)

For a variable s let us also define the series

ψ(s,X, ~) = Ψ(s, s, . . . s, X, ~) =
∑

g≥0

∑

N≥0

∑

k≥0




∑

Γ∈Gk
g,N

µ(Γ)

|AutΓ|



XNsk~g−1

(1.6)
and

ψ̃(s,X, ~) = Ψ̃(s, s, . . . s, X, ~) =
∑

−∞<g<+∞

∑

N≥0

∑

k≥0






∑

Γ∈G̃k
g,N

µ(Γ)

|Aut Γ|




XNsk~g−1.

(1.7)
Note that for S = 0 (i. e. s1 = . . . = sr = 0) these functions coincide; we

shall denote this function by U :

U(X, ~) = Ψ(0, X, ~) = ψ(0, X, ~) =
∑

g≥0

∑

N≥0

ag,N
XN

N !
~
g−1, (1.8)

These functions will play the role of the initial conditions for the Burgers
equation. We shall also use the genus expansion of U

U(X, ~) =
∑

g≥0

Ug(X)~g−1, (1.9)
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the gradient vector function

F (X) = ∇X U0(X) (1.10)

and the Hessian matrix function

H(X) = ∇X F (X) =

(
∂2U0

∂xi∂xj

)

. (1.11)

A standard combinatorial principle says that the generating function for
all graphs is the exponent of the generating function for connected graphs.

Theorem 1.1.

Ψ̃(S,X, ~) = exp(Ψ(S,X, ~)); (1.12)

ψ̃(s,X, ~) = exp(ψ(s,X, ~)). (1.13)

Choose a multiindex L = (l1, . . . , lr), l =
∑
li. Let G̃

K,[L]
g,N (G

K,[L]
g,N ) be the

set of all genus g coloured modular (connected) graphs having ki+ li edges of
the colour i, li of which are marked and ordered, ni half-edges of the colour
i. In the same way, let G̃Ke,N,[L] (GKe,N,[L]) be the set of all genus g coloured

modular (connected) graphs having ki edges of the colour i, ni + li half-

edges of the colour i, li of which are marked and ordered. Finally by G̃
k,[k]
g,N

(G
k,[k]
g,N ) we shall denote the set of all genus g coloured modular (connected)

graphs having k + l edges, l of which are marked and ordered, ni half-edges
of the colour i, and by G̃Ke,N,[L] (GKe,N,[L]) we shall denote the set of all genus

g coloured modular (connected) graphs having k edges, ni + li half-edges of
the colour i, li of which are marked and ordered. It is not hard to see that
the corresponding generating series are the derivatives of the ones we have
introduced above.

Proposition 1.1.

∑

−∞<g<+∞

∑

N≥0

∑

K≥0






∑

Γ∈G̃
K,[L]
g,N

µ(Γ)

|Aut Γ|




XNSK~

g−1 =
∂lΨ̃(S,X, ~)

∂sl11 . . . ∂s
lr
r

(1.14)

∑

−∞<g<+∞

∑

N≥0

∑

K≥0






∑

Γ∈G̃K
g,N,[L]

µ(Γ)

|Aut Γ|




XNSK~

g−1 =
∂lΨ̃(S,X, ~)

∂xl11 . . . ∂x
lr
r

(1.15)
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∑

−∞<g<+∞

∑

N≥0

∑

k≥0






∑

Γ∈G̃
k,[l]
g,N

µ(Γ)

|AutΓ|




XNSK~

g−1 =
∂lψ̃(s,X, ~)

∂sl
(1.16)

∑

−∞<g<+∞

∑

N≥0

∑

k≥0






∑

Γ∈G̃k
g,N,[L]

µ(Γ)

|AutΓ|




XNSK~

g−1 =
∂lψ̃(s,X, ~)

∂xl11 . . . ∂x
lr
r

(1.17)

The same is true for the generating series for connected graphs (i.e. for Ψ
and ψ without tilde).

∑

g≥0

∑

N≥0

∑

K≥0






∑

Γ∈G
K,[L]
g,N

µ(Γ)

|AutΓ|




XNSK~

g−1 =
∂lΨ(S,X, ~)

∂sl11 . . . ∂s
lr
r

(1.18)

∑

g≥0

∑

N≥0

∑

K≥0






∑

Γ∈GK
g,N,[L]

µ(Γ)

|AutΓ|




XNSK~

g−1 =
∂lΨ(S,X, ~)

∂xl11 . . . ∂x
lr
r

(1.19)

∑

g≥0

∑

N≥0

∑

k≥0






∑

Γ∈G
k,[l]
g,N

µ(Γ)

|AutΓ|




XNSK~

g−1 =
∂lψ(s,X, ~)

∂sl
(1.20)

∑

g≥0

∑

N≥0

∑

k≥0






∑

Γ∈Gk
g,N,[L]

µ(Γ)

|AutΓ|




XNSK~

g−1 =
∂lψ(s,X, ~)

∂xl11 . . . ∂x
lr
r

(1.21)

In the next few lines we present the crucial observation for this paper.
Consider the set G̃Kg,N,[{ii}] of all genus g graphs having two marked (and

ordered) half-edges of the same colour i. There is a natural involution ε
acting on G̃Kg,N,[{ii}] by changing the order of the two marked edges; clutching
these two marked half-edges together provides the one-to-one correspondence

G̃Kg,N,[{ii}]/ε
∼= G̃

K,[{i}]
g−1,N (1.22)

which is compatible with the automorphisms of the corresponding graphs.
This proves that Ψ̃ satisfies the heat equation.
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Theorem 1.2.
∂Ψ̃

∂si
=

~

2

∂2Ψ̃

∂x2
i

(1.23)

Corollary 1.1.

∂ψ̃

∂s
=

~

2
MX ψ̃ (1.24)

(MX=
∑

∂2

∂x2
i

is the Laplace operator.) Using (1.12) and (1.13), for Ψ and

ψ we obtain the Burgers equation.

Corollary 1.2.

∂Ψ

∂si
=

~

2

[

∂2Ψ

∂x2
i

+

(
∂Ψ

∂xi

)2
]

. (1.25)

∂ψ

∂s
=

~

2

[

MX ψ + (∇X ψ)T (∇X ψ)
]

. (1.26)

(∇X ψ is the vector ( ∂ψ
∂x1
, . . . , ∂ψ

∂xr
)T )

Consider the genus expansions for Ψ and ψ:

Ψ(S,X, ~) =
∑

g≥0

Ψg(S,X)~g−1 (1.27)

and
ψ(s,X, ~) =

∑

g≥0

ψg(s,X)~g−1 (1.28)

For g = 0 the equations (1.25) and (1.26) provide the equations

∂Ψ

∂si
=

1

2

(
∂Ψ

∂xi

)2

. (1.29)

and
∂ψ

∂s
=

1

2
(∇X ψ)T (∇X ψ) . (1.30)

Consider the vector functions

Φ(S,X) = ∇X Ψ0(S,X) (1.31)

and
φ(s,X) = ∇X ψ0(s,X). (1.32)

(Note that Φ(0, x) = φ(0, x) = F (x), see (1.10).)
The equations (1.25) and (1.26) provide the following equations for Φ =

(Φ1, . . . ,Φr) and φ.
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Corollary 1.3.
∂Φm

∂si
= Φi

∂Φm

∂xi
. (1.33)

∂φ

∂s
= (∇X φ)φ. (1.34)

(Here ∇X φ is the matrix with the components ∂2ψ0

∂xi∂xj
.) Consider the

Hessian matrices

Θ(S,X) = ∇X Φ(S,X) =

(
∂2Ψ0

∂xi∂xj

)

. (1.35)

and

θ(s,X) = ∇X φ(S,X) =

(
∂2ψ0

∂xi∂xj

)

= Θ(s, . . . , s, X). (1.36)

(Note that Θ(0, x) = θ(0, x) = H(X), see (1.11)).
Then the equation (1.34) may be written as

∂φ

∂s
= θφ. (1.37)

The system of equations (1.33) and the equation (1.37) may be solved ex-
plicitly.

Theorem 1.3. Let F (X) = (F1(X), . . . , Fr(X)) be any formal series vec-
tor. Denote by Ŝ the diagonal matrix whose diagonal elements are the vari-
ables si. Then the solution of the system (1.33) with the initial condition
Φ(0, . . . 0, X) = F (X) satisfies the functional equation

Φ(S,X) = F (X + ŜΦ(S,X)). (1.38)

It is not hard to verify that the solution of the functional equation (1.38)
satisfies the Burgers equations (1.33). The partial derivatives of the m-th
equation (1.38) by si and xi are:

∂Φm

∂si
=
∑ ∂Fm

∂xj

∂(xj + sjΦj)

∂si
=
∑ ∂Fm

∂xj
sj
∂Φj

∂si
+
∑ ∂Fm

∂xi
Φi; (1.39)

∂Φm

∂xi
=
∑ ∂Fm

∂xj

∂(xj + sjΦj)

∂xi
=
∑ ∂Fm

∂xj
sj
∂Φj

∂xi
+
∑ ∂Fm

∂xi
. (1.40)
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Therefore
∂Φm

∂si
− Φi

∂Φm

∂xi
=
∑ ∂Fm

∂xj
sj

(
∂Φj

∂si
− Φi

∂Φj

∂xi

)

. (1.41)

Denoting the matrix (∂Fm

∂xj
) by H we obtain

(

E −HŜ
)(∂Φ

∂si
− Φi

∂Φ

∂xi

)

= 0, (1.42)

where E is the unit matrix. Since E − HŜ is nondegenerate for generic Ŝ,
∂Φm

∂si
= Φi

∂Φm

∂xi
for all m. (See purely combinatorial proof in section 3.

Substituting s1 = · · · = sr = s we obtain the corresponding statement
for the function φ, first observed by W.Zhao [5].

Corollary 1.4. ([5]). The solution of the system (1.34) with the initial
condition φ(0, X) = F (X) satisfies the functional equation

φ(s,X) = F (X + sφ(S,X)). (1.43)

Corollary 1.5. Let Φ(S,X) be the solution of (1.33). Consider the following
formal mappings from Cr to Cr:

A(X) = X − ŜF (X) (1.44)

B(X) = X + ŜΦ(S,X) (1.45)

Then these mappings are inverse to each other:

A(B(X)) = X and B(A(X)) = X. (1.46)

Differentials of inverse mappings are also inverse to each other. Note
that both Θ(0, X) and θ(0, X) are the Hessian matrix of the initial condition
(1.11), which was denoted in the proof of the previous theorem by H. Thus
we get the following equations for Θ and θ.

Corollary 1.6.

E + ŜΘ(S,X) =
(

E − ŜΘ
(

0, X + ŜΦ(S,X)
))−1

=

=
(

E − ŜH
(

X + ŜΦ(S,X)
))−1

(1.47)

E + sθ(s,X) = (E − sθ(0, X + sφ(s,X)))−1 = (E − sH(X + sφ(s,X)))−1

(1.48)
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Thus the formal Cauchy problems for the systems of the Burgers equa-
tions for Φ and φ are equivalent to the problem of finding the inverse function
for the initial conditions. Integrating Φ or φ we may get the first term of the
expansions (1.27) or (1.28). It is remarkable that the second term of these
expansions may be presented explicitly in terms of Φ (or φ) and H.

The equations (1.25) and (1.26) provide the following equations for Ψ1

and ψ1.
∂Ψ1

∂si
=

1

2

∂Φi

∂xi
+ Φi

∂Ψ1

∂xi
. (1.49)

∂ψ1

∂s
=

1

2
tr θ + φT (∇Xψ1) . (1.50)

Theorem 1.4. The solution of the equations (1.49) or (1.50) with the initial
conditions Ψ1(0, X) = U1(X) or ψ1(0, X) = U1(X) is given by the following
formulas:

Ψ1(S,X) = U1

(

X + ŜΦ(S,X)
)

−
1

2
tr ln

(

E − ŜH(X + ŜΦ(S,X))
)

(1.51)

ψ1(s,X) = U1 (X + sφ(s,X)) −
1

2
tr ln (E − sH(X + sφ(s,X))) (1.52)

The shortest way to prove the theorem is to substitute the solutions (1.51)
and (1.52) into the equations (1.49) and (1.50). Instead of that we postpone
the proof to section 3 where we shall explain these formulas in terms of
geometry of graphs for the case of general symmetric matrix Ŝ.

For g > 1 the equations (1.25) and (1.26) provide the following recurrent
equations for Ψg and ψg.

∂Ψg

∂si
=

1

2

∂2Ψg−1

∂x2
i

+ Φi

∂Ψg

∂xi
+

1

2

g−1
∑

m=1

∂Ψm

∂xi

∂Ψg−m

∂xi
. (1.53)

∂ψg
∂s

=
1

2
MX ψg−1 + φT∇X ψg +

1

2

g−1
∑

m=1

(∇X ψm)T (∇X ψg−m) . (1.54)

In section 3 we introduce for g > 1 stable graph polynomials Pg({ag,N}, Ŝ)
(see (3.56)) depending on independent variables ag,N for all g ≥ 0 |N | ≥

3 and symmetric matrix Ŝ. The stable graph polynomials satisfy certain
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recurrence (see theorem 4.1). The solution of (1.53) and (1.54) are expressed
by the stable graph polynomials as follows (see theorem 3.4):

Ψg(Ŝ, X) =

= Pg










ag,N :=

∂|N |Ug

(

X + ŜΦ(Ŝ, X)
)

∂XN






,
(

E − ŜH
(

X + ŜΦ(Ŝ, X)
))−1

Ŝ



 ;

(1.55)

ψg(s,X) =

= Pg

({

ag,N :=
∂|N |Ug (X + sφ(s,X))

∂XN

}

, s (E − sH (X + sφ(s,X)))−1

)

.

(1.56)

By definition stable graph is a connected graph having no 1-valent and
2-valent genus 0 vertices. Stable graph polynomials are simply generating
functions for stable closed graphs; we postpone formal definition for section
3 because Pg({ag,N}, Ŝ) essentially depend on arbitrary symmetric matrix Ŝ.

Right now we can discuss the case r = 1 which is far from being trivial.
For this case we have one variable s corresponding to edges of a graph and
two-index variables ag,n. Denoting by Ak

g the set of genus g stable closed
graphs we define

Pg({am,N}, s) =

3g−3
∑

k=0

∑

Γ∈Ak
g

µ(Γ)

|AutΓ|
sk. (1.57)

(Stable genus g graph without half-edges has at most 3g − 3 edges.) For
instance for g = 2

P2 = a2,0 +
1

2
a2

1,1s +
1

2
a1,2s +

1

2
a1,1a0,3s

2 +
1

8
a0,4s

2 +
5

24
a2

0,3s
3. (1.58)

There are two interesting specializations of the variables {ag,n}: counting
functions for all combinatorial graphs and counting functions for all stable
combinatorial graphs and

For the counting functions for all combinatorial graphs we put

acomb
g,n =

{
1 if g = 0
0 otherwise,

(1.59)
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and for the counting functions for all stable combinatorial graphs we put

ast
g,n =

{
1 if g = 0 and n ≥ 3
0 otherwise.

(1.60)

The function Φ satisfies the functional equation

Φcomb(s, x) = ex+sΦ
comb(s,x) (1.61)

for the counting functions for all combinatorial graphs1 and the functional
equation

ex+sΦ
st(s,x) = 1 + x+ (s+ 1)Φst(s, x) (1.62)

for the counting functions for all stable combinatorial graphs.
Stable graph polynomials for both cases coincide; we denote

P comb
g (s) = Pg

({
am,N := acomb

m,N

})
= Pg

({
am,N := ast

m,N

}
, s
)
. (1.63)

For instance for g = 2

P comb
2 =

1

8
s2 +

5

24
s3. (1.64)

In section 5 we prove the following theorem.

Theorem 1.5. 1) Combinatorial stable graph polynomials P comb
g for g > 2

satisfy the recurrence

dP comb
g

ds
=

1

2

[

D2
comb(P

comb
g−1 ) + 2sDcomb(P

comb
g−1 ) +

g−2
∑

m=2

Dcomb(P
comb
m )Dcomb(P

comb
g−m )

]

,

(1.65)

where

Dcomb = s(s+ 1)
d

ds
− (g − 1). (1.66)

1Note that Φcomb(s, 0) is the classical generating function for rooted trees (without
half-edges) whose coefficients are given by the well-known Caley formula:

Φcomb(s, 0) =

∞∑

k=0

(k + 1)k

(k + 1)!
sk.
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2) For g ≥ 2 the counting function for all combinatorial graphs

Ψcomb
g (s, x) =

1

Φcomb(s, x)g−1
P comb
g

(
sΦcomb(s, x)

1 − sΦcomb(s, x)

)

. (1.67)

3) For g ≥ 2 the counting function for all stable combinatorial graphs

Ψst
g (s, x) =

1

(1 + x + (s+ 1)Φst(s, x))g−1P
comb
g

(
s (1 + x + (s+ 1)Φst(s, x))

1 − s(x+ (s+ 1)Φst(s, x))

)

.

(1.68)

Formula (1.68) was derived in [1] by direct solution of the equations (1.53).

2 The Hessian conjecture.

The Jacobian conjecture states that for a polynomial mappings A : Cr → Cr

with constant determinant of the Jacobian matrix the inverse mapping is
also polynomial. It is well-known (see for instance [3]) that it is sufficient
to prove the Jacobian conjecture for all r > 1 for the mapping A(X) =
X − F (X) where F (X) is the gradient vector of a homogenous polynomial2

U0(X). In this case the determinant of the Jacobian matrix is constant if
and only if the Hessian matrix H(X) = ∇XF (X) is nilpotent. This form of
statement is called the Hessian conjecture. We use the notations of section
1 to emphasize that the Hessian conjecture may be stated in the language
of generating functions. Corollary 1.5 for Ŝ = E provides a formula for the
inverse mapping (however we don’t need F to be homogenous). Thus we may
state the Hessian conjecture in the language of generating functions. Since
now we are interested only in in the inversion problem we may consider
only combinatorial graphs, i.e. put ag,N = 0 for g > 0. Then the initial
condition (1.8) has only zero term, i.e. Ug = 0 for g > 0. In the Hessian
conjecture U0(X) is a polynomial of some degree d. This means that we
consider graphs with a0,N = 0 for |N | > d. Homogeneous polynomial U0(X)
implies generating functions of d-valent graphs. Thus the Hessian conjecture
looks as follows.

The Hessian Conjecture. Let ag,N = 0 for g > 0 a0,N = 0 for |N | >
d. Suppose that the matrix H(X) (1.11) is nilpotent. Then the generating
function for modular trees Ψ0(E,X) is a polynomial.

2In fact it is sufficient to prove the Jacobian conjecture only for the case deg U0 = 4.
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The proof is still unknown, but we can present short and natural proofs
for several statements observed by W.Zhao in [4].

Proposition 2.1. Let ag,N = 0 for g > 0 and H(X) is nilpotent. Then
ψg(s,X) = 0 for g > 0.

First of all, formula (1.52) of theorem 1.4 shows that ψ1(s,X) = 0. Sup-
pose that for some g > 1 ψm(s,X) = 0 for all positive m < g. Then (1.54)
provides linear equation

∂ψg
∂s

= φT∇X ψg (2.1)

with the initial condition ψg(0, X) = Ug(X) = 0. Therefore ψg(s,X) = 0.

Corollary 2.1. Let ag,N = 0 for g > 0 and H(X) is nilpotent. Then

ψ(s,X) = ψ0(s,X)
~

.

Thus for ~ = 1 these functions coincide and so we may apply corollaries
1.1 and 1.2.

Corollary 2.2. Let ag,N = 0 for g > 0 and H(X) is nilpotent. Then ψ0(s,X)
satisfies the Burgers equation

∂ψ0

∂s
=

1

2

[

MX ψ0 + (∇X ψ0)
T (∇X ψ0)

]

. (2.2)

and the function ψ̃0(s,X) = eψ0(s,X) satisfies the heat equation

∂ψ̃0

∂s
=

1

2
MX ψ̃0. (2.3)

Comparing (1.30) and (2.2) we see that ψ0 is a harmonic function.

Corollary 2.3. Let ag,N = 0 for g > 0 and H(X) is nilpotent. Then

MX ψ0(s,X) = 0. (2.4)

In conclusion let us compare two inversion formulas.

Proposition 2.2. Corollary 1.5 for Ŝ = E is equivalent to the Bass-Connell-
Wright Tree Inversion Formula (see [3]).
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Here we present (in our notations) the Bass-Connell-Wright Tree Inver-
sion Formula from [3] (Theorem 2.3). In [3] T denotes the set of isomorphism
classes of finite trees (without half-edges).

Theorem. Consider the formal map A(X) = X − F (X) where F (X) =
∇X U0(X), and let B(X) be its inverse. Then B(X) = X + ∇X Q(X) with

Q =
∑

T∈T

1

AutT

∑

l : E(T )→{1,...,r}

∏

v∈V (T )

∂|N(v)|U0

∂XN(v)
(2.5)

First of all, mapping l : E(T ) → {1, . . . , r} is just colouring of the edges
of the tree T so in fact we have sum over the set G0,0 all closed coloured trees
(i.e. trees without half-edges). Denote the tree T with edges coloured by the
mapping : E(T ) → {1, . . . , r} by Γ. Thus we can rewrite (2.5) as

Q =
∑

Γ∈G0,0

1

|AutΓ|

∏

v∈V (Γ)

∂|N(v)|U0

∂XN(v)
(2.6)

Consider a modular tree ∆ ∈ GK0,N . Removal of all its half-edges defines
a mapping

c :
⋃

N≥0

GK0,N → GK0,0. (2.7)

It is not hard to see that for a closed tree Γ ∈ GK0,0

∑

∆∈c−1(Γ)

1

|Aut ∆|
µ(∆)XN(∆) =

1

|AutΓ|

∏

v∈V (Γ)

∂|N(v)|U0

∂XN(v)
. (2.8)

Therefore Q(X) = Ψ0(E,X).

3 Bipartite graphs.

Now our aim is to prove the results of section 1 using similar equations for
arbitrary symmetric matrix Ŝ. Instead of coloured modular graphs we shall
consider bipartite coloured modular graphs. By definition a bipartite coloured
modular graph has the following structure:

(1) the set of vertices V (Γ) of a bipartite coloured modular graph Γ is a
disjoint union of two partite sets V (Γ) = Va(Γ) t Vs(Γ);
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(2) two vertices from the same partite sets are not connected by an edge;

(3) to each vertex of v ∈ Va(Γ) we attach a nonnegative integer g(v);

(4) vertices from Vs(Γ) should be only two-valent and should have no ad-
jacent half-edges, we shall call such vertices s-vertices.

Informally speaking we may say that a new bipartite graph is obtained from
a usual modular graph by inserting new two-valent s-vertices into the middle
of each edge. Therefore we attach the variables {ag,N} to the vertices from
Va(Γ), and the variables {sij} will correspond to the two-valent s-vertices
from Vs(Γ). As before we define

g(Γ) =
∑

v∈Va(Γ)

g(v) + b1(Γ) − b0(Γ) + 1. (3.1)

Denote by B̃g,N the set of all such bipartite graphs having ni half-edges of
the colour i and g(Γ) = g and by Bg,N the set of all such connected bipartite
graphs. Put B̃g =

⋃

N≥0 B̃g,N and Bg =
⋃

N≥0 Bg,N .
For a bipartite coloured modular graph we define

µ(Γ) =
∏

v∈Vs(Γ)

sij
∏

v∈Va(Γ)

ag(v),ν(v) . (3.2)

Next we define the generating functions

Ψ(Ŝ, X, ~) =
∑

g≥0

∑

N≥0




∑

Γ∈Bg,N

µ(Γ)

|AutΓ|



XN
~
g−1 (3.3)

and

Ψ̃(Ŝ, X, ~) =
∑

−∞<g<+∞

∑

N≥0




∑

Γ∈B̃g,N

µ(Γ)

|AutΓ|



XN
~
g−1. (3.4)

Here Ŝ is the matrix (sij); Ψ and Ψ̃ depend on Ŝ via µ(Γ) (see 3.2)). Note

that for diagonal matrix Ŝ (i.e. for sij = 0 for i 6= j) the definitions (3.3)
and (3.4) coincide with (1.4) and (1.5). For the new functions Ψ and Ψ̃ it is
not hard to prove the same theorems as for the old ones.

Theorem 3.1.

Ψ̃(Ŝ, X, ~) = exp(Ψ(Ŝ, X, ~)); (3.5)
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For the analogue of the proposition 1.1 we define the sets of bipartite
coloured modular (connected) graphs with one marked ij-valent s-vertex

by B̃
[ij]
g,N (B

[ij]
g,N). For a graph Γ ∈ B̃

[ij]
g,N (B

[ij]
g,N) definition of µ(Γ) should be

improved: we put

µ(Γ) =
∏

nonmarked

v∈Vs(Γ)

sij
∏

v∈Va(Γ)

ag(v),ν(v). (3.6)

The set of bipartite coloured modular (connected) graphs with ni+ li marked
half-edges of the colour i, li of them marked and ordered, will be denoted by
B̃g,N,[L] (Bg,N,[L]). (N = (n1, . . . , nr) and L = (l1, . . . , lr) are multiindices.)
Then

∑

−∞<g<+∞

∑

N≥0






∑

Γ∈B̃
[ij]
g,N

µ(Γ)

|AutΓ|




XN

~
g−1 =

∂Ψ̃(S,X, ~)

∂sij
, (3.7)

∑

−∞<g<+∞

∑

N≥0






∑

Γ∈B̃K
g,N,[L]

µ(Γ)

|AutΓ|




XN

~
g−1 =

∂lΨ̃(S,X, ~)

∂xl11 . . . ∂x
lr
r

, (3.8)

and the same is true for the generating series for connected graphs (i.e. for
Ψ without tilde):

∑

g≥0

∑

N≥0






∑

Γ∈B
[ij]
g,N

µ(Γ)

|Aut Γ|




XN

~
g−1 =

∂Ψ(S,X, ~)

∂sij
, (3.9)

∑

g≥0

∑

N≥0




∑

Γ∈Bg,N,[L]

µ(Γ)

|AutΓ|



XN
~
g−1 =

∂lΨ(S,X, ~)

∂xl11 . . . ∂x
lr
r

, (3.10)

Now we are able to clutch together half-edges of different colours: clutch-
ing together two half-edges of the colours i and j we insert a ij-valent s-vertex
between them. Pick a graph from B̃

[ij]
g,N . Deletion of the marked s-vertex pro-

vides a graph in B̃g,N,[{ij}], which proves the following analogue of the heat
equation (1.23):
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Theorem 3.2. For i 6= j

∂Ψ̃

∂sij
= ~

∂2Ψ̃

∂xi∂xj
; (3.11)

for i = j
∂Ψ̃

∂sii
=

~

2

∂2Ψ̃

∂x2
i

(3.12)

Note that using the notations

{ij}! = (Li + Lj)! =

{
1! · 1! = 1 for i 6= j

2! = 2 for i = j
(3.13)

we may rewrite (3.11) and (3.12) in the following uniform way

∂Ψ̃

∂sij
=

~

{ij}!

∂2Ψ̃

∂xi∂xj
. (3.14)

For Ψ the corresponding generalization of the Burgers equations (1.23) looks
as follows:

Corollary 3.1.

∂Ψ

∂sij
=

~

{ij}!

[
∂2Ψ

∂xi∂xj
+

(
∂Ψ

∂xi

)(
∂Ψ

∂xj

)]

. (3.15)

Next let us consider the genus expansion of Ψ

Ψ(Ŝ, X, ~) =
∑

g≥0

Ψg(Ŝ, X)~g−1. (3.16)

For g = 0 (3.15) provides the equation

∂Ψ0

∂sij
=

1

{ij}!

(
∂Ψ0

∂xi

)(
∂Ψ0

∂xj

)

. (3.17)

For g > 0 (3.15) provides recursive equations

∂Ψg

∂sij
=

1

{ij}!

[

∂2Ψg−1

∂xi∂xj
+

g
∑

m=0

(
∂Ψm

∂xi

)(
∂Ψg−m

∂xj

)]

. (3.18)

The equation (3.17) looks better for the gradient vector function

Φ(Ŝ, X) = ∇X Ψ0(Ŝ, X) =
(

Φ1(Ŝ, X), . . . ,Φr(Ŝ, X)
)

. (3.19)
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Corollary 3.2. For i 6= j

∂Φm

∂sij
= Φi

∂Φm

∂xj
+ Φj

∂Φ

∂xi
; (3.20)

for i = j
∂Φm

∂sii
= Φi

∂Φm

∂xi
. (3.21)

Theorem 3.3. Let F (X) = (F1(X), . . . , Fr(X)) be any formal series vector.
Then the solution of the system (3.20) and (3.21) with the initial condition
Φ(0̂, X) = F (X) satisfies the functional equation

Φ(Ŝ, X) = F (X + ŜΦ(Ŝ, X)). (3.22)

The proof repeats the proof of theorem 1.3. Define the Hessian matrix
function

Θ(Ŝ, X) = ∇X Φ0(Ŝ, X) =

(
∂2Ψ0

∂xi∂xj

)

(3.23)

and put H = Θ(0̂, X). Combining the partial derivatives of the m-th equa-
tion (3.22) by sij, xj and xi we obtain

(

E −HŜ
)(∂Φm

∂sij
− Φi

∂Φm

∂xj
− Φj

∂Φ

∂xi

)

= 0, (3.24)

which provides (3.20).
For a gradient initial condition F (X) = ∇X U0(X) we may give a different

proof of this theorem which is purely combinatorial. Note that according to
(3.10) the series Φi(Ŝ, X) is the generating function for the trees from B0,[i] =
⋃

N≥0 B0,N,[i] (trees with one marked half-edge of the colour i). Consider the
set of edgeless genus 0 connected trees with one marked half-edge of the
colour i B0

0,[i] (i. e. single vertices). Attaching to each graph Γ ∈ B0,[i] the
vertex adjacent to the marked half-edge provides the mapping

c0 : B0,[i] → B0
0,[i]. (3.25)

For any ∆ ∈ B
(0)
0,[i] (∆ consists of a single vertex with several half-edges and

one marked half-edge of the colour i) all the graphs in c−1
1 (∆) are constructed

from ∆ by clutching arbitrary genus 0 trees with one marked half-edge to
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some of the half-edges of ∆ (inserting a two-valent s-vertex between the
corresponding half-edge of Γ and the marked edge of the tree). Therefore

∑

Γ∈c−1
0 (∆)

µ(Γ)

|AutΓ|
XN(Γ) =

µ(∆)

|Aut ∆|

(

X + ŜΦ(Ŝ, X)
)N(∆)

. (3.26)

But the generating function for B
(0)
0,[i] is Φi(0, X) = Fi(X) and therefore taking

the sum over all ∆ ∈ B
(0)
0,[i] we get

Φi(Ŝ, X) =
∑

Γ∈B0,[i]

µ(Γ)

|Aut Γ|
XN(Γ) =

∑

∆∈B
(0)
0,[i]

∑

Γ∈c−1
0 (∆)

µ(Γ)

|AutΓ|
XN(Γ) =

=
∑

∆∈B
(0)
0,[i]

µ(∆)

|Aut∆|

(

X + ŜΦ(Ŝ, X)
)N(∆)

= Fi

(

X + ŜΦ(Ŝ, X)
)

. (3.27)

An s-vertex v′ ∈ Vs(Γ) of a coloured bipartite connected modular graph
Γ ∈ Bg,N will be called 1-cut if deletion of v′ disconnects the graph and at
least one of the two new connected components has genus zero. A graph
without 1-cuts will be called 2-connected. Pick a graph Γ ∈ Bg,N . Let us
mark all the vertices v′′ ∈ Va(Γ) which are connected by an edge with at
least one vertex v′ ∈ Vs(Γ) which is not a 1-cut and all the the vertices
v′′ ∈ Va(Γ) with g(v′′) > 0. (Note that a genus 0 graph will have no marked
vertices.) Next let us delete all the 0-cuts connected by an edge with at
least one marked vertex. As the result we shall obtain a number of genus
0 connected component Γi, i > 0 and one genus g connected component Γ1

without 1-cuts (the one having marked vertices). Let us for g > 0 denote
the set of all coloured bipartite connected and 2-connected (i.e. without 1-

cuts) modular graphs Γ ∈ Bg,N by B
(1)
g,N . The above construction provides

the mapping
c1 : Bg,N → B

(1)
g,N . (3.28)

Consider for g > 0 the corresponding generating function

Ψ(1)
g (Ŝ, X) =

∑

N≥0






∑

Γ∈B
(1)
g,N

µ(Γ)

|AutΓ|




XN (3.29)
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For any Γ ∈ B
(1)
g,N all the graphs in c−1

1 (Γ) may be constructed from Γ by
clutching arbitrary genus 0 trees with one marked half-edge to some of the
half-edges of Γ (inserting a two-valent s-vertex between the corresponding
half-edge of Γ and the marked edge of the tree). Therefore

∑

∆∈c−1
1 (Γ)

µ(∆)

|Aut∆|
XN(∆) =

µ(Γ)

|AutΓ|

(

X + ŜΦ(Ŝ, X)
)N

. (3.30)

Summing over all genus g 2-connected graphs we obtain the following ex-
pression of Ψg via Ψ

(1)
g

Proposition 3.1.

Ψg(Ŝ, X) = Ψ(1)
g (Ŝ, X + ŜΦ(Ŝ, X)) (3.31)

Consider the set LkN,[ij] of coloured bipartite connected modular trees Γ

consisting of a chain of k genus 0 vertices Va(Γ) interleaving with k− 1 two-
valent s-vertices v′ ∈ Vs(Γ) having two marked ordered half-edges i and j
incident to the farthest vertices of Γ. Put LN,[ij] =

⋃

k≥0 L
k
N,[ij] and L[ij] =

⋃

N≥0 LN,[ij] . Note that such graphs have no nontrivial automorphisms (at
least for the case of ordered half-edges); reading all the vertices of Γ along the
chain starting from the vertex incident to the first marked half-edge matches
µ(Γ)X

N

N !
to a certain summand of the ij element of the matrix

HŜHŜH . . . ŜH
︸ ︷︷ ︸

k times H

, (3.32)

where H = H(X) is the the Hessian matrix ( ∂
2U0(X)
∂xi∂xj

). Consider the matrix

Υk(X) of generating series defined by

Υk(X)ij =
∑

N≥0

∑

Γ∈Lk
N,[ij]

µ(Γ)
XN

N !
. (3.33)

and the generating series

Υ(X)ij =
∑

Γ∈L[ij]

µ(Γ)
XN(Γ)

N(Γ)!
. (3.34)

Summing over all the trees in LkN,[ij] we shall get all the summands of the

corresponding term of (3.32). Therefore we have obtained the following for-
mula.
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Proposition 3.2.

Υk(X) = HŜHŜH . . . ŜH
︸ ︷︷ ︸

k times H

. (3.35)

Corollary 3.3.

Υ(X) = H +HŜH +HŜHŜH + . . . = H
(

E − ŜH
)−1

=
(

E −HŜ
)−1

H.

(3.36)

Now it is very easy to give a purely combinatorial proof of the formula
(1.47). According to (3.10) the ij component of the matrix Θ(Ŝ, X) is the
generating function for the trees from

⋃

N≥0 B0,N,[ij]. In any tree Γ ∈ B0,N,[ij]

there is a unique chain connecting the two marked edges; this chain we may
consider as an element of LkN,[ij] (k is the length of this chain). Thus we have
defined a mapping

c1 : B0,N,[ij] → LN,[ij]. (3.37)

As in the proof of the proposition 3.1 for any chain Λ ∈ LN,[ij] all the graphs
in c−1

1 (Λ) are constructed from Λ by clutching arbitrary genus 0 trees with
one marked half-edge to some of the half-edges of Λ (inserting a two-valent
s-vertex between the corresponding half-edge of Γ and the marked edge of
the tree). Therefore

∑

Γ∈c−1
1 (Λ)

µ(Γ)

|AutΓ|
XN(Γ) =

µ(Λ)

|AutΛ|

(

X + ŜΦ(Ŝ, X)
)N(Λ)

(3.38)

and

Θ(Ŝ, X)ij =
∑

Γ∈B0,[ij]

µ(Γ)

|AutΓ|
XN(Γ) =

∑

Λ∈L[ij]




∑

Γ∈c−1
1 (Λ)

µ(Γ)

|AutΓ|
XN(Γ)



 =

=
∑

Λ∈L[ij]

µ(Λ)

|AutΛ|

(

X + ŜΦ(Ŝ, X)
)N(Λ)

= Υ
(

X + ŜΦ(Ŝ, X)
)

ij
. (3.39)

Using (3.36) and multiplying by Ŝ we get

ŜΘ(Ŝ, X) = ŜH
(

X + ŜΦ(Ŝ, X)
)

+ŜH
(

X + ŜΦ(Ŝ, X)
)

ŜH
(

X + ŜΦ(Ŝ, X)
)

+

+ ŜH
(

X + ŜΦ(Ŝ, X)
)

ŜH
(

X + ŜΦ(Ŝ, X)
)

ŜH
(

X + ŜΦ(Ŝ, X)
)

+ . . .

(3.40)



23

and finally adding E we obtain (1.47):

E + ŜΘ(Ŝ, X) =
(

E − ŜH
(

X + ŜΦ(Ŝ, X)
))−1

. (3.41)

Now we are able to describe Ψ
(1)
g . First let us study the case g = 1. The

set of 2-connected genus 1 graphs splits into two parts B
(1)
1,N = B′(1)

1,N t B′′(1)
1,N ,

where B′(1)
1,N is the set of all 2-connected genus 1 graphs having only genus 0

vertices. A connected genus 1 graph may have at most one vertex of positive
genus; if such a vertex exists it should have genus 1. So a graph Γ ∈ B′′(1)

1,N

has no cycles, therefore it has no edges. Hence for each N B′′(1)
1,N consists of

one graph, namely single genus 1 vertex with |N | half-edges coloured by N .
Therefore

∑

N≥0






∑

Γ∈B′′(1)
1,N

µ(Γ)

|Aut Γ|




XN = Ψ1(0̂, X) = U1(X). (3.42)

If a genus 1 graph has only genus 0 vertices then it must have exactly one
cycle. Therefore a graph Γ ∈ B′(1)

1,N consists of one cycle having k > 0
vertices v′′ ∈ Va(Γ) interleaving with k two-valent s-vertices v ′ ∈ Vs(Γ).

Denote the set of such graphs by B
k (1)
1,N ; the set of such graphs with the ad-

ditional choice of one two-valent vertex v′′0 ∈ Vs(Γ) and of an orientation of

the cycle will be denoted by B
k (1)
1,N . The 2k-sheet covering B

k (1)
1,N → B

k (1)
1,N

is compatible with the automorphisms of the corresponding graphs. There-
fore

∑

Γ∈B
k (1)
1,N

µ(Γ)
|Aut Γ|

XN = 1
2k

∑

Γ∈B
k (1)
1,N

µ(Γ)
|Aut Γ|

XN where Γ denotes a graph Γ

together with the described additional structure. Deletion of the vertex v ′′0
defines a bijection

B
k (1)
1,N →

⋃

ij

LkN,[ij], (3.43)

therefore
∑

Γ∈B
k (1)
1,N

µ(Γ)

|AutΓ|
XN =

1

2k
tr
(

Ŝ H(X)
)k

. (3.44)

Summing for all k we obtain the formula for Ψ1.

Proposition 3.3.

Ψ
(1)
1 (Ŝ, X) = U1(X) −

1

2
tr ln(E − Ŝ H(X)). (3.45)
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Corollary 3.4.

Ψ1(Ŝ, X) = U1

(

X + ŜΦ(Ŝ, X)
)

−
1

2
tr ln

(

E − ŜH
(

X + ŜΦ(Ŝ, X)
))

.

(3.46)

A pair of two-valent s-vertices v′1, v
′
2 ∈ Vs(Γ) of a coloured bipartite con-

nected and 2-connected modular graph Γ ∈ B
(1)
g,N with g ≥ 1 will be called

a 2-cut if deleting of v′1 and v′2 disconnects the graph and at least one of
the two new connected components has genus zero. Note that for g > 1 at
most one of the two components may have genus zero and that the genus 0
component is a tree from Lk

′

N ′,[ij] for some N ′, k′. A graph without 2-cuts
will be called 3-connected; the set of 3-connected genus g graphs having ni
half-edges of the colour i will be denoted by B

(2)
g,N ; B

(2)
g =

⋃

N≥0 B
(2)
g,N . The

2-cuts of a given graph Γ ∈ B
(1)
g,N are partially ordered by the inclusion re-

lation of the corresponding genus 0 components. Consider all the maximal
2-cuts. Replacing each corresponding maximal genus 0 component by a new
two-valent s-vertex we obtain a 3-connected graph Γ̄ ∈ B

(2)
g,N . This provides

the mapping
c2 : B(1)

g → B(2)
g . (3.47)

Pick a graph Γ ∈ B
(2)
g . The preimage c−1

2 (Γ̄) consists of all graphs obtained
from Γ by replacing some of the two-valent s-vertices by arbitrary trees from
LkN,[ij] (bounded by two two-valent s-vertices on the clutching positions).
Therefore 


∑

Γ∈c−1
2 (Γ)

µ(Γ)

|Aut Γ|



XN(Γ) (3.48)

is obtained from µ(Γ)
|Aut Γ|

XN by substituting

(

Ŝ + ŜHŜ + ŜHŜHŜ + . . .
)

ij
(3.49)

instead of all sij. Note that the matrix in (3.49) may be expressed as

Ŝ + ŜHŜ + ŜHŜHŜ + . . . = Ŝ
(

E −HŜ
)−1

=
(

E − ŜH
)−1

Ŝ. (3.50)
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This enables to express the function Ψ in terms of the generating function
for 3-connected graphs

Ψ(2)
g (Ŝ, X) =

∑

N≥0






∑

Γ∈B
(2)
g,N

µ(Γ)

|Aut Γ|




XN . (3.51)

Proposition 3.4. For g > 1

Ψ(1)
g (Ŝ, X) = Ψ(2)

g

((

E − ŜH(X)
)−1

Ŝ, X

)

. (3.52)

Corollary 3.5. For g > 1

Ψg(Ŝ, X) = Ψ(2)
g

((

E − ŜH
(

X + ŜΦ(Ŝ, X)
))−1

Ŝ, X + ŜΦ(Ŝ, X)

)

.

(3.53)

Now we are left to describe Ψ
(2)
g . Deletion of all the half-edges defines the

mapping
c3 : B(2)

g → B
(2)
g,0, (3.54)

where B
(2)
g,0 is the set of genus g > 1 3-connected graphs without half-edges.

Note that a graph is 3-connected if and only if it is stable. We shall denote
the set of stable closed graphs B

(2)
g,0 by Ag. Pick a stable closed graph Γ ∈ Ag

and a vertex v ∈ Va(Γ); let N(v) (|N(v)| ≥ 3 for g = 0) be the multiindex

of its valences. Note that ag(v),N(v) =
∂|N(v)|Ug(v)

∂XN(v) (0), and the same vertex v in

different graphs from c−1
3 (Γ) corresponds to certain terms of the expansion

of
∂|N(v)|Ug(v)(X)

∂XN(v) . Thus it is not hard to verify that



∑

∆∈c−1
3 (Γ)

µ(∆)

|Aut∆|



XN(∆) =
1

|AutΓ|

∏

v∈Va(Γ)

∂|N(v)|Ug(v)
∂XN(v)

(X). (3.55)

The product on the right side of (3.55) looks like the second product in the

definition of µ(Γ) (3.2) with ∂|N|Ug(X)
∂XN substituted instead of the variables

ag,N . Therefore, defining for g ≥ 1 the generating functions Pg for stable
closed graphs by

Pg({am,N}, Ŝ) =
∑

Γ∈Ag

µ(Γ)

|AutΓ|
= Ψ(2)

g ({am,N}, Ŝ, 0) (3.56)
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we obtain the following expression for Ψ
(2)
g :

Ψ(2)
g

(

{am,N} , Ŝ, X
)

=
∑

N≥0






∑

Γ∈B
(2)
g,N

µ(Γ)

|AutΓ|




XN =

= Pg

({

am,N :=
∂|N |Um
∂XN

(X)

}

, Ŝ

)

. (3.57)

Thus we are able to express the generating functions Ψg in terms of the
generating functions for stable closed graphs Pg.

Theorem 3.4. For g > 1

Ψg(Ŝ, X) =

= Pg

({

ag,N :=
∂|N |Ug
∂XN

(

X + ŜΦ(Ŝ, X)
)}

,
(

E − ŜH
(

X + ŜΦ(Ŝ, X)
))−1

Ŝ

)

.

(3.58)

Note that for each g > 1 the set of stable closed graphs Ag is finite: for
g > 1 a stable closed genus g graph has at most 3g− 3 two-valent s-vertices.
Hence Pg({am,N}, Ŝ) is a polynomial in sij and {am,N} for |N | ≤ 2g − 2
(|N | ≤ 2 for g = 1) and 0 ≤ m ≤ g. It has degree 3g − 3 as a polynomial
in sij; for combinatorial case the degree of all terms is at least g. We shall

call the polynomials Pg({am,N}, Ŝ) stable graph polynomials. For instance
the first stable graph polynomial for g = 2

P2 = a2,0 +
∑

i,j

1

{ij}!
a1,{i}a1,{j}sij +

∑

i,j

1

{ij}!
a1,{ij}sij+

+
∑

i,j,k,l

1

{kl}!
a1,{i}a0,{jkl}sijskl +

∑

i,j,k,l,p,q

1

Aut Γ5

a0,{ijk}a0,{lpq}sijsklspq+

+
∑

i,j,k,l,p,q

1

AutΓ6
a0,{ijk}a0,{lpq}sipsklsjq +

∑

i,j,k,l

1

Aut Γ7
a0,{ijkl}sijskl. (3.59)

has seven groups of terms corresponding to the seven possible genus 2 graphs;
different terms in each group correspond to different ways of colouring edges
of the given graph. All the coefficients are the inverses to the number of
automorphisms of the corresponding graph; in the last three terms we do not
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indicate an explicit expression of dependence of these numbers on the way
of colouring. For combinatorial case P2 has only three last terms.

It is not hard to verify that the stable graph polynomials are homogeneous
in the following sense.

Proposition 3.5. Define the grading of the polynomial ring C [{sij}, {am,N}]
by

deg ag,N = 1 − |N | − g and deg sij = 1. (3.60)

Then stable graph polynomial Pg({ag,N}, Ŝ) is homogeneous polynomial of
degree 1 − g.

4 Stable graph polynomials

Next let us derive the recurrence for the stable graph polynomials. The idea
of it is quite similar to the proof of theorem 1.23 (or theorem 3.2): we delete
one s-vertex of a given stable closed genus g graph and obtain a genus g− 1
graph with two half-edges. Unlike the cases considered in the theorems 1.23
and 3.2 the new graph does not correspond to the same generating function
for genus g − 1, because it is not closed and may be not connected. First
let us study the latter case. Let Γ be a stable closed genus g > 1 graph and
assume that deleting of some s-vertex disconnects it into the disjoint union
of two connected graphs Γ′ and Γ′′. Then both Γ′ and Γ′′ have positive genus
and each of the two has exactly one half-edge. Let us denote by Cg,{i} the
set of all genus g ≥ 1 graphs with the only half-edge of colour i obtained
from stable closed graphs in the described way. Pick a graph Γ ∈ Cg,{i}. For
g > 1 deletion of its only half-edge provides a stable closed graph unless the
vertex v0 incident to the half-edge was a trivalent genus 0 vertex. But in the
latter case we obtain a stable closed graph by substituting an s-vertex instead
of the subgraph consisting of the vertex v0 together with the two s-vertices
adjacent to v0 (see Fig. 2). Thus for g > 1 we have defined a mapping

c5 : Cg,{i} → B
(2)
g,0. (4.1)

The generating function (µ(Γ) is defined in (3.2))

Q(i)
g ({am,N}, Ŝ) =

∑

Γ∈Cg,{i}

µ(Γ)

|AutΓ|
(4.2)
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is a derivative of Pg in the following sense. For 1 ≤ k ≤ r define the differen-
tiation Dk of the ring of polynomials in all am,N and sij by its action on its
generators:

Dk(am,N) = am,N+{k} (4.3)

Dk(sij) =
∑

p,q

sipsjqa0,{pqk} (4.4)

Proposition 4.1. The differentiation Dk is homogeneous and has degree −1.

Using the mapping (4.1) it is not hard to verify the following statement.

Proposition 4.2. For g > 1

Q(i)
g ({am,N}, Ŝ) = Di(Pg({am,N}, Ŝ) (4.5)

For g = 1 the mapping (4.1) is not well-defined but it is not hard to list all
the graphs of C1,{i} explicitly. In fact there are only two such graphs: single
genus 1 vertex with one colour i half-edge and a length one cycle with one
s-vertex and one genus 0 trivalent vertex having one half-edge of the colour
i. Therefore

Q
(i)
1 ({am,N}, Ŝ) = a1,{i} +

∑

p,q

1

{pq}!
sp,qa0,{ipq}, (4.6)

which may be considered as a formal definition of Di(P1) (whereas P1 does
not exist).

Next let us consider the second possibility. Pick a stable closed genus
g > 2 graph and assume that deleting of some s-vertex does not disconnect
it. Let us denote by Cg,{ij} the set of all genus g > 1 graphs having exactly
two half-edges of colours i and j obtained from stable closed graphs in the
described way. Our next purpose is to define for g > 1 a mapping

c4 : Cg,{ij} → B
(2)
g,0. (4.7)

First let us assume that the two half-edges are not attached to the same
trivalent genus 0 vertex. In this case the mapping (4.7) may be described as
the result of twice repeated operations used in the definition of the mapping
c5 (4.1). This corresponds to double differentiation 1

{ij}!
DiDj. Next consider

a graph Γ ∈ Cg,{ij} having two half-edges attached to the same trivalent genus
0 vertex v0. Then 0 is adjacent to exactly one s-vertex which connects it to
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the remaining part of the graph. Removal of this s-vertex (together with
v0) provides a graph Γ̄ ∈ Cg,{m} for some m. This enables to describe the
generating function

R(ij)
g ({am,N}, Ŝ) =

∑

Γ∈Cg,{ij}

µ(Γ)

|AutΓ|
(4.8)

using the mapping c4 (4.7).

Proposition 4.3. For g > 1

R(ij)
g ({am,N}, Ŝ) =

1

{ij}!

[

DiDi(Pg({am,N}, Ŝ) +
∑

p,q

Dp

(

Pg({am,N}, Ŝ)
)

spqa0,{ijq}

]

.

(4.9)

For g = 1 the mapping (4.7) is not well-defined but it is not hard to list
all the graphs of C1,{ij} explicitly. In fact there are only three such graphs
corresponding to the three terms of the following expression

R
(ij)
1 ({am,N}, Ŝ) =

1

{ij}!

[
∑

p,q,u,t

1

{{pq}{ut}}!
spusqta0,{ipq}a0,{jut} +

+
∑

p,q

(

a1,{p}spqa0,{ijq} +
∑

u,t

1

{ut}!
suta0,{utp}spqa0,{ijq}

)]

=

=
1

{ij}!

[
∑

p,q,u,t

1

{{pq}{ut}}!
spusqta0,{ipq}a0,{jut} +

∑

p,q

Dp(P1)spqa0,{ijq}

]

,

(4.10)

where {{pq}{ut}}! means 2 for p = q and u = t and 1 otherwise. Note that
in the last expression the term

∑

p,q,u,t
1

{{pq}{ut}}!
spusqta0,{ipq}a0,{jut} may be

considered as a formal definition of DiDj(P1) (different from Di(Dj(P1)) and
Dj(Di(P1)) which are not equal).

Now we are prepared to present the recurrence for stable graph poly-
nomials. Deletion of an s-vertex from a given stable closed genus g graph
provides either a connected graph from Cg−1,{ij} or a pair of connected graph
from Cm,{i} and Cg−m,{j} for some 1 ≤ m ≤ g − 1. Therefore

∂Pg

∂sij
=

1

{ij}!

[

R
(ij)
g−1({am,N}, Ŝ) +

g−1
∑

m=1

Q(i)
m ({am,N}, Ŝ)Q

(j)
g−m({am,N}, Ŝ)

]

.

(4.11)
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Substituting (4.5), (4.6) and (4.9) we get the desired recurrence.

Theorem 4.1. For g > 2 stable graph polynomials Pg({am,N}, Ŝ) for coloured
bipartite graphs are given by the recurrences (for each pair ij)

∂Pg

∂sij
=

1

{ij}!

[

DiDj(Pg−1) +
∑

p,q

Dp(Pg−1)spqa0,{ijq}+

+Di(Pg−1)

(

a1,{j} +
∑

p,q

1

{pq}!
sp,qa0,{jpq}

)

+

+ Dj(Pg−1)

(

a1,{i} +
∑

p,q

1

{pq}!
sp,qa0,{ipq}

)

+

g−2
∑

m=2

Di(Pm)Dj(Pg−m)

]

.

(4.12)

and by the initial condition Pg({am,N}, 0̂) = ag,0, where the differentiations
Di are given by (4.3) and (4.4) and P2 is defined in (3.59) .

Regardless of the absence of genus 1 stable closed graphs we may start
the recurrence (4.12) from g = 1 formally putting

Di(P1) = a1,{i} +
∑

p,q

1

{pq}!
sp,qa0,{ipq}. (4.13)

Then for any g > 1

∂Pg

∂sij
=

1

{ij}!

[

DiDj(Pg−1) +
∑

p,q

Dp(Pg−1)spqa0,{ijq}+

+

g−1
∑

m=1

Di(Pm)Dj(Pg−m)

]

. (4.14)

5 Counting functions for combinatorial graphs.

For r = 1 we have one variable s and two-index variables ag,n. The differen-
tiation D of the ring of polynomials in s and ag,n is defined by

D(ag,n) = ag,n+1 (5.1)
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D(s) = s2a0,3 (5.2)

The polynomial P2 is given by (3.59):

P2 = a2,0 +
1

2
a2

1,1s +
1

2
a1,2s +

1

2
a1,1a0,3s

2 +
1

8
a0,4s

2 +

(
1

12
+

1

8

)

a2
0,3s

3,

(5.3)

and for combinatorial case (ag,n = 0 for g > 0)

P2 =
1

8
a0,4s

2 +
5

24
a2

0,3s
3. (5.4)

The recurrence (4.12) becomes

∂Pg

∂s
=

1

2

[

D2(Pg−1) + 2D(Pg−1) (a1,1 + sa0,3) +

g−2
∑

m=2

D(Pm)D(Pg−m)

]

(5.5)

and the formula (3.58) looks like

Ψg(s, x) =

= Pg

({

ag,n :=
dnUg
dxn

(x+ sΦ(s, x))

}

,
s

1 − sH (x + sΦ(s, x))

)

. (5.6)

For the counting functions for combinatorial graphs we put

acomb
g,n =

{
1 if g = 0
0 otherwise

(5.7)

which we may write uniformly as acomb
g,n = δg0. Then the initial conditions

(see (1.8) — (1.10)) are

U comb
g (x) = 0 for g > 0,

U comb
0 (x) = ex,

(5.8)

and hence F comb(x) = Hcomb(x) = ex. The counting series for all trees
satisfies the functional equation (1.38):

Φcomb(s, x) = ex+sΦ
comb(s,x) (5.9)
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and therefore

dnU comb
g

dxn
(
x+ sΦcomb(s, x)

)
= 0 for g > 0, (5.10)

and

dnU comb
0

dxn
(
x + sΦcomb(s, x)

)
= ex+sΦ

comb(s,x) = Φcomb(s, x) for g = 0,

(5.11)
which we may write in a uniform way as ag,n := Φcomb(s, x)δg0. Denote the
second argument of (5.6) by Y :

Y =
s

1 − sH (x+ sΦ(s, x))
:=

s

1 − sex+sΦcomb(s,x)
=

s

1 − sΦcomb(s, x)
.

(5.12)
Therefore for the counting function for combinatorial graphs

Ψcomb
g (s, x) = Ψg({ag,n := δg0} , s, x) =

= Pg

(
{
ag,n := Φcomb(s, x)δg0

}
,

s

1 − sΦcomb(s, x)

)

. (5.13)

Recall that stable graph polynomials are homogenous and have degree
1 − g (see proposition 3.5) with respect to the grading (3.60). By definition
of stable graph polynomials (3.56):

Pg({am,N}, s) =
∑

Γ∈Ag

µ(Γ)

|AutΓ|
, (5.14)

where Ak
g is the set of genus g stable closed graphs. Denote the set of

genus g stable closed graphs with k edges by Ak
g. A graph Γ ∈ Ak

g has
k− g+1 vertices (combinatorial graphs have no vertices of higher genus), so
µ(Γ) = sk

∏k−g+1
i=1 a0,ni

, where ni are the valences of the vertices. Therefore
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the counting function for combinatorial graphs

Ψcomb
g (s, x) = Pg

({
am,N := Φcomb(s, x)δm0

}
, Y
)

=

=
∑

k

Y k




∑

Γ∈Ak
g

1

|Aut Γ|

k−g+1
∏

i=1

a0,ni



 =
∑

k

Y k




∑

Γ∈Ak
g

1

|AutΓ|
Φcomb(s, x)k−g+1



 =

=
1

Φ(s, x)g−1

∑

k

(
Φcomb(s, x)Y

)k




∑

Γ∈Ak
g

1

|AutΓ|



 =

=
1

Φcomb(s, x)g−1
Pg

(

{am,N := δm0} ,
sΦcomb(s, x)

1 − sΦcomb(s, x)

)

. (5.15)

Note that the polynomials

P comb
g (s) = Pg ({am,N := δm0} , s) (5.16)

are the generating functions for combinatorial stable closed graphs. Thus we
have proved the second part of the theorem 1.5.

Next let us prove the first part of this theorem. The only problem in
deriving an explicit recurrence for P comb

g (s) from (4.12) is how to express
the result of substitution am,N := δm0 into D(Pg) and D2(Pg) in terms of
P comb
g (s).

Consider the polynomial ring C[α, Y ] with the grading

deg Y = 1 and deg α = −1 (5.17)

and differentiation δcomb of this ring defined by its action on the generators

δcomb(α) = α and δcomb(Y ) = Y 2α. (5.18)

Then δcomb is homogeneous of degree 0. Define a ring homomorphism

f comb : C [{ag,n}, sij)] → C[α, Y ] (5.19)

by its action on the generators:

f comb(ag,n) = 0 for g > 0,
f comb(a0,n) = α
f comb(sij) = Y.

(5.20)
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Evidently D ◦f comb = f comb ◦ δcomb, therefore D2 ◦f comb = f comb ◦ δ2
comb. The

calculation (5.15) shows that f comb(Pg) is homogeneous polynomial of degree
g − 1, hence the same is true about f comb(D(Pg))) = δcomb(f

comb(Pg)). But
for any degree g − 1 homogeneous polynomial W ∈ C[α, Y ]

δcomb(W ) = Y 2α
∂W

∂Y
+ α

∂W

∂α
=

= Y 2α
∂W

∂Y
+ Y

∂W

∂Y
− Y

∂W

∂Y
+ α

∂W

∂α
=

= Y (Y α + 1)
∂W

∂Y
− (g − 1)W. (5.21)

(On the last step we use the Euler formula for homogeneous polynomials:
Y ∂W

∂Y
− α ∂W

∂α
= (g − 1)W.) Now we can apply (5.21) to the combinatorial

stable graph polynomials

P comb
g (s) = (f combPg)(1, s) (5.22)

and get the following recurrence for P comb
g .

Proposition 5.1. The combinatorial stable graph polynomials P comb
g (see

(5.16)) satisfy the following recurrence

dP comb
g

ds
=

1

2

[

D2
comb(P

comb
g−1 ) + 2sDcomb(P

comb
g−1 ) +

g−2
∑

m=2

Dcomb(P
comb
m )Dcomb(P

comb
g−m )

]

,

(5.23)

where

Dcomb = s(s+ 1)
d

ds
− (g − 1). (5.24)

Here we present the explicit form of the recurrence 5.23 and the polyno-
mials Pg for g ≤ 6:

d

ds
P comb
g (s) =

1

2

[

s2(s+ 1)2 d
2

ds2
P comb
g−1 (s)−

− s(s+ 1)(2g − 4s− 5)
d

ds
P comb
g−1 (s) + (g − 1)P comb

g−1 (s)+

+

g−2
∑

m=2

((

s(s+ 1)
d

ds
P comb
m (s) − (m− 1)P comb

m (s)

)

×

×

(

s(s+ 1)
d

ds
P comb
g−m (s) − (g −m− 1)P comb

g−m (s)

)

D(Pm)D(Pg−m)

)]

(5.25)
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Here we present the polynomials P comb
g for g ≤ 6:

P comb
2 =

5

24
s3 +

1

8
s2

P comb
3 =

5

16
s6 +

25

48
s5 +

11

48
s4 +

1

48
s3

P comb
4 =

1105

1152
s9 +

985

384
s8 +

1373

576
s7 +

515

576
s6 +

223

1920
s5 +

1

384
s4

P comb
5 =

565

128
s12+

12455

768
s11+

26581

1152
s10+

12227

768
s9+

2089

384
s8+

9583

11520
s7+

27

640
s6+

1

3840
s5

P comb
6 =

82825

3072
s15 +

387005

3072
s14 +

371195

1536
s13 +

10154003

41472
s12 +

121207

864
s11+

+
519883

11520
s10 +

1573507

207360
s9 +

2597

4608
s8 +

803

64512
s7 +

1

46080
s6

Similar formulas describe counting functions for combinatorial stable graphs.
For this case

ast
g,n =

{
1 if g = 0 and n ≥ 3
0 otherwise,

(5.26)

so the initial conditions (see (1.8) — (1.10)) are

U st
g (x) = 0 for g > 0,

U st
0 (x) = ex − 1 − x− x2

2
,

(5.27)

and hence F st(x) = ex − 1 − x and Hst(x) = ex − 1. The counting series for
all stable trees satisfies the functional equation (1.38):

Φst(s, x) = ex+sΦ
st(s,x) − 1 − (x + sΦst(s, x)) (5.28)

and therefore

dnU st
g

dxn
(
x+ sΦst(s, x)

)
= 0 for g > 0, (5.29)

and

dnU st
0

dxn
(
x+ sΦst(s, x)

)
= ex+sΦ

st(s,x) = 1+x+(s+1)Φst(s, x) for g = 0, n ≥ 3.

(5.30)
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Since the terms
dnUst

0

dxn (x+ sΦst(s, x)) for n < 3 are not involved in the stable
graph polynomials for the use in formula (5.6) we may write in a uniform
way ag,n := (1 + x+ (s+ 1)Φst(s, x))δg0.

The second argument of (5.6) for this case is :

s

1 − sHst (x+ sΦst(s, x))
=

s

1 − s(ex+sΦst(s,x) − 1)
=

s

1 − s(x+ (s+ 1)Φst(s, x))
.

(5.31)
Thus using the same argument as in the proof of (5.15) we get the formula
for counting function for combinatorial stable graphs:

Ψst
g (s, x) =

= Pg

(
{
am,N :=

(
1 + x + (s+ 1)Φst(s, x)

)
δm0

}
,

s

1 − s(x+ (s+ 1)Φst(s, x))

)

=

=
1

(1 + x+ (s+ 1)Φst(s, x))g−1Pg

(

{am,N := δm0} ,
s (1 + x + (s+ 1)Φst(s, x))

1 − s(x+ (s+ 1)Φst(s, x))

)

=

=
1

(1 + x+ (s+ 1)Φst(s, x))g−1P
comb
g

(
s (1 + x+ (s+ 1)Φst(s, x))

1 − s(x + (s+ 1)Φst(s, x))

)

.

(5.32)

The third part of the theorem 1.5 is proved.
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